| 1 | /* |
| 2 | * Copyright (C) 2003-2019 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2007 Eric Seidel <eric@webkit.org> |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Lesser General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Lesser General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Lesser General Public |
| 16 | * License along with this library; if not, write to the Free Software |
| 17 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | * |
| 19 | */ |
| 20 | |
| 21 | #include "config.h" |
| 22 | #include "Heap.h" |
| 23 | |
| 24 | #include "BlockDirectoryInlines.h" |
| 25 | #include "BuiltinExecutables.h" |
| 26 | #include "CodeBlock.h" |
| 27 | #include "CodeBlockSetInlines.h" |
| 28 | #include "CollectingScope.h" |
| 29 | #include "ConservativeRoots.h" |
| 30 | #include "DFGWorklistInlines.h" |
| 31 | #include "EdenGCActivityCallback.h" |
| 32 | #include "Exception.h" |
| 33 | #include "FullGCActivityCallback.h" |
| 34 | #include "GCActivityCallback.h" |
| 35 | #include "GCIncomingRefCountedSetInlines.h" |
| 36 | #include "GCSegmentedArrayInlines.h" |
| 37 | #include "GCTypeMap.h" |
| 38 | #include "HasOwnPropertyCache.h" |
| 39 | #include "HeapHelperPool.h" |
| 40 | #include "HeapIterationScope.h" |
| 41 | #include "HeapProfiler.h" |
| 42 | #include "HeapSnapshot.h" |
| 43 | #include "HeapVerifier.h" |
| 44 | #include "IncrementalSweeper.h" |
| 45 | #include "InferredValueInlines.h" |
| 46 | #include "Interpreter.h" |
| 47 | #include "IsoCellSetInlines.h" |
| 48 | #include "JITStubRoutineSet.h" |
| 49 | #include "JITWorklist.h" |
| 50 | #include "JSCInlines.h" |
| 51 | #include "JSGlobalObject.h" |
| 52 | #include "JSLock.h" |
| 53 | #include "JSVirtualMachineInternal.h" |
| 54 | #include "JSWeakMap.h" |
| 55 | #include "JSWeakSet.h" |
| 56 | #include "JSWebAssemblyCodeBlock.h" |
| 57 | #include "MachineStackMarker.h" |
| 58 | #include "MarkStackMergingConstraint.h" |
| 59 | #include "MarkedSpaceInlines.h" |
| 60 | #include "MarkingConstraintSet.h" |
| 61 | #include "PreventCollectionScope.h" |
| 62 | #include "SamplingProfiler.h" |
| 63 | #include "ShadowChicken.h" |
| 64 | #include "SpaceTimeMutatorScheduler.h" |
| 65 | #include "StochasticSpaceTimeMutatorScheduler.h" |
| 66 | #include "StopIfNecessaryTimer.h" |
| 67 | #include "SubspaceInlines.h" |
| 68 | #include "SuperSampler.h" |
| 69 | #include "SweepingScope.h" |
| 70 | #include "SynchronousStopTheWorldMutatorScheduler.h" |
| 71 | #include "TypeProfiler.h" |
| 72 | #include "TypeProfilerLog.h" |
| 73 | #include "UnlinkedCodeBlock.h" |
| 74 | #include "VM.h" |
| 75 | #include "VisitCounter.h" |
| 76 | #include "WasmMemory.h" |
| 77 | #include "WeakMapImplInlines.h" |
| 78 | #include "WeakSetInlines.h" |
| 79 | #include <algorithm> |
| 80 | #include <wtf/ListDump.h> |
| 81 | #include <wtf/MainThread.h> |
| 82 | #include <wtf/ParallelVectorIterator.h> |
| 83 | #include <wtf/ProcessID.h> |
| 84 | #include <wtf/RAMSize.h> |
| 85 | #include <wtf/SimpleStats.h> |
| 86 | #include <wtf/Threading.h> |
| 87 | |
| 88 | #if PLATFORM(IOS_FAMILY) |
| 89 | #include <bmalloc/bmalloc.h> |
| 90 | #endif |
| 91 | |
| 92 | #if USE(FOUNDATION) |
| 93 | #include <wtf/spi/cocoa/objcSPI.h> |
| 94 | #endif |
| 95 | |
| 96 | #if USE(GLIB) |
| 97 | #include "JSCGLibWrapperObject.h" |
| 98 | #endif |
| 99 | |
| 100 | namespace JSC { |
| 101 | |
| 102 | namespace { |
| 103 | |
| 104 | bool verboseStop = false; |
| 105 | |
| 106 | double maxPauseMS(double thisPauseMS) |
| 107 | { |
| 108 | static double maxPauseMS; |
| 109 | maxPauseMS = std::max(thisPauseMS, maxPauseMS); |
| 110 | return maxPauseMS; |
| 111 | } |
| 112 | |
| 113 | size_t minHeapSize(HeapType heapType, size_t ramSize) |
| 114 | { |
| 115 | if (heapType == LargeHeap) { |
| 116 | double result = std::min( |
| 117 | static_cast<double>(Options::largeHeapSize()), |
| 118 | ramSize * Options::smallHeapRAMFraction()); |
| 119 | return static_cast<size_t>(result); |
| 120 | } |
| 121 | return Options::smallHeapSize(); |
| 122 | } |
| 123 | |
| 124 | size_t proportionalHeapSize(size_t heapSize, size_t ramSize) |
| 125 | { |
| 126 | if (VM::isInMiniMode()) |
| 127 | return Options::miniVMHeapGrowthFactor() * heapSize; |
| 128 | |
| 129 | #if PLATFORM(IOS_FAMILY) |
| 130 | size_t memoryFootprint = bmalloc::api::memoryFootprint(); |
| 131 | if (memoryFootprint < ramSize * Options::smallHeapRAMFraction()) |
| 132 | return Options::smallHeapGrowthFactor() * heapSize; |
| 133 | if (memoryFootprint < ramSize * Options::mediumHeapRAMFraction()) |
| 134 | return Options::mediumHeapGrowthFactor() * heapSize; |
| 135 | #else |
| 136 | if (heapSize < ramSize * Options::smallHeapRAMFraction()) |
| 137 | return Options::smallHeapGrowthFactor() * heapSize; |
| 138 | if (heapSize < ramSize * Options::mediumHeapRAMFraction()) |
| 139 | return Options::mediumHeapGrowthFactor() * heapSize; |
| 140 | #endif |
| 141 | return Options::largeHeapGrowthFactor() * heapSize; |
| 142 | } |
| 143 | |
| 144 | bool isValidSharedInstanceThreadState(VM* vm) |
| 145 | { |
| 146 | return vm->currentThreadIsHoldingAPILock(); |
| 147 | } |
| 148 | |
| 149 | bool isValidThreadState(VM* vm) |
| 150 | { |
| 151 | if (vm->atomicStringTable() != Thread::current().atomicStringTable()) |
| 152 | return false; |
| 153 | |
| 154 | if (vm->isSharedInstance() && !isValidSharedInstanceThreadState(vm)) |
| 155 | return false; |
| 156 | |
| 157 | return true; |
| 158 | } |
| 159 | |
| 160 | void recordType(VM& vm, TypeCountSet& set, JSCell* cell) |
| 161 | { |
| 162 | const char* typeName = "[unknown]" ; |
| 163 | const ClassInfo* info = cell->classInfo(vm); |
| 164 | if (info && info->className) |
| 165 | typeName = info->className; |
| 166 | set.add(typeName); |
| 167 | } |
| 168 | |
| 169 | bool measurePhaseTiming() |
| 170 | { |
| 171 | return false; |
| 172 | } |
| 173 | |
| 174 | HashMap<const char*, GCTypeMap<SimpleStats>>& timingStats() |
| 175 | { |
| 176 | static HashMap<const char*, GCTypeMap<SimpleStats>>* result; |
| 177 | static std::once_flag once; |
| 178 | std::call_once( |
| 179 | once, |
| 180 | [] { |
| 181 | result = new HashMap<const char*, GCTypeMap<SimpleStats>>(); |
| 182 | }); |
| 183 | return *result; |
| 184 | } |
| 185 | |
| 186 | SimpleStats& timingStats(const char* name, CollectionScope scope) |
| 187 | { |
| 188 | return timingStats().add(name, GCTypeMap<SimpleStats>()).iterator->value[scope]; |
| 189 | } |
| 190 | |
| 191 | class TimingScope { |
| 192 | public: |
| 193 | TimingScope(Optional<CollectionScope> scope, const char* name) |
| 194 | : m_scope(scope) |
| 195 | , m_name(name) |
| 196 | { |
| 197 | if (measurePhaseTiming()) |
| 198 | m_before = MonotonicTime::now(); |
| 199 | } |
| 200 | |
| 201 | TimingScope(Heap& heap, const char* name) |
| 202 | : TimingScope(heap.collectionScope(), name) |
| 203 | { |
| 204 | } |
| 205 | |
| 206 | void setScope(Optional<CollectionScope> scope) |
| 207 | { |
| 208 | m_scope = scope; |
| 209 | } |
| 210 | |
| 211 | void setScope(Heap& heap) |
| 212 | { |
| 213 | setScope(heap.collectionScope()); |
| 214 | } |
| 215 | |
| 216 | ~TimingScope() |
| 217 | { |
| 218 | if (measurePhaseTiming()) { |
| 219 | MonotonicTime after = MonotonicTime::now(); |
| 220 | Seconds timing = after - m_before; |
| 221 | SimpleStats& stats = timingStats(m_name, *m_scope); |
| 222 | stats.add(timing.milliseconds()); |
| 223 | dataLog("[GC:" , *m_scope, "] " , m_name, " took: " , timing.milliseconds(), "ms (average " , stats.mean(), "ms).\n" ); |
| 224 | } |
| 225 | } |
| 226 | private: |
| 227 | Optional<CollectionScope> m_scope; |
| 228 | MonotonicTime m_before; |
| 229 | const char* m_name; |
| 230 | }; |
| 231 | |
| 232 | } // anonymous namespace |
| 233 | |
| 234 | class Heap::HeapThread : public AutomaticThread { |
| 235 | public: |
| 236 | HeapThread(const AbstractLocker& locker, Heap& heap) |
| 237 | : AutomaticThread(locker, heap.m_threadLock, heap.m_threadCondition.copyRef()) |
| 238 | , m_heap(heap) |
| 239 | { |
| 240 | } |
| 241 | |
| 242 | const char* name() const override |
| 243 | { |
| 244 | return "JSC Heap Collector Thread" ; |
| 245 | } |
| 246 | |
| 247 | protected: |
| 248 | PollResult poll(const AbstractLocker& locker) override |
| 249 | { |
| 250 | if (m_heap.m_threadShouldStop) { |
| 251 | m_heap.notifyThreadStopping(locker); |
| 252 | return PollResult::Stop; |
| 253 | } |
| 254 | if (m_heap.shouldCollectInCollectorThread(locker)) |
| 255 | return PollResult::Work; |
| 256 | return PollResult::Wait; |
| 257 | } |
| 258 | |
| 259 | WorkResult work() override |
| 260 | { |
| 261 | m_heap.collectInCollectorThread(); |
| 262 | return WorkResult::Continue; |
| 263 | } |
| 264 | |
| 265 | void threadDidStart() override |
| 266 | { |
| 267 | Thread::registerGCThread(GCThreadType::Main); |
| 268 | } |
| 269 | |
| 270 | private: |
| 271 | Heap& m_heap; |
| 272 | }; |
| 273 | |
| 274 | Heap::Heap(VM* vm, HeapType heapType) |
| 275 | : m_heapType(heapType) |
| 276 | , m_ramSize(Options::forceRAMSize() ? Options::forceRAMSize() : ramSize()) |
| 277 | , m_minBytesPerCycle(minHeapSize(m_heapType, m_ramSize)) |
| 278 | , m_maxEdenSize(m_minBytesPerCycle) |
| 279 | , m_maxHeapSize(m_minBytesPerCycle) |
| 280 | , m_objectSpace(this) |
| 281 | , m_machineThreads(std::make_unique<MachineThreads>()) |
| 282 | , m_collectorSlotVisitor(std::make_unique<SlotVisitor>(*this, "C" )) |
| 283 | , m_mutatorSlotVisitor(std::make_unique<SlotVisitor>(*this, "M" )) |
| 284 | , m_mutatorMarkStack(std::make_unique<MarkStackArray>()) |
| 285 | , m_raceMarkStack(std::make_unique<MarkStackArray>()) |
| 286 | , m_constraintSet(std::make_unique<MarkingConstraintSet>(*this)) |
| 287 | , m_handleSet(vm) |
| 288 | , m_codeBlocks(std::make_unique<CodeBlockSet>()) |
| 289 | , m_jitStubRoutines(std::make_unique<JITStubRoutineSet>()) |
| 290 | , m_vm(vm) |
| 291 | // We seed with 10ms so that GCActivityCallback::didAllocate doesn't continuously |
| 292 | // schedule the timer if we've never done a collection. |
| 293 | , m_fullActivityCallback(GCActivityCallback::tryCreateFullTimer(this)) |
| 294 | , m_edenActivityCallback(GCActivityCallback::tryCreateEdenTimer(this)) |
| 295 | , m_sweeper(adoptRef(*new IncrementalSweeper(this))) |
| 296 | , m_stopIfNecessaryTimer(adoptRef(*new StopIfNecessaryTimer(vm))) |
| 297 | , m_sharedCollectorMarkStack(std::make_unique<MarkStackArray>()) |
| 298 | , m_sharedMutatorMarkStack(std::make_unique<MarkStackArray>()) |
| 299 | , m_helperClient(&heapHelperPool()) |
| 300 | , m_threadLock(Box<Lock>::create()) |
| 301 | , m_threadCondition(AutomaticThreadCondition::create()) |
| 302 | { |
| 303 | m_worldState.store(0); |
| 304 | |
| 305 | if (Options::useConcurrentGC()) { |
| 306 | if (Options::useStochasticMutatorScheduler()) |
| 307 | m_scheduler = std::make_unique<StochasticSpaceTimeMutatorScheduler>(*this); |
| 308 | else |
| 309 | m_scheduler = std::make_unique<SpaceTimeMutatorScheduler>(*this); |
| 310 | } else { |
| 311 | // We simulate turning off concurrent GC by making the scheduler say that the world |
| 312 | // should always be stopped when the collector is running. |
| 313 | m_scheduler = std::make_unique<SynchronousStopTheWorldMutatorScheduler>(); |
| 314 | } |
| 315 | |
| 316 | if (Options::verifyHeap()) |
| 317 | m_verifier = std::make_unique<HeapVerifier>(this, Options::numberOfGCCyclesToRecordForVerification()); |
| 318 | |
| 319 | m_collectorSlotVisitor->optimizeForStoppedMutator(); |
| 320 | |
| 321 | // When memory is critical, allow allocating 25% of the amount above the critical threshold before collecting. |
| 322 | size_t memoryAboveCriticalThreshold = static_cast<size_t>(static_cast<double>(m_ramSize) * (1.0 - Options::criticalGCMemoryThreshold())); |
| 323 | m_maxEdenSizeWhenCritical = memoryAboveCriticalThreshold / 4; |
| 324 | |
| 325 | LockHolder locker(*m_threadLock); |
| 326 | m_thread = adoptRef(new HeapThread(locker, *this)); |
| 327 | } |
| 328 | |
| 329 | Heap::~Heap() |
| 330 | { |
| 331 | forEachSlotVisitor( |
| 332 | [&] (SlotVisitor& visitor) { |
| 333 | visitor.clearMarkStacks(); |
| 334 | }); |
| 335 | m_mutatorMarkStack->clear(); |
| 336 | m_raceMarkStack->clear(); |
| 337 | |
| 338 | for (WeakBlock* block : m_logicallyEmptyWeakBlocks) |
| 339 | WeakBlock::destroy(*this, block); |
| 340 | } |
| 341 | |
| 342 | bool Heap::isPagedOut(MonotonicTime deadline) |
| 343 | { |
| 344 | return m_objectSpace.isPagedOut(deadline); |
| 345 | } |
| 346 | |
| 347 | void Heap::dumpHeapStatisticsAtVMDestruction() |
| 348 | { |
| 349 | unsigned counter = 0; |
| 350 | m_objectSpace.forEachBlock([&] (MarkedBlock::Handle* block) { |
| 351 | unsigned live = 0; |
| 352 | block->forEachCell([&] (HeapCell* cell, HeapCell::Kind) { |
| 353 | if (cell->isLive()) |
| 354 | live++; |
| 355 | return IterationStatus::Continue; |
| 356 | }); |
| 357 | dataLogLn("[" , counter++, "] " , block->cellSize(), ", " , live, " / " , block->cellsPerBlock(), " " , static_cast<double>(live) / block->cellsPerBlock() * 100, "% " , block->attributes(), " " , block->subspace()->name()); |
| 358 | block->forEachCell([&] (HeapCell* heapCell, HeapCell::Kind kind) { |
| 359 | if (heapCell->isLive() && kind == HeapCell::Kind::JSCell) { |
| 360 | auto* cell = static_cast<JSCell*>(heapCell); |
| 361 | if (cell->isObject()) |
| 362 | dataLogLn(" " , JSValue((JSObject*)cell)); |
| 363 | else |
| 364 | dataLogLn(" " , *cell); |
| 365 | } |
| 366 | return IterationStatus::Continue; |
| 367 | }); |
| 368 | }); |
| 369 | } |
| 370 | |
| 371 | // The VM is being destroyed and the collector will never run again. |
| 372 | // Run all pending finalizers now because we won't get another chance. |
| 373 | void Heap::lastChanceToFinalize() |
| 374 | { |
| 375 | MonotonicTime before; |
| 376 | if (Options::logGC()) { |
| 377 | before = MonotonicTime::now(); |
| 378 | dataLog("[GC<" , RawPointer(this), ">: shutdown " ); |
| 379 | } |
| 380 | |
| 381 | m_isShuttingDown = true; |
| 382 | |
| 383 | RELEASE_ASSERT(!m_vm->entryScope); |
| 384 | RELEASE_ASSERT(m_mutatorState == MutatorState::Running); |
| 385 | |
| 386 | if (m_collectContinuouslyThread) { |
| 387 | { |
