| 1 | /* |
| 2 | * Copyright (C) 2007-2017 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2007 Justin Haygood (jhaygood@reaktix.com) |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| 15 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 16 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 17 | * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 18 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 19 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 20 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| 21 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 23 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #include <atomic> |
| 29 | #include <wtf/StdLibExtras.h> |
| 30 | |
| 31 | #if OS(WINDOWS) |
| 32 | #if !COMPILER(GCC_COMPATIBLE) |
| 33 | extern "C" void _ReadWriteBarrier(void); |
| 34 | #pragma intrinsic(_ReadWriteBarrier) |
| 35 | #endif |
| 36 | #include <windows.h> |
| 37 | #include <intrin.h> |
| 38 | #endif |
| 39 | |
| 40 | namespace WTF { |
| 41 | |
| 42 | ALWAYS_INLINE bool hasFence(std::memory_order order) |
| 43 | { |
| 44 | return order != std::memory_order_relaxed; |
| 45 | } |
| 46 | |
| 47 | // Atomic wraps around std::atomic with the sole purpose of making the compare_exchange |
| 48 | // operations not alter the expected value. This is more in line with how we typically |
| 49 | // use CAS in our code. |
| 50 | // |
| 51 | // Atomic is a struct without explicitly defined constructors so that it can be |
| 52 | // initialized at compile time. |
| 53 | |
| 54 | template<typename T> |
| 55 | struct Atomic { |
| 56 | // Don't pass a non-default value for the order parameter unless you really know |
| 57 | // what you are doing and have thought about it very hard. The cost of seq_cst |
| 58 | // is usually not high enough to justify the risk. |
| 59 | |
| 60 | ALWAYS_INLINE T load(std::memory_order order = std::memory_order_seq_cst) const { return value.load(order); } |
| 61 | |
| 62 | ALWAYS_INLINE T loadRelaxed() const { return load(std::memory_order_relaxed); } |
| 63 | |
| 64 | // This is a load that simultaneously does a full fence - neither loads nor stores will move |
| 65 | // above or below it. |
| 66 | ALWAYS_INLINE T loadFullyFenced() const |
| 67 | { |
| 68 | Atomic<T>* ptr = const_cast<Atomic<T>*>(this); |
| 69 | return ptr->exchangeAdd(T()); |
| 70 | } |
| 71 | |
| 72 | ALWAYS_INLINE void store(T desired, std::memory_order order = std::memory_order_seq_cst) { value.store(desired, order); } |
| 73 | |
| 74 | ALWAYS_INLINE void storeRelaxed(T desired) { store(desired, std::memory_order_relaxed); } |
| 75 | |
| 76 | // This is a store that simultaneously does a full fence - neither loads nor stores will move |
| 77 | // above or below it. |
| 78 | ALWAYS_INLINE void storeFullyFenced(T desired) |
| 79 | { |
| 80 | exchange(desired); |
| 81 | } |
| 82 | |
| 83 | ALWAYS_INLINE bool compareExchangeWeak(T expected, T desired, std::memory_order order = std::memory_order_seq_cst) |
| 84 | { |
| 85 | T expectedOrActual = expected; |
| 86 | return value.compare_exchange_weak(expectedOrActual, desired, order); |
| 87 | } |
| 88 | |
| 89 | ALWAYS_INLINE bool compareExchangeWeakRelaxed(T expected, T desired) |
| 90 | { |
| 91 | return compareExchangeWeak(expected, desired, std::memory_order_relaxed); |
| 92 | } |
| 93 | |
| 94 | ALWAYS_INLINE bool compareExchangeWeak(T expected, T desired, std::memory_order order_success, std::memory_order order_failure) |
| 95 | { |
| 96 | T expectedOrActual = expected; |
