1 | /* |
2 | * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
3 | * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * |
9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in the |
13 | * documentation and/or other materials provided with the distribution. |
14 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
15 | * its contributors may be used to endorse or promote products derived |
16 | * from this software without specific prior written permission. |
17 | * |
18 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
19 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
20 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
22 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
23 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
24 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
25 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | */ |
29 | |
30 | #pragma once |
31 | |
32 | #include "ArrayProfile.h" |
33 | #include "ByValInfo.h" |
34 | #include "BytecodeConventions.h" |
35 | #include "CallLinkInfo.h" |
36 | #include "CodeBlockHash.h" |
37 | #include "CodeOrigin.h" |
38 | #include "CodeType.h" |
39 | #include "CompilationResult.h" |
40 | #include "ConcurrentJSLock.h" |
41 | #include "DFGCommon.h" |
42 | #include "DirectEvalCodeCache.h" |
43 | #include "EvalExecutable.h" |
44 | #include "ExecutionCounter.h" |
45 | #include "ExpressionRangeInfo.h" |
46 | #include "FunctionExecutable.h" |
47 | #include "HandlerInfo.h" |
48 | #include "ICStatusMap.h" |
49 | #include "Instruction.h" |
50 | #include "InstructionStream.h" |
51 | #include "JITCode.h" |
52 | #include "JITCodeMap.h" |
53 | #include "JITMathICForwards.h" |
54 | #include "JSCast.h" |
55 | #include "JSGlobalObject.h" |
56 | #include "JumpTable.h" |
57 | #include "LLIntCallLinkInfo.h" |
58 | #include "LazyOperandValueProfile.h" |
59 | #include "MetadataTable.h" |
60 | #include "ModuleProgramExecutable.h" |
61 | #include "ObjectAllocationProfile.h" |
62 | #include "Options.h" |
63 | #include "Printer.h" |
64 | #include "ProfilerJettisonReason.h" |
65 | #include "ProgramExecutable.h" |
66 | #include "PutPropertySlot.h" |
67 | #include "ValueProfile.h" |
68 | #include "VirtualRegister.h" |
69 | #include "Watchpoint.h" |
70 | #include <wtf/Bag.h> |
71 | #include <wtf/FastMalloc.h> |
72 | #include <wtf/RefCountedArray.h> |
73 | #include <wtf/RefPtr.h> |
74 | #include <wtf/SegmentedVector.h> |
75 | #include <wtf/Vector.h> |
76 | #include <wtf/text/WTFString.h> |
77 | |
78 | namespace JSC { |
79 | |
80 | #if ENABLE(DFG_JIT) |
81 | namespace DFG { |
82 | struct OSRExitState; |
83 | } // namespace DFG |
84 | #endif |
85 | |
86 | class BytecodeLivenessAnalysis; |
87 | class CodeBlockSet; |
88 | class ExecutableToCodeBlockEdge; |
89 | class JSModuleEnvironment; |
90 | class ; |
91 | class LLIntPrototypeLoadAdaptiveStructureWatchpoint; |
92 | class MetadataTable; |
93 | class PCToCodeOriginMap; |
94 | class RegisterAtOffsetList; |
95 | class StructureStubInfo; |
96 | |
97 | enum class AccessType : int8_t; |
98 | |
99 | struct ArithProfile; |
100 | struct OpCatch; |
101 | |
102 | enum ReoptimizationMode { DontCountReoptimization, CountReoptimization }; |
103 | |
104 | class CodeBlock : public JSCell { |
105 | typedef JSCell Base; |
106 | friend class BytecodeLivenessAnalysis; |
107 | friend class JIT; |
108 | friend class LLIntOffsetsExtractor; |
109 | |
110 | public: |
111 | |
112 | enum CopyParsedBlockTag { CopyParsedBlock }; |
113 | |
114 | static const unsigned StructureFlags = Base::StructureFlags | StructureIsImmortal; |
115 | static const bool needsDestruction = true; |
116 | |
117 | template<typename, SubspaceAccess> |
118 | static void subspaceFor(VM&) { } |
119 | |
120 | DECLARE_INFO; |
121 | |
122 | protected: |
123 | CodeBlock(VM*, Structure*, CopyParsedBlockTag, CodeBlock& other); |
124 | CodeBlock(VM*, Structure*, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock*, JSScope*); |
125 | |
126 | void finishCreation(VM&, CopyParsedBlockTag, CodeBlock& other); |
127 | bool finishCreation(VM&, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock*, JSScope*); |
128 | |
129 | void finishCreationCommon(VM&); |
130 | |
131 | WriteBarrier<JSGlobalObject> m_globalObject; |
132 | |
133 | public: |
134 | JS_EXPORT_PRIVATE ~CodeBlock(); |
135 | |
136 | UnlinkedCodeBlock* unlinkedCodeBlock() const { return m_unlinkedCode.get(); } |
137 | |
138 | CString inferredName() const; |
139 | CodeBlockHash hash() const; |
140 | bool hasHash() const; |
141 | bool isSafeToComputeHash() const; |
142 | CString hashAsStringIfPossible() const; |
143 | CString sourceCodeForTools() const; // Not quite the actual source we parsed; this will do things like prefix the source for a function with a reified signature. |
144 | CString sourceCodeOnOneLine() const; // As sourceCodeForTools(), but replaces all whitespace runs with a single space. |
145 | void dumpAssumingJITType(PrintStream&, JITType) const; |
146 | JS_EXPORT_PRIVATE void dump(PrintStream&) const; |
147 | |
148 | int numParameters() const { return m_numParameters; } |
149 | void setNumParameters(int newValue); |
150 | |
151 | int numberOfArgumentsToSkip() const { return m_numberOfArgumentsToSkip; } |
152 | |
153 | int numCalleeLocals() const { return m_numCalleeLocals; } |
154 | |
155 | int numVars() const { return m_numVars; } |
156 | |
157 | int* addressOfNumParameters() { return &m_numParameters; } |
158 | static ptrdiff_t offsetOfNumParameters() { return OBJECT_OFFSETOF(CodeBlock, m_numParameters); } |
159 | |
160 | CodeBlock* alternative() const { return static_cast<CodeBlock*>(m_alternative.get()); } |
