| 1 | /* |
| 2 | * Copyright (C) 2012, Google Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 15 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 16 | * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 17 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 18 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 19 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| 20 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 21 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 22 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 23 | */ |
| 24 | |
| 25 | #include "config.h" |
| 26 | |
| 27 | #if ENABLE(WEB_AUDIO) |
| 28 | |
| 29 | #include "OscillatorNode.h" |
| 30 | |
| 31 | #include "AudioNodeOutput.h" |
| 32 | #include "AudioParam.h" |
| 33 | #include "PeriodicWave.h" |
| 34 | #include "VectorMath.h" |
| 35 | #include <wtf/IsoMallocInlines.h> |
| 36 | |
| 37 | namespace WebCore { |
| 38 | |
| 39 | using namespace VectorMath; |
| 40 | |
| 41 | WTF_MAKE_ISO_ALLOCATED_IMPL(OscillatorNode); |
| 42 | |
| 43 | PeriodicWave* OscillatorNode::s_periodicWaveSine = nullptr; |
| 44 | PeriodicWave* OscillatorNode::s_periodicWaveSquare = nullptr; |
| 45 | PeriodicWave* OscillatorNode::s_periodicWaveSawtooth = nullptr; |
| 46 | PeriodicWave* OscillatorNode::s_periodicWaveTriangle = nullptr; |
| 47 | |
| 48 | Ref<OscillatorNode> OscillatorNode::create(AudioContext& context, float sampleRate) |
| 49 | { |
| 50 | return adoptRef(*new OscillatorNode(context, sampleRate)); |
| 51 | } |
| 52 | |
| 53 | OscillatorNode::OscillatorNode(AudioContext& context, float sampleRate) |
| 54 | : AudioScheduledSourceNode(context, sampleRate) |
| 55 | , m_firstRender(true) |
| 56 | , m_virtualReadIndex(0) |
| 57 | , m_phaseIncrements(AudioNode::ProcessingSizeInFrames) |
| 58 | , m_detuneValues(AudioNode::ProcessingSizeInFrames) |
| 59 | { |
| 60 | setNodeType(NodeTypeOscillator); |
| 61 | |
| 62 | // Use musical pitch standard A440 as a default. |
| 63 | m_frequency = AudioParam::create(context, "frequency" , 440, 0, 100000); |
| 64 | // Default to no detuning. |
| 65 | m_detune = AudioParam::create(context, "detune" , 0, -4800, 4800); |
| 66 | |
| 67 | // Sets up default wave. |
| 68 | setType(m_type); |
| 69 | |
| 70 | // An oscillator is always mono. |
| 71 | addOutput(std::make_unique<AudioNodeOutput>(this, 1)); |
| 72 | |
| 73 | initialize(); |
| 74 | } |
| 75 | |
| 76 | OscillatorNode::~OscillatorNode() |
| 77 | { |
| 78 | uninitialize(); |
| 79 | } |
| 80 | |
| 81 | ExceptionOr<void> OscillatorNode::setType(Type type) |
| 82 | { |
| 83 | PeriodicWave* periodicWave = nullptr; |
| 84 | |
| 85 | ALWAYS_LOG(LOGIDENTIFIER, type); |
| 86 | |
| 87 | switch (type) { |
| 88 | case Type::Sine: |
| 89 | if (!s_periodicWaveSine) |
| 90 | s_periodicWaveSine = &PeriodicWave::createSine(sampleRate()).leakRef(); |
| 91 | periodicWave = s_periodicWaveSine; |
| 92 | break; |
| 93 | case Type::Square: |
| 94 | if (!s_periodicWaveSquare) |
| 95 | s_periodicWaveSquare = &PeriodicWave::createSquare(sampleRate()).leakRef(); |
| 96 | periodicWave = s_periodicWaveSquare; |
| 97 | break; |
| 98 | case Type::Sawtooth: |
| 99 | if (!s_periodicWaveSawtooth) |
| 100 | s_periodicWaveSawtooth = &PeriodicWave::createSawtooth(sampleRate()).leakRef(); |
| 101 | periodicWave = s_periodicWaveSawtooth; |
| 102 | break; |
| 103 | case Type::Triangle: |
| 104 | if (!s_periodicWaveTriangle) |
| 105 | s_periodicWaveTriangle = &PeriodicWave::createTriangle(sampleRate()).leakRef(); |
| 106 | periodicWave = s_periodicWaveTriangle; |
| 107 | break; |
| 108 | case Type::Custom: |
| 109 | if (m_type != Type::Custom) |
| 110 | return Exception { InvalidStateError }; |
| 111 | return { }; |
| 112 | } |
| 113 | |
| 114 | setPeriodicWave(periodicWave); |
| 115 | m_type = type; |
| 116 | |
| 117 | return { }; |
| 118 | } |
| 119 | |
| 120 | bool OscillatorNode::calculateSampleAccuratePhaseIncrements(size_t framesToProcess) |
| 121 | { |
| 122 | bool isGood = framesToProcess <= m_phaseIncrements.size() && framesToProcess <= m_detuneValues.size(); |