| 97 | return value.compare_exchange_weak(expectedOrActual, desired, order_success, order_failure); |
| 98 | } |
| 99 | |
| 100 | // WARNING: This does not have strong fencing guarantees when it fails. For example, stores could |
| 101 | // sink below it in that case. |
| 102 | ALWAYS_INLINE T compareExchangeStrong(T expected, T desired, std::memory_order order = std::memory_order_seq_cst) |
| 103 | { |
| 104 | T expectedOrActual = expected; |
| 105 | value.compare_exchange_strong(expectedOrActual, desired, order); |
| 106 | return expectedOrActual; |
| 107 | } |
| 108 | |
| 109 | ALWAYS_INLINE T compareExchangeStrong(T expected, T desired, std::memory_order order_success, std::memory_order order_failure) |
| 110 | { |
| 111 | T expectedOrActual = expected; |
| 112 | value.compare_exchange_strong(expectedOrActual, desired, order_success, order_failure); |
| 113 | return expectedOrActual; |
| 114 | } |
| 115 | |
| 116 | template<typename U> |
| 117 | ALWAYS_INLINE T exchangeAdd(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_add(operand, order); } |
| 118 | |
| 119 | template<typename U> |
| 120 | ALWAYS_INLINE T exchangeAnd(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_and(operand, order); } |
| 121 | |
| 122 | template<typename U> |
| 123 | ALWAYS_INLINE T exchangeOr(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_or(operand, order); } |
| 124 | |
| 125 | template<typename U> |
| 126 | ALWAYS_INLINE T exchangeSub(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_sub(operand, order); } |
| 127 | |
| 128 | template<typename U> |
| 129 | ALWAYS_INLINE T exchangeXor(U operand, std::memory_order order = std::memory_order_seq_cst) { return value.fetch_xor(operand, order); } |
| 130 | |
| 131 | ALWAYS_INLINE T exchange(T newValue, std::memory_order order = std::memory_order_seq_cst) { return value.exchange(newValue, order); } |
| 132 | |
| 133 | template<typename Func> |
| 134 | ALWAYS_INLINE bool transaction(const Func& func, std::memory_order order = std::memory_order_seq_cst) |
| 135 | { |
| 136 | for (;;) { |
| 137 | T oldValue = load(std::memory_order_relaxed); |
| 138 | T newValue = oldValue; |
| 139 | if (!func(newValue)) |
| 140 | return false; |
| 141 | if (compareExchangeWeak(oldValue, newValue, order)) |
| 142 | return true; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | template<typename Func> |
| 147 | ALWAYS_INLINE bool transactionRelaxed(const Func& func) |
| 148 | { |
| 149 | return transaction(func, std::memory_order_relaxed); |
| 150 | } |
| 151 | |
| 152 | Atomic() = default; |
| 153 | constexpr Atomic(T initial) |
| 154 | : value(std::forward<T>(initial)) |
| 155 | { |
| 156 | } |
| 157 | |
| 158 | std::atomic<T> value; |
| 159 | }; |
| 160 | |
| 161 | template<typename T> |
| 162 | inline T atomicLoad(T* location, std::memory_order order = std::memory_order_seq_cst) |
| 163 | { |
| 164 | return bitwise_cast<Atomic<T>*>(location)->load(order); |
| 165 | } |
| 166 | |
| 167 | template<typename T> |
| 168 | inline T atomicLoadFullyFenced(T* location) |
| 169 | { |
| 170 | return bitwise_cast<Atomic<T>*>(location)->loadFullyFenced(); |
| 171 | } |
| 172 | |
| 173 | template<typename T> |
| 174 | inline void atomicStore(T* location, T newValue, std::memory_order order = std::memory_order_seq_cst) |
| 175 | { |
| 176 | bitwise_cast<Atomic<T>*>(location)->store(newValue, order); |
| 177 | } |
| 178 | |
| 179 | template<typename T> |
| 180 | inline void atomicStoreFullyFenced(T* location, T newValue) |
| 181 | { |