| 388 | LockHolder locker(m_collectContinuouslyLock); |
| 389 | m_shouldStopCollectingContinuously = true; |
| 390 | m_collectContinuouslyCondition.notifyOne(); |
| 391 | } |
| 392 | m_collectContinuouslyThread->waitForCompletion(); |
| 393 | } |
| 394 | |
| 395 | if (Options::logGC()) |
| 396 | dataLog("1" ); |
| 397 | |
| 398 | // Prevent new collections from being started. This is probably not even necessary, since we're not |
| 399 | // going to call into anything that starts collections. Still, this makes the algorithm more |
| 400 | // obviously sound. |
| 401 | m_isSafeToCollect = false; |
| 402 | |
| 403 | if (Options::logGC()) |
| 404 | dataLog("2" ); |
| 405 | |
| 406 | bool isCollecting; |
| 407 | { |
| 408 | auto locker = holdLock(*m_threadLock); |
| 409 | RELEASE_ASSERT(m_lastServedTicket <= m_lastGrantedTicket); |
| 410 | isCollecting = m_lastServedTicket < m_lastGrantedTicket; |
| 411 | } |
| 412 | if (isCollecting) { |
| 413 | if (Options::logGC()) |
| 414 | dataLog("...]\n" ); |
| 415 | |
| 416 | // Wait for the current collection to finish. |
| 417 | waitForCollector( |
| 418 | [&] (const AbstractLocker&) -> bool { |
| 419 | RELEASE_ASSERT(m_lastServedTicket <= m_lastGrantedTicket); |
| 420 | return m_lastServedTicket == m_lastGrantedTicket; |
| 421 | }); |
| 422 | |
| 423 | if (Options::logGC()) |
| 424 | dataLog("[GC<" , RawPointer(this), ">: shutdown " ); |
| 425 | } |
| 426 | if (Options::logGC()) |
| 427 | dataLog("3" ); |
| 428 | |
| 429 | RELEASE_ASSERT(m_requests.isEmpty()); |
| 430 | RELEASE_ASSERT(m_lastServedTicket == m_lastGrantedTicket); |
| 431 | |
| 432 | // Carefully bring the thread down. |
| 433 | bool stopped = false; |
| 434 | { |
| 435 | LockHolder locker(*m_threadLock); |
| 436 | stopped = m_thread->tryStop(locker); |
| 437 | m_threadShouldStop = true; |
| 438 | if (!stopped) |
| 439 | m_threadCondition->notifyOne(locker); |
| 440 | } |
| 441 | |
| 442 | if (Options::logGC()) |
| 443 | dataLog("4" ); |
| 444 | |
| 445 | if (!stopped) |
| 446 | m_thread->join(); |
| 447 | |
| 448 | if (Options::logGC()) |
| 449 | dataLog("5 " ); |
| 450 | |
| 451 | if (UNLIKELY(Options::dumpHeapStatisticsAtVMDestruction())) |
| 452 | dumpHeapStatisticsAtVMDestruction(); |
| 453 | |
| 454 | m_arrayBuffers.lastChanceToFinalize(); |
| 455 | m_objectSpace.stopAllocatingForGood(); |
| 456 | m_objectSpace.lastChanceToFinalize(); |
| 457 | releaseDelayedReleasedObjects(); |
| 458 | |
| 459 | sweepAllLogicallyEmptyWeakBlocks(); |
| 460 | |
| 461 | m_objectSpace.freeMemory(); |
| 462 | |
| 463 | if (Options::logGC()) |
| 464 | dataLog((MonotonicTime::now() - before).milliseconds(), "ms]\n" ); |
| 465 | } |
| 466 | |
| 467 | void Heap::releaseDelayedReleasedObjects() |
| 468 | { |
| 469 | #if USE(FOUNDATION) || USE(GLIB) |
| 470 | // We need to guard against the case that releasing an object can create more objects due to the |
| 471 | // release calling into JS. When those JS call(s) exit and all locks are being dropped we end up |
| 472 | // back here and could try to recursively release objects. We guard that with a recursive entry |
| 473 | // count. Only the initial call will release objects, recursive calls simple return and let the |
| 474 | // the initial call to the function take care of any objects created during release time. |
| 475 | // This also means that we need to loop until there are no objects in m_delayedReleaseObjects |
| 476 | // and use a temp Vector for the actual releasing. |
| 477 | if (!m_delayedReleaseRecursionCount++) { |
| 478 | while (!m_delayedReleaseObjects.isEmpty()) { |
| 479 | ASSERT(m_vm->currentThreadIsHoldingAPILock()); |
| 480 | |
| 481 | auto objectsToRelease = WTFMove(m_delayedReleaseObjects); |
| 482 | |
| 483 | { |
| 484 | // We need to drop locks before calling out to arbitrary code. |
| 485 | JSLock::DropAllLocks dropAllLocks(m_vm); |
| 486 | |
| 487 | #if USE(FOUNDATION) |
| 488 | void* context = objc_autoreleasePoolPush(); |
| 489 | #endif |
| 490 | objectsToRelease.clear(); |
| 491 | #if USE(FOUNDATION) |
| 492 | objc_autoreleasePoolPop(context); |
| 493 | #endif |
| 494 | } |
| 495 | } |
| 496 | } |
| 497 | m_delayedReleaseRecursionCount--; |
| 498 | #endif |
| 499 | } |
| 500 | |
| 501 | void Heap::(size_t size) |
| 502 | { |
| 503 | didAllocate(size); |
| 504 | collectIfNecessaryOrDefer(); |
| 505 | } |
| 506 | |
| 507 | void Heap::(size_t size) |
| 508 | { |
| 509 | // FIXME: Change this to use SaturatedArithmetic when available. |
| 510 | // https://bugs.webkit.org/show_bug.cgi?id=170411 |
| 511 | Checked<size_t, RecordOverflow> checkedNewSize = m_deprecatedExtraMemorySize; |
| 512 | checkedNewSize += size; |
| 513 | m_deprecatedExtraMemorySize = UNLIKELY(checkedNewSize.hasOverflowed()) ? std::numeric_limits<size_t>::max() : checkedNewSize.unsafeGet(); |
| 514 | reportExtraMemoryAllocatedSlowCase(size); |
| 515 | } |
| 516 | |
| 517 | bool Heap::overCriticalMemoryThreshold(MemoryThresholdCallType memoryThresholdCallType) |
| 518 | { |
| 519 | #if PLATFORM(IOS_FAMILY) |
| 520 | if (memoryThresholdCallType == MemoryThresholdCallType::Direct || ++m_precentAvailableMemoryCachedCallCount >= 100) { |
| 521 | m_overCriticalMemoryThreshold = bmalloc::api::percentAvailableMemoryInUse() > Options::criticalGCMemoryThreshold(); |
| 522 | m_precentAvailableMemoryCachedCallCount = 0; |
| 523 | } |
| 524 | |
| 525 | return m_overCriticalMemoryThreshold; |
| 526 | #else |
| 527 | UNUSED_PARAM(memoryThresholdCallType); |
| 528 | return false; |
| 529 | #endif |
| 530 | } |
| 531 | |
| 532 | void Heap::reportAbandonedObjectGraph() |
| 533 | { |
| 534 | // Our clients don't know exactly how much memory they |
| 535 | // are abandoning so we just guess for them. |
| 536 | size_t abandonedBytes = static_cast<size_t>(0.1 * capacity()); |
| 537 | |
| 538 | // We want to accelerate the next collection. Because memory has just |
| 539 | // been abandoned, the next collection has the potential to |
| 540 | // be more profitable. Since allocation is the trigger for collection, |
| 541 | // we hasten the next collection by pretending that we've allocated more memory. |
| 542 | if (m_fullActivityCallback) { |
| 543 | m_fullActivityCallback->didAllocate(*this, |
| 544 | m_sizeAfterLastCollect - m_sizeAfterLastFullCollect + m_bytesAllocatedThisCycle + m_bytesAbandonedSinceLastFullCollect); |
| 545 | } |
| 546 | m_bytesAbandonedSinceLastFullCollect += abandonedBytes; |
| 547 | } |
| 548 | |
| 549 | void Heap::protect(JSValue k) |
| 550 | { |
| 551 | ASSERT(k); |
| 552 | ASSERT(m_vm->currentThreadIsHoldingAPILock()); |
| 553 | |
| 554 | if (!k.isCell()) |
| 555 | return; |
| 556 | |
| 557 | m_protectedValues.add(k.asCell()); |
| 558 | } |
| 559 | |
| 560 | bool Heap::unprotect(JSValue k) |
| 561 | { |
| 562 | ASSERT(k); |
| 563 | ASSERT(m_vm->currentThreadIsHoldingAPILock()); |
| 564 | |
| 565 | if (!k.isCell()) |
| 566 | return false; |
| 567 | |
| 568 | return m_protectedValues.remove(k.asCell()); |
| 569 | } |
| 570 | |
| 571 | void Heap::addReference(JSCell* cell, ArrayBuffer* buffer) |
| 572 | { |
| 573 | if (m_arrayBuffers.addReference(cell, buffer)) { |
| 574 | collectIfNecessaryOrDefer(); |
| 575 | didAllocate(buffer->gcSizeEstimateInBytes()); |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | template<typename CellType, typename CellSet> |
| 580 | void Heap::finalizeMarkedUnconditionalFinalizers(CellSet& cellSet) |
| 581 | { |
| 582 | cellSet.forEachMarkedCell( |
| 583 | [&] (HeapCell* cell, HeapCell::Kind) { |
| 584 | static_cast<CellType*>(cell)->finalizeUnconditionally(*vm()); |
| 585 | }); |
| 586 | } |
| 587 | |
| 588 | void Heap::finalizeUnconditionalFinalizers() |
| 589 | { |
| 590 | vm()->builtinExecutables()->finalizeUnconditionally(); |
| 591 | if (vm()->m_inferredValueSpace) |
| 592 | finalizeMarkedUnconditionalFinalizers<InferredValue>(vm()->m_inferredValueSpace->space); |
| 593 | vm()->forEachCodeBlockSpace( |
| 594 | [&] (auto& space) { |
| 595 | this->finalizeMarkedUnconditionalFinalizers<CodeBlock>(space.set); |
| 596 | }); |
| 597 | finalizeMarkedUnconditionalFinalizers<ExecutableToCodeBlockEdge>(vm()->executableToCodeBlockEdgesWithFinalizers); |
| 598 | finalizeMarkedUnconditionalFinalizers<StructureRareData>(vm()->structureRareDataSpace); |
| 599 | if (vm()->m_weakSetSpace) |
| 600 | finalizeMarkedUnconditionalFinalizers<JSWeakSet>(*vm()->m_weakSetSpace); |
| 601 | if (vm()->m_weakMapSpace) |
| 602 | finalizeMarkedUnconditionalFinalizers<JSWeakMap>(*vm()->m_weakMapSpace); |
| 603 | if (vm()->m_errorInstanceSpace) |
| 604 | finalizeMarkedUnconditionalFinalizers<ErrorInstance>(*vm()->m_errorInstanceSpace); |
| 605 | |
| 606 | #if ENABLE(WEBASSEMBLY) |
| 607 | if (vm()->m_webAssemblyCodeBlockSpace) |
| 608 | finalizeMarkedUnconditionalFinalizers<JSWebAssemblyCodeBlock>(*vm()->m_webAssemblyCodeBlockSpace); |
| 609 | #endif |
| 610 | } |
| 611 | |
| 612 | void Heap::willStartIterating() |
| 613 | { |
| 614 | m_objectSpace.willStartIterating(); |
| 615 | } |
| 616 | |
| 617 | void Heap::didFinishIterating() |
| 618 | { |
| 619 | m_objectSpace.didFinishIterating(); |
| 620 | } |
| 621 | |
| 622 | void Heap::completeAllJITPlans() |
| 623 | { |
| 624 | if (!VM::canUseJIT()) |
| 625 | return; |
| 626 | #if ENABLE(JIT) |
| 627 | JITWorklist::ensureGlobalWorklist().completeAllForVM(*m_vm); |
| 628 | #endif // ENABLE(JIT) |
| 629 | DFG::completeAllPlansForVM(*m_vm); |
| 630 | } |
| 631 | |
| 632 | template<typename Func> |
| 633 | void Heap::iterateExecutingAndCompilingCodeBlocks(const Func& func) |
| 634 | { |
| 635 | m_codeBlocks->iterateCurrentlyExecuting(func); |
| 636 | if (VM::canUseJIT()) |
| 637 | DFG::iterateCodeBlocksForGC(*m_vm, func); |
| 638 | } |
| 639 | |
| 640 | template<typename Func> |
| 641 | void Heap::iterateExecutingAndCompilingCodeBlocksWithoutHoldingLocks(const Func& func) |
| 642 | { |
| 643 | Vector<CodeBlock*, 256> codeBlocks; |
| 644 | iterateExecutingAndCompilingCodeBlocks( |
| 645 | [&] (CodeBlock* codeBlock) { |
| 646 | codeBlocks.append(codeBlock); |
| 647 | }); |
| 648 | for (CodeBlock* codeBlock : codeBlocks) |
| 649 | func(codeBlock); |
| 650 | } |
| 651 | |
| 652 | void Heap::assertMarkStacksEmpty() |
| 653 | { |
| 654 | bool ok = true; |
| 655 | |
| 656 | if (!m_sharedCollectorMarkStack->isEmpty()) { |
| 657 | dataLog("FATAL: Shared collector mark stack not empty! It has " , m_sharedCollectorMarkStack->size(), " elements.\n" ); |
| 658 | ok = false; |
| 659 | } |
| 660 | |
| 661 | if (!m_sharedMutatorMarkStack->isEmpty()) { |
| 662 | dataLog("FATAL: Shared mutator mark stack not empty! It has " , m_sharedMutatorMarkStack->size(), " elements.\n" ); |
| 663 | ok = false; |
| 664 | } |
| 665 | |
| 666 | forEachSlotVisitor( |
| 667 | [&] (SlotVisitor& visitor) { |
| 668 | if (visitor.isEmpty()) |
| 669 | return; |
| 670 | |
| 671 | dataLog("FATAL: Visitor " , RawPointer(&visitor), " is not empty!\n" ); |
| 672 | ok = false; |
| 673 | }); |
| 674 | |
| 675 | RELEASE_ASSERT(ok); |
| 676 | } |
| 677 | |
| 678 | void Heap::gatherStackRoots(ConservativeRoots& roots) |
| 679 | { |
| 680 | m_machineThreads->gatherConservativeRoots(roots, *m_jitStubRoutines, *m_codeBlocks, m_currentThreadState, m_currentThread); |
| 681 | } |
| 682 | |
| 683 | void Heap::gatherJSStackRoots(ConservativeRoots& roots) |
| 684 | { |
| 685 | #if ENABLE(C_LOOP) |
| 686 | m_vm->interpreter->cloopStack().gatherConservativeRoots(roots, *m_jitStubRoutines, *m_codeBlocks); |
| 687 | #else |
| 688 | UNUSED_PARAM(roots); |
| 689 | #endif |
| 690 | } |
| 691 | |
| 692 | void Heap::gatherScratchBufferRoots(ConservativeRoots& roots) |
| 693 | { |
| 694 | #if ENABLE(DFG_JIT) |
| 695 | if (!VM::canUseJIT()) |
| 696 | return; |
| 697 | m_vm->gatherScratchBufferRoots(roots); |
| 698 | #else |
| 699 | UNUSED_PARAM(roots); |
| 700 | #endif |
| 701 | } |
| 702 | |
| 703 | void Heap::beginMarking() |
| 704 | { |
| 705 | TimingScope timingScope(*this, "Heap::beginMarking" ); |
| 706 | m_jitStubRoutines->clearMarks(); |
| 707 | m_objectSpace.beginMarking(); |
| 708 | setMutatorShouldBeFenced(true); |
| 709 | } |
| 710 | |
| 711 | void Heap::removeDeadCompilerWorklistEntries() |
| 712 | { |
| 713 | #if ENABLE(DFG_JIT) |
| 714 | if (!VM::canUseJIT()) |
| 715 | return; |
| 716 | for (unsigned i = DFG::numberOfWorklists(); i--;) |
| 717 | DFG::existingWorklistForIndex(i).removeDeadPlans(*m_vm); |
| 718 | #endif |
| 719 | } |
| 720 | |
| 721 | bool Heap::isHeapSnapshotting() const |
| 722 | { |
| 723 | HeapProfiler* heapProfiler = m_vm->heapProfiler(); |
| 724 | if (UNLIKELY(heapProfiler)) |
| 725 | return heapProfiler->activeSnapshotBuilder(); |
| 726 | return false; |
| 727 | } |
| 728 | |
| 729 | struct GatherHeapSnapshotData : MarkedBlock::CountFunctor { |
| 730 | GatherHeapSnapshotData(VM& vm, HeapSnapshotBuilder& builder) |
| 731 | : m_vm(vm) |
| 732 | , m_builder(builder) |
| 733 | { |
| 734 | } |
| 735 | |
| 736 | IterationStatus operator()(HeapCell* heapCell, HeapCell::Kind kind) const |
| 737 | { |
| 738 | if (isJSCellKind(kind)) { |
| 739 | JSCell* cell = static_cast<JSCell*>(heapCell); |
| 740 | cell->methodTable(m_vm)->heapSnapshot(cell, m_builder); |
| 741 | } |
| 742 | return IterationStatus::Continue; |
| 743 | } |
| 744 | |
| 745 | VM& m_vm; |
| 746 | HeapSnapshotBuilder& m_builder; |
| 747 | }; |
| 748 | |
| 749 | void Heap::(HeapProfiler& heapProfiler) |
| 750 | { |
| 751 | if (HeapSnapshotBuilder* builder = heapProfiler.activeSnapshotBuilder()) { |
| 752 | HeapIterationScope heapIterationScope(*this); |
| 753 | GatherHeapSnapshotData functor(*m_vm, *builder); |
| 754 | m_objectSpace.forEachLiveCell(heapIterationScope, functor); |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | struct RemoveDeadHeapSnapshotNodes : MarkedBlock::CountFunctor { |
| 759 | RemoveDeadHeapSnapshotNodes(HeapSnapshot& snapshot) |
| 760 | : m_snapshot(snapshot) |
| 761 | { |
| 762 | } |
| 763 | |
| 764 | IterationStatus operator()(HeapCell* cell, HeapCell::Kind kind) const |
| 765 | { |
| 766 | if (isJSCellKind(kind)) |
| 767 | m_snapshot.sweepCell(static_cast<JSCell*>(cell)); |
| 768 | return IterationStatus::Continue; |
| 769 | } |
| 770 | |