161 | void setAlternative(VM&, CodeBlock*); |
162 | |
163 | template <typename Functor> void forEachRelatedCodeBlock(Functor&& functor) |
164 | { |
165 | Functor f(std::forward<Functor>(functor)); |
166 | Vector<CodeBlock*, 4> codeBlocks; |
167 | codeBlocks.append(this); |
168 | |
169 | while (!codeBlocks.isEmpty()) { |
170 | CodeBlock* currentCodeBlock = codeBlocks.takeLast(); |
171 | f(currentCodeBlock); |
172 | |
173 | if (CodeBlock* alternative = currentCodeBlock->alternative()) |
174 | codeBlocks.append(alternative); |
175 | if (CodeBlock* osrEntryBlock = currentCodeBlock->specialOSREntryBlockOrNull()) |
176 | codeBlocks.append(osrEntryBlock); |
177 | } |
178 | } |
179 | |
180 | CodeSpecializationKind specializationKind() const |
181 | { |
182 | return specializationFromIsConstruct(isConstructor()); |
183 | } |
184 | |
185 | CodeBlock* alternativeForJettison(); |
186 | JS_EXPORT_PRIVATE CodeBlock* baselineAlternative(); |
187 | |
188 | // FIXME: Get rid of this. |
189 | // https://bugs.webkit.org/show_bug.cgi?id=123677 |
190 | CodeBlock* baselineVersion(); |
191 | |
192 | static size_t estimatedSize(JSCell*, VM&); |
193 | static void visitChildren(JSCell*, SlotVisitor&); |
194 | static void destroy(JSCell*); |
195 | void visitChildren(SlotVisitor&); |
196 | void finalizeUnconditionally(VM&); |
197 | |
198 | void notifyLexicalBindingUpdate(); |
199 | |
200 | void dumpSource(); |
201 | void dumpSource(PrintStream&); |
202 | |
203 | void dumpBytecode(); |
204 | void dumpBytecode(PrintStream&); |
205 | void dumpBytecode(PrintStream& out, const InstructionStream::Ref& it, const ICStatusMap& = ICStatusMap()); |
206 | void dumpBytecode(PrintStream& out, unsigned bytecodeOffset, const ICStatusMap& = ICStatusMap()); |
207 | |
208 | void dumpExceptionHandlers(PrintStream&); |
209 | void printStructures(PrintStream&, const Instruction*); |
210 | void printStructure(PrintStream&, const char* name, const Instruction*, int operand); |
211 | |
212 | void dumpMathICStats(); |
213 | |
214 | bool isStrictMode() const { return m_unlinkedCode->isStrictMode(); } |
215 | bool isConstructor() const { return m_unlinkedCode->isConstructor(); } |
216 | ECMAMode ecmaMode() const { return isStrictMode() ? StrictMode : NotStrictMode; } |
217 | CodeType codeType() const { return m_unlinkedCode->codeType(); } |
218 | |
219 | JSParserScriptMode scriptMode() const { return m_unlinkedCode->scriptMode(); } |
220 | |
221 | bool hasInstalledVMTrapBreakpoints() const; |
222 | bool installVMTrapBreakpoints(); |
223 | |
224 | inline bool isKnownNotImmediate(int index) |
225 | { |
226 | if (index == thisRegister().offset() && !isStrictMode()) |
227 | return true; |
228 | |
229 | if (isConstantRegisterIndex(index)) |
230 | return getConstant(index).isCell(); |
231 | |
232 | return false; |
233 | } |
234 | |
235 | ALWAYS_INLINE bool isTemporaryRegisterIndex(int index) |
236 | { |
237 | return index >= m_numVars; |
238 | } |
239 | |
240 | HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler = RequiredHandler::AnyHandler); |
241 | HandlerInfo* handlerForIndex(unsigned, RequiredHandler = RequiredHandler::AnyHandler); |
242 | void removeExceptionHandlerForCallSite(CallSiteIndex); |
243 | unsigned lineNumberForBytecodeOffset(unsigned bytecodeOffset); |
244 | unsigned columnNumberForBytecodeOffset(unsigned bytecodeOffset); |
245 | void expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, |
246 | int& startOffset, int& endOffset, unsigned& line, unsigned& column) const; |
247 | |
248 | Optional<unsigned> bytecodeOffsetFromCallSiteIndex(CallSiteIndex); |
249 | |
250 | void getICStatusMap(const ConcurrentJSLocker&, ICStatusMap& result); |
251 | void getICStatusMap(ICStatusMap& result); |
252 | |
253 | #if ENABLE(JIT) |
254 | struct JITData { |
255 | WTF_MAKE_STRUCT_FAST_ALLOCATED; |
256 | |
257 | Bag<StructureStubInfo> m_stubInfos; |
258 | Bag<JITAddIC> m_addICs; |
259 | Bag<JITMulIC> m_mulICs; |
260 | Bag<JITNegIC> m_negICs; |
261 | Bag<JITSubIC> m_subICs; |
262 | Bag<ByValInfo> m_byValInfos; |
263 | Bag<CallLinkInfo> m_callLinkInfos; |
264 | SentinelLinkedList<CallLinkInfo, PackedRawSentinelNode<CallLinkInfo>> m_incomingCalls; |
265 | SentinelLinkedList<PolymorphicCallNode, PackedRawSentinelNode<PolymorphicCallNode>> m_incomingPolymorphicCalls; |
266 | SegmentedVector<RareCaseProfile, 8> m_rareCaseProfiles; |
267 | std::unique_ptr<PCToCodeOriginMap> m_pcToCodeOriginMap; |
268 | std::unique_ptr<RegisterAtOffsetList> m_calleeSaveRegisters; |
269 | JITCodeMap m_jitCodeMap; |
270 | }; |
271 | |
272 | JITData& ensureJITData(const ConcurrentJSLocker& locker) |
273 | { |
274 | if (LIKELY(m_jitData)) |
275 | return *m_jitData; |
276 | return ensureJITDataSlow(locker); |
277 | } |
278 | JITData& ensureJITDataSlow(const ConcurrentJSLocker&); |
279 | |
280 | JITAddIC* addJITAddIC(ArithProfile*); |
281 | JITMulIC* addJITMulIC(ArithProfile*); |
282 | JITNegIC* addJITNegIC(ArithProfile*); |
283 | JITSubIC* addJITSubIC(ArithProfile*); |
284 | |
285 | template <typename Generator, typename = typename std::enable_if<std::is_same<Generator, JITAddGenerator>::value>::type> |
286 | JITAddIC* addMathIC(ArithProfile* profile) { return addJITAddIC(profile); } |
287 | |
288 | template <typename Generator, typename = typename std::enable_if<std::is_same<Generator, JITMulGenerator>::value>::type> |
289 | JITMulIC* addMathIC(ArithProfile* profile) { return addJITMulIC(profile); } |
290 | |
291 | template <typename Generator, typename = typename std::enable_if<std::is_same<Generator, JITNegGenerator>::value>::type> |
292 | JITNegIC* addMathIC(ArithProfile* profile) { return addJITNegIC(profile); } |
293 | |