| 182 | bitwise_cast<Atomic<T>*>(location)->storeFullyFenced(newValue); |
| 183 | } |
| 184 | |
| 185 | template<typename T> |
| 186 | inline bool atomicCompareExchangeWeak(T* location, T expected, T newValue, std::memory_order order = std::memory_order_seq_cst) |
| 187 | { |
| 188 | return bitwise_cast<Atomic<T>*>(location)->compareExchangeWeak(expected, newValue, order); |
| 189 | } |
| 190 | |
| 191 | template<typename T> |
| 192 | inline bool atomicCompareExchangeWeakRelaxed(T* location, T expected, T newValue) |
| 193 | { |
| 194 | return bitwise_cast<Atomic<T>*>(location)->compareExchangeWeakRelaxed(expected, newValue); |
| 195 | } |
| 196 | |
| 197 | template<typename T> |
| 198 | inline T atomicCompareExchangeStrong(T* location, T expected, T newValue, std::memory_order order = std::memory_order_seq_cst) |
| 199 | { |
| 200 | return bitwise_cast<Atomic<T>*>(location)->compareExchangeStrong(expected, newValue, order); |
| 201 | } |
| 202 | |
| 203 | template<typename T, typename U> |
| 204 | inline T atomicExchangeAdd(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| 205 | { |
| 206 | return bitwise_cast<Atomic<T>*>(location)->exchangeAdd(operand, order); |
| 207 | } |
| 208 | |
| 209 | template<typename T, typename U> |
| 210 | inline T atomicExchangeAnd(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| 211 | { |
| 212 | return bitwise_cast<Atomic<T>*>(location)->exchangeAnd(operand, order); |
| 213 | } |
| 214 | |
| 215 | template<typename T, typename U> |
| 216 | inline T atomicExchangeOr(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| 217 | { |
| 218 | return bitwise_cast<Atomic<T>*>(location)->exchangeOr(operand, order); |
| 219 | } |
| 220 | |
| 221 | template<typename T, typename U> |
| 222 | inline T atomicExchangeSub(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| 223 | { |
| 224 | return bitwise_cast<Atomic<T>*>(location)->exchangeSub(operand, order); |
| 225 | } |
| 226 | |
| 227 | template<typename T, typename U> |
| 228 | inline T atomicExchangeXor(T* location, U operand, std::memory_order order = std::memory_order_seq_cst) |
| 229 | { |
| 230 | return bitwise_cast<Atomic<T>*>(location)->exchangeXor(operand, order); |
| 231 | } |
| 232 | |
| 233 | template<typename T> |
| 234 | inline T atomicExchange(T* location, T newValue, std::memory_order order = std::memory_order_seq_cst) |
| 235 | { |
| 236 | return bitwise_cast<Atomic<T>*>(location)->exchange(newValue, order); |
| 237 | } |
| 238 | |
| 239 | // Just a compiler fence. Has no effect on the hardware, but tells the compiler |
| 240 | // not to move things around this call. Should not affect the compiler's ability |
| 241 | // to do things like register allocation and code motion over pure operations. |
| 242 | inline void compilerFence() |
| 243 | { |
| 244 | #if OS(WINDOWS) && !COMPILER(GCC_COMPATIBLE) |
| 245 | _ReadWriteBarrier(); |
| 246 | #else |
| 247 | asm volatile("" ::: "memory" ); |
| 248 | #endif |
| 249 | } |
| 250 | |
| 251 | #if CPU(ARM_THUMB2) || CPU(ARM64) |
| 252 | |
| 253 | // Full memory fence. No accesses will float above this, and no accesses will sink |
| 254 | // below it. |
| 255 | inline void arm_dmb() |
| 256 | { |
| 257 | asm volatile("dmb ish" ::: "memory" ); |
| 258 | } |
| 259 | |
| 260 | // Like the above, but only affects stores. |
| 261 | inline void arm_dmb_st() |
| 262 | { |
| 263 | asm volatile("dmb ishst" ::: "memory" ); |
| 264 | } |
| 265 | |
| 266 | inline void arm_isb() |
| 267 | { |
| 268 | asm volatile("isb" ::: "memory" ); |
| 269 | } |
| 270 | |
