| 1 | /* |
| 2 | * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer. |
| 11 | * 2. Redistributions in binary form must reproduce the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer in the |
| 13 | * documentation and/or other materials provided with the distribution. |
| 14 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 15 | * its contributors may be used to endorse or promote products derived |
| 16 | * from this software without specific prior written permission. |
| 17 | * |
| 18 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 19 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 20 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 21 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 22 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 23 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 24 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 25 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 | */ |
| 29 | |
| 30 | #include "config.h" |
| 31 | #include "CodeBlock.h" |
| 32 | |
| 33 | #include "ArithProfile.h" |
| 34 | #include "BasicBlockLocation.h" |
| 35 | #include "BytecodeDumper.h" |
| 36 | #include "BytecodeGenerator.h" |
| 37 | #include "BytecodeLivenessAnalysis.h" |
| 38 | #include "BytecodeStructs.h" |
| 39 | #include "BytecodeUseDef.h" |
| 40 | #include "CallLinkStatus.h" |
| 41 | #include "CodeBlockInlines.h" |
| 42 | #include "CodeBlockSet.h" |
| 43 | #include "DFGCapabilities.h" |
| 44 | #include "DFGCommon.h" |
| 45 | #include "DFGDriver.h" |
| 46 | #include "DFGJITCode.h" |
| 47 | #include "DFGWorklist.h" |
| 48 | #include "Debugger.h" |
| 49 | #include "EvalCodeBlock.h" |
| 50 | #include "FullCodeOrigin.h" |
| 51 | #include "FunctionCodeBlock.h" |
| 52 | #include "FunctionExecutableDump.h" |
| 53 | #include "GetPutInfo.h" |
| 54 | #include "InlineCallFrame.h" |
| 55 | #include "Instruction.h" |
| 56 | #include "InstructionStream.h" |
| 57 | #include "InterpreterInlines.h" |
| 58 | #include "IsoCellSetInlines.h" |
| 59 | #include "JIT.h" |
| 60 | #include "JITMathIC.h" |
| 61 | #include "JSBigInt.h" |
| 62 | #include "JSCInlines.h" |
| 63 | #include "JSCJSValue.h" |
| 64 | #include "JSFunction.h" |
| 65 | #include "JSLexicalEnvironment.h" |
| 66 | #include "JSModuleEnvironment.h" |
| 67 | #include "JSSet.h" |
| 68 | #include "JSString.h" |
| 69 | #include "JSTemplateObjectDescriptor.h" |
| 70 | #include "LLIntData.h" |
| 71 | #include "LLIntEntrypoint.h" |
| 72 | #include "LLIntPrototypeLoadAdaptiveStructureWatchpoint.h" |
| 73 | #include "LowLevelInterpreter.h" |
| 74 | #include "MetadataTable.h" |
| 75 | #include "ModuleProgramCodeBlock.h" |
| 76 | #include "ObjectAllocationProfileInlines.h" |
| 77 | #include "OpcodeInlines.h" |
| 78 | #include "PCToCodeOriginMap.h" |
| 79 | #include "PolymorphicAccess.h" |
| 80 | #include "ProfilerDatabase.h" |
| 81 | #include "ProgramCodeBlock.h" |
| 82 | #include "ReduceWhitespace.h" |
| 83 | #include "Repatch.h" |
| 84 | #include "SlotVisitorInlines.h" |
| 85 | #include "StackVisitor.h" |
| 86 | #include "StructureStubInfo.h" |
| 87 | #include "TypeLocationCache.h" |
| 88 | #include "TypeProfiler.h" |
| 89 | #include "VMInlines.h" |
| 90 | #include <wtf/BagToHashMap.h> |
| 91 | #include <wtf/CommaPrinter.h> |