294 | template <typename Generator, typename = typename std::enable_if<std::is_same<Generator, JITSubGenerator>::value>::type> |
295 | JITSubIC* addMathIC(ArithProfile* profile) { return addJITSubIC(profile); } |
296 | |
297 | StructureStubInfo* addStubInfo(AccessType); |
298 | |
299 | // O(n) operation. Use getStubInfoMap() unless you really only intend to get one |
300 | // stub info. |
301 | StructureStubInfo* findStubInfo(CodeOrigin); |
302 | |
303 | ByValInfo* addByValInfo(); |
304 | |
305 | CallLinkInfo* addCallLinkInfo(); |
306 | |
307 | // This is a slow function call used primarily for compiling OSR exits in the case |
308 | // that there had been inlining. Chances are if you want to use this, you're really |
309 | // looking for a CallLinkInfoMap to amortize the cost of calling this. |
310 | CallLinkInfo* getCallLinkInfoForBytecodeIndex(unsigned bytecodeIndex); |
311 | |
312 | void setJITCodeMap(JITCodeMap&& jitCodeMap) |
313 | { |
314 | ConcurrentJSLocker locker(m_lock); |
315 | ensureJITData(locker).m_jitCodeMap = WTFMove(jitCodeMap); |
316 | } |
317 | const JITCodeMap& jitCodeMap() |
318 | { |
319 | ConcurrentJSLocker locker(m_lock); |
320 | return ensureJITData(locker).m_jitCodeMap; |
321 | } |
322 | |
323 | void setPCToCodeOriginMap(std::unique_ptr<PCToCodeOriginMap>&&); |
324 | Optional<CodeOrigin> findPC(void* pc); |
325 | |
326 | void setCalleeSaveRegisters(RegisterSet); |
327 | void setCalleeSaveRegisters(std::unique_ptr<RegisterAtOffsetList>); |
328 | |
329 | RareCaseProfile* addRareCaseProfile(int bytecodeOffset); |
330 | RareCaseProfile* rareCaseProfileForBytecodeOffset(const ConcurrentJSLocker&, int bytecodeOffset); |
331 | unsigned rareCaseProfileCountForBytecodeOffset(const ConcurrentJSLocker&, int bytecodeOffset); |
332 | |
333 | bool likelyToTakeSlowCase(int bytecodeOffset) |
334 | { |
335 | if (!hasBaselineJITProfiling()) |
336 | return false; |
337 | ConcurrentJSLocker locker(m_lock); |
338 | unsigned value = rareCaseProfileCountForBytecodeOffset(locker, bytecodeOffset); |
339 | return value >= Options::likelyToTakeSlowCaseMinimumCount(); |
340 | } |
341 | |
342 | bool couldTakeSlowCase(int bytecodeOffset) |
343 | { |
344 | if (!hasBaselineJITProfiling()) |
345 | return false; |
346 | ConcurrentJSLocker locker(m_lock); |
347 | unsigned value = rareCaseProfileCountForBytecodeOffset(locker, bytecodeOffset); |
348 | return value >= Options::couldTakeSlowCaseMinimumCount(); |
349 | } |
350 | |
351 | // We call this when we want to reattempt compiling something with the baseline JIT. Ideally |
352 | // the baseline JIT would not add data to CodeBlock, but instead it would put its data into |
353 | // a newly created JITCode, which could be thrown away if we bail on JIT compilation. Then we |
354 | // would be able to get rid of this silly function. |
355 | // FIXME: https://bugs.webkit.org/show_bug.cgi?id=159061 |
356 | void resetJITData(); |
357 | #endif // ENABLE(JIT) |
358 | |
359 | void unlinkIncomingCalls(); |
360 | |
361 | #if ENABLE(JIT) |
362 | void linkIncomingCall(ExecState* callerFrame, CallLinkInfo*); |
363 | void linkIncomingPolymorphicCall(ExecState* callerFrame, PolymorphicCallNode*); |
364 | #endif // ENABLE(JIT) |
365 | |
366 | void linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo*); |
367 | |
368 | const Instruction* outOfLineJumpTarget(const Instruction* pc); |
369 | int outOfLineJumpOffset(const Instruction* pc); |
370 | int outOfLineJumpOffset(const InstructionStream::Ref& instruction) |
371 | { |
372 | return outOfLineJumpOffset(instruction.ptr()); |
373 | } |
374 | |
375 | inline unsigned bytecodeOffset(const Instruction* returnAddress) |
376 | { |
377 | const auto* instructionsBegin = instructions().at(0).ptr(); |
378 | const auto* instructionsEnd = reinterpret_cast<const Instruction*>(reinterpret_cast<uintptr_t>(instructionsBegin) + instructions().size()); |
379 | RELEASE_ASSERT(returnAddress >= instructionsBegin && returnAddress < instructionsEnd); |
380 | return returnAddress - instructionsBegin; |
381 | } |
382 | |
383 | const InstructionStream& instructions() const { return m_unlinkedCode->instructions(); } |
384 | |
385 | size_t predictedMachineCodeSize(); |
386 | |
387 | unsigned instructionsSize() const { return instructions().size(); } |
388 | unsigned bytecodeCost() const { return m_bytecodeCost; } |
389 | |
390 | // Exactly equivalent to codeBlock->ownerExecutable()->newReplacementCodeBlockFor(codeBlock->specializationKind()) |
391 | CodeBlock* newReplacement(); |
392 | |
393 | void setJITCode(Ref<JITCode>&& code) |
394 | { |
395 | ASSERT(heap()->isDeferred()); |
396 | if (!code->isShared()) |
397 | heap()->reportExtraMemoryAllocated(code->size()); |
398 | |
399 | ConcurrentJSLocker locker(m_lock); |
400 | WTF::storeStoreFence(); // This is probably not needed because the lock will also do something similar, but it's good to be paranoid. |
401 | m_jitCode = WTFMove(code); |
402 | } |
403 | |
404 | RefPtr<JITCode> jitCode() { return m_jitCode; } |
405 | static ptrdiff_t jitCodeOffset() { return OBJECT_OFFSETOF(CodeBlock, m_jitCode); } |
406 | JITType jitType() const |
407 | { |
408 | JITCode* jitCode = m_jitCode.get(); |
409 | WTF::loadLoadFence(); |
410 | JITType result = JITCode::jitTypeFor(jitCode); |
411 | WTF::loadLoadFence(); // This probably isn't needed. Oh well, paranoia is good. |
412 | return result; |
413 | } |
414 | |
415 | bool hasBaselineJITProfiling() const |
416 | { |
417 | return jitType() == JITType::BaselineJIT; |
418 | } |
419 | |
420 | #if ENABLE(JIT) |
421 | CodeBlock* replacement(); |
422 | |
423 | DFG::CapabilityLevel computeCapabilityLevel(); |