| 271 | inline void loadLoadFence() { arm_dmb(); } |
| 272 | inline void loadStoreFence() { arm_dmb(); } |
| 273 | inline void storeLoadFence() { arm_dmb(); } |
| 274 | inline void storeStoreFence() { arm_dmb_st(); } |
| 275 | inline void memoryBarrierAfterLock() { arm_dmb(); } |
| 276 | inline void memoryBarrierBeforeUnlock() { arm_dmb(); } |
| 277 | inline void crossModifyingCodeFence() { arm_isb(); } |
| 278 | |
| 279 | #elif CPU(X86) || CPU(X86_64) |
| 280 | |
| 281 | inline void x86_ortop() |
| 282 | { |
| 283 | #if OS(WINDOWS) |
| 284 | MemoryBarrier(); |
| 285 | #elif CPU(X86_64) |
| 286 | // This has acqrel semantics and is much cheaper than mfence. For exampe, in the JSC GC, using |
| 287 | // mfence as a store-load fence was a 9% slow-down on Octane/splay while using this was neutral. |
| 288 | asm volatile("lock; orl $0, (%%rsp)" ::: "memory" ); |
| 289 | #else |
| 290 | asm volatile("lock; orl $0, (%%esp)" ::: "memory" ); |
| 291 | #endif |
| 292 | } |
| 293 | |
| 294 | inline void x86_cpuid() |
| 295 | { |
| 296 | #if OS(WINDOWS) |
| 297 | int info[4]; |
| 298 | __cpuid(info, 0); |
| 299 | #else |
| 300 | intptr_t a = 0, b, c, d; |
| 301 | asm volatile( |
| 302 | "cpuid" |
| 303 | : "+a" (a), "=b" (b), "=c" (c), "=d" (d) |
| 304 | : |
| 305 | : "memory" ); |
| 306 | #endif |
| 307 | } |
| 308 | |
| 309 | inline void loadLoadFence() { compilerFence(); } |
| 310 | inline void loadStoreFence() { compilerFence(); } |
| 311 | inline void storeLoadFence() { x86_ortop(); } |
| 312 | inline void storeStoreFence() { compilerFence(); } |
| 313 | inline void memoryBarrierAfterLock() { compilerFence(); } |
| 314 | inline void memoryBarrierBeforeUnlock() { compilerFence(); } |
| 315 | inline void crossModifyingCodeFence() { x86_cpuid(); } |
| 316 | |
| 317 | #else |
| 318 | |
| 319 | inline void loadLoadFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| 320 | inline void loadStoreFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| 321 | inline void storeLoadFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| 322 | inline void storeStoreFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| 323 | inline void memoryBarrierAfterLock() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| 324 | inline void memoryBarrierBeforeUnlock() { std::atomic_thread_fence(std::memory_order_seq_cst); } |
| 325 | inline void crossModifyingCodeFence() { std::atomic_thread_fence(std::memory_order_seq_cst); } // Probably not strong enough. |
| 326 | |
| 327 | #endif |
| 328 | |
| 329 | typedef unsigned InternalDependencyType; |
| 330 | |
| 331 | inline InternalDependencyType opaqueMixture() |
| 332 | { |
| 333 | return 0; |
| 334 | } |
| 335 | |
| 336 | template<typename... Arguments, typename T> |
| 337 | inline InternalDependencyType opaqueMixture(T value, Arguments... arguments) |
| 338 | { |
| 339 | union { |
| 340 | InternalDependencyType copy; |
| 341 | T value; |
| 342 | } u; |
| 343 | u.copy = 0; |
| 344 | u.value = value; |
| 345 | return opaqueMixture(arguments...) + u.copy; |
| 346 | } |
| 347 | |
| 348 | class Dependency { |
| 349 | public: |
| 350 | Dependency() |
| 351 | : m_value(0) |
| 352 | { |
| 353 | } |
| 354 | |
| 355 | // On TSO architectures, this is a load-load fence and the value it returns is not meaningful (it's |
| 356 | // zero). The load-load fence is usually just a compiler fence. On ARM, this is a self-xor that |
| 357 | // produces zero, but it's concealed from the compiler. The CPU understands this dummy op to be a |
| 358 | // phantom dependency. |
