1 | /* |
2 | * Copyright (C) 2010 Google Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * 2. Redistributions in binary form must reproduce the above copyright |
11 | * notice, this list of conditions and the following disclaimer in the |
12 | * documentation and/or other materials provided with the distribution. |
13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
14 | * its contributors may be used to endorse or promote products derived |
15 | * from this software without specific prior written permission. |
16 | * |
17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | */ |
28 | |
29 | #include "config.h" |
30 | |
31 | #if ENABLE(WEB_AUDIO) |
32 | |
33 | #include "ReverbConvolver.h" |
34 | |
35 | #include "VectorMath.h" |
36 | #include "AudioBus.h" |
37 | #include <mutex> |
38 | |
39 | namespace WebCore { |
40 | |
41 | using namespace VectorMath; |
42 | |
43 | const int InputBufferSize = 8 * 16384; |
44 | |
45 | // We only process the leading portion of the impulse response in the real-time thread. We don't exceed this length. |
46 | // It turns out then, that the background thread has about 278msec of scheduling slop. |
47 | // Empirically, this has been found to be a good compromise between giving enough time for scheduling slop, |
48 | // while still minimizing the amount of processing done in the primary (high-priority) thread. |
49 | // This was found to be a good value on Mac OS X, and may work well on other platforms as well, assuming |
50 | // the very rough scheduling latencies are similar on these time-scales. Of course, this code may need to be |
51 | // tuned for individual platforms if this assumption is found to be incorrect. |
52 | const size_t RealtimeFrameLimit = 8192 + 4096; // ~278msec @ 44.1KHz |
53 | |
54 | const size_t MinFFTSize = 128; |
55 | const size_t MaxRealtimeFFTSize = 2048; |
56 | |
57 | ReverbConvolver::ReverbConvolver(AudioChannel* impulseResponse, size_t renderSliceSize, size_t maxFFTSize, size_t convolverRenderPhase, bool useBackgroundThreads) |
58 | : m_impulseResponseLength(impulseResponse->length()) |
59 | , m_accumulationBuffer(impulseResponse->length() + renderSliceSize) |
60 | , m_inputBuffer(InputBufferSize) |
61 | , m_minFFTSize(MinFFTSize) // First stage will have this size - successive stages will double in size each time |
62 | , m_maxFFTSize(maxFFTSize) // until we hit m_maxFFTSize |
63 | , m_useBackgroundThreads(useBackgroundThreads) |
64 | { |
65 | // If we are using background threads then don't exceed this FFT size for the |
66 | // stages which run in the real-time thread. This avoids having only one or two |
67 | // large stages (size 16384 or so) at the end which take a lot of time every several |
68 | // processing slices. This way we amortize the cost over more processing slices. |
69 | m_maxRealtimeFFTSize = MaxRealtimeFFTSize; |
70 | |
71 | // For the moment, a good way to know if we have real-time constraint is to check if we're using background threads. |
72 | // Otherwise, assume we're being run from a command-line tool. |
73 | bool hasRealtimeConstraint = useBackgroundThreads; |
74 | |
75 | const float* response = impulseResponse->data(); |
76 | size_t totalResponseLength = impulseResponse->length(); |
77 | |
78 | // The total latency is zero because the direct-convolution is used in the leading portion. |
79 | size_t reverbTotalLatency = 0; |
80 | |
81 | size_t stageOffset = 0; |
82 | int i = 0; |
83 | size_t fftSize = m_minFFTSize; |
84 | while (stageOffset < totalResponseLength) { |
85 | size_t stageSize = fftSize / 2; |
86 | |
87 | // For the last stage, it's possible that stageOffset is such that we're straddling the end |
88 | // of the impulse response buffer (if we use stageSize), so reduce the last stage's length... |
89 | if (stageSize + stageOffset > totalResponseLength) |
90 | stageSize = totalResponseLength - stageOffset; |
91 | |
92 | // This "staggers" the time when each FFT happens so they don't all happen at the same time |
93 | int renderPhase = convolverRenderPhase + i * renderSliceSize; |
94 | |
95 | bool useDirectConvolver = !stageOffset; |
96 | |
97 | auto stage = std::make_unique<ReverbConvolverStage>(response, totalResponseLength, reverbTotalLatency, stageOffset, stageSize, fftSize, renderPhase, renderSliceSize, &m_accumulationBuffer, useDirectConvolver); |
98 | |
99 | bool isBackgroundStage = false; |
100 | |
101 | if (this->useBackgroundThreads() && stageOffset > RealtimeFrameLimit) { |
102 | m_backgroundStages.append(WTFMove(stage)); |
103 | isBackgroundStage = true; |
104 | } else |
105 | m_stages.append(WTFMove(stage)); |
106 | |
107 | stageOffset += stageSize; |
108 | ++i; |
109 | |
110 | if (!useDirectConvolver) { |
111 | // Figure out next FFT size |
112 | fftSize *= 2; |
113 | } |