| 771 | HeapSnapshot& m_snapshot; |
| 772 | }; |
| 773 | |
| 774 | void Heap::removeDeadHeapSnapshotNodes(HeapProfiler& heapProfiler) |
| 775 | { |
| 776 | if (HeapSnapshot* snapshot = heapProfiler.mostRecentSnapshot()) { |
| 777 | HeapIterationScope heapIterationScope(*this); |
| 778 | RemoveDeadHeapSnapshotNodes functor(*snapshot); |
| 779 | m_objectSpace.forEachDeadCell(heapIterationScope, functor); |
| 780 | snapshot->shrinkToFit(); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | void Heap::updateObjectCounts() |
| 785 | { |
| 786 | if (m_collectionScope && m_collectionScope.value() == CollectionScope::Full) |
| 787 | m_totalBytesVisited = 0; |
| 788 | |
| 789 | m_totalBytesVisitedThisCycle = bytesVisited(); |
| 790 | |
| 791 | m_totalBytesVisited += m_totalBytesVisitedThisCycle; |
| 792 | } |
| 793 | |
| 794 | void Heap::endMarking() |
| 795 | { |
| 796 | forEachSlotVisitor( |
| 797 | [&] (SlotVisitor& visitor) { |
| 798 | visitor.reset(); |
| 799 | }); |
| 800 | |
| 801 | assertMarkStacksEmpty(); |
| 802 | |
| 803 | RELEASE_ASSERT(m_raceMarkStack->isEmpty()); |
| 804 | |
| 805 | m_objectSpace.endMarking(); |
| 806 | setMutatorShouldBeFenced(Options::forceFencedBarrier()); |
| 807 | } |
| 808 | |
| 809 | size_t Heap::objectCount() |
| 810 | { |
| 811 | return m_objectSpace.objectCount(); |
| 812 | } |
| 813 | |
| 814 | size_t Heap::() |
| 815 | { |
| 816 | // FIXME: Change this to use SaturatedArithmetic when available. |
| 817 | // https://bugs.webkit.org/show_bug.cgi?id=170411 |
| 818 | Checked<size_t, RecordOverflow> checkedTotal = m_extraMemorySize; |
| 819 | checkedTotal += m_deprecatedExtraMemorySize; |
| 820 | checkedTotal += m_arrayBuffers.size(); |
| 821 | size_t total = UNLIKELY(checkedTotal.hasOverflowed()) ? std::numeric_limits<size_t>::max() : checkedTotal.unsafeGet(); |
| 822 | |
| 823 | ASSERT(m_objectSpace.capacity() >= m_objectSpace.size()); |
| 824 | return std::min(total, std::numeric_limits<size_t>::max() - m_objectSpace.capacity()); |
| 825 | } |
| 826 | |
| 827 | size_t Heap::size() |
| 828 | { |
| 829 | return m_objectSpace.size() + extraMemorySize(); |
| 830 | } |
| 831 | |
| 832 | size_t Heap::capacity() |
| 833 | { |
| 834 | return m_objectSpace.capacity() + extraMemorySize(); |
| 835 | } |
| 836 | |
| 837 | size_t Heap::protectedGlobalObjectCount() |
| 838 | { |
| 839 | size_t result = 0; |
| 840 | forEachProtectedCell( |
| 841 | [&] (JSCell* cell) { |
| 842 | if (cell->isObject() && asObject(cell)->isGlobalObject()) |
| 843 | result++; |
| 844 | }); |
| 845 | return result; |
| 846 | } |
| 847 | |
| 848 | size_t Heap::globalObjectCount() |
| 849 | { |
| 850 | HeapIterationScope iterationScope(*this); |
| 851 | size_t result = 0; |
| 852 | m_objectSpace.forEachLiveCell( |
| 853 | iterationScope, |
| 854 | [&] (HeapCell* heapCell, HeapCell::Kind kind) -> IterationStatus { |
| 855 | if (!isJSCellKind(kind)) |
| 856 | return IterationStatus::Continue; |
| 857 | JSCell* cell = static_cast<JSCell*>(heapCell); |
| 858 | if (cell->isObject() && asObject(cell)->isGlobalObject()) |
| 859 | result++; |
| 860 | return IterationStatus::Continue; |
| 861 | }); |
| 862 | return result; |
| 863 | } |
| 864 | |
| 865 | size_t Heap::protectedObjectCount() |
| 866 | { |
| 867 | size_t result = 0; |
| 868 | forEachProtectedCell( |
| 869 | [&] (JSCell*) { |
| 870 | result++; |
| 871 | }); |
| 872 | return result; |
| 873 | } |
| 874 | |
| 875 | std::unique_ptr<TypeCountSet> Heap::protectedObjectTypeCounts() |
| 876 | { |
| 877 | std::unique_ptr<TypeCountSet> result = std::make_unique<TypeCountSet>(); |
| 878 | forEachProtectedCell( |
| 879 | [&] (JSCell* cell) { |
| 880 | recordType(*vm(), *result, cell); |
| 881 | }); |
| 882 | return result; |
| 883 | } |
| 884 | |
| 885 | std::unique_ptr<TypeCountSet> Heap::objectTypeCounts() |
| 886 | { |
| 887 | std::unique_ptr<TypeCountSet> result = std::make_unique<TypeCountSet>(); |
| 888 | HeapIterationScope iterationScope(*this); |
| 889 | m_objectSpace.forEachLiveCell( |
| 890 | iterationScope, |
| 891 | [&] (HeapCell* cell, HeapCell::Kind kind) -> IterationStatus { |
| 892 | if (isJSCellKind(kind)) |
| 893 | recordType(*vm(), *result, static_cast<JSCell*>(cell)); |
| 894 | return IterationStatus::Continue; |
| 895 | }); |
| 896 | return result; |
| 897 | } |
| 898 | |
| 899 | void Heap::deleteAllCodeBlocks(DeleteAllCodeEffort effort) |
| 900 | { |
| 901 | if (m_collectionScope && effort == DeleteAllCodeIfNotCollecting) |
| 902 | return; |
| 903 | |
| 904 | VM& vm = *m_vm; |
| 905 | PreventCollectionScope preventCollectionScope(*this); |
| 906 | |
| 907 | // If JavaScript is running, it's not safe to delete all JavaScript code, since |
| 908 | // we'll end up returning to deleted code. |
| 909 | RELEASE_ASSERT(!vm.entryScope); |
| 910 | RELEASE_ASSERT(!m_collectionScope); |
| 911 | |
| 912 | completeAllJITPlans(); |
| 913 | |
| 914 | vm.forEachScriptExecutableSpace( |
| 915 | [&] (auto& spaceAndSet) { |
| 916 | HeapIterationScope heapIterationScope(*this); |
| 917 | auto& set = spaceAndSet.set; |
| 918 | set.forEachLiveCell( |
| 919 | [&] (HeapCell* cell, HeapCell::Kind) { |
| 920 | ScriptExecutable* executable = static_cast<ScriptExecutable*>(cell); |
| 921 | executable->clearCode(set); |
| 922 | }); |
| 923 | }); |
| 924 | |
| 925 | #if ENABLE(WEBASSEMBLY) |
| 926 | { |
| 927 | // We must ensure that we clear the JS call ICs from Wasm. Otherwise, Wasm will |
| 928 | // have no idea that we cleared the code from all of the Executables in the |
| 929 | // VM. This could leave Wasm in an inconsistent state where it has an IC that |
| 930 | // points into a CodeBlock that could be dead. The IC will still succeed because |
| 931 | // it uses a callee check, but then it will call into dead code. |
| 932 | HeapIterationScope heapIterationScope(*this); |
| 933 | if (vm.m_webAssemblyCodeBlockSpace) { |
| 934 | vm.m_webAssemblyCodeBlockSpace->forEachLiveCell([&] (HeapCell* cell, HeapCell::Kind kind) { |
| 935 | ASSERT_UNUSED(kind, kind == HeapCell::JSCell); |
| 936 | JSWebAssemblyCodeBlock* codeBlock = static_cast<JSWebAssemblyCodeBlock*>(cell); |
| 937 | codeBlock->clearJSCallICs(vm); |
| 938 | }); |
| 939 | } |
| 940 | } |
| 941 | #endif |
| 942 | } |
| 943 | |
| 944 | void Heap::deleteAllUnlinkedCodeBlocks(DeleteAllCodeEffort effort) |
| 945 | { |
| 946 | if (m_collectionScope && effort == DeleteAllCodeIfNotCollecting) |
| 947 | return; |
| 948 | |
| 949 | VM& vm = *m_vm; |
| 950 | PreventCollectionScope preventCollectionScope(*this); |
| 951 | |
| 952 | RELEASE_ASSERT(!m_collectionScope); |
| 953 | |
| 954 | HeapIterationScope heapIterationScope(*this); |
| 955 | vm.unlinkedFunctionExecutableSpace.set.forEachLiveCell( |
| 956 | [&] (HeapCell* cell, HeapCell::Kind) { |
| 957 | UnlinkedFunctionExecutable* executable = static_cast<UnlinkedFunctionExecutable*>(cell); |
| 958 | executable->clearCode(vm); |
| 959 | }); |
| 960 | } |
| 961 | |
| 962 | void Heap::deleteUnmarkedCompiledCode() |
| 963 | { |
| 964 | vm()->forEachScriptExecutableSpace([] (auto& space) { space.space.sweep(); }); |
| 965 | vm()->forEachCodeBlockSpace([] (auto& space) { space.space.sweep(); }); // Sweeping must occur before deleting stubs, otherwise the stubs might still think they're alive as they get deleted. |
| 966 | m_jitStubRoutines->deleteUnmarkedJettisonedStubRoutines(); |
| 967 | } |
| 968 | |
| 969 | void Heap::addToRememberedSet(const JSCell* constCell) |
| 970 | { |
| 971 | JSCell* cell = const_cast<JSCell*>(constCell); |
| 972 | ASSERT(cell); |
| 973 | ASSERT(!Options::useConcurrentJIT() || !isCompilationThread()); |
| 974 | m_barriersExecuted++; |
| 975 | if (m_mutatorShouldBeFenced) { |
| 976 | WTF::loadLoadFence(); |
| 977 | if (!isMarked(cell)) { |
| 978 | // During a full collection a store into an unmarked object that had surivived past |
| 979 | // collections will manifest as a store to an unmarked PossiblyBlack object. If the |
| 980 | // object gets marked at some time after this then it will go down the normal marking |
| 981 | // path. So, we don't have to remember this object. We could return here. But we go |
| 982 | // further and attempt to re-white the object. |
| 983 | |
| 984 | RELEASE_ASSERT(m_collectionScope && m_collectionScope.value() == CollectionScope::Full); |
| 985 | |
| 986 | if (cell->atomicCompareExchangeCellStateStrong(CellState::PossiblyBlack, CellState::DefinitelyWhite) == CellState::PossiblyBlack) { |
| 987 | // Now we protect against this race: |
| 988 | // |
| 989 | // 1) Object starts out black + unmarked. |
| 990 | // --> We do isMarked here. |
| 991 | // 2) Object is marked and greyed. |
| 992 | // 3) Object is scanned and blacked. |
| 993 | // --> We do atomicCompareExchangeCellStateStrong here. |
| 994 | // |
| 995 | // In this case we would have made the object white again, even though it should |
| 996 | // be black. This check lets us correct our mistake. This relies on the fact that |
| 997 | // isMarked converges monotonically to true. |
| 998 | if (isMarked(cell)) { |
| 999 | // It's difficult to work out whether the object should be grey or black at |
| 1000 | // this point. We say black conservatively. |
| 1001 | cell->setCellState(CellState::PossiblyBlack); |
| 1002 | } |
| 1003 | |
| 1004 | // Either way, we can return. Most likely, the object was not marked, and so the |
| 1005 | // object is now labeled white. This means that future barrier executions will not |
| 1006 | // fire. In the unlikely event that the object had become marked, we can still |
| 1007 | // return anyway, since we proved that the object was not marked at the time that |
| 1008 | // we executed this slow path. |
| 1009 | } |
| 1010 | |
| 1011 | return; |
| 1012 | } |
| 1013 | } else |
| 1014 | ASSERT(isMarked(cell)); |
| 1015 | // It could be that the object was *just* marked. This means that the collector may set the |
| 1016 | // state to DefinitelyGrey and then to PossiblyOldOrBlack at any time. It's OK for us to |
| 1017 | // race with the collector here. If we win then this is accurate because the object _will_ |
| 1018 | // get scanned again. If we lose then someone else will barrier the object again. That would |
| 1019 | // be unfortunate but not the end of the world. |
| 1020 | cell->setCellState(CellState::PossiblyGrey); |
| 1021 | m_mutatorMarkStack->append(cell); |
| 1022 | } |
| 1023 | |
| 1024 | void Heap::sweepSynchronously() |
| 1025 | { |
| 1026 | MonotonicTime before { }; |
| 1027 | if (Options::logGC()) { |
| 1028 | dataLog("Full sweep: " , capacity() / 1024, "kb " ); |
| 1029 | before = MonotonicTime::now(); |
| 1030 | } |
| 1031 | m_objectSpace.sweep(); |
| 1032 | m_objectSpace.shrink(); |
| 1033 | if (Options::logGC()) { |
| 1034 | MonotonicTime after = MonotonicTime::now(); |
| 1035 | dataLog("=> " , capacity() / 1024, "kb, " , (after - before).milliseconds(), "ms" ); |
| 1036 | } |
| 1037 | } |
| 1038 | |
| 1039 | void Heap::collect(Synchronousness synchronousness, GCRequest request) |
| 1040 | { |
| 1041 | switch (synchronousness) { |
| 1042 | case Async: |
| 1043 | collectAsync(request); |
| 1044 | return; |
| 1045 | case Sync: |
| 1046 | collectSync(request); |
| 1047 | return; |
| 1048 | } |
| 1049 | RELEASE_ASSERT_NOT_REACHED(); |
| 1050 | } |
| 1051 | |
| 1052 | void Heap::collectNow(Synchronousness synchronousness, GCRequest request) |
| 1053 | { |
| 1054 | if (validateDFGDoesGC) |
| 1055 | RELEASE_ASSERT(expectDoesGC()); |
| 1056 | |
| 1057 | switch (synchronousness) { |
| 1058 | case Async: { |
| 1059 | collectAsync(request); |
| 1060 | stopIfNecessary(); |
| 1061 | return; |
| 1062 | } |
| 1063 | |
| 1064 | case Sync: { |
| 1065 | collectSync(request); |
| 1066 | |
| 1067 | DeferGCForAWhile deferGC(*this); |
| 1068 | if (UNLIKELY(Options::useImmortalObjects())) |
| 1069 | sweeper().stopSweeping(); |
| 1070 | |
| 1071 | bool alreadySweptInCollectSync = shouldSweepSynchronously(); |
| 1072 | if (!alreadySweptInCollectSync) { |
| 1073 | if (Options::logGC()) |
| 1074 | dataLog("[GC<" , RawPointer(this), ">: " ); |
| 1075 | sweepSynchronously(); |
| 1076 | if (Options::logGC()) |
| 1077 | dataLog("]\n" ); |
| 1078 | } |
| 1079 | m_objectSpace.assertNoUnswept(); |
| 1080 | |
| 1081 | sweepAllLogicallyEmptyWeakBlocks(); |
| 1082 | return; |
| 1083 | } } |
| 1084 | RELEASE_ASSERT_NOT_REACHED(); |
| 1085 | } |
| 1086 | |
| 1087 | void Heap::collectAsync(GCRequest request) |
| 1088 | { |
| 1089 | if (validateDFGDoesGC) |
| 1090 | RELEASE_ASSERT(expectDoesGC()); |
| 1091 | |
| 1092 | if (!m_isSafeToCollect) |
| 1093 | return; |
| 1094 | |
| 1095 | bool alreadyRequested = false; |
| 1096 | { |
| 1097 | LockHolder locker(*m_threadLock); |
| 1098 | for (const GCRequest& previousRequest : m_requests) { |
| 1099 | if (request.subsumedBy(previousRequest)) { |
| 1100 | alreadyRequested = true; |
| 1101 | break; |
| 1102 | } |
| 1103 | } |
| 1104 | } |
| 1105 | if (alreadyRequested) |
| 1106 | return; |
| 1107 | |
| 1108 | requestCollection(request); |
| 1109 | } |
| 1110 | |
| 1111 | void Heap::collectSync(GCRequest request) |
| 1112 | { |
| 1113 | if (validateDFGDoesGC) |
| 1114 | RELEASE_ASSERT(expectDoesGC()); |
| 1115 | |
| 1116 | if (!m_isSafeToCollect) |
| 1117 | return; |
| 1118 | |
| 1119 | waitForCollection(requestCollection(request)); |
| 1120 | } |
| 1121 | |
| 1122 | bool Heap::shouldCollectInCollectorThread(const AbstractLocker&) |
| 1123 | { |
| 1124 | RELEASE_ASSERT(m_requests.isEmpty() == (m_lastServedTicket == m_lastGrantedTicket)); |
| 1125 | RELEASE_ASSERT(m_lastServedTicket <= m_lastGrantedTicket); |
| 1126 | |
| 1127 | if (false) |
| 1128 | dataLog("Mutator has the conn = " , !!(m_worldState.load() & mutatorHasConnBit), "\n" ); |
| 1129 | |
| 1130 | return !m_requests.isEmpty() && !(m_worldState.load() & mutatorHasConnBit); |
| 1131 | } |
| 1132 | |
| 1133 | void Heap::collectInCollectorThread() |
| 1134 | { |
| 1135 | for (;;) { |
| 1136 | RunCurrentPhaseResult result = runCurrentPhase(GCConductor::Collector, nullptr); |
| 1137 | switch (result) { |
| 1138 | case RunCurrentPhaseResult::Finished: |
| 1139 | return; |
| 1140 | case RunCurrentPhaseResult::Continue: |
| 1141 | break; |