424 | DFG::CapabilityLevel capabilityLevel(); |
425 | DFG::CapabilityLevel capabilityLevelState() { return static_cast<DFG::CapabilityLevel>(m_capabilityLevelState); } |
426 | |
427 | bool hasOptimizedReplacement(JITType typeToReplace); |
428 | bool hasOptimizedReplacement(); // the typeToReplace is my JITType |
429 | #endif |
430 | |
431 | void jettison(Profiler::JettisonReason, ReoptimizationMode = DontCountReoptimization, const FireDetail* = nullptr); |
432 | |
433 | ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); } |
434 | |
435 | ExecutableToCodeBlockEdge* ownerEdge() const { return m_ownerEdge.get(); } |
436 | |
437 | VM* vm() const { return m_vm; } |
438 | |
439 | VirtualRegister thisRegister() const { return m_unlinkedCode->thisRegister(); } |
440 | |
441 | bool usesEval() const { return m_unlinkedCode->usesEval(); } |
442 | |
443 | void setScopeRegister(VirtualRegister scopeRegister) |
444 | { |
445 | ASSERT(scopeRegister.isLocal() || !scopeRegister.isValid()); |
446 | m_scopeRegister = scopeRegister; |
447 | } |
448 | |
449 | VirtualRegister scopeRegister() const |
450 | { |
451 | return m_scopeRegister; |
452 | } |
453 | |
454 | PutPropertySlot::Context putByIdContext() const |
455 | { |
456 | if (codeType() == EvalCode) |
457 | return PutPropertySlot::PutByIdEval; |
458 | return PutPropertySlot::PutById; |
459 | } |
460 | |
461 | const SourceCode& source() const { return m_ownerExecutable->source(); } |
462 | unsigned sourceOffset() const { return m_ownerExecutable->source().startOffset(); } |
463 | unsigned firstLineColumnOffset() const { return m_ownerExecutable->startColumn(); } |
464 | |
465 | size_t numberOfJumpTargets() const { return m_unlinkedCode->numberOfJumpTargets(); } |
466 | unsigned jumpTarget(int index) const { return m_unlinkedCode->jumpTarget(index); } |
467 | |
468 | String nameForRegister(VirtualRegister); |
469 | |
470 | unsigned numberOfArgumentValueProfiles() |
471 | { |
472 | ASSERT(m_numParameters >= 0); |
473 | ASSERT(m_argumentValueProfiles.size() == static_cast<unsigned>(m_numParameters) || !vm()->canUseJIT()); |
474 | return m_argumentValueProfiles.size(); |
475 | } |
476 | |
477 | ValueProfile& valueProfileForArgument(unsigned argumentIndex) |
478 | { |
479 | ASSERT(vm()->canUseJIT()); // This is only called from the various JIT compilers or places that first check numberOfArgumentValueProfiles before calling this. |
480 | ValueProfile& result = m_argumentValueProfiles[argumentIndex]; |
481 | ASSERT(result.m_bytecodeOffset == -1); |
482 | return result; |
483 | } |
484 | |
485 | ValueProfile& valueProfileForBytecodeOffset(int bytecodeOffset); |
486 | SpeculatedType valueProfilePredictionForBytecodeOffset(const ConcurrentJSLocker&, int bytecodeOffset); |
487 | |
488 | template<typename Functor> void forEachValueProfile(const Functor&); |
489 | template<typename Functor> void forEachArrayProfile(const Functor&); |
490 | template<typename Functor> void forEachArrayAllocationProfile(const Functor&); |
491 | template<typename Functor> void forEachObjectAllocationProfile(const Functor&); |
492 | template<typename Functor> void forEachLLIntCallLinkInfo(const Functor&); |
493 | |
494 | ArithProfile* arithProfileForBytecodeOffset(InstructionStream::Offset bytecodeOffset); |
495 | ArithProfile* arithProfileForPC(const Instruction*); |
496 | |
497 | bool couldTakeSpecialFastCase(InstructionStream::Offset bytecodeOffset); |
498 | |
499 | ArrayProfile* getArrayProfile(const ConcurrentJSLocker&, unsigned bytecodeOffset); |
500 | ArrayProfile* getArrayProfile(unsigned bytecodeOffset); |
501 | |
502 | // Exception handling support |
503 | |
504 | size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; } |
505 | HandlerInfo& exceptionHandler(int index) { RELEASE_ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; } |
506 | |
507 | bool hasExpressionInfo() { return m_unlinkedCode->hasExpressionInfo(); } |
508 | |
509 | #if ENABLE(DFG_JIT) |
510 | Vector<CodeOrigin, 0, UnsafeVectorOverflow>& codeOrigins(); |
511 | |
512 | // Having code origins implies that there has been some inlining. |
513 | bool hasCodeOrigins() |
514 | { |
515 | return JITCode::isOptimizingJIT(jitType()); |
516 | } |
517 | |
518 | bool canGetCodeOrigin(CallSiteIndex index) |
519 | { |
520 | if (!hasCodeOrigins()) |
521 | return false; |
522 | return index.bits() < codeOrigins().size(); |
523 | } |
524 | |
525 | CodeOrigin codeOrigin(CallSiteIndex index) |
526 | { |
527 | return codeOrigins()[index.bits()]; |
528 | } |
529 | |
530 | CompressedLazyOperandValueProfileHolder& lazyOperandValueProfiles(const ConcurrentJSLocker&) |
531 | { |
532 | return m_lazyOperandValueProfiles; |
533 | } |
534 | #endif // ENABLE(DFG_JIT) |
535 | |
536 | // Constant Pool |
537 | #if ENABLE(DFG_JIT) |
538 | size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers() + numberOfDFGIdentifiers(); } |
539 | size_t numberOfDFGIdentifiers() const; |
540 | const Identifier& identifier(int index) const; |
541 | #else |
542 | size_t numberOfIdentifiers() const { return m_unlinkedCode->numberOfIdentifiers(); } |
543 | const Identifier& identifier(int index) const { return m_unlinkedCode->identifier(index); } |
544 | #endif |
545 | |
546 | Vector<WriteBarrier<Unknown>>& constants() { return m_constantRegisters; } |
547 | Vector<SourceCodeRepresentation>& constantsSourceCodeRepresentation() { return m_constantsSourceCodeRepresentation; } |
548 | unsigned addConstant(JSValue v) |
549 | { |
550 | unsigned result = m_constantRegisters.size(); |
551 | m_constantRegisters.append(WriteBarrier<Unknown>()); |
552 | m_constantRegisters.last().set(*m_vm, this, v); |