| 92 | #include <wtf/Forward.h> |
| 93 | #include <wtf/SimpleStats.h> |
| 94 | #include <wtf/StringPrintStream.h> |
| 95 | #include <wtf/text/StringConcatenateNumbers.h> |
| 96 | #include <wtf/text/UniquedStringImpl.h> |
| 97 | |
| 98 | #if ENABLE(ASSEMBLER) |
| 99 | #include "RegisterAtOffsetList.h" |
| 100 | #endif |
| 101 | |
| 102 | #if ENABLE(DFG_JIT) |
| 103 | #include "DFGOperations.h" |
| 104 | #endif |
| 105 | |
| 106 | #if ENABLE(FTL_JIT) |
| 107 | #include "FTLJITCode.h" |
| 108 | #endif |
| 109 | |
| 110 | namespace JSC { |
| 111 | |
| 112 | const ClassInfo CodeBlock::s_info = { |
| 113 | "CodeBlock" , nullptr, nullptr, nullptr, |
| 114 | CREATE_METHOD_TABLE(CodeBlock) |
| 115 | }; |
| 116 | |
| 117 | CString CodeBlock::inferredName() const |
| 118 | { |
| 119 | switch (codeType()) { |
| 120 | case GlobalCode: |
| 121 | return "<global>" ; |
| 122 | case EvalCode: |
| 123 | return "<eval>" ; |
| 124 | case FunctionCode: |
| 125 | return jsCast<FunctionExecutable*>(ownerExecutable())->ecmaName().utf8(); |
| 126 | case ModuleCode: |
| 127 | return "<module>" ; |
| 128 | default: |
| 129 | CRASH(); |
| 130 | return CString("" , 0); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | bool CodeBlock::hasHash() const |
| 135 | { |
| 136 | return !!m_hash; |
| 137 | } |
| 138 | |
| 139 | bool CodeBlock::isSafeToComputeHash() const |
| 140 | { |
| 141 | return !isCompilationThread(); |
| 142 | } |
| 143 | |
| 144 | CodeBlockHash CodeBlock::hash() const |
| 145 | { |
| 146 | if (!m_hash) { |
| 147 | RELEASE_ASSERT(isSafeToComputeHash()); |
| 148 | m_hash = CodeBlockHash(ownerExecutable()->source(), specializationKind()); |
| 149 | } |
| 150 | return m_hash; |
| 151 | } |
| 152 | |
| 153 | CString CodeBlock::sourceCodeForTools() const |
| 154 | { |
| 155 | if (codeType() != FunctionCode) |
| 156 | return ownerExecutable()->source().toUTF8(); |
| 157 | |
| 158 | SourceProvider* provider = source().provider(); |
| 159 | FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable()); |
| 160 | UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); |
| 161 | unsigned unlinkedStartOffset = unlinked->startOffset(); |
| 162 | unsigned linkedStartOffset = executable->source().startOffset(); |
| 163 | int delta = linkedStartOffset - unlinkedStartOffset; |
| 164 | unsigned rangeStart = delta + unlinked->unlinkedFunctionNameStart(); |
| 165 | unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength(); |
| 166 | return toCString( |
| 167 | "function " , |
| 168 | provider->source().substring(rangeStart, rangeEnd - rangeStart).utf8()); |
| 169 | } |
| 170 | |
| 171 | CString CodeBlock::sourceCodeOnOneLine() const |
| 172 | { |
| 173 | return reduceWhitespace(sourceCodeForTools()); |
| 174 | } |
| 175 | |
| 176 | CString CodeBlock::hashAsStringIfPossible() const |
| 177 | { |
| 178 | if (hasHash() || isSafeToComputeHash()) |
| 179 | return toCString(hash()); |
| 180 | return "<no-hash>" ; |
| 181 | } |
| 182 | |
| 183 | void CodeBlock::dumpAssumingJITType(PrintStream& out, JITType jitType) const |
| 184 | { |
| 185 | out.print(inferredName(), "#" , hashAsStringIfPossible()); |
| 186 | out.print(":[" , RawPointer(this), "->" ); |
| 187 | if (!!m_alternative) |
| 188 | out.print(RawPointer(alternative()), "->" ); |