| 1142 | case RunCurrentPhaseResult::NeedCurrentThreadState: |
| 1143 | RELEASE_ASSERT_NOT_REACHED(); |
| 1144 | break; |
| 1145 | } |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | ALWAYS_INLINE int asInt(CollectorPhase phase) |
| 1150 | { |
| 1151 | return static_cast<int>(phase); |
| 1152 | } |
| 1153 | |
| 1154 | void Heap::checkConn(GCConductor conn) |
| 1155 | { |
| 1156 | unsigned worldState = m_worldState.load(); |
| 1157 | switch (conn) { |
| 1158 | case GCConductor::Mutator: |
| 1159 | RELEASE_ASSERT(worldState & mutatorHasConnBit, worldState, asInt(m_lastPhase), asInt(m_currentPhase), asInt(m_nextPhase), vm()->id(), VM::numberOfIDs(), vm()->isEntered()); |
| 1160 | return; |
| 1161 | case GCConductor::Collector: |
| 1162 | RELEASE_ASSERT(!(worldState & mutatorHasConnBit), worldState, asInt(m_lastPhase), asInt(m_currentPhase), asInt(m_nextPhase), vm()->id(), VM::numberOfIDs(), vm()->isEntered()); |
| 1163 | return; |
| 1164 | } |
| 1165 | RELEASE_ASSERT_NOT_REACHED(); |
| 1166 | } |
| 1167 | |
| 1168 | auto Heap::runCurrentPhase(GCConductor conn, CurrentThreadState* currentThreadState) -> RunCurrentPhaseResult |
| 1169 | { |
| 1170 | checkConn(conn); |
| 1171 | m_currentThreadState = currentThreadState; |
| 1172 | m_currentThread = &Thread::current(); |
| 1173 | |
| 1174 | if (conn == GCConductor::Mutator) |
| 1175 | sanitizeStackForVM(vm()); |
| 1176 | |
| 1177 | // If the collector transfers the conn to the mutator, it leaves us in between phases. |
| 1178 | if (!finishChangingPhase(conn)) { |
| 1179 | // A mischevious mutator could repeatedly relinquish the conn back to us. We try to avoid doing |
| 1180 | // this, but it's probably not the end of the world if it did happen. |
| 1181 | if (false) |
| 1182 | dataLog("Conn bounce-back.\n" ); |
| 1183 | return RunCurrentPhaseResult::Finished; |
| 1184 | } |
| 1185 | |
| 1186 | bool result = false; |
| 1187 | switch (m_currentPhase) { |
| 1188 | case CollectorPhase::NotRunning: |
| 1189 | result = runNotRunningPhase(conn); |
| 1190 | break; |
| 1191 | |
| 1192 | case CollectorPhase::Begin: |
| 1193 | result = runBeginPhase(conn); |
| 1194 | break; |
| 1195 | |
| 1196 | case CollectorPhase::Fixpoint: |
| 1197 | if (!currentThreadState && conn == GCConductor::Mutator) |
| 1198 | return RunCurrentPhaseResult::NeedCurrentThreadState; |
| 1199 | |
| 1200 | result = runFixpointPhase(conn); |
| 1201 | break; |
| 1202 | |
| 1203 | case CollectorPhase::Concurrent: |
| 1204 | result = runConcurrentPhase(conn); |
| 1205 | break; |
| 1206 | |
| 1207 | case CollectorPhase::Reloop: |
| 1208 | result = runReloopPhase(conn); |
| 1209 | break; |
| 1210 | |
| 1211 | case CollectorPhase::End: |
| 1212 | result = runEndPhase(conn); |
| 1213 | break; |
| 1214 | } |
| 1215 | |
| 1216 | return result ? RunCurrentPhaseResult::Continue : RunCurrentPhaseResult::Finished; |
| 1217 | } |
| 1218 | |
| 1219 | NEVER_INLINE bool Heap::runNotRunningPhase(GCConductor conn) |
| 1220 | { |
| 1221 | // Check m_requests since the mutator calls this to poll what's going on. |
| 1222 | { |
| 1223 | auto locker = holdLock(*m_threadLock); |
| 1224 | if (m_requests.isEmpty()) |
| 1225 | return false; |
| 1226 | } |
| 1227 | |
| 1228 | return changePhase(conn, CollectorPhase::Begin); |
| 1229 | } |
| 1230 | |
| 1231 | NEVER_INLINE bool Heap::runBeginPhase(GCConductor conn) |
| 1232 | { |
| 1233 | m_currentGCStartTime = MonotonicTime::now(); |
| 1234 | |
| 1235 | { |
| 1236 | LockHolder locker(*m_threadLock); |
| 1237 | RELEASE_ASSERT(!m_requests.isEmpty()); |
| 1238 | m_currentRequest = m_requests.first(); |
| 1239 | } |
| 1240 | |
| 1241 | if (Options::logGC()) |
| 1242 | dataLog("[GC<" , RawPointer(this), ">: START " , gcConductorShortName(conn), " " , capacity() / 1024, "kb " ); |
| 1243 | |
| 1244 | m_beforeGC = MonotonicTime::now(); |
| 1245 | |
| 1246 | if (m_collectionScope) { |
| 1247 | dataLog("Collection scope already set during GC: " , *m_collectionScope, "\n" ); |
| 1248 | RELEASE_ASSERT_NOT_REACHED(); |
| 1249 | } |
| 1250 | |
| 1251 | willStartCollection(); |
| 1252 | |
| 1253 | if (UNLIKELY(m_verifier)) { |
| 1254 | // Verify that live objects from the last GC cycle haven't been corrupted by |
| 1255 | // mutators before we begin this new GC cycle. |
| 1256 | m_verifier->verify(HeapVerifier::Phase::BeforeGC); |
| 1257 | |
| 1258 | m_verifier->startGC(); |
| 1259 | m_verifier->gatherLiveCells(HeapVerifier::Phase::BeforeMarking); |
| 1260 | } |
| 1261 | |
| 1262 | prepareForMarking(); |
| 1263 | |
| 1264 | if (m_collectionScope && m_collectionScope.value() == CollectionScope::Full) { |
| 1265 | m_opaqueRoots.clear(); |
| 1266 | m_collectorSlotVisitor->clearMarkStacks(); |
| 1267 | m_mutatorMarkStack->clear(); |
| 1268 | } |
| 1269 | |
| 1270 | RELEASE_ASSERT(m_raceMarkStack->isEmpty()); |
| 1271 | |
| 1272 | beginMarking(); |
| 1273 | |
| 1274 | forEachSlotVisitor( |
| 1275 | [&] (SlotVisitor& visitor) { |
| 1276 | visitor.didStartMarking(); |
| 1277 | }); |
| 1278 | |
| 1279 | m_parallelMarkersShouldExit = false; |
| 1280 | |
| 1281 | m_helperClient.setFunction( |
| 1282 | [this] () { |
| 1283 | SlotVisitor* slotVisitor; |
| 1284 | { |
| 1285 | LockHolder locker(m_parallelSlotVisitorLock); |
| 1286 | if (m_availableParallelSlotVisitors.isEmpty()) { |
| 1287 | std::unique_ptr<SlotVisitor> newVisitor = std::make_unique<SlotVisitor>( |
| 1288 | *this, toCString("P" , m_parallelSlotVisitors.size() + 1)); |
| 1289 | |
| 1290 | if (Options::optimizeParallelSlotVisitorsForStoppedMutator()) |
| 1291 | newVisitor->optimizeForStoppedMutator(); |
| 1292 | |
| 1293 | newVisitor->didStartMarking(); |
| 1294 | |
| 1295 | slotVisitor = newVisitor.get(); |
| 1296 | m_parallelSlotVisitors.append(WTFMove(newVisitor)); |
| 1297 | } else |
| 1298 | slotVisitor = m_availableParallelSlotVisitors.takeLast(); |
| 1299 | } |
| 1300 | |
| 1301 | Thread::registerGCThread(GCThreadType::Helper); |
| 1302 | |
| 1303 | { |
| 1304 | ParallelModeEnabler parallelModeEnabler(*slotVisitor); |
| 1305 | slotVisitor->drainFromShared(SlotVisitor::SlaveDrain); |
| 1306 | } |
| 1307 | |
| 1308 | { |
| 1309 | LockHolder locker(m_parallelSlotVisitorLock); |
| 1310 | m_availableParallelSlotVisitors.append(slotVisitor); |
| 1311 | } |
| 1312 | }); |
| 1313 | |
| 1314 | SlotVisitor& slotVisitor = *m_collectorSlotVisitor; |
| 1315 | |
| 1316 | m_constraintSet->didStartMarking(); |
| 1317 | |
| 1318 | m_scheduler->beginCollection(); |
| 1319 | if (Options::logGC()) |
| 1320 | m_scheduler->log(); |
| 1321 | |
| 1322 | // After this, we will almost certainly fall through all of the "slotVisitor.isEmpty()" |
| 1323 | // checks because bootstrap would have put things into the visitor. So, we should fall |
| 1324 | // through to draining. |
| 1325 | |
| 1326 | if (!slotVisitor.didReachTermination()) { |
| 1327 | dataLog("Fatal: SlotVisitor should think that GC should terminate before constraint solving, but it does not think this.\n" ); |
| 1328 | dataLog("slotVisitor.isEmpty(): " , slotVisitor.isEmpty(), "\n" ); |
| 1329 | dataLog("slotVisitor.collectorMarkStack().isEmpty(): " , slotVisitor.collectorMarkStack().isEmpty(), "\n" ); |
| 1330 | dataLog("slotVisitor.mutatorMarkStack().isEmpty(): " , slotVisitor.mutatorMarkStack().isEmpty(), "\n" ); |
| 1331 | dataLog("m_numberOfActiveParallelMarkers: " , m_numberOfActiveParallelMarkers, "\n" ); |
| 1332 | dataLog("m_sharedCollectorMarkStack->isEmpty(): " , m_sharedCollectorMarkStack->isEmpty(), "\n" ); |
| 1333 | dataLog("m_sharedMutatorMarkStack->isEmpty(): " , m_sharedMutatorMarkStack->isEmpty(), "\n" ); |
| 1334 | dataLog("slotVisitor.didReachTermination(): " , slotVisitor.didReachTermination(), "\n" ); |
| 1335 | RELEASE_ASSERT_NOT_REACHED(); |
| 1336 | } |
| 1337 | |
| 1338 | return changePhase(conn, CollectorPhase::Fixpoint); |
| 1339 | } |
| 1340 | |
| 1341 | NEVER_INLINE bool Heap::runFixpointPhase(GCConductor conn) |
| 1342 | { |
| 1343 | RELEASE_ASSERT(conn == GCConductor::Collector || m_currentThreadState); |
| 1344 | |
| 1345 | SlotVisitor& slotVisitor = *m_collectorSlotVisitor; |
| 1346 | |
| 1347 | if (Options::logGC()) { |
| 1348 | HashMap<const char*, size_t> visitMap; |
| 1349 | forEachSlotVisitor( |
| 1350 | [&] (SlotVisitor& slotVisitor) { |
| 1351 | visitMap.add(slotVisitor.codeName(), slotVisitor.bytesVisited() / 1024); |
| 1352 | }); |
| 1353 | |
| 1354 | auto perVisitorDump = sortedMapDump( |
| 1355 | visitMap, |
| 1356 | [] (const char* a, const char* b) -> bool { |
| 1357 | return strcmp(a, b) < 0; |
| 1358 | }, |
| 1359 | ":" , " " ); |
| 1360 | |
| 1361 | dataLog("v=" , bytesVisited() / 1024, "kb (" , perVisitorDump, ") o=" , m_opaqueRoots.size(), " b=" , m_barriersExecuted, " " ); |
| 1362 | } |
| 1363 | |
| 1364 | if (slotVisitor.didReachTermination()) { |
| 1365 | m_opaqueRoots.deleteOldTables(); |
| 1366 | |
| 1367 | m_scheduler->didReachTermination(); |
| 1368 | |
| 1369 | assertMarkStacksEmpty(); |
| 1370 | |
| 1371 | // FIXME: Take m_mutatorDidRun into account when scheduling constraints. Most likely, |
| 1372 | // we don't have to execute root constraints again unless the mutator did run. At a |
| 1373 | // minimum, we could use this for work estimates - but it's probably more than just an |
| 1374 | // estimate. |
| 1375 | // https://bugs.webkit.org/show_bug.cgi?id=166828 |
| 1376 | |
| 1377 | // Wondering what this does? Look at Heap::addCoreConstraints(). The DOM and others can also |
| 1378 | // add their own using Heap::addMarkingConstraint(). |
| 1379 | bool converged = m_constraintSet->executeConvergence(slotVisitor); |
| 1380 | |
| 1381 | // FIXME: The slotVisitor.isEmpty() check is most likely not needed. |
| 1382 | // https://bugs.webkit.org/show_bug.cgi?id=180310 |
| 1383 | if (converged && slotVisitor.isEmpty()) { |
| 1384 | assertMarkStacksEmpty(); |
| 1385 | return changePhase(conn, CollectorPhase::End); |
| 1386 | } |
| 1387 | |
| 1388 | m_scheduler->didExecuteConstraints(); |
| 1389 | } |
| 1390 | |
| 1391 | if (Options::logGC()) |
| 1392 | dataLog(slotVisitor.collectorMarkStack().size(), "+" , m_mutatorMarkStack->size() + slotVisitor.mutatorMarkStack().size(), " " ); |
| 1393 | |
| 1394 | { |
| 1395 | ParallelModeEnabler enabler(slotVisitor); |
| 1396 | slotVisitor.drainInParallel(m_scheduler->timeToResume()); |
| 1397 | } |
| 1398 | |
| 1399 | m_scheduler->synchronousDrainingDidStall(); |
| 1400 | |
| 1401 | // This is kinda tricky. The termination check looks at: |
| 1402 | // |
| 1403 | // - Whether the marking threads are active. If they are not, this means that the marking threads' |
| 1404 | // SlotVisitors are empty. |
| 1405 | // - Whether the collector's slot visitor is empty. |
| 1406 | // - Whether the shared mark stacks are empty. |
| 1407 | // |
| 1408 | // This doesn't have to check the mutator SlotVisitor because that one becomes empty after every GC |
| 1409 | // work increment, so it must be empty now. |
| 1410 | if (slotVisitor.didReachTermination()) |
| 1411 | return true; // This is like relooping to the top if runFixpointPhase(). |
| 1412 | |
| 1413 | if (!m_scheduler->shouldResume()) |
| 1414 | return true; |
| 1415 | |
| 1416 | m_scheduler->willResume(); |
| 1417 | |
| 1418 | if (Options::logGC()) { |
| 1419 | double thisPauseMS = (MonotonicTime::now() - m_stopTime).milliseconds(); |
| 1420 | dataLog("p=" , thisPauseMS, "ms (max " , maxPauseMS(thisPauseMS), ")...]\n" ); |
| 1421 | } |
| 1422 | |
| 1423 | // Forgive the mutator for its past failures to keep up. |
| 1424 | // FIXME: Figure out if moving this to different places results in perf changes. |
| 1425 | m_incrementBalance = 0; |
| 1426 | |
| 1427 | return changePhase(conn, CollectorPhase::Concurrent); |
| 1428 | } |
| 1429 | |
| 1430 | NEVER_INLINE bool Heap::runConcurrentPhase(GCConductor conn) |
| 1431 | { |
| 1432 | SlotVisitor& slotVisitor = *m_collectorSlotVisitor; |
| 1433 | |
| 1434 | switch (conn) { |
| 1435 | case GCConductor::Mutator: { |
| 1436 | // When the mutator has the conn, we poll runConcurrentPhase() on every time someone says |
| 1437 | // stopIfNecessary(), so on every allocation slow path. When that happens we poll if it's time |
| 1438 | // to stop and do some work. |
| 1439 | if (slotVisitor.didReachTermination() |
| 1440 | || m_scheduler->shouldStop()) |
| 1441 | return changePhase(conn, CollectorPhase::Reloop); |
| 1442 | |
| 1443 | // We could be coming from a collector phase that stuffed our SlotVisitor, so make sure we donate |
| 1444 | // everything. This is super cheap if the SlotVisitor is already empty. |
| 1445 | slotVisitor.donateAll(); |
| 1446 | return false; |
| 1447 | } |
| 1448 | case GCConductor::Collector: { |
| 1449 | { |
| 1450 | ParallelModeEnabler enabler(slotVisitor); |
| 1451 | slotVisitor.drainInParallelPassively(m_scheduler->timeToStop()); |
| 1452 | } |
| 1453 | return changePhase(conn, CollectorPhase::Reloop); |
| 1454 | } } |
| 1455 | |
| 1456 | RELEASE_ASSERT_NOT_REACHED(); |
| 1457 | return false; |
| 1458 | } |
| 1459 | |
| 1460 | NEVER_INLINE bool Heap::runReloopPhase(GCConductor conn) |
| 1461 | { |
| 1462 | if (Options::logGC()) |
| 1463 | dataLog("[GC<" , RawPointer(this), ">: " , gcConductorShortName(conn), " " ); |
| 1464 | |
| 1465 | m_scheduler->didStop(); |
| 1466 | |
| 1467 | if (Options::logGC()) |
| 1468 | m_scheduler->log(); |
| 1469 | |
| 1470 | return changePhase(conn, CollectorPhase::Fixpoint); |
| 1471 | } |
| 1472 | |
| 1473 | NEVER_INLINE bool Heap::runEndPhase(GCConductor conn) |
| 1474 | { |
| 1475 | m_scheduler->endCollection(); |
| 1476 | |
| 1477 | { |
| 1478 | auto locker = holdLock(m_markingMutex); |
| 1479 | m_parallelMarkersShouldExit = true; |
| 1480 | m_markingConditionVariable.notifyAll(); |
| 1481 | } |
| 1482 | m_helperClient.finish(); |
| 1483 | |
| 1484 | iterateExecutingAndCompilingCodeBlocks( |
| 1485 | [&] (CodeBlock* codeBlock) { |
| 1486 | writeBarrier(codeBlock); |
| 1487 | }); |
| 1488 | |
| 1489 | updateObjectCounts(); |
| 1490 | endMarking(); |
| 1491 | |
| 1492 | if (UNLIKELY(m_verifier)) { |
| 1493 | m_verifier->gatherLiveCells(HeapVerifier::Phase::AfterMarking); |
| 1494 | m_verifier->verify(HeapVerifier::Phase::AfterMarking); |