553 | m_constantsSourceCodeRepresentation.append(SourceCodeRepresentation::Other); |
554 | return result; |
555 | } |
556 | |
557 | unsigned addConstantLazily() |
558 | { |
559 | unsigned result = m_constantRegisters.size(); |
560 | m_constantRegisters.append(WriteBarrier<Unknown>()); |
561 | m_constantsSourceCodeRepresentation.append(SourceCodeRepresentation::Other); |
562 | return result; |
563 | } |
564 | |
565 | const Vector<WriteBarrier<Unknown>>& constantRegisters() { return m_constantRegisters; } |
566 | WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; } |
567 | static ALWAYS_INLINE bool isConstantRegisterIndex(int index) { return index >= FirstConstantRegisterIndex; } |
568 | ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); } |
569 | ALWAYS_INLINE SourceCodeRepresentation constantSourceCodeRepresentation(int index) const { return m_constantsSourceCodeRepresentation[index - FirstConstantRegisterIndex]; } |
570 | |
571 | FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); } |
572 | int numberOfFunctionDecls() { return m_functionDecls.size(); } |
573 | FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); } |
574 | |
575 | const BitVector& bitVector(size_t i) { return m_unlinkedCode->bitVector(i); } |
576 | |
577 | Heap* heap() const { return &m_vm->heap; } |
578 | JSGlobalObject* globalObject() { return m_globalObject.get(); } |
579 | |
580 | JSGlobalObject* globalObjectFor(CodeOrigin); |
581 | |
582 | BytecodeLivenessAnalysis& livenessAnalysis() |
583 | { |
584 | return m_unlinkedCode->livenessAnalysis(this); |
585 | } |
586 | |
587 | void validate(); |
588 | |
589 | // Jump Tables |
590 | |
591 | size_t numberOfSwitchJumpTables() const { return m_rareData ? m_rareData->m_switchJumpTables.size() : 0; } |
592 | SimpleJumpTable& addSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_switchJumpTables.append(SimpleJumpTable()); return m_rareData->m_switchJumpTables.last(); } |
593 | SimpleJumpTable& switchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_switchJumpTables[tableIndex]; } |
594 | void clearSwitchJumpTables() |
595 | { |
596 | if (!m_rareData) |
597 | return; |
598 | m_rareData->m_switchJumpTables.clear(); |
599 | } |
600 | |
601 | size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; } |
602 | StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); } |
603 | StringJumpTable& stringSwitchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; } |
604 | |
605 | DirectEvalCodeCache& directEvalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_directEvalCodeCache; } |
606 | |
607 | enum ShrinkMode { |
608 | // Shrink prior to generating machine code that may point directly into vectors. |
609 | EarlyShrink, |
610 | |
611 | // Shrink after generating machine code, and after possibly creating new vectors |
612 | // and appending to others. At this time it is not safe to shrink certain vectors |
613 | // because we would have generated machine code that references them directly. |
614 | LateShrink |
615 | }; |
616 | void shrinkToFit(ShrinkMode); |
617 | |
618 | // Functions for controlling when JITting kicks in, in a mixed mode |
619 | // execution world. |
620 | |
621 | bool checkIfJITThresholdReached() |
622 | { |
623 | return m_llintExecuteCounter.checkIfThresholdCrossedAndSet(this); |
624 | } |
625 | |
626 | void dontJITAnytimeSoon() |
627 | { |
628 | m_llintExecuteCounter.deferIndefinitely(); |
629 | } |
630 | |
631 | int32_t thresholdForJIT(int32_t threshold); |
632 | void jitAfterWarmUp(); |
633 | void jitSoon(); |
634 | |
635 | const BaselineExecutionCounter& llintExecuteCounter() const |
636 | { |
637 | return m_llintExecuteCounter; |
638 | } |
639 | |
640 | typedef HashMap<std::tuple<StructureID, unsigned>, Vector<LLIntPrototypeLoadAdaptiveStructureWatchpoint>> StructureWatchpointMap; |
641 | StructureWatchpointMap& llintGetByIdWatchpointMap() { return m_llintGetByIdWatchpointMap; } |
642 | |
643 | // Functions for controlling when tiered compilation kicks in. This |
644 | // controls both when the optimizing compiler is invoked and when OSR |
645 | // entry happens. Two triggers exist: the loop trigger and the return |
646 | // trigger. In either case, when an addition to m_jitExecuteCounter |
647 | // causes it to become non-negative, the optimizing compiler is |
648 | // invoked. This includes a fast check to see if this CodeBlock has |
649 | // already been optimized (i.e. replacement() returns a CodeBlock |
650 | // that was optimized with a higher tier JIT than this one). In the |
651 | // case of the loop trigger, if the optimized compilation succeeds |
652 | // (or has already succeeded in the past) then OSR is attempted to |
653 | // redirect program flow into the optimized code. |
654 | |
655 | // These functions are called from within the optimization triggers, |
656 | // and are used as a single point at which we define the heuristics |
657 | // for how much warm-up is mandated before the next optimization |
658 | // trigger files. All CodeBlocks start out with optimizeAfterWarmUp(), |
659 | // as this is called from the CodeBlock constructor. |
660 | |
661 | // When we observe a lot of speculation failures, we trigger a |
662 | // reoptimization. But each time, we increase the optimization trigger |
663 | // to avoid thrashing. |
664 | JS_EXPORT_PRIVATE unsigned reoptimizationRetryCounter() const; |
665 | void countReoptimization(); |
666 | |
667 | #if !ENABLE(C_LOOP) |
668 | const RegisterAtOffsetList* calleeSaveRegisters() const; |
669 | |
670 | static unsigned numberOfLLIntBaselineCalleeSaveRegisters() { return RegisterSet::llintBaselineCalleeSaveRegisters().numberOfSetRegisters(); } |