114 | |
115 | if (hasRealtimeConstraint && !isBackgroundStage && fftSize > m_maxRealtimeFFTSize) |
116 | fftSize = m_maxRealtimeFFTSize; |
117 | if (fftSize > m_maxFFTSize) |
118 | fftSize = m_maxFFTSize; |
119 | } |
120 | |
121 | // Start up background thread |
122 | // FIXME: would be better to up the thread priority here. It doesn't need to be real-time, but higher than the default... |
123 | if (this->useBackgroundThreads() && m_backgroundStages.size() > 0) { |
124 | m_backgroundThread = Thread::create("convolution background thread" , [this] { |
125 | backgroundThreadEntry(); |
126 | }); |
127 | } |
128 | } |
129 | |
130 | ReverbConvolver::~ReverbConvolver() |
131 | { |
132 | // Wait for background thread to stop |
133 | if (useBackgroundThreads() && m_backgroundThread) { |
134 | m_wantsToExit = true; |
135 | |
136 | // Wake up thread so it can return |
137 | { |
138 | std::lock_guard<Lock> lock(m_backgroundThreadMutex); |
139 | m_moreInputBuffered = true; |
140 | m_backgroundThreadConditionVariable.notifyOne(); |
141 | } |
142 | |
143 | m_backgroundThread->waitForCompletion(); |
144 | } |
145 | } |
146 | |
147 | void ReverbConvolver::backgroundThreadEntry() |
148 | { |
149 | while (!m_wantsToExit) { |
150 | // Wait for realtime thread to give us more input |
151 | m_moreInputBuffered = false; |
152 | { |
153 | std::unique_lock<Lock> lock(m_backgroundThreadMutex); |
154 | |
155 | m_backgroundThreadConditionVariable.wait(lock, [this] { return m_moreInputBuffered || m_wantsToExit; }); |
156 | } |
157 | |
158 | // Process all of the stages until their read indices reach the input buffer's write index |
159 | int writeIndex = m_inputBuffer.writeIndex(); |
160 | |
161 | // Even though it doesn't seem like every stage needs to maintain its own version of readIndex |
162 | // we do this in case we want to run in more than one background thread. |
163 | int readIndex; |
164 | |
165 | while ((readIndex = m_backgroundStages[0]->inputReadIndex()) != writeIndex) { // FIXME: do better to detect buffer overrun... |
166 | // The ReverbConvolverStages need to process in amounts which evenly divide half the FFT size |
167 | const int SliceSize = MinFFTSize / 2; |
168 | |
169 | // Accumulate contributions from each stage |
170 | for (size_t i = 0; i < m_backgroundStages.size(); ++i) |
171 | m_backgroundStages[i]->processInBackground(this, SliceSize); |
172 | } |
173 | } |
174 | } |
175 | |
176 | void ReverbConvolver::process(const AudioChannel* sourceChannel, AudioChannel* destinationChannel, size_t framesToProcess) |
177 | { |
178 | bool isSafe = sourceChannel && destinationChannel && sourceChannel->length() >= framesToProcess && destinationChannel->length() >= framesToProcess; |
179 | ASSERT(isSafe); |
180 | if (!isSafe) |
181 | return; |
182 | |
183 | const float* source = sourceChannel->data(); |
184 | float* destination = destinationChannel->mutableData(); |
185 | bool isDataSafe = source && destination; |
186 | ASSERT(isDataSafe); |
187 | if (!isDataSafe) |
188 | return; |
189 | |
190 | // Feed input buffer (read by all threads) |
191 | m_inputBuffer.write(source, framesToProcess); |
192 | |
193 | // Accumulate contributions from each stage |
194 | for (size_t i = 0; i < m_stages.size(); ++i) |
195 | m_stages[i]->process(source, framesToProcess); |
196 | |
197 | // Finally read from accumulation buffer |
198 | m_accumulationBuffer.readAndClear(destination, framesToProcess); |
199 | |
200 | // Now that we've buffered more input, wake up our background thread. |
201 | |
202 | // We use use std::unique_lock with std::try_lock here because this is run on the real-time |
203 | // thread where it is a disaster for the lock to be contended (causes audio glitching). It's OK if we fail to |
204 | // signal from time to time, since we'll get to it the next time we're called. We're called repeatedly |
205 | // and frequently (around every 3ms). The background thread is processing well into the future and has a considerable amount of |
206 | // leeway here... |
207 | std::unique_lock<Lock> lock(m_backgroundThreadMutex, std::try_to_lock); |
208 | if (!lock.owns_lock()) |
209 | return; |
210 | |
211 | m_moreInputBuffered = true; |
212 | m_backgroundThreadConditionVariable.notifyOne(); |
213 | } |
214 | |
215 | void ReverbConvolver::reset() |
216 | { |
217 | for (size_t i = 0; i < m_stages.size(); ++i) |
218 | m_stages[i]->reset(); |
219 | |
220 | for (size_t i = 0; i < m_backgroundStages.size(); ++i) |
221 | m_backgroundStages[i]->reset(); |
222 | |
223 | m_accumulationBuffer.reset(); |
224 | m_inputBuffer.reset(); |
225 | } |
226 | |
227 | size_t ReverbConvolver::latencyFrames() const |
228 | { |
229 | return 0; |
230 | } |
231 | |
232 | } // namespace WebCore |
233 | |
234 | #endif // ENABLE(WEB_AUDIO) |
235 | |