| 1495 | } |
| 1496 | |
| 1497 | if (vm()->typeProfiler()) |
| 1498 | vm()->typeProfiler()->invalidateTypeSetCache(*vm()); |
| 1499 | |
| 1500 | reapWeakHandles(); |
| 1501 | pruneStaleEntriesFromWeakGCMaps(); |
| 1502 | sweepArrayBuffers(); |
| 1503 | snapshotUnswept(); |
| 1504 | finalizeUnconditionalFinalizers(); |
| 1505 | removeDeadCompilerWorklistEntries(); |
| 1506 | notifyIncrementalSweeper(); |
| 1507 | |
| 1508 | m_codeBlocks->iterateCurrentlyExecuting( |
| 1509 | [&] (CodeBlock* codeBlock) { |
| 1510 | writeBarrier(codeBlock); |
| 1511 | }); |
| 1512 | m_codeBlocks->clearCurrentlyExecuting(); |
| 1513 | |
| 1514 | m_objectSpace.prepareForAllocation(); |
| 1515 | updateAllocationLimits(); |
| 1516 | |
| 1517 | if (UNLIKELY(m_verifier)) { |
| 1518 | m_verifier->trimDeadCells(); |
| 1519 | m_verifier->verify(HeapVerifier::Phase::AfterGC); |
| 1520 | } |
| 1521 | |
| 1522 | didFinishCollection(); |
| 1523 | |
| 1524 | if (m_currentRequest.didFinishEndPhase) |
| 1525 | m_currentRequest.didFinishEndPhase->run(); |
| 1526 | |
| 1527 | if (false) { |
| 1528 | dataLog("Heap state after GC:\n" ); |
| 1529 | m_objectSpace.dumpBits(); |
| 1530 | } |
| 1531 | |
| 1532 | if (Options::logGC()) { |
| 1533 | double thisPauseMS = (m_afterGC - m_stopTime).milliseconds(); |
| 1534 | dataLog("p=" , thisPauseMS, "ms (max " , maxPauseMS(thisPauseMS), "), cycle " , (m_afterGC - m_beforeGC).milliseconds(), "ms END]\n" ); |
| 1535 | } |
| 1536 | |
| 1537 | { |
| 1538 | auto locker = holdLock(*m_threadLock); |
| 1539 | m_requests.removeFirst(); |
| 1540 | m_lastServedTicket++; |
| 1541 | clearMutatorWaiting(); |
| 1542 | } |
| 1543 | ParkingLot::unparkAll(&m_worldState); |
| 1544 | |
| 1545 | if (false) |
| 1546 | dataLog("GC END!\n" ); |
| 1547 | |
| 1548 | setNeedFinalize(); |
| 1549 | |
| 1550 | m_lastGCStartTime = m_currentGCStartTime; |
| 1551 | m_lastGCEndTime = MonotonicTime::now(); |
| 1552 | m_totalGCTime += m_lastGCEndTime - m_lastGCStartTime; |
| 1553 | |
| 1554 | return changePhase(conn, CollectorPhase::NotRunning); |
| 1555 | } |
| 1556 | |
| 1557 | bool Heap::changePhase(GCConductor conn, CollectorPhase nextPhase) |
| 1558 | { |
| 1559 | checkConn(conn); |
| 1560 | |
| 1561 | m_lastPhase = m_currentPhase; |
| 1562 | m_nextPhase = nextPhase; |
| 1563 | |
| 1564 | return finishChangingPhase(conn); |
| 1565 | } |
| 1566 | |
| 1567 | NEVER_INLINE bool Heap::finishChangingPhase(GCConductor conn) |
| 1568 | { |
| 1569 | checkConn(conn); |
| 1570 | |
| 1571 | if (m_nextPhase == m_currentPhase) |
| 1572 | return true; |
| 1573 | |
| 1574 | if (false) |
| 1575 | dataLog(conn, ": Going to phase: " , m_nextPhase, " (from " , m_currentPhase, ")\n" ); |
| 1576 | |
| 1577 | m_phaseVersion++; |
| 1578 | |
| 1579 | bool suspendedBefore = worldShouldBeSuspended(m_currentPhase); |
| 1580 | bool suspendedAfter = worldShouldBeSuspended(m_nextPhase); |
| 1581 | |
| 1582 | if (suspendedBefore != suspendedAfter) { |
| 1583 | if (suspendedBefore) { |
| 1584 | RELEASE_ASSERT(!suspendedAfter); |
| 1585 | |
| 1586 | resumeThePeriphery(); |
| 1587 | if (conn == GCConductor::Collector) |
| 1588 | resumeTheMutator(); |
| 1589 | else |
| 1590 | handleNeedFinalize(); |
| 1591 | } else { |
| 1592 | RELEASE_ASSERT(!suspendedBefore); |
| 1593 | RELEASE_ASSERT(suspendedAfter); |
| 1594 | |
| 1595 | if (conn == GCConductor::Collector) { |
| 1596 | waitWhileNeedFinalize(); |
| 1597 | if (!stopTheMutator()) { |
| 1598 | if (false) |
| 1599 | dataLog("Returning false.\n" ); |
| 1600 | return false; |
| 1601 | } |
| 1602 | } else { |
| 1603 | sanitizeStackForVM(m_vm); |
| 1604 | handleNeedFinalize(); |
| 1605 | } |
| 1606 | stopThePeriphery(conn); |
| 1607 | } |
| 1608 | } |
| 1609 | |
| 1610 | m_currentPhase = m_nextPhase; |
| 1611 | return true; |
| 1612 | } |
| 1613 | |
| 1614 | void Heap::stopThePeriphery(GCConductor conn) |
| 1615 | { |
| 1616 | if (m_worldIsStopped) { |
| 1617 | dataLog("FATAL: world already stopped.\n" ); |
| 1618 | RELEASE_ASSERT_NOT_REACHED(); |
| 1619 | } |
| 1620 | |
| 1621 | if (m_mutatorDidRun) |
| 1622 | m_mutatorExecutionVersion++; |
| 1623 | |
| 1624 | m_mutatorDidRun = false; |
| 1625 | |
| 1626 | suspendCompilerThreads(); |
| 1627 | m_worldIsStopped = true; |
| 1628 | |
| 1629 | forEachSlotVisitor( |
| 1630 | [&] (SlotVisitor& slotVisitor) { |
| 1631 | slotVisitor.updateMutatorIsStopped(NoLockingNecessary); |
| 1632 | }); |
| 1633 | |
| 1634 | #if ENABLE(JIT) |
| 1635 | if (VM::canUseJIT()) { |
| 1636 | DeferGCForAWhile awhile(*this); |
| 1637 | if (JITWorklist::ensureGlobalWorklist().completeAllForVM(*m_vm) |
| 1638 | && conn == GCConductor::Collector) |
| 1639 | setGCDidJIT(); |
| 1640 | } |
| 1641 | #endif // ENABLE(JIT) |
| 1642 | UNUSED_PARAM(conn); |
| 1643 | |
| 1644 | if (auto* shadowChicken = vm()->shadowChicken()) |
| 1645 | shadowChicken->update(*vm(), vm()->topCallFrame); |
| 1646 | |
| 1647 | m_structureIDTable.flushOldTables(); |
| 1648 | m_objectSpace.stopAllocating(); |
| 1649 | |
| 1650 | m_stopTime = MonotonicTime::now(); |
| 1651 | } |
| 1652 | |
| 1653 | NEVER_INLINE void Heap::resumeThePeriphery() |
| 1654 | { |
| 1655 | // Calling resumeAllocating does the Right Thing depending on whether this is the end of a |
| 1656 | // collection cycle or this is just a concurrent phase within a collection cycle: |
| 1657 | // - At end of collection cycle: it's a no-op because prepareForAllocation already cleared the |
| 1658 | // last active block. |
| 1659 | // - During collection cycle: it reinstates the last active block. |
| 1660 | m_objectSpace.resumeAllocating(); |
| 1661 | |
| 1662 | m_barriersExecuted = 0; |
| 1663 | |
| 1664 | if (!m_worldIsStopped) { |
| 1665 | dataLog("Fatal: collector does not believe that the world is stopped.\n" ); |
| 1666 | RELEASE_ASSERT_NOT_REACHED(); |
| 1667 | } |
| 1668 | m_worldIsStopped = false; |
| 1669 | |
| 1670 | // FIXME: This could be vastly improved: we want to grab the locks in the order in which they |
| 1671 | // become available. We basically want a lockAny() method that will lock whatever lock is available |
| 1672 | // and tell you which one it locked. That would require teaching ParkingLot how to park on multiple |
| 1673 | // queues at once, which is totally achievable - it would just require memory allocation, which is |
| 1674 | // suboptimal but not a disaster. Alternatively, we could replace the SlotVisitor rightToRun lock |
| 1675 | // with a DLG-style handshake mechanism, but that seems not as general. |
| 1676 | Vector<SlotVisitor*, 8> slotVisitorsToUpdate; |
| 1677 | |
| 1678 | forEachSlotVisitor( |
| 1679 | [&] (SlotVisitor& slotVisitor) { |
| 1680 | slotVisitorsToUpdate.append(&slotVisitor); |
| 1681 | }); |
| 1682 | |
| 1683 | for (unsigned countdown = 40; !slotVisitorsToUpdate.isEmpty() && countdown--;) { |
| 1684 | for (unsigned index = 0; index < slotVisitorsToUpdate.size(); ++index) { |
| 1685 | SlotVisitor& slotVisitor = *slotVisitorsToUpdate[index]; |
| 1686 | bool remove = false; |
| 1687 | if (slotVisitor.hasAcknowledgedThatTheMutatorIsResumed()) |
| 1688 | remove = true; |
| 1689 | else if (auto locker = tryHoldLock(slotVisitor.rightToRun())) { |
| 1690 | slotVisitor.updateMutatorIsStopped(locker); |
| 1691 | remove = true; |
| 1692 | } |
| 1693 | if (remove) { |
| 1694 | slotVisitorsToUpdate[index--] = slotVisitorsToUpdate.last(); |
| 1695 | slotVisitorsToUpdate.takeLast(); |
| 1696 | } |
| 1697 | } |
| 1698 | Thread::yield(); |
| 1699 | } |
| 1700 | |
| 1701 | for (SlotVisitor* slotVisitor : slotVisitorsToUpdate) |
| 1702 | slotVisitor->updateMutatorIsStopped(); |
| 1703 | |
| 1704 | resumeCompilerThreads(); |
| 1705 | } |
| 1706 | |
| 1707 | bool Heap::stopTheMutator() |
| 1708 | { |
| 1709 | for (;;) { |
| 1710 | unsigned oldState = m_worldState.load(); |
| 1711 | if (oldState & stoppedBit) { |
| 1712 | RELEASE_ASSERT(!(oldState & hasAccessBit)); |
| 1713 | RELEASE_ASSERT(!(oldState & mutatorWaitingBit)); |
| 1714 | RELEASE_ASSERT(!(oldState & mutatorHasConnBit)); |
| 1715 | return true; |
| 1716 | } |
| 1717 | |
| 1718 | if (oldState & mutatorHasConnBit) { |
| 1719 | RELEASE_ASSERT(!(oldState & hasAccessBit)); |
| 1720 | RELEASE_ASSERT(!(oldState & stoppedBit)); |
| 1721 | return false; |
| 1722 | } |
| 1723 | |
| 1724 | if (!(oldState & hasAccessBit)) { |
| 1725 | RELEASE_ASSERT(!(oldState & mutatorHasConnBit)); |
| 1726 | RELEASE_ASSERT(!(oldState & mutatorWaitingBit)); |
| 1727 | // We can stop the world instantly. |
| 1728 | if (m_worldState.compareExchangeWeak(oldState, oldState | stoppedBit)) |
| 1729 | return true; |
| 1730 | continue; |
| 1731 | } |
| 1732 | |
| 1733 | // Transfer the conn to the mutator and bail. |
| 1734 | RELEASE_ASSERT(oldState & hasAccessBit); |
| 1735 | RELEASE_ASSERT(!(oldState & stoppedBit)); |
| 1736 | unsigned newState = (oldState | mutatorHasConnBit) & ~mutatorWaitingBit; |
| 1737 | if (m_worldState.compareExchangeWeak(oldState, newState)) { |
| 1738 | if (false) |
| 1739 | dataLog("Handed off the conn.\n" ); |
| 1740 | m_stopIfNecessaryTimer->scheduleSoon(); |
| 1741 | ParkingLot::unparkAll(&m_worldState); |
| 1742 | return false; |
| 1743 | } |
| 1744 | } |
| 1745 | } |
| 1746 | |
| 1747 | NEVER_INLINE void Heap::resumeTheMutator() |
| 1748 | { |
| 1749 | if (false) |
| 1750 | dataLog("Resuming the mutator.\n" ); |
| 1751 | for (;;) { |
| 1752 | unsigned oldState = m_worldState.load(); |
| 1753 | if (!!(oldState & hasAccessBit) != !(oldState & stoppedBit)) { |
| 1754 | dataLog("Fatal: hasAccess = " , !!(oldState & hasAccessBit), ", stopped = " , !!(oldState & stoppedBit), "\n" ); |
| 1755 | RELEASE_ASSERT_NOT_REACHED(); |
| 1756 | } |
| 1757 | if (oldState & mutatorHasConnBit) { |
| 1758 | dataLog("Fatal: mutator has the conn.\n" ); |
| 1759 | RELEASE_ASSERT_NOT_REACHED(); |
| 1760 | } |
| 1761 | |
| 1762 | if (!(oldState & stoppedBit)) { |
| 1763 | if (false) |
| 1764 | dataLog("Returning because not stopped.\n" ); |
| 1765 | return; |
| 1766 | } |
| 1767 | |
| 1768 | if (m_worldState.compareExchangeWeak(oldState, oldState & ~stoppedBit)) { |
| 1769 | if (false) |
| 1770 | dataLog("CASing and returning.\n" ); |
| 1771 | ParkingLot::unparkAll(&m_worldState); |
| 1772 | return; |
| 1773 | } |
| 1774 | } |
| 1775 | } |
| 1776 | |
| 1777 | void Heap::stopIfNecessarySlow() |
| 1778 | { |
| 1779 | if (validateDFGDoesGC) |
| 1780 | RELEASE_ASSERT(expectDoesGC()); |
| 1781 | |
| 1782 | while (stopIfNecessarySlow(m_worldState.load())) { } |
| 1783 | |
| 1784 | RELEASE_ASSERT(m_worldState.load() & hasAccessBit); |
| 1785 | RELEASE_ASSERT(!(m_worldState.load() & stoppedBit)); |
| 1786 | |
| 1787 | handleGCDidJIT(); |
| 1788 | handleNeedFinalize(); |
| 1789 | m_mutatorDidRun = true; |
| 1790 | } |
| 1791 | |
| 1792 | bool Heap::stopIfNecessarySlow(unsigned oldState) |
| 1793 | { |
| 1794 | if (validateDFGDoesGC) |
| 1795 | RELEASE_ASSERT(expectDoesGC()); |
| 1796 | |
| 1797 | RELEASE_ASSERT(oldState & hasAccessBit); |
| 1798 | RELEASE_ASSERT(!(oldState & stoppedBit)); |
| 1799 | |
| 1800 | // It's possible for us to wake up with finalization already requested but the world not yet |
| 1801 | // resumed. If that happens, we can't run finalization yet. |
| 1802 | if (handleNeedFinalize(oldState)) |
| 1803 | return true; |
| 1804 | |
| 1805 | // FIXME: When entering the concurrent phase, we could arrange for this branch not to fire, and then |
| 1806 | // have the SlotVisitor do things to the m_worldState to make this branch fire again. That would |
| 1807 | // prevent us from polling this so much. Ideally, stopIfNecessary would ignore the mutatorHasConnBit |
| 1808 | // and there would be some other bit indicating whether we were in some GC phase other than the |
| 1809 | // NotRunning or Concurrent ones. |
| 1810 | if (oldState & mutatorHasConnBit) |
| 1811 | collectInMutatorThread(); |
| 1812 | |
| 1813 | return false; |
| 1814 | } |
| 1815 | |
| 1816 | NEVER_INLINE void Heap::collectInMutatorThread() |
| 1817 | { |
| 1818 | CollectingScope collectingScope(*this); |
| 1819 | for (;;) { |
| 1820 | RunCurrentPhaseResult result = runCurrentPhase(GCConductor::Mutator, nullptr); |
| 1821 | switch (result) { |
| 1822 | case RunCurrentPhaseResult::Finished: |
| 1823 | return; |
| 1824 | case RunCurrentPhaseResult::Continue: |
| 1825 | break; |
| 1826 | case RunCurrentPhaseResult::NeedCurrentThreadState: |
| 1827 | sanitizeStackForVM(m_vm); |
| 1828 | auto lambda = [&] (CurrentThreadState& state) { |
| 1829 | for (;;) { |
| 1830 | RunCurrentPhaseResult result = runCurrentPhase(GCConductor::Mutator, &state); |
| 1831 | switch (result) { |
| 1832 | case RunCurrentPhaseResult::Finished: |
| 1833 | return; |
| 1834 | case RunCurrentPhaseResult::Continue: |
| 1835 | break; |
| 1836 | case RunCurrentPhaseResult::NeedCurrentThreadState: |
| 1837 | RELEASE_ASSERT_NOT_REACHED(); |
| 1838 | break; |
| 1839 | } |
| 1840 | } |
| 1841 | }; |
| 1842 | callWithCurrentThreadState(scopedLambda<void(CurrentThreadState&)>(WTFMove(lambda))); |
| 1843 | return; |
| 1844 | } |
| 1845 | } |
| 1846 | } |
| 1847 | |
| 1848 | template<typename Func> |
| 1849 | void Heap::waitForCollector(const Func& func) |
| 1850 | { |
| 1851 | for (;;) { |
| 1852 | bool done; |
| 1853 | { |
| 1854 | LockHolder locker(*m_threadLock); |
| 1855 | done = func(locker); |
| 1856 | if (!done) { |
| 1857 | setMutatorWaiting(); |
| 1858 | |
| 1859 | // At this point, the collector knows that we intend to wait, and he will clear the |
| 1860 | // waiting bit and then unparkAll when the GC cycle finishes. Clearing the bit |
| 1861 | // prevents us from parking except if there is also stop-the-world. Unparking after |
| 1862 | // clearing means that if the clearing happens after we park, then we will unpark. |
| 1863 | } |
| 1864 | } |
| 1865 | |
| 1866 | // If we're in a stop-the-world scenario, we need to wait for that even if done is true. |
| 1867 | unsigned oldState = m_worldState.load(); |
| 1868 | if (stopIfNecessarySlow(oldState)) |
| 1869 | continue; |
| 1870 | |
| 1871 | // FIXME: We wouldn't need this if stopIfNecessarySlow() had a mode where it knew to just |
| 1872 | // do the collection. |