671 | static size_t llintBaselineCalleeSaveSpaceAsVirtualRegisters(); |
672 | size_t calleeSaveSpaceAsVirtualRegisters(); |
673 | #else |
674 | static unsigned numberOfLLIntBaselineCalleeSaveRegisters() { return 0; } |
675 | static size_t llintBaselineCalleeSaveSpaceAsVirtualRegisters() { return 1; }; |
676 | size_t calleeSaveSpaceAsVirtualRegisters() { return 0; } |
677 | #endif |
678 | |
679 | #if ENABLE(JIT) |
680 | unsigned numberOfDFGCompiles(); |
681 | |
682 | int32_t codeTypeThresholdMultiplier() const; |
683 | |
684 | int32_t adjustedCounterValue(int32_t desiredThreshold); |
685 | |
686 | int32_t* addressOfJITExecuteCounter() |
687 | { |
688 | return &m_jitExecuteCounter.m_counter; |
689 | } |
690 | |
691 | static ptrdiff_t offsetOfJITExecuteCounter() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_counter); } |
692 | static ptrdiff_t offsetOfJITExecutionActiveThreshold() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_activeThreshold); } |
693 | static ptrdiff_t offsetOfJITExecutionTotalCount() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(BaselineExecutionCounter, m_totalCount); } |
694 | |
695 | const BaselineExecutionCounter& jitExecuteCounter() const { return m_jitExecuteCounter; } |
696 | |
697 | unsigned optimizationDelayCounter() const { return m_optimizationDelayCounter; } |
698 | |
699 | // Check if the optimization threshold has been reached, and if not, |
700 | // adjust the heuristics accordingly. Returns true if the threshold has |
701 | // been reached. |
702 | bool checkIfOptimizationThresholdReached(); |
703 | |
704 | // Call this to force the next optimization trigger to fire. This is |
705 | // rarely wise, since optimization triggers are typically more |
706 | // expensive than executing baseline code. |
707 | void optimizeNextInvocation(); |
708 | |
709 | // Call this to prevent optimization from happening again. Note that |
710 | // optimization will still happen after roughly 2^29 invocations, |
711 | // so this is really meant to delay that as much as possible. This |
712 | // is called if optimization failed, and we expect it to fail in |
713 | // the future as well. |
714 | void dontOptimizeAnytimeSoon(); |
715 | |
716 | // Call this to reinitialize the counter to its starting state, |
717 | // forcing a warm-up to happen before the next optimization trigger |
718 | // fires. This is called in the CodeBlock constructor. It also |
719 | // makes sense to call this if an OSR exit occurred. Note that |
720 | // OSR exit code is code generated, so the value of the execute |
721 | // counter that this corresponds to is also available directly. |
722 | void optimizeAfterWarmUp(); |
723 | |
724 | // Call this to force an optimization trigger to fire only after |
725 | // a lot of warm-up. |
726 | void optimizeAfterLongWarmUp(); |
727 | |
728 | // Call this to cause an optimization trigger to fire soon, but |
729 | // not necessarily the next one. This makes sense if optimization |
730 | // succeeds. Successful optimization means that all calls are |
731 | // relinked to the optimized code, so this only affects call |
732 | // frames that are still executing this CodeBlock. The value here |
733 | // is tuned to strike a balance between the cost of OSR entry |
734 | // (which is too high to warrant making every loop back edge to |
735 | // trigger OSR immediately) and the cost of executing baseline |
736 | // code (which is high enough that we don't necessarily want to |
737 | // have a full warm-up). The intuition for calling this instead of |
738 | // optimizeNextInvocation() is for the case of recursive functions |
739 | // with loops. Consider that there may be N call frames of some |
740 | // recursive function, for a reasonably large value of N. The top |
741 | // one triggers optimization, and then returns, and then all of |
742 | // the others return. We don't want optimization to be triggered on |
743 | // each return, as that would be superfluous. It only makes sense |
744 | // to trigger optimization if one of those functions becomes hot |
745 | // in the baseline code. |
746 | void optimizeSoon(); |
747 | |
748 | void forceOptimizationSlowPathConcurrently(); |
749 | |
750 | void setOptimizationThresholdBasedOnCompilationResult(CompilationResult); |
751 | |
752 | uint32_t osrExitCounter() const { return m_osrExitCounter; } |
753 | |
754 | void countOSRExit() { m_osrExitCounter++; } |
755 | |
756 | enum class OptimizeAction { None, ReoptimizeNow }; |
757 | #if ENABLE(DFG_JIT) |
758 | OptimizeAction updateOSRExitCounterAndCheckIfNeedToReoptimize(DFG::OSRExitState&); |
759 | #endif |
760 | |
761 | static ptrdiff_t offsetOfOSRExitCounter() { return OBJECT_OFFSETOF(CodeBlock, m_osrExitCounter); } |
762 | |
763 | uint32_t adjustedExitCountThreshold(uint32_t desiredThreshold); |
764 | uint32_t exitCountThresholdForReoptimization(); |
765 | uint32_t exitCountThresholdForReoptimizationFromLoop(); |
766 | bool shouldReoptimizeNow(); |
767 | bool shouldReoptimizeFromLoopNow(); |
768 | |
769 | #else // No JIT |
770 | void optimizeAfterWarmUp() { } |
771 | unsigned numberOfDFGCompiles() { return 0; } |
772 | #endif |
773 | |
774 | bool shouldOptimizeNow(); |
775 | void updateAllValueProfilePredictions(); |
776 | void updateAllArrayPredictions(); |
777 | void updateAllPredictions(); |
778 | |
779 | unsigned frameRegisterCount(); |
780 | int stackPointerOffset(); |
781 | |
782 | bool hasOpDebugForLineAndColumn(unsigned line, unsigned column); |
783 | |
784 | bool hasDebuggerRequests() const { return m_debuggerRequests; } |
785 | void* debuggerRequestsAddress() { return &m_debuggerRequests; } |
786 | |