| 123 | ASSERT(isGood); |
| 124 | if (!isGood) |
| 125 | return false; |
| 126 | |
| 127 | if (m_firstRender) { |
| 128 | m_firstRender = false; |
| 129 | m_frequency->resetSmoothedValue(); |
| 130 | m_detune->resetSmoothedValue(); |
| 131 | } |
| 132 | |
| 133 | bool hasSampleAccurateValues = false; |
| 134 | bool hasFrequencyChanges = false; |
| 135 | float* phaseIncrements = m_phaseIncrements.data(); |
| 136 | |
| 137 | float finalScale = m_periodicWave->rateScale(); |
| 138 | |
| 139 | if (m_frequency->hasSampleAccurateValues()) { |
| 140 | hasSampleAccurateValues = true; |
| 141 | hasFrequencyChanges = true; |
| 142 | |
| 143 | // Get the sample-accurate frequency values and convert to phase increments. |
| 144 | // They will be converted to phase increments below. |
| 145 | m_frequency->calculateSampleAccurateValues(phaseIncrements, framesToProcess); |
| 146 | } else { |
| 147 | // Handle ordinary parameter smoothing/de-zippering if there are no scheduled changes. |
| 148 | m_frequency->smooth(); |
| 149 | float frequency = m_frequency->smoothedValue(); |
| 150 | finalScale *= frequency; |
| 151 | } |
| 152 | |
| 153 | if (m_detune->hasSampleAccurateValues()) { |
| 154 | hasSampleAccurateValues = true; |
| 155 | |
| 156 | // Get the sample-accurate detune values. |
| 157 | float* detuneValues = hasFrequencyChanges ? m_detuneValues.data() : phaseIncrements; |
| 158 | m_detune->calculateSampleAccurateValues(detuneValues, framesToProcess); |
| 159 | |
| 160 | // Convert from cents to rate scalar. |
| 161 | float k = 1.0 / 1200; |
| 162 | vsmul(detuneValues, 1, &k, detuneValues, 1, framesToProcess); |
| 163 | for (unsigned i = 0; i < framesToProcess; ++i) |
| 164 | detuneValues[i] = powf(2, detuneValues[i]); // FIXME: converting to expf() will be faster. |
| 165 | |
| 166 | if (hasFrequencyChanges) { |
| 167 | // Multiply frequencies by detune scalings. |
| 168 | vmul(detuneValues, 1, phaseIncrements, 1, phaseIncrements, 1, framesToProcess); |
| 169 | } |
| 170 | } else { |
| 171 | // Handle ordinary parameter smoothing/de-zippering if there are no scheduled changes. |
| 172 | m_detune->smooth(); |
| 173 | float detune = m_detune->smoothedValue(); |
| 174 | float detuneScale = powf(2, detune / 1200); |
| 175 | finalScale *= detuneScale; |
| 176 | } |
| 177 | |
| 178 | if (hasSampleAccurateValues) { |
| 179 | // Convert from frequency to wave increment. |
| 180 | vsmul(phaseIncrements, 1, &finalScale, phaseIncrements, 1, framesToProcess); |
| 181 | } |
| 182 | |
| 183 | return hasSampleAccurateValues; |
| 184 | } |
| 185 | |
| 186 | void OscillatorNode::process(size_t framesToProcess) |
| 187 | { |
| 188 | auto& outputBus = *output(0)->bus(); |
| 189 | |
| 190 | if (!isInitialized() || !outputBus.numberOfChannels()) { |
| 191 | outputBus.zero(); |
| 192 | return; |
| 193 | } |
| 194 | |
| 195 | ASSERT(framesToProcess <= m_phaseIncrements.size()); |
| 196 | if (framesToProcess > m_phaseIncrements.size()) |
| 197 | return; |
| 198 | |
| 199 | // The audio thread can't block on this lock, so we use std::try_to_lock instead. |
| 200 | std::unique_lock<Lock> lock(m_processMutex, std::try_to_lock); |
| 201 | if (!lock.owns_lock()) { |
| 202 | // Too bad - the try_lock() failed. We must be in the middle of changing wave-tables. |
| 203 | outputBus.zero(); |
| 204 | return; |
| 205 | } |
| 206 | |
| 207 | // We must access m_periodicWave only inside the lock. |
| 208 | if (!m_periodicWave.get()) { |
| 209 | outputBus.zero(); |
| 210 | return; |
| 211 | } |
| 212 | |
| 213 | size_t quantumFrameOffset = 0; |
| 214 | size_t nonSilentFramesToProcess = 0; |
| 215 | updateSchedulingInfo(framesToProcess, outputBus, quantumFrameOffset, nonSilentFramesToProcess); |
| 216 | |
| 217 | if (!nonSilentFramesToProcess) { |
| 218 | outputBus.zero(); |
| 219 | return; |
| 220 | } |
| 221 | |
| 222 | unsigned periodicWaveSize = m_periodicWave->periodicWaveSize(); |
| 223 | double invPeriodicWaveSize = 1.0 / periodicWaveSize; |
| 224 | |
| 225 | float* destP = outputBus.channel(0)->mutableData(); |
| 226 | |