| 1873 | relinquishConn(); |
| 1874 | |
| 1875 | if (done) { |
| 1876 | clearMutatorWaiting(); // Clean up just in case. |
| 1877 | return; |
| 1878 | } |
| 1879 | |
| 1880 | // If mutatorWaitingBit is still set then we want to wait. |
| 1881 | ParkingLot::compareAndPark(&m_worldState, oldState | mutatorWaitingBit); |
| 1882 | } |
| 1883 | } |
| 1884 | |
| 1885 | void Heap::acquireAccessSlow() |
| 1886 | { |
| 1887 | for (;;) { |
| 1888 | unsigned oldState = m_worldState.load(); |
| 1889 | RELEASE_ASSERT(!(oldState & hasAccessBit)); |
| 1890 | |
| 1891 | if (oldState & stoppedBit) { |
| 1892 | if (verboseStop) { |
| 1893 | dataLog("Stopping in acquireAccess!\n" ); |
| 1894 | WTFReportBacktrace(); |
| 1895 | } |
| 1896 | // Wait until we're not stopped anymore. |
| 1897 | ParkingLot::compareAndPark(&m_worldState, oldState); |
| 1898 | continue; |
| 1899 | } |
| 1900 | |
| 1901 | RELEASE_ASSERT(!(oldState & stoppedBit)); |
| 1902 | unsigned newState = oldState | hasAccessBit; |
| 1903 | if (m_worldState.compareExchangeWeak(oldState, newState)) { |
| 1904 | handleGCDidJIT(); |
| 1905 | handleNeedFinalize(); |
| 1906 | m_mutatorDidRun = true; |
| 1907 | stopIfNecessary(); |
| 1908 | return; |
| 1909 | } |
| 1910 | } |
| 1911 | } |
| 1912 | |
| 1913 | void Heap::releaseAccessSlow() |
| 1914 | { |
| 1915 | for (;;) { |
| 1916 | unsigned oldState = m_worldState.load(); |
| 1917 | if (!(oldState & hasAccessBit)) { |
| 1918 | dataLog("FATAL: Attempting to release access but the mutator does not have access.\n" ); |
| 1919 | RELEASE_ASSERT_NOT_REACHED(); |
| 1920 | } |
| 1921 | if (oldState & stoppedBit) { |
| 1922 | dataLog("FATAL: Attempting to release access but the mutator is stopped.\n" ); |
| 1923 | RELEASE_ASSERT_NOT_REACHED(); |
| 1924 | } |
| 1925 | |
| 1926 | if (handleNeedFinalize(oldState)) |
| 1927 | continue; |
| 1928 | |
| 1929 | unsigned newState = oldState & ~(hasAccessBit | mutatorHasConnBit); |
| 1930 | |
| 1931 | if ((oldState & mutatorHasConnBit) |
| 1932 | && m_nextPhase != m_currentPhase) { |
| 1933 | // This means that the collector thread had given us the conn so that we would do something |
| 1934 | // for it. Stop ourselves as we release access. This ensures that acquireAccess blocks. In |
| 1935 | // the meantime, since we're handing the conn over, the collector will be awoken and it is |
| 1936 | // sure to have work to do. |
| 1937 | newState |= stoppedBit; |
| 1938 | } |
| 1939 | |
| 1940 | if (m_worldState.compareExchangeWeak(oldState, newState)) { |
| 1941 | if (oldState & mutatorHasConnBit) |
| 1942 | finishRelinquishingConn(); |
| 1943 | return; |
| 1944 | } |
| 1945 | } |
| 1946 | } |
| 1947 | |
| 1948 | bool Heap::relinquishConn(unsigned oldState) |
| 1949 | { |
| 1950 | RELEASE_ASSERT(oldState & hasAccessBit); |
| 1951 | RELEASE_ASSERT(!(oldState & stoppedBit)); |
| 1952 | |
| 1953 | if (!(oldState & mutatorHasConnBit)) |
| 1954 | return false; // Done. |
| 1955 | |
| 1956 | if (m_threadShouldStop) |
| 1957 | return false; |
| 1958 | |
| 1959 | if (!m_worldState.compareExchangeWeak(oldState, oldState & ~mutatorHasConnBit)) |
| 1960 | return true; // Loop around. |
| 1961 | |
| 1962 | finishRelinquishingConn(); |
| 1963 | return true; |
| 1964 | } |
| 1965 | |
| 1966 | void Heap::finishRelinquishingConn() |
| 1967 | { |
| 1968 | if (false) |
| 1969 | dataLog("Relinquished the conn.\n" ); |
| 1970 | |
| 1971 | sanitizeStackForVM(m_vm); |
| 1972 | |
| 1973 | auto locker = holdLock(*m_threadLock); |
| 1974 | if (!m_requests.isEmpty()) |
| 1975 | m_threadCondition->notifyOne(locker); |
| 1976 | ParkingLot::unparkAll(&m_worldState); |
| 1977 | } |
| 1978 | |
| 1979 | void Heap::relinquishConn() |
| 1980 | { |
| 1981 | while (relinquishConn(m_worldState.load())) { } |
| 1982 | } |
| 1983 | |
| 1984 | bool Heap::handleGCDidJIT(unsigned oldState) |
| 1985 | { |
| 1986 | RELEASE_ASSERT(oldState & hasAccessBit); |
| 1987 | if (!(oldState & gcDidJITBit)) |
| 1988 | return false; |
| 1989 | if (m_worldState.compareExchangeWeak(oldState, oldState & ~gcDidJITBit)) { |
| 1990 | WTF::crossModifyingCodeFence(); |
| 1991 | return true; |
| 1992 | } |
| 1993 | return true; |
| 1994 | } |
| 1995 | |
| 1996 | NEVER_INLINE bool Heap::handleNeedFinalize(unsigned oldState) |
| 1997 | { |
| 1998 | RELEASE_ASSERT(oldState & hasAccessBit); |
| 1999 | RELEASE_ASSERT(!(oldState & stoppedBit)); |
| 2000 | |
| 2001 | if (!(oldState & needFinalizeBit)) |
| 2002 | return false; |
| 2003 | if (m_worldState.compareExchangeWeak(oldState, oldState & ~needFinalizeBit)) { |
| 2004 | finalize(); |
| 2005 | // Wake up anyone waiting for us to finalize. Note that they may have woken up already, in |
| 2006 | // which case they would be waiting for us to release heap access. |
| 2007 | ParkingLot::unparkAll(&m_worldState); |
| 2008 | return true; |
| 2009 | } |
| 2010 | return true; |
| 2011 | } |
| 2012 | |
| 2013 | void Heap::handleGCDidJIT() |
| 2014 | { |
| 2015 | while (handleGCDidJIT(m_worldState.load())) { } |
| 2016 | } |
| 2017 | |
| 2018 | void Heap::handleNeedFinalize() |
| 2019 | { |
| 2020 | while (handleNeedFinalize(m_worldState.load())) { } |
| 2021 | } |
| 2022 | |
| 2023 | void Heap::setGCDidJIT() |
| 2024 | { |
| 2025 | m_worldState.transaction( |
| 2026 | [&] (unsigned& state) -> bool { |
| 2027 | RELEASE_ASSERT(state & stoppedBit); |
| 2028 | state |= gcDidJITBit; |
| 2029 | return true; |
| 2030 | }); |
| 2031 | } |
| 2032 | |
| 2033 | void Heap::setNeedFinalize() |
| 2034 | { |
| 2035 | m_worldState.exchangeOr(needFinalizeBit); |
| 2036 | ParkingLot::unparkAll(&m_worldState); |
| 2037 | m_stopIfNecessaryTimer->scheduleSoon(); |
| 2038 | } |
| 2039 | |
| 2040 | void Heap::waitWhileNeedFinalize() |
| 2041 | { |
| 2042 | for (;;) { |
| 2043 | unsigned oldState = m_worldState.load(); |
| 2044 | if (!(oldState & needFinalizeBit)) { |
| 2045 | // This means that either there was no finalize request or the main thread will finalize |
| 2046 | // with heap access, so a subsequent call to stopTheWorld() will return only when |
| 2047 | // finalize finishes. |
| 2048 | return; |
| 2049 | } |
| 2050 | ParkingLot::compareAndPark(&m_worldState, oldState); |
| 2051 | } |
| 2052 | } |
| 2053 | |
| 2054 | void Heap::setMutatorWaiting() |
| 2055 | { |
| 2056 | m_worldState.exchangeOr(mutatorWaitingBit); |
| 2057 | } |
| 2058 | |
| 2059 | void Heap::clearMutatorWaiting() |
| 2060 | { |
| 2061 | m_worldState.exchangeAnd(~mutatorWaitingBit); |
| 2062 | } |
| 2063 | |
| 2064 | void Heap::notifyThreadStopping(const AbstractLocker&) |
| 2065 | { |
| 2066 | m_threadIsStopping = true; |
| 2067 | clearMutatorWaiting(); |
| 2068 | ParkingLot::unparkAll(&m_worldState); |
| 2069 | } |
| 2070 | |
| 2071 | void Heap::finalize() |
| 2072 | { |
| 2073 | MonotonicTime before; |
| 2074 | if (Options::logGC()) { |
| 2075 | before = MonotonicTime::now(); |
| 2076 | dataLog("[GC<" , RawPointer(this), ">: finalize " ); |
| 2077 | } |
| 2078 | |
| 2079 | { |
| 2080 | SweepingScope sweepingScope(*this); |
| 2081 | deleteUnmarkedCompiledCode(); |
| 2082 | deleteSourceProviderCaches(); |
| 2083 | sweepInFinalize(); |
| 2084 | } |
| 2085 | |
| 2086 | if (HasOwnPropertyCache* cache = vm()->hasOwnPropertyCache()) |
| 2087 | cache->clear(); |
| 2088 | |
| 2089 | immutableButterflyToStringCache.clear(); |
| 2090 | |
| 2091 | for (const HeapFinalizerCallback& callback : m_heapFinalizerCallbacks) |
| 2092 | callback.run(*vm()); |
| 2093 | |
| 2094 | if (shouldSweepSynchronously()) |
| 2095 | sweepSynchronously(); |
| 2096 | |
| 2097 | if (Options::logGC()) { |
| 2098 | MonotonicTime after = MonotonicTime::now(); |
| 2099 | dataLog((after - before).milliseconds(), "ms]\n" ); |
| 2100 | } |
| 2101 | } |
| 2102 | |
| 2103 | Heap::Ticket Heap::requestCollection(GCRequest request) |
| 2104 | { |
| 2105 | stopIfNecessary(); |
| 2106 | |
| 2107 | ASSERT(vm()->currentThreadIsHoldingAPILock()); |
| 2108 | RELEASE_ASSERT(vm()->atomicStringTable() == Thread::current().atomicStringTable()); |
| 2109 | |
| 2110 | LockHolder locker(*m_threadLock); |
| 2111 | // We may be able to steal the conn. That only works if the collector is definitely not running |
| 2112 | // right now. This is an optimization that prevents the collector thread from ever starting in most |
| 2113 | // cases. |
| 2114 | ASSERT(m_lastServedTicket <= m_lastGrantedTicket); |
| 2115 | if ((m_lastServedTicket == m_lastGrantedTicket) && (m_currentPhase == CollectorPhase::NotRunning)) { |
| 2116 | if (false) |
| 2117 | dataLog("Taking the conn.\n" ); |
| 2118 | m_worldState.exchangeOr(mutatorHasConnBit); |
| 2119 | } |
| 2120 | |
| 2121 | m_requests.append(request); |
| 2122 | m_lastGrantedTicket++; |
| 2123 | if (!(m_worldState.load() & mutatorHasConnBit)) |
| 2124 | m_threadCondition->notifyOne(locker); |
| 2125 | return m_lastGrantedTicket; |
| 2126 | } |
| 2127 | |
| 2128 | void Heap::waitForCollection(Ticket ticket) |
| 2129 | { |
| 2130 | waitForCollector( |
| 2131 | [&] (const AbstractLocker&) -> bool { |
| 2132 | return m_lastServedTicket >= ticket; |
| 2133 | }); |
| 2134 | } |
| 2135 | |
| 2136 | void Heap::sweepInFinalize() |
| 2137 | { |
| 2138 | m_objectSpace.sweepLargeAllocations(); |
| 2139 | vm()->eagerlySweptDestructibleObjectSpace.sweep(); |
| 2140 | } |
| 2141 | |
| 2142 | void Heap::suspendCompilerThreads() |
| 2143 | { |
| 2144 | #if ENABLE(DFG_JIT) |
| 2145 | // We ensure the worklists so that it's not possible for the mutator to start a new worklist |
| 2146 | // after we have suspended the ones that he had started before. That's not very expensive since |
| 2147 | // the worklists use AutomaticThreads anyway. |
| 2148 | if (!VM::canUseJIT()) |
| 2149 | return; |
| 2150 | for (unsigned i = DFG::numberOfWorklists(); i--;) |
| 2151 | DFG::ensureWorklistForIndex(i).suspendAllThreads(); |
| 2152 | #endif |
| 2153 | } |
| 2154 | |
| 2155 | void Heap::willStartCollection() |
| 2156 | { |
| 2157 | if (Options::logGC()) |
| 2158 | dataLog("=> " ); |
| 2159 | |
| 2160 | if (shouldDoFullCollection()) { |
| 2161 | m_collectionScope = CollectionScope::Full; |
| 2162 | m_shouldDoFullCollection = false; |
| 2163 | if (Options::logGC()) |
| 2164 | dataLog("FullCollection, " ); |
| 2165 | if (false) |
| 2166 | dataLog("Full collection!\n" ); |
| 2167 | } else { |
| 2168 | m_collectionScope = CollectionScope::Eden; |
| 2169 | if (Options::logGC()) |
| 2170 | dataLog("EdenCollection, " ); |
| 2171 | if (false) |
| 2172 | dataLog("Eden collection!\n" ); |
| 2173 | } |
| 2174 | if (m_collectionScope && m_collectionScope.value() == CollectionScope::Full) { |
| 2175 | m_sizeBeforeLastFullCollect = m_sizeAfterLastCollect + m_bytesAllocatedThisCycle; |
| 2176 | m_extraMemorySize = 0; |
| 2177 | m_deprecatedExtraMemorySize = 0; |
| 2178 | #if ENABLE(RESOURCE_USAGE) |
| 2179 | m_externalMemorySize = 0; |
| 2180 | #endif |
| 2181 | |
| 2182 | if (m_fullActivityCallback) |
| 2183 | m_fullActivityCallback->willCollect(); |
| 2184 | } else { |
| 2185 | ASSERT(m_collectionScope && m_collectionScope.value() == CollectionScope::Eden); |
| 2186 | m_sizeBeforeLastEdenCollect = m_sizeAfterLastCollect + m_bytesAllocatedThisCycle; |
| 2187 | } |
| 2188 | |
| 2189 | if (m_edenActivityCallback) |
| 2190 | m_edenActivityCallback->willCollect(); |
| 2191 | |
| 2192 | for (auto* observer : m_observers) |
| 2193 | observer->willGarbageCollect(); |
| 2194 | } |
| 2195 | |
| 2196 | void Heap::prepareForMarking() |
| 2197 | { |
| 2198 | m_objectSpace.prepareForMarking(); |
| 2199 | } |
| 2200 | |
| 2201 | void Heap::reapWeakHandles() |
| 2202 | { |
| 2203 | m_objectSpace.reapWeakSets(); |
| 2204 | } |
| 2205 | |
| 2206 | void Heap::pruneStaleEntriesFromWeakGCMaps() |
| 2207 | { |
| 2208 | if (!m_collectionScope || m_collectionScope.value() != CollectionScope::Full) |
| 2209 | return; |
| 2210 | for (WeakGCMapBase* weakGCMap : m_weakGCMaps) |
| 2211 | weakGCMap->pruneStaleEntries(); |
| 2212 | } |
| 2213 | |
| 2214 | void Heap::sweepArrayBuffers() |
| 2215 | { |
| 2216 | m_arrayBuffers.sweep(*vm()); |
| 2217 | } |
| 2218 | |
| 2219 | void Heap::snapshotUnswept() |
| 2220 | { |
| 2221 | TimingScope timingScope(*this, "Heap::snapshotUnswept" ); |
| 2222 | m_objectSpace.snapshotUnswept(); |
| 2223 | } |
| 2224 | |
| 2225 | void Heap::deleteSourceProviderCaches() |
| 2226 | { |
| 2227 | if (m_lastCollectionScope && m_lastCollectionScope.value() == CollectionScope::Full) |
| 2228 | m_vm->clearSourceProviderCaches(); |
| 2229 | } |
| 2230 | |
| 2231 | void Heap::notifyIncrementalSweeper() |
| 2232 | { |
| 2233 | if (m_collectionScope && m_collectionScope.value() == CollectionScope::Full) { |
| 2234 | if (!m_logicallyEmptyWeakBlocks.isEmpty()) |
| 2235 | m_indexOfNextLogicallyEmptyWeakBlockToSweep = 0; |
| 2236 | } |
| 2237 | |
| 2238 | m_sweeper->startSweeping(*this); |
| 2239 | } |
| 2240 | |
| 2241 | void Heap::updateAllocationLimits() |
| 2242 | { |
| 2243 | static const bool verbose = false; |
| 2244 | |
| 2245 | if (verbose) { |
| 2246 | dataLog("\n" ); |
| 2247 | dataLog("bytesAllocatedThisCycle = " , m_bytesAllocatedThisCycle, "\n" ); |
| 2248 | } |
| 2249 | |
| 2250 | // Calculate our current heap size threshold for the purpose of figuring out when we should |
| 2251 | // run another collection. This isn't the same as either size() or capacity(), though it should |
| 2252 | // be somewhere between the two. The key is to match the size calculations involved calls to |
| 2253 | // didAllocate(), while never dangerously underestimating capacity(). In extreme cases of |
| 2254 | // fragmentation, we may have size() much smaller than capacity(). |
| 2255 | size_t currentHeapSize = 0; |
| 2256 | |
| 2257 | // For marked space, we use the total number of bytes visited. This matches the logic for |
| 2258 | // BlockDirectory's calls to didAllocate(), which effectively accounts for the total size of |
| 2259 | // objects allocated rather than blocks used. This will underestimate capacity(), and in case |
| 2260 | // of fragmentation, this may be substantial. Fortunately, marked space rarely fragments because |
| 2261 | // cells usually have a narrow range of sizes. So, the underestimation is probably OK. |