787 | void addBreakpoint(unsigned numBreakpoints); |
788 | void removeBreakpoint(unsigned numBreakpoints) |
789 | { |
790 | ASSERT(m_numBreakpoints >= numBreakpoints); |
791 | m_numBreakpoints -= numBreakpoints; |
792 | } |
793 | |
794 | enum SteppingMode { |
795 | SteppingModeDisabled, |
796 | SteppingModeEnabled |
797 | }; |
798 | void setSteppingMode(SteppingMode); |
799 | |
800 | void clearDebuggerRequests() |
801 | { |
802 | m_steppingMode = SteppingModeDisabled; |
803 | m_numBreakpoints = 0; |
804 | } |
805 | |
806 | bool wasCompiledWithDebuggingOpcodes() const { return m_unlinkedCode->wasCompiledWithDebuggingOpcodes(); } |
807 | |
808 | // This is intentionally public; it's the responsibility of anyone doing any |
809 | // of the following to hold the lock: |
810 | // |
811 | // - Modifying any inline cache in this code block. |
812 | // |
813 | // - Quering any inline cache in this code block, from a thread other than |
814 | // the main thread. |
815 | // |
816 | // Additionally, it's only legal to modify the inline cache on the main |
817 | // thread. This means that the main thread can query the inline cache without |
818 | // locking. This is crucial since executing the inline cache is effectively |
819 | // "querying" it. |
820 | // |
821 | // Another exception to the rules is that the GC can do whatever it wants |
822 | // without holding any locks, because the GC is guaranteed to wait until any |
823 | // concurrent compilation threads finish what they're doing. |
824 | mutable ConcurrentJSLock m_lock; |
825 | |
826 | bool m_shouldAlwaysBeInlined; // Not a bitfield because the JIT wants to store to it. |
827 | |
828 | #if ENABLE(JIT) |
829 | unsigned m_capabilityLevelState : 2; // DFG::CapabilityLevel |
830 | #endif |
831 | |
832 | bool m_allTransitionsHaveBeenMarked : 1; // Initialized and used on every GC. |
833 | |
834 | bool m_didFailJITCompilation : 1; |
835 | bool m_didFailFTLCompilation : 1; |
836 | bool m_hasBeenCompiledWithFTL : 1; |
837 | |
838 | // Internal methods for use by validation code. It would be private if it wasn't |
839 | // for the fact that we use it from anonymous namespaces. |
840 | void beginValidationDidFail(); |
841 | NO_RETURN_DUE_TO_CRASH void endValidationDidFail(); |
842 | |
843 | struct RareData { |
844 | WTF_MAKE_FAST_ALLOCATED; |
845 | public: |
846 | Vector<HandlerInfo> m_exceptionHandlers; |
847 | |
848 | // Jump Tables |
849 | Vector<SimpleJumpTable> m_switchJumpTables; |
850 | Vector<StringJumpTable> m_stringSwitchJumpTables; |
851 | |
852 | Vector<std::unique_ptr<ValueProfileAndOperandBuffer>> m_catchProfiles; |
853 | |
854 | DirectEvalCodeCache m_directEvalCodeCache; |
855 | }; |
856 | |
857 | void clearExceptionHandlers() |
858 | { |
859 | if (m_rareData) |
860 | m_rareData->m_exceptionHandlers.clear(); |
861 | } |
862 | |
863 | void appendExceptionHandler(const HandlerInfo& handler) |
864 | { |
865 | createRareDataIfNecessary(); // We may be handling the exception of an inlined call frame. |
866 | m_rareData->m_exceptionHandlers.append(handler); |
867 | } |
868 | |
869 | CallSiteIndex newExceptionHandlingCallSiteIndex(CallSiteIndex originalCallSite); |
870 | |
871 | void ensureCatchLivenessIsComputedForBytecodeOffset(InstructionStream::Offset bytecodeOffset); |
872 | |
873 | bool hasTailCalls() const { return m_unlinkedCode->hasTailCalls(); } |
874 | |
875 | template<typename Metadata> |
876 | Metadata& metadata(OpcodeID opcodeID, unsigned metadataID) |
877 | { |
878 | ASSERT(m_metadata); |
879 | return bitwise_cast<Metadata*>(m_metadata->get(opcodeID))[metadataID]; |
880 | } |
881 | |
882 | size_t metadataSizeInBytes() |
883 | { |
884 | return m_unlinkedCode->metadataSizeInBytes(); |
885 | } |
886 | |
887 | protected: |
888 | void finalizeLLIntInlineCaches(); |
889 | #if ENABLE(JIT) |
890 | void finalizeBaselineJITInlineCaches(); |
891 | #endif |
892 | #if ENABLE(DFG_JIT) |
893 | void tallyFrequentExitSites(); |
894 | #else |
895 | void tallyFrequentExitSites() { } |
896 | #endif |
897 | |
898 | private: |
899 | friend class CodeBlockSet; |
900 | friend class ExecutableToCodeBlockEdge; |
901 | |
902 | BytecodeLivenessAnalysis& livenessAnalysisSlow(); |
903 | |
904 | CodeBlock* specialOSREntryBlockOrNull(); |
905 | |
906 | void noticeIncomingCall(ExecState* callerFrame); |
907 | |
908 | double optimizationThresholdScalingFactor(); |
909 | |
910 | void updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles); |
911 | |
912 | void setConstantIdentifierSetRegisters(VM&, const Vector<ConstantIdentifierSetEntry>& constants); |
913 | |
914 | void setConstantRegisters(const Vector<WriteBarrier<Unknown>>& constants, const Vector<SourceCodeRepresentation>& constantsSourceCodeRepresentation, ScriptExecutable* topLevelExecutable); |
915 | |
916 | void replaceConstant(int index, JSValue value) |
917 | { |
918 | ASSERT(isConstantRegisterIndex(index) && static_cast<size_t>(index - FirstConstantRegisterIndex) < m_constantRegisters.size()); |
919 | m_constantRegisters[index - FirstConstantRegisterIndex].set(*m_vm, this, value); |
920 | } |
921 | |
922 | bool shouldVisitStrongly(const ConcurrentJSLocker&); |
923 | bool shouldJettisonDueToWeakReference(VM&); |
924 | bool shouldJettisonDueToOldAge(const ConcurrentJSLocker&); |
925 | |
926 | void propagateTransitions(const ConcurrentJSLocker&, SlotVisitor&); |
927 | void determineLiveness(const ConcurrentJSLocker&, SlotVisitor&); |
928 | |
929 | void stronglyVisitStrongReferences(const ConcurrentJSLocker&, SlotVisitor&); |
930 | void stronglyVisitWeakReferences(const ConcurrentJSLocker&, SlotVisitor&); |
931 | void visitOSRExitTargets(const ConcurrentJSLocker&, SlotVisitor&); |