| 227 | ASSERT(quantumFrameOffset <= framesToProcess); |
| 228 | |
| 229 | // We keep virtualReadIndex double-precision since we're accumulating values. |
| 230 | double virtualReadIndex = m_virtualReadIndex; |
| 231 | |
| 232 | float rateScale = m_periodicWave->rateScale(); |
| 233 | float invRateScale = 1 / rateScale; |
| 234 | bool hasSampleAccurateValues = calculateSampleAccuratePhaseIncrements(framesToProcess); |
| 235 | |
| 236 | float frequency = 0; |
| 237 | float* higherWaveData = nullptr; |
| 238 | float* lowerWaveData = nullptr; |
| 239 | float tableInterpolationFactor = 0; |
| 240 | |
| 241 | if (!hasSampleAccurateValues) { |
| 242 | frequency = m_frequency->smoothedValue(); |
| 243 | float detune = m_detune->smoothedValue(); |
| 244 | float detuneScale = powf(2, detune / 1200); |
| 245 | frequency *= detuneScale; |
| 246 | m_periodicWave->waveDataForFundamentalFrequency(frequency, lowerWaveData, higherWaveData, tableInterpolationFactor); |
| 247 | } |
| 248 | |
| 249 | float incr = frequency * rateScale; |
| 250 | float* phaseIncrements = m_phaseIncrements.data(); |
| 251 | |
| 252 | unsigned readIndexMask = periodicWaveSize - 1; |
| 253 | |
| 254 | // Start rendering at the correct offset. |
| 255 | destP += quantumFrameOffset; |
| 256 | int n = nonSilentFramesToProcess; |
| 257 | |
| 258 | while (n--) { |
| 259 | unsigned readIndex = static_cast<unsigned>(virtualReadIndex); |
| 260 | unsigned readIndex2 = readIndex + 1; |
| 261 | |
| 262 | // Contain within valid range. |
| 263 | readIndex = readIndex & readIndexMask; |
| 264 | readIndex2 = readIndex2 & readIndexMask; |
| 265 | |
| 266 | if (hasSampleAccurateValues) { |
| 267 | incr = *phaseIncrements++; |
| 268 | |
| 269 | frequency = invRateScale * incr; |
| 270 | m_periodicWave->waveDataForFundamentalFrequency(frequency, lowerWaveData, higherWaveData, tableInterpolationFactor); |
| 271 | } |
| 272 | |
| 273 | float sample1Lower = lowerWaveData[readIndex]; |
| 274 | float sample2Lower = lowerWaveData[readIndex2]; |
| 275 | float sample1Higher = higherWaveData[readIndex]; |
| 276 | float sample2Higher = higherWaveData[readIndex2]; |
| 277 | |
| 278 | // Linearly interpolate within each table (lower and higher). |
| 279 | float interpolationFactor = static_cast<float>(virtualReadIndex) - readIndex; |
| 280 | float sampleHigher = (1 - interpolationFactor) * sample1Higher + interpolationFactor * sample2Higher; |
| 281 | float sampleLower = (1 - interpolationFactor) * sample1Lower + interpolationFactor * sample2Lower; |
| 282 | |
| 283 | // Then interpolate between the two tables. |
| 284 | float sample = (1 - tableInterpolationFactor) * sampleHigher + tableInterpolationFactor * sampleLower; |
| 285 | |
| 286 | *destP++ = sample; |
| 287 | |
| 288 | // Increment virtual read index and wrap virtualReadIndex into the range 0 -> periodicWaveSize. |
| 289 | virtualReadIndex += incr; |
| 290 | virtualReadIndex -= floor(virtualReadIndex * invPeriodicWaveSize) * periodicWaveSize; |
| 291 | } |
| 292 | |
| 293 | m_virtualReadIndex = virtualReadIndex; |
| 294 | |
| 295 | outputBus.clearSilentFlag(); |
| 296 | } |
| 297 | |
| 298 | void OscillatorNode::reset() |
| 299 | { |
| 300 | m_virtualReadIndex = 0; |
| 301 | } |
| 302 | |
| 303 | void OscillatorNode::setPeriodicWave(PeriodicWave* periodicWave) |
| 304 | { |
| 305 | ALWAYS_LOG(LOGIDENTIFIER, "sample rate = " , periodicWave ? periodicWave->sampleRate() : 0, ", wave size = " , periodicWave ? periodicWave->periodicWaveSize() : 0, ", rate scale = " , periodicWave ? periodicWave->rateScale() : 0); |
| 306 | ASSERT(isMainThread()); |
| 307 | |
| 308 | // This synchronizes with process(). |
| 309 | std::lock_guard<Lock> lock(m_processMutex); |
| 310 | m_periodicWave = periodicWave; |
| 311 | m_type = Type::Custom; |
| 312 | } |
| 313 | |
| 314 | bool OscillatorNode::propagatesSilence() const |
| 315 | { |
| 316 | return !isPlayingOrScheduled() || hasFinished() || !m_periodicWave.get(); |
| 317 | } |
| 318 | |
| 319 | } // namespace WebCore |
| 320 | |
| 321 | #endif // ENABLE(WEB_AUDIO) |
| 322 | |