| 2262 | currentHeapSize += m_totalBytesVisited; |
| 2263 | if (verbose) |
| 2264 | dataLog("totalBytesVisited = " , m_totalBytesVisited, ", currentHeapSize = " , currentHeapSize, "\n" ); |
| 2265 | |
| 2266 | // It's up to the user to ensure that extraMemorySize() ends up corresponding to allocation-time |
| 2267 | // extra memory reporting. |
| 2268 | currentHeapSize += extraMemorySize(); |
| 2269 | if (!ASSERT_DISABLED) { |
| 2270 | Checked<size_t, RecordOverflow> checkedCurrentHeapSize = m_totalBytesVisited; |
| 2271 | checkedCurrentHeapSize += extraMemorySize(); |
| 2272 | ASSERT(!checkedCurrentHeapSize.hasOverflowed() && checkedCurrentHeapSize.unsafeGet() == currentHeapSize); |
| 2273 | } |
| 2274 | |
| 2275 | if (verbose) |
| 2276 | dataLog("extraMemorySize() = " , extraMemorySize(), ", currentHeapSize = " , currentHeapSize, "\n" ); |
| 2277 | |
| 2278 | if (m_collectionScope && m_collectionScope.value() == CollectionScope::Full) { |
| 2279 | // To avoid pathological GC churn in very small and very large heaps, we set |
| 2280 | // the new allocation limit based on the current size of the heap, with a |
| 2281 | // fixed minimum. |
| 2282 | m_maxHeapSize = std::max(minHeapSize(m_heapType, m_ramSize), proportionalHeapSize(currentHeapSize, m_ramSize)); |
| 2283 | if (verbose) |
| 2284 | dataLog("Full: maxHeapSize = " , m_maxHeapSize, "\n" ); |
| 2285 | m_maxEdenSize = m_maxHeapSize - currentHeapSize; |
| 2286 | if (verbose) |
| 2287 | dataLog("Full: maxEdenSize = " , m_maxEdenSize, "\n" ); |
| 2288 | m_sizeAfterLastFullCollect = currentHeapSize; |
| 2289 | if (verbose) |
| 2290 | dataLog("Full: sizeAfterLastFullCollect = " , currentHeapSize, "\n" ); |
| 2291 | m_bytesAbandonedSinceLastFullCollect = 0; |
| 2292 | if (verbose) |
| 2293 | dataLog("Full: bytesAbandonedSinceLastFullCollect = " , 0, "\n" ); |
| 2294 | } else { |
| 2295 | ASSERT(currentHeapSize >= m_sizeAfterLastCollect); |
| 2296 | // Theoretically, we shouldn't ever scan more memory than the heap size we planned to have. |
| 2297 | // But we are sloppy, so we have to defend against the overflow. |
| 2298 | m_maxEdenSize = currentHeapSize > m_maxHeapSize ? 0 : m_maxHeapSize - currentHeapSize; |
| 2299 | if (verbose) |
| 2300 | dataLog("Eden: maxEdenSize = " , m_maxEdenSize, "\n" ); |
| 2301 | m_sizeAfterLastEdenCollect = currentHeapSize; |
| 2302 | if (verbose) |
| 2303 | dataLog("Eden: sizeAfterLastEdenCollect = " , currentHeapSize, "\n" ); |
| 2304 | double edenToOldGenerationRatio = (double)m_maxEdenSize / (double)m_maxHeapSize; |
| 2305 | double minEdenToOldGenerationRatio = 1.0 / 3.0; |
| 2306 | if (edenToOldGenerationRatio < minEdenToOldGenerationRatio) |
| 2307 | m_shouldDoFullCollection = true; |
| 2308 | // This seems suspect at first, but what it does is ensure that the nursery size is fixed. |
| 2309 | m_maxHeapSize += currentHeapSize - m_sizeAfterLastCollect; |
| 2310 | if (verbose) |
| 2311 | dataLog("Eden: maxHeapSize = " , m_maxHeapSize, "\n" ); |
| 2312 | m_maxEdenSize = m_maxHeapSize - currentHeapSize; |
| 2313 | if (verbose) |
| 2314 | dataLog("Eden: maxEdenSize = " , m_maxEdenSize, "\n" ); |
| 2315 | if (m_fullActivityCallback) { |
| 2316 | ASSERT(currentHeapSize >= m_sizeAfterLastFullCollect); |
| 2317 | m_fullActivityCallback->didAllocate(*this, currentHeapSize - m_sizeAfterLastFullCollect); |
| 2318 | } |
| 2319 | } |
| 2320 | |
| 2321 | #if PLATFORM(IOS_FAMILY) |
| 2322 | // Get critical memory threshold for next cycle. |
| 2323 | overCriticalMemoryThreshold(MemoryThresholdCallType::Direct); |
| 2324 | #endif |
| 2325 | |
| 2326 | m_sizeAfterLastCollect = currentHeapSize; |
| 2327 | if (verbose) |
| 2328 | dataLog("sizeAfterLastCollect = " , m_sizeAfterLastCollect, "\n" ); |
| 2329 | m_bytesAllocatedThisCycle = 0; |
| 2330 | |
| 2331 | if (Options::logGC()) |
| 2332 | dataLog("=> " , currentHeapSize / 1024, "kb, " ); |
| 2333 | } |
| 2334 | |
| 2335 | void Heap::didFinishCollection() |
| 2336 | { |
| 2337 | m_afterGC = MonotonicTime::now(); |
| 2338 | CollectionScope scope = *m_collectionScope; |
| 2339 | if (scope == CollectionScope::Full) |
| 2340 | m_lastFullGCLength = m_afterGC - m_beforeGC; |
| 2341 | else |
| 2342 | m_lastEdenGCLength = m_afterGC - m_beforeGC; |
| 2343 | |
| 2344 | #if ENABLE(RESOURCE_USAGE) |
| 2345 | ASSERT(externalMemorySize() <= extraMemorySize()); |
| 2346 | #endif |
| 2347 | |
| 2348 | if (HeapProfiler* heapProfiler = m_vm->heapProfiler()) { |
| 2349 | gatherExtraHeapSnapshotData(*heapProfiler); |
| 2350 | removeDeadHeapSnapshotNodes(*heapProfiler); |
| 2351 | } |
| 2352 | |
| 2353 | if (UNLIKELY(m_verifier)) |
| 2354 | m_verifier->endGC(); |
| 2355 | |
| 2356 | RELEASE_ASSERT(m_collectionScope); |
| 2357 | m_lastCollectionScope = m_collectionScope; |
| 2358 | m_collectionScope = WTF::nullopt; |
| 2359 | |
| 2360 | for (auto* observer : m_observers) |
| 2361 | observer->didGarbageCollect(scope); |
| 2362 | } |
| 2363 | |
| 2364 | void Heap::resumeCompilerThreads() |
| 2365 | { |
| 2366 | #if ENABLE(DFG_JIT) |
| 2367 | if (!VM::canUseJIT()) |
| 2368 | return; |
| 2369 | for (unsigned i = DFG::numberOfWorklists(); i--;) |
| 2370 | DFG::existingWorklistForIndex(i).resumeAllThreads(); |
| 2371 | #endif |
| 2372 | } |
| 2373 | |
| 2374 | GCActivityCallback* Heap::fullActivityCallback() |
| 2375 | { |
| 2376 | return m_fullActivityCallback.get(); |
| 2377 | } |
| 2378 | |
| 2379 | GCActivityCallback* Heap::edenActivityCallback() |
| 2380 | { |
| 2381 | return m_edenActivityCallback.get(); |
| 2382 | } |
| 2383 | |
| 2384 | IncrementalSweeper& Heap::sweeper() |
| 2385 | { |
| 2386 | return m_sweeper.get(); |
| 2387 | } |
| 2388 | |
| 2389 | void Heap::setGarbageCollectionTimerEnabled(bool enable) |
| 2390 | { |
| 2391 | if (m_fullActivityCallback) |
| 2392 | m_fullActivityCallback->setEnabled(enable); |
| 2393 | if (m_edenActivityCallback) |
| 2394 | m_edenActivityCallback->setEnabled(enable); |
| 2395 | } |
| 2396 | |
| 2397 | void Heap::didAllocate(size_t bytes) |
| 2398 | { |
| 2399 | if (m_edenActivityCallback) |
| 2400 | m_edenActivityCallback->didAllocate(*this, m_bytesAllocatedThisCycle + m_bytesAbandonedSinceLastFullCollect); |
| 2401 | m_bytesAllocatedThisCycle += bytes; |
| 2402 | performIncrement(bytes); |
| 2403 | } |
| 2404 | |
| 2405 | bool Heap::isValidAllocation(size_t) |
| 2406 | { |
| 2407 | if (!isValidThreadState(m_vm)) |
| 2408 | return false; |
| 2409 | |
| 2410 | if (isCurrentThreadBusy()) |
| 2411 | return false; |
| 2412 | |
| 2413 | return true; |
| 2414 | } |
| 2415 | |
| 2416 | void Heap::addFinalizer(JSCell* cell, Finalizer finalizer) |
| 2417 | { |
| 2418 | WeakSet::allocate(cell, &m_finalizerOwner, reinterpret_cast<void*>(finalizer)); // Balanced by FinalizerOwner::finalize(). |
| 2419 | } |
| 2420 | |
| 2421 | void Heap::FinalizerOwner::finalize(Handle<Unknown> handle, void* context) |
| 2422 | { |
| 2423 | HandleSlot slot = handle.slot(); |
| 2424 | Finalizer finalizer = reinterpret_cast<Finalizer>(context); |
| 2425 | finalizer(slot->asCell()); |
| 2426 | WeakSet::deallocate(WeakImpl::asWeakImpl(slot)); |
| 2427 | } |
| 2428 | |
| 2429 | void Heap::collectNowFullIfNotDoneRecently(Synchronousness synchronousness) |
| 2430 | { |
| 2431 | if (!m_fullActivityCallback) { |
| 2432 | collectNow(synchronousness, CollectionScope::Full); |
| 2433 | return; |
| 2434 | } |
| 2435 | |
| 2436 | if (m_fullActivityCallback->didGCRecently()) { |
| 2437 | // A synchronous GC was already requested recently so we merely accelerate next collection. |
| 2438 | reportAbandonedObjectGraph(); |
| 2439 | return; |
| 2440 | } |
| 2441 | |
| 2442 | m_fullActivityCallback->setDidGCRecently(); |
| 2443 | collectNow(synchronousness, CollectionScope::Full); |
| 2444 | } |
| 2445 | |
| 2446 | bool Heap::useGenerationalGC() |
| 2447 | { |
| 2448 | return Options::useGenerationalGC() && !VM::isInMiniMode(); |
| 2449 | } |
| 2450 | |
| 2451 | bool Heap::shouldSweepSynchronously() |
| 2452 | { |
| 2453 | return Options::sweepSynchronously() || VM::isInMiniMode(); |
| 2454 | } |
| 2455 | |
| 2456 | bool Heap::shouldDoFullCollection() |
| 2457 | { |
| 2458 | if (!useGenerationalGC()) |
| 2459 | return true; |
| 2460 | |
| 2461 | if (!m_currentRequest.scope) |
| 2462 | return m_shouldDoFullCollection || overCriticalMemoryThreshold(); |
| 2463 | return *m_currentRequest.scope == CollectionScope::Full; |
| 2464 | } |
| 2465 | |
| 2466 | void Heap::addLogicallyEmptyWeakBlock(WeakBlock* block) |
| 2467 | { |
| 2468 | m_logicallyEmptyWeakBlocks.append(block); |
| 2469 | } |
| 2470 | |
| 2471 | void Heap::sweepAllLogicallyEmptyWeakBlocks() |
| 2472 | { |
| 2473 | if (m_logicallyEmptyWeakBlocks.isEmpty()) |
| 2474 | return; |
| 2475 | |
| 2476 | m_indexOfNextLogicallyEmptyWeakBlockToSweep = 0; |
| 2477 | while (sweepNextLogicallyEmptyWeakBlock()) { } |
| 2478 | } |
| 2479 | |
| 2480 | bool Heap::sweepNextLogicallyEmptyWeakBlock() |
| 2481 | { |
| 2482 | if (m_indexOfNextLogicallyEmptyWeakBlockToSweep == WTF::notFound) |
| 2483 | return false; |
| 2484 | |
| 2485 | WeakBlock* block = m_logicallyEmptyWeakBlocks[m_indexOfNextLogicallyEmptyWeakBlockToSweep]; |
| 2486 | |
| 2487 | block->sweep(); |
| 2488 | if (block->isEmpty()) { |
| 2489 | std::swap(m_logicallyEmptyWeakBlocks[m_indexOfNextLogicallyEmptyWeakBlockToSweep], m_logicallyEmptyWeakBlocks.last()); |
| 2490 | m_logicallyEmptyWeakBlocks.removeLast(); |
| 2491 | WeakBlock::destroy(*this, block); |
| 2492 | } else |
| 2493 | m_indexOfNextLogicallyEmptyWeakBlockToSweep++; |
| 2494 | |
| 2495 | if (m_indexOfNextLogicallyEmptyWeakBlockToSweep >= m_logicallyEmptyWeakBlocks.size()) { |
| 2496 | m_indexOfNextLogicallyEmptyWeakBlockToSweep = WTF::notFound; |
| 2497 | return false; |
| 2498 | } |
| 2499 | |
| 2500 | return true; |
| 2501 | } |
| 2502 | |
| 2503 | size_t Heap::visitCount() |
| 2504 | { |
| 2505 | size_t result = 0; |
| 2506 | forEachSlotVisitor( |
| 2507 | [&] (SlotVisitor& visitor) { |
| 2508 | result += visitor.visitCount(); |
| 2509 | }); |
| 2510 | return result; |
| 2511 | } |
| 2512 | |
| 2513 | size_t Heap::bytesVisited() |
| 2514 | { |
| 2515 | size_t result = 0; |
| 2516 | forEachSlotVisitor( |
| 2517 | [&] (SlotVisitor& visitor) { |
| 2518 | result += visitor.bytesVisited(); |
| 2519 | }); |
| 2520 | return result; |
| 2521 | } |
| 2522 | |
| 2523 | void Heap::forEachCodeBlockImpl(const ScopedLambda<void(CodeBlock*)>& func) |
| 2524 | { |
| 2525 | // We don't know the full set of CodeBlocks until compilation has terminated. |
| 2526 | completeAllJITPlans(); |
| 2527 | |
| 2528 | return m_codeBlocks->iterate(func); |
| 2529 | } |
| 2530 | |
| 2531 | void Heap::forEachCodeBlockIgnoringJITPlansImpl(const AbstractLocker& locker, const ScopedLambda<void(CodeBlock*)>& func) |
| 2532 | { |
| 2533 | return m_codeBlocks->iterate(locker, func); |
| 2534 | } |
| 2535 | |
| 2536 | void Heap::writeBarrierSlowPath(const JSCell* from) |
| 2537 | { |
| 2538 | if (UNLIKELY(mutatorShouldBeFenced())) { |
| 2539 | // In this case, the barrierThreshold is the tautological threshold, so from could still be |
| 2540 | // not black. But we can't know for sure until we fire off a fence. |
| 2541 | WTF::storeLoadFence(); |
| 2542 | if (from->cellState() != CellState::PossiblyBlack) |
| 2543 | return; |
| 2544 | } |
| 2545 | |
| 2546 | addToRememberedSet(from); |
| 2547 | } |
| 2548 | |
| 2549 | bool Heap::isCurrentThreadBusy() |
| 2550 | { |
| 2551 | return Thread::mayBeGCThread() || mutatorState() != MutatorState::Running; |
| 2552 | } |
| 2553 | |
| 2554 | void Heap::(size_t size) |
| 2555 | { |
| 2556 | size_t* counter = &m_extraMemorySize; |
| 2557 | |
| 2558 | for (;;) { |
| 2559 | size_t oldSize = *counter; |
| 2560 | // FIXME: Change this to use SaturatedArithmetic when available. |
| 2561 | // https://bugs.webkit.org/show_bug.cgi?id=170411 |
| 2562 | Checked<size_t, RecordOverflow> checkedNewSize = oldSize; |
| 2563 | checkedNewSize += size; |
| 2564 | size_t newSize = UNLIKELY(checkedNewSize.hasOverflowed()) ? std::numeric_limits<size_t>::max() : checkedNewSize.unsafeGet(); |
| 2565 | if (WTF::atomicCompareExchangeWeakRelaxed(counter, oldSize, newSize)) |
| 2566 | return; |
| 2567 | } |
| 2568 | } |
| 2569 | |
| 2570 | #if ENABLE(RESOURCE_USAGE) |
| 2571 | void Heap::reportExternalMemoryVisited(size_t size) |
| 2572 | { |
| 2573 | size_t* counter = &m_externalMemorySize; |
| 2574 | |
| 2575 | for (;;) { |
| 2576 | size_t oldSize = *counter; |
| 2577 | if (WTF::atomicCompareExchangeWeakRelaxed(counter, oldSize, oldSize + size)) |
| 2578 | return; |
| 2579 | } |
| 2580 | } |
| 2581 | #endif |
| 2582 | |
| 2583 | void Heap::collectIfNecessaryOrDefer(GCDeferralContext* deferralContext) |
| 2584 | { |
| 2585 | ASSERT(deferralContext || isDeferred() || !DisallowGC::isInEffectOnCurrentThread()); |
| 2586 | if (validateDFGDoesGC) |
| 2587 | RELEASE_ASSERT(expectDoesGC()); |
| 2588 | |
| 2589 | if (!m_isSafeToCollect) |
| 2590 | return; |
| 2591 | |
| 2592 | switch (mutatorState()) { |
| 2593 | case MutatorState::Running: |
| 2594 | case MutatorState::Allocating: |
| 2595 | break; |
| 2596 | case MutatorState::Sweeping: |
| 2597 | case MutatorState::Collecting: |
| 2598 | return; |
| 2599 | } |
| 2600 | if (!Options::useGC()) |
| 2601 | return; |
| 2602 | |
| 2603 | if (mayNeedToStop()) { |
| 2604 | if (deferralContext) |
| 2605 | deferralContext->m_shouldGC = true; |
| 2606 | else if (isDeferred()) |
| 2607 | m_didDeferGCWork = true; |
| 2608 | else |
| 2609 | stopIfNecessary(); |
| 2610 | } |
| 2611 | |
| 2612 | if (UNLIKELY(Options::gcMaxHeapSize())) { |
| 2613 | if (m_bytesAllocatedThisCycle <= Options::gcMaxHeapSize()) |
| 2614 | return; |
| 2615 | } else { |
| 2616 | size_t bytesAllowedThisCycle = m_maxEdenSize; |
| 2617 | |
| 2618 | #if PLATFORM(IOS_FAMILY) |
| 2619 | if (overCriticalMemoryThreshold()) |
| 2620 | bytesAllowedThisCycle = std::min(m_maxEdenSizeWhenCritical, bytesAllowedThisCycle); |
| 2621 | #endif |
| 2622 | |
| 2623 | if (m_bytesAllocatedThisCycle <= bytesAllowedThisCycle) |
| 2624 | return; |
| 2625 | } |
| 2626 | |
| 2627 | if (deferralContext) |
| 2628 | deferralContext->m_shouldGC = true; |