932 | |
933 | unsigned numberOfNonArgumentValueProfiles() { return m_numberOfNonArgumentValueProfiles; } |
934 | unsigned totalNumberOfValueProfiles() { return numberOfArgumentValueProfiles() + numberOfNonArgumentValueProfiles(); } |
935 | ValueProfile* tryGetValueProfileForBytecodeOffset(int bytecodeOffset); |
936 | |
937 | Seconds timeSinceCreation() |
938 | { |
939 | return MonotonicTime::now() - m_creationTime; |
940 | } |
941 | |
942 | void createRareDataIfNecessary() |
943 | { |
944 | if (!m_rareData) { |
945 | auto rareData = std::make_unique<RareData>(); |
946 | WTF::storeStoreFence(); // m_catchProfiles can be touched from compiler threads. |
947 | m_rareData = WTFMove(rareData); |
948 | } |
949 | } |
950 | |
951 | void insertBasicBlockBoundariesForControlFlowProfiler(); |
952 | void ensureCatchLivenessIsComputedForBytecodeOffsetSlow(const OpCatch&, InstructionStream::Offset); |
953 | |
954 | int m_numCalleeLocals; |
955 | int m_numVars; |
956 | int m_numParameters; |
957 | int m_numberOfArgumentsToSkip { 0 }; |
958 | unsigned m_numberOfNonArgumentValueProfiles { 0 }; |
959 | union { |
960 | unsigned m_debuggerRequests; |
961 | struct { |
962 | unsigned m_hasDebuggerStatement : 1; |
963 | unsigned m_steppingMode : 1; |
964 | unsigned m_numBreakpoints : 30; |
965 | }; |
966 | }; |
967 | unsigned m_bytecodeCost { 0 }; |
968 | VirtualRegister m_scopeRegister; |
969 | mutable CodeBlockHash m_hash; |
970 | |
971 | WriteBarrier<UnlinkedCodeBlock> m_unlinkedCode; |
972 | WriteBarrier<ScriptExecutable> m_ownerExecutable; |
973 | WriteBarrier<ExecutableToCodeBlockEdge> m_ownerEdge; |
974 | VM* m_vm; |
975 | |
976 | const void* m_instructionsRawPointer { nullptr }; |
977 | SentinelLinkedList<LLIntCallLinkInfo, BasicRawSentinelNode<LLIntCallLinkInfo>> m_incomingLLIntCalls; |
978 | StructureWatchpointMap m_llintGetByIdWatchpointMap; |
979 | RefPtr<JITCode> m_jitCode; |
980 | #if ENABLE(JIT) |
981 | std::unique_ptr<JITData> m_jitData; |
982 | #endif |
983 | #if ENABLE(DFG_JIT) |
984 | // This is relevant to non-DFG code blocks that serve as the profiled code block |
985 | // for DFG code blocks. |
986 | CompressedLazyOperandValueProfileHolder m_lazyOperandValueProfiles; |
987 | #endif |
988 | RefCountedArray<ValueProfile> m_argumentValueProfiles; |
989 | |
990 | // Constant Pool |
991 | COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown); |
992 | // TODO: This could just be a pointer to m_unlinkedCodeBlock's data, but the DFG mutates |
993 | // it, so we're stuck with it for now. |
994 | Vector<WriteBarrier<Unknown>> m_constantRegisters; |
995 | Vector<SourceCodeRepresentation> m_constantsSourceCodeRepresentation; |
996 | RefCountedArray<WriteBarrier<FunctionExecutable>> m_functionDecls; |
997 | RefCountedArray<WriteBarrier<FunctionExecutable>> m_functionExprs; |
998 | |
999 | WriteBarrier<CodeBlock> m_alternative; |
1000 | |
1001 | BaselineExecutionCounter m_llintExecuteCounter; |
1002 | |
1003 | BaselineExecutionCounter m_jitExecuteCounter; |
1004 | uint32_t m_osrExitCounter; |
1005 | |
1006 | uint16_t m_optimizationDelayCounter; |
1007 | uint16_t m_reoptimizationRetryCounter; |
1008 | |
1009 | RefPtr<MetadataTable> m_metadata; |
1010 | |
1011 | MonotonicTime m_creationTime; |
1012 | |
1013 | std::unique_ptr<RareData> m_rareData; |
1014 | }; |
1015 | |
1016 | inline Register& ExecState::r(int index) |
1017 | { |
1018 | CodeBlock* codeBlock = this->codeBlock(); |
1019 | if (codeBlock->isConstantRegisterIndex(index)) |
1020 | return *reinterpret_cast<Register*>(&codeBlock->constantRegister(index)); |
1021 | return this[index]; |
1022 | } |
1023 | |
1024 | inline Register& ExecState::r(VirtualRegister reg) |
1025 | { |
1026 | return r(reg.offset()); |
1027 | } |
1028 | |
1029 | inline Register& ExecState::uncheckedR(int index) |
1030 | { |
1031 | RELEASE_ASSERT(index < FirstConstantRegisterIndex); |
1032 | return this[index]; |
1033 | } |
1034 | |
1035 | inline Register& ExecState::uncheckedR(VirtualRegister reg) |
1036 | { |
1037 | return uncheckedR(reg.offset()); |
1038 | } |
1039 | |
1040 | template <typename ExecutableType> |
1041 | Exception* ScriptExecutable::prepareForExecution(VM& vm, JSFunction* function, JSScope* scope, CodeSpecializationKind kind, CodeBlock*& resultCodeBlock) |
1042 | { |
1043 | if (hasJITCodeFor(kind)) { |
1044 | if (std::is_same<ExecutableType, EvalExecutable>::value) |
1045 | resultCodeBlock = jsCast<CodeBlock*>(jsCast<EvalExecutable*>(this)->codeBlock()); |
1046 | else if (std::is_same<ExecutableType, ProgramExecutable>::value) |
1047 | resultCodeBlock = jsCast<CodeBlock*>(jsCast<ProgramExecutable*>(this)->codeBlock()); |
1048 | else if (std::is_same<ExecutableType, ModuleProgramExecutable>::value) |
1049 | resultCodeBlock = jsCast<CodeBlock*>(jsCast<ModuleProgramExecutable*>(this)->codeBlock()); |
1050 | else if (std::is_same<ExecutableType, FunctionExecutable>::value) |
1051 | resultCodeBlock = jsCast<CodeBlock*>(jsCast<FunctionExecutable*>(this)->codeBlockFor(kind)); |
1052 | else |
1053 | RELEASE_ASSERT_NOT_REACHED(); |
1054 | return nullptr; |
1055 | } |
1056 | return prepareForExecutionImpl(vm, function, scope, kind, resultCodeBlock); |
1057 | } |
1058 | |
1059 | #define CODEBLOCK_LOG_EVENT(codeBlock, summary, details) \ |
1060 | (codeBlock->vm()->logEvent(codeBlock, summary, [&] () { return toCString details; })) |
1061 | |
1062 | |
1063 | void setPrinter(Printer::PrintRecord&, CodeBlock*); |
1064 | |
1065 | } // namespace JSC |
1066 | |
1067 | namespace WTF { |
1068 | |
1069 | JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::CodeBlock*); |
1070 | |
1071 | } // namespace WTF |
1072 | |