| 359 | template<typename... Arguments> |
| 360 | static Dependency fence(Arguments... arguments) |
| 361 | { |
| 362 | InternalDependencyType input = opaqueMixture(arguments...); |
| 363 | InternalDependencyType output; |
| 364 | #if CPU(ARM64) |
| 365 | // Create a magical zero value through inline assembly, whose computation |
| 366 | // isn't visible to the optimizer. This zero is then usable as an offset in |
| 367 | // further address computations: adding zero does nothing, but the compiler |
| 368 | // doesn't know it. It's magical because it creates an address dependency |
| 369 | // from the load of `location` to the uses of the dependency, which triggers |
| 370 | // the ARM ISA's address dependency rule, a.k.a. the mythical C++ consume |
| 371 | // ordering. This forces weak memory order CPUs to observe `location` and |
| 372 | // dependent loads in their store order without the reader using a barrier |
| 373 | // or an acquire load. |
| 374 | asm("eor %w[out], %w[in], %w[in]" |
| 375 | : [out] "=r" (output) |
| 376 | : [in] "r" (input)); |
| 377 | #elif CPU(ARM) |
| 378 | asm("eor %[out], %[in], %[in]" |
| 379 | : [out] "=r" (output) |
| 380 | : [in] "r" (input)); |
| 381 | #else |
| 382 | // No dependency is needed for this architecture. |
| 383 | loadLoadFence(); |
| 384 | output = 0; |
| 385 | UNUSED_PARAM(input); |
| 386 | #endif |
| 387 | Dependency result; |
| 388 | result.m_value = output; |
| 389 | return result; |
| 390 | } |
| 391 | |
| 392 | // On TSO architectures, this just returns the pointer you pass it. On ARM, this produces a new |
| 393 | // pointer that is dependent on this dependency and the input pointer. |
| 394 | template<typename T> |
| 395 | T* consume(T* pointer) |
| 396 | { |
| 397 | #if CPU(ARM64) || CPU(ARM) |
| 398 | return bitwise_cast<T*>(bitwise_cast<char*>(pointer) + m_value); |
| 399 | #else |
| 400 | UNUSED_PARAM(m_value); |
| 401 | return pointer; |
| 402 | #endif |
| 403 | } |
| 404 | |
| 405 | private: |
| 406 | InternalDependencyType m_value; |
| 407 | }; |
| 408 | |
| 409 | template<typename InputType, typename ValueType> |
| 410 | struct InputAndValue { |
| 411 | InputAndValue() { } |
| 412 | |
| 413 | InputAndValue(InputType input, ValueType value) |
| 414 | : input(input) |
| 415 | , value(value) |
| 416 | { |
| 417 | } |
| 418 | |
| 419 | InputType input; |
| 420 | ValueType value; |
| 421 | }; |
| 422 | |
| 423 | template<typename InputType, typename ValueType> |
| 424 | InputAndValue<InputType, ValueType> inputAndValue(InputType input, ValueType value) |
| 425 | { |
| 426 | return InputAndValue<InputType, ValueType>(input, value); |
| 427 | } |
| 428 | |
| 429 | template<typename T, typename Func> |
| 430 | ALWAYS_INLINE T& ensurePointer(Atomic<T*>& pointer, const Func& func) |
| 431 | { |
| 432 | for (;;) { |
| 433 | T* oldValue = pointer.load(std::memory_order_relaxed); |
| 434 | if (oldValue) { |
| 435 | // On all sensible CPUs, we get an implicit dependency-based load-load barrier when |
| 436 | // loading this. |
| 437 | return *oldValue; |
| 438 | } |
| 439 | T* newValue = func(); |
| 440 | if (pointer.compareExchangeWeak(oldValue, newValue)) |
| 441 | return *newValue; |
| 442 | delete newValue; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | } // namespace WTF |
| 447 | |
| 448 | using WTF::Atomic; |
| 449 | using WTF::Dependency; |
| 450 | using WTF::InputAndValue; |
| 451 | using WTF::inputAndValue; |
| 452 | using WTF::ensurePointer; |
| 453 | using WTF::opaqueMixture; |
| 454 | |