| 2629 | else if (isDeferred()) |
| 2630 | m_didDeferGCWork = true; |
| 2631 | else { |
| 2632 | collectAsync(); |
| 2633 | stopIfNecessary(); // This will immediately start the collection if we have the conn. |
| 2634 | } |
| 2635 | } |
| 2636 | |
| 2637 | void Heap::decrementDeferralDepthAndGCIfNeededSlow() |
| 2638 | { |
| 2639 | // Can't do anything if we're still deferred. |
| 2640 | if (m_deferralDepth) |
| 2641 | return; |
| 2642 | |
| 2643 | ASSERT(!isDeferred()); |
| 2644 | |
| 2645 | m_didDeferGCWork = false; |
| 2646 | // FIXME: Bring back something like the DeferGCProbability mode. |
| 2647 | // https://bugs.webkit.org/show_bug.cgi?id=166627 |
| 2648 | collectIfNecessaryOrDefer(); |
| 2649 | } |
| 2650 | |
| 2651 | void Heap::registerWeakGCMap(WeakGCMapBase* weakGCMap) |
| 2652 | { |
| 2653 | m_weakGCMaps.add(weakGCMap); |
| 2654 | } |
| 2655 | |
| 2656 | void Heap::unregisterWeakGCMap(WeakGCMapBase* weakGCMap) |
| 2657 | { |
| 2658 | m_weakGCMaps.remove(weakGCMap); |
| 2659 | } |
| 2660 | |
| 2661 | void Heap::didAllocateBlock(size_t capacity) |
| 2662 | { |
| 2663 | #if ENABLE(RESOURCE_USAGE) |
| 2664 | m_blockBytesAllocated += capacity; |
| 2665 | #else |
| 2666 | UNUSED_PARAM(capacity); |
| 2667 | #endif |
| 2668 | } |
| 2669 | |
| 2670 | void Heap::didFreeBlock(size_t capacity) |
| 2671 | { |
| 2672 | #if ENABLE(RESOURCE_USAGE) |
| 2673 | m_blockBytesAllocated -= capacity; |
| 2674 | #else |
| 2675 | UNUSED_PARAM(capacity); |
| 2676 | #endif |
| 2677 | } |
| 2678 | |
| 2679 | void Heap::addCoreConstraints() |
| 2680 | { |
| 2681 | m_constraintSet->add( |
| 2682 | "Cs" , "Conservative Scan" , |
| 2683 | [this, lastVersion = static_cast<uint64_t>(0)] (SlotVisitor& slotVisitor) mutable { |
| 2684 | bool shouldNotProduceWork = lastVersion == m_phaseVersion; |
| 2685 | if (shouldNotProduceWork) |
| 2686 | return; |
| 2687 | |
| 2688 | TimingScope preConvergenceTimingScope(*this, "Constraint: conservative scan" ); |
| 2689 | m_objectSpace.prepareForConservativeScan(); |
| 2690 | m_jitStubRoutines->prepareForConservativeScan(); |
| 2691 | |
| 2692 | { |
| 2693 | ConservativeRoots conservativeRoots(*this); |
| 2694 | SuperSamplerScope superSamplerScope(false); |
| 2695 | |
| 2696 | gatherStackRoots(conservativeRoots); |
| 2697 | gatherJSStackRoots(conservativeRoots); |
| 2698 | gatherScratchBufferRoots(conservativeRoots); |
| 2699 | |
| 2700 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::ConservativeScan); |
| 2701 | slotVisitor.append(conservativeRoots); |
| 2702 | } |
| 2703 | if (VM::canUseJIT()) { |
| 2704 | // JITStubRoutines must be visited after scanning ConservativeRoots since JITStubRoutines depend on the hook executed during gathering ConservativeRoots. |
| 2705 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::JITStubRoutines); |
| 2706 | m_jitStubRoutines->traceMarkedStubRoutines(slotVisitor); |
| 2707 | } |
| 2708 | |
| 2709 | lastVersion = m_phaseVersion; |
| 2710 | }, |
| 2711 | ConstraintVolatility::GreyedByExecution); |
| 2712 | |
| 2713 | m_constraintSet->add( |
| 2714 | "Msr" , "Misc Small Roots" , |
| 2715 | [this] (SlotVisitor& slotVisitor) { |
| 2716 | |
| 2717 | #if JSC_OBJC_API_ENABLED |
| 2718 | scanExternalRememberedSet(*m_vm, slotVisitor); |
| 2719 | #endif |
| 2720 | if (m_vm->smallStrings.needsToBeVisited(*m_collectionScope)) { |
| 2721 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::StrongReferences); |
| 2722 | m_vm->smallStrings.visitStrongReferences(slotVisitor); |
| 2723 | } |
| 2724 | |
| 2725 | { |
| 2726 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::ProtectedValues); |
| 2727 | for (auto& pair : m_protectedValues) |
| 2728 | slotVisitor.appendUnbarriered(pair.key); |
| 2729 | } |
| 2730 | |
| 2731 | if (m_markListSet && m_markListSet->size()) { |
| 2732 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::ConservativeScan); |
| 2733 | MarkedArgumentBuffer::markLists(slotVisitor, *m_markListSet); |
| 2734 | } |
| 2735 | |
| 2736 | { |
| 2737 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::VMExceptions); |
| 2738 | slotVisitor.appendUnbarriered(m_vm->exception()); |
| 2739 | slotVisitor.appendUnbarriered(m_vm->lastException()); |
| 2740 | } |
| 2741 | }, |
| 2742 | ConstraintVolatility::GreyedByExecution); |
| 2743 | |
| 2744 | m_constraintSet->add( |
| 2745 | "Sh" , "Strong Handles" , |
| 2746 | [this] (SlotVisitor& slotVisitor) { |
| 2747 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::StrongHandles); |
| 2748 | m_handleSet.visitStrongHandles(slotVisitor); |
| 2749 | }, |
| 2750 | ConstraintVolatility::GreyedByExecution); |
| 2751 | |
| 2752 | m_constraintSet->add( |
| 2753 | "D" , "Debugger" , |
| 2754 | [this] (SlotVisitor& slotVisitor) { |
| 2755 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::Debugger); |
| 2756 | |
| 2757 | #if ENABLE(SAMPLING_PROFILER) |
| 2758 | if (SamplingProfiler* samplingProfiler = m_vm->samplingProfiler()) { |
| 2759 | LockHolder locker(samplingProfiler->getLock()); |
| 2760 | samplingProfiler->processUnverifiedStackTraces(); |
| 2761 | samplingProfiler->visit(slotVisitor); |
| 2762 | if (Options::logGC() == GCLogging::Verbose) |
| 2763 | dataLog("Sampling Profiler data:\n" , slotVisitor); |
| 2764 | } |
| 2765 | #endif // ENABLE(SAMPLING_PROFILER) |
| 2766 | |
| 2767 | if (m_vm->typeProfiler()) |
| 2768 | m_vm->typeProfilerLog()->visit(slotVisitor); |
| 2769 | |
| 2770 | if (auto* shadowChicken = m_vm->shadowChicken()) |
| 2771 | shadowChicken->visitChildren(slotVisitor); |
| 2772 | }, |
| 2773 | ConstraintVolatility::GreyedByExecution); |
| 2774 | |
| 2775 | m_constraintSet->add( |
| 2776 | "Ws" , "Weak Sets" , |
| 2777 | [this] (SlotVisitor& slotVisitor) { |
| 2778 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::WeakSets); |
| 2779 | m_objectSpace.visitWeakSets(slotVisitor); |
| 2780 | }, |
| 2781 | ConstraintVolatility::GreyedByMarking); |
| 2782 | |
| 2783 | m_constraintSet->add( |
| 2784 | "O" , "Output" , |
| 2785 | [] (SlotVisitor& slotVisitor) { |
| 2786 | VM& vm = slotVisitor.vm(); |
| 2787 | |
| 2788 | auto callOutputConstraint = [] (SlotVisitor& slotVisitor, HeapCell* heapCell, HeapCell::Kind) { |
| 2789 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::Output); |
| 2790 | VM& vm = slotVisitor.vm(); |
| 2791 | JSCell* cell = static_cast<JSCell*>(heapCell); |
| 2792 | cell->methodTable(vm)->visitOutputConstraints(cell, slotVisitor); |
| 2793 | }; |
| 2794 | |
| 2795 | auto add = [&] (auto& set) { |
| 2796 | slotVisitor.addParallelConstraintTask(set.forEachMarkedCellInParallel(callOutputConstraint)); |
| 2797 | }; |
| 2798 | |
| 2799 | add(vm.executableToCodeBlockEdgesWithConstraints); |
| 2800 | if (vm.m_weakMapSpace) |
| 2801 | add(*vm.m_weakMapSpace); |
| 2802 | }, |
| 2803 | ConstraintVolatility::GreyedByMarking, |
| 2804 | ConstraintParallelism::Parallel); |
| 2805 | |
| 2806 | #if ENABLE(DFG_JIT) |
| 2807 | if (VM::canUseJIT()) { |
| 2808 | m_constraintSet->add( |
| 2809 | "Dw" , "DFG Worklists" , |
| 2810 | [this] (SlotVisitor& slotVisitor) { |
| 2811 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::DFGWorkLists); |
| 2812 | |
| 2813 | for (unsigned i = DFG::numberOfWorklists(); i--;) |
| 2814 | DFG::existingWorklistForIndex(i).visitWeakReferences(slotVisitor); |
| 2815 | |
| 2816 | // FIXME: This is almost certainly unnecessary. |
| 2817 | // https://bugs.webkit.org/show_bug.cgi?id=166829 |
| 2818 | DFG::iterateCodeBlocksForGC( |
| 2819 | *m_vm, |
| 2820 | [&] (CodeBlock* codeBlock) { |
| 2821 | slotVisitor.appendUnbarriered(codeBlock); |
| 2822 | }); |
| 2823 | |
| 2824 | if (Options::logGC() == GCLogging::Verbose) |
| 2825 | dataLog("DFG Worklists:\n" , slotVisitor); |
| 2826 | }, |
| 2827 | ConstraintVolatility::GreyedByMarking); |
| 2828 | } |
| 2829 | #endif |
| 2830 | |
| 2831 | m_constraintSet->add( |
| 2832 | "Cb" , "CodeBlocks" , |
| 2833 | [this] (SlotVisitor& slotVisitor) { |
| 2834 | SetRootMarkReasonScope rootScope(slotVisitor, SlotVisitor::RootMarkReason::CodeBlocks); |
| 2835 | iterateExecutingAndCompilingCodeBlocksWithoutHoldingLocks( |
| 2836 | [&] (CodeBlock* codeBlock) { |
| 2837 | // Visit the CodeBlock as a constraint only if it's black. |
| 2838 | if (isMarked(codeBlock) |
| 2839 | && codeBlock->cellState() == CellState::PossiblyBlack) |
| 2840 | slotVisitor.visitAsConstraint(codeBlock); |
| 2841 | }); |
| 2842 | }, |
| 2843 | ConstraintVolatility::SeldomGreyed); |
| 2844 | |
| 2845 | m_constraintSet->add(std::make_unique<MarkStackMergingConstraint>(*this)); |
| 2846 | } |
| 2847 | |
| 2848 | void Heap::addMarkingConstraint(std::unique_ptr<MarkingConstraint> constraint) |
| 2849 | { |
| 2850 | PreventCollectionScope preventCollectionScope(*this); |
| 2851 | m_constraintSet->add(WTFMove(constraint)); |
| 2852 | } |
| 2853 | |
| 2854 | void Heap::notifyIsSafeToCollect() |
| 2855 | { |
| 2856 | MonotonicTime before; |
| 2857 | if (Options::logGC()) { |
| 2858 | before = MonotonicTime::now(); |
| 2859 | dataLog("[GC<" , RawPointer(this), ">: starting " ); |
| 2860 | } |
| 2861 | |
| 2862 | addCoreConstraints(); |
| 2863 | |
| 2864 | m_isSafeToCollect = true; |
| 2865 | |
| 2866 | if (Options::collectContinuously()) { |
| 2867 | m_collectContinuouslyThread = Thread::create( |
| 2868 | "JSC DEBUG Continuous GC" , |
| 2869 | [this] () { |
| 2870 | MonotonicTime initialTime = MonotonicTime::now(); |
| 2871 | Seconds period = Seconds::fromMilliseconds(Options::collectContinuouslyPeriodMS()); |
| 2872 | while (!m_shouldStopCollectingContinuously) { |
| 2873 | { |
| 2874 | LockHolder locker(*m_threadLock); |
| 2875 | if (m_requests.isEmpty()) { |
| 2876 | m_requests.append(WTF::nullopt); |
| 2877 | m_lastGrantedTicket++; |
| 2878 | m_threadCondition->notifyOne(locker); |
| 2879 | } |
| 2880 | } |
| 2881 | |
| 2882 | { |
| 2883 | LockHolder locker(m_collectContinuouslyLock); |
| 2884 | Seconds elapsed = MonotonicTime::now() - initialTime; |
| 2885 | Seconds elapsedInPeriod = elapsed % period; |
| 2886 | MonotonicTime timeToWakeUp = |
| 2887 | initialTime + elapsed - elapsedInPeriod + period; |
| 2888 | while (!hasElapsed(timeToWakeUp) && !m_shouldStopCollectingContinuously) { |
| 2889 | m_collectContinuouslyCondition.waitUntil( |
| 2890 | m_collectContinuouslyLock, timeToWakeUp); |
| 2891 | } |
| 2892 | } |
| 2893 | } |
| 2894 | }); |
| 2895 | } |
| 2896 | |
| 2897 | if (Options::logGC()) |
| 2898 | dataLog((MonotonicTime::now() - before).milliseconds(), "ms]\n" ); |
| 2899 | } |
| 2900 | |
| 2901 | void Heap::preventCollection() |
| 2902 | { |
| 2903 | if (!m_isSafeToCollect) |
| 2904 | return; |
| 2905 | |
| 2906 | // This prevents the collectContinuously thread from starting a collection. |
| 2907 | m_collectContinuouslyLock.lock(); |
| 2908 | |
| 2909 | // Wait for all collections to finish. |
| 2910 | waitForCollector( |
| 2911 | [&] (const AbstractLocker&) -> bool { |
| 2912 | ASSERT(m_lastServedTicket <= m_lastGrantedTicket); |
| 2913 | return m_lastServedTicket == m_lastGrantedTicket; |
| 2914 | }); |
| 2915 | |
| 2916 | // Now a collection can only start if this thread starts it. |
| 2917 | RELEASE_ASSERT(!m_collectionScope); |
| 2918 | } |
| 2919 | |
| 2920 | void Heap::allowCollection() |
| 2921 | { |
| 2922 | if (!m_isSafeToCollect) |
| 2923 | return; |
| 2924 | |
| 2925 | m_collectContinuouslyLock.unlock(); |
| 2926 | } |
| 2927 | |
| 2928 | void Heap::setMutatorShouldBeFenced(bool value) |
| 2929 | { |
| 2930 | m_mutatorShouldBeFenced = value; |
| 2931 | m_barrierThreshold = value ? tautologicalThreshold : blackThreshold; |
| 2932 | } |
| 2933 | |
| 2934 | void Heap::performIncrement(size_t bytes) |
| 2935 | { |
| 2936 | if (!m_objectSpace.isMarking()) |
| 2937 | return; |
| 2938 | |
| 2939 | if (isDeferred()) |
| 2940 | return; |
| 2941 | |
| 2942 | m_incrementBalance += bytes * Options::gcIncrementScale(); |
| 2943 | |
| 2944 | // Save ourselves from crazy. Since this is an optimization, it's OK to go back to any consistent |
| 2945 | // state when the double goes wild. |
| 2946 | if (std::isnan(m_incrementBalance) || std::isinf(m_incrementBalance)) |
| 2947 | m_incrementBalance = 0; |
| 2948 | |
| 2949 | if (m_incrementBalance < static_cast<double>(Options::gcIncrementBytes())) |
| 2950 | return; |
| 2951 | |
| 2952 | double targetBytes = m_incrementBalance; |
| 2953 | if (targetBytes <= 0) |
| 2954 | return; |
| 2955 | targetBytes = std::min(targetBytes, Options::gcIncrementMaxBytes()); |
| 2956 | |
| 2957 | SlotVisitor& slotVisitor = *m_mutatorSlotVisitor; |
| 2958 | ParallelModeEnabler parallelModeEnabler(slotVisitor); |
| 2959 | size_t bytesVisited = slotVisitor.performIncrementOfDraining(static_cast<size_t>(targetBytes)); |
| 2960 | // incrementBalance may go negative here because it'll remember how many bytes we overshot. |
| 2961 | m_incrementBalance -= bytesVisited; |
| 2962 | } |
| 2963 | |
| 2964 | void Heap::addHeapFinalizerCallback(const HeapFinalizerCallback& callback) |
| 2965 | { |
| 2966 | m_heapFinalizerCallbacks.append(callback); |
| 2967 | } |
| 2968 | |
| 2969 | void Heap::removeHeapFinalizerCallback(const HeapFinalizerCallback& callback) |
| 2970 | { |
| 2971 | m_heapFinalizerCallbacks.removeFirst(callback); |
| 2972 | } |
| 2973 | |
| 2974 | void Heap::setBonusVisitorTask(RefPtr<SharedTask<void(SlotVisitor&)>> task) |
| 2975 | { |
| 2976 | auto locker = holdLock(m_markingMutex); |
| 2977 | m_bonusVisitorTask = task; |
| 2978 | m_markingConditionVariable.notifyAll(); |
| 2979 | } |
| 2980 | |
| 2981 | void Heap::runTaskInParallel(RefPtr<SharedTask<void(SlotVisitor&)>> task) |
| 2982 | { |
| 2983 | unsigned initialRefCount = task->refCount(); |
| 2984 | setBonusVisitorTask(task); |
| 2985 | task->run(*m_collectorSlotVisitor); |
| 2986 | setBonusVisitorTask(nullptr); |
| 2987 | // The constraint solver expects return of this function to imply termination of the task in all |
| 2988 | // threads. This ensures that property. |
| 2989 | { |
| 2990 | auto locker = holdLock(m_markingMutex); |
| 2991 | while (task->refCount() > initialRefCount) |
| 2992 | m_markingConditionVariable.wait(m_markingMutex); |
| 2993 | } |
| 2994 | } |
| 2995 | |
| 2996 | } // namespace JSC |
| 2997 | |