| 189 | out.print(RawPointer(ownerExecutable()), ", " , jitType, codeType()); |
| 190 | |
| 191 | if (codeType() == FunctionCode) |
| 192 | out.print(specializationKind()); |
| 193 | out.print(", " , instructionsSize()); |
| 194 | if (this->jitType() == JITType::BaselineJIT && m_shouldAlwaysBeInlined) |
| 195 | out.print(" (ShouldAlwaysBeInlined)" ); |
| 196 | if (ownerExecutable()->neverInline()) |
| 197 | out.print(" (NeverInline)" ); |
| 198 | if (ownerExecutable()->neverOptimize()) |
| 199 | out.print(" (NeverOptimize)" ); |
| 200 | else if (ownerExecutable()->neverFTLOptimize()) |
| 201 | out.print(" (NeverFTLOptimize)" ); |
| 202 | if (ownerExecutable()->didTryToEnterInLoop()) |
| 203 | out.print(" (DidTryToEnterInLoop)" ); |
| 204 | if (ownerExecutable()->isStrictMode()) |
| 205 | out.print(" (StrictMode)" ); |
| 206 | if (m_didFailJITCompilation) |
| 207 | out.print(" (JITFail)" ); |
| 208 | if (this->jitType() == JITType::BaselineJIT && m_didFailFTLCompilation) |
| 209 | out.print(" (FTLFail)" ); |
| 210 | if (this->jitType() == JITType::BaselineJIT && m_hasBeenCompiledWithFTL) |
| 211 | out.print(" (HadFTLReplacement)" ); |
| 212 | out.print("]" ); |
| 213 | } |
| 214 | |
| 215 | void CodeBlock::dump(PrintStream& out) const |
| 216 | { |
| 217 | dumpAssumingJITType(out, jitType()); |
| 218 | } |
| 219 | |
| 220 | void CodeBlock::dumpSource() |
| 221 | { |
| 222 | dumpSource(WTF::dataFile()); |
| 223 | } |
| 224 | |
| 225 | void CodeBlock::dumpSource(PrintStream& out) |
| 226 | { |
| 227 | ScriptExecutable* executable = ownerExecutable(); |
| 228 | if (executable->isFunctionExecutable()) { |
| 229 | FunctionExecutable* functionExecutable = reinterpret_cast<FunctionExecutable*>(executable); |
| 230 | StringView source = functionExecutable->source().provider()->getRange( |
| 231 | functionExecutable->parametersStartOffset(), |
| 232 | functionExecutable->typeProfilingEndOffset(*vm()) + 1); // Type profiling end offset is the character before the '}'. |
| 233 | |
| 234 | out.print("function " , inferredName(), source); |
| 235 | return; |
| 236 | } |
| 237 | out.print(executable->source().view()); |
| 238 | } |
| 239 | |
| 240 | void CodeBlock::dumpBytecode() |
| 241 | { |
| 242 | dumpBytecode(WTF::dataFile()); |
| 243 | } |
| 244 | |
| 245 | void CodeBlock::dumpBytecode(PrintStream& out) |
| 246 | { |
| 247 | ICStatusMap statusMap; |
| 248 | getICStatusMap(statusMap); |
| 249 | BytecodeDumper<CodeBlock>::dumpBlock(this, instructions(), out, statusMap); |
| 250 | } |
| 251 | |
| 252 | void CodeBlock::dumpBytecode(PrintStream& out, const InstructionStream::Ref& it, const ICStatusMap& statusMap) |
| 253 | { |
| 254 | BytecodeDumper<CodeBlock>::dumpBytecode(this, out, it, statusMap); |
| 255 | } |
| 256 | |
| 257 | void CodeBlock::dumpBytecode(PrintStream& out, unsigned bytecodeOffset, const ICStatusMap& statusMap) |
| 258 | { |
| 259 | const auto it = instructions().at(bytecodeOffset); |
| 260 | dumpBytecode(out, it, statusMap); |
| 261 | } |
| 262 | |
| 263 | namespace { |
| 264 | |
| 265 | class PutToScopeFireDetail : public FireDetail { |
| 266 | public: |
| 267 | PutToScopeFireDetail(CodeBlock* codeBlock, const Identifier& ident) |
| 268 | : m_codeBlock(codeBlock) |
| 269 | , m_ident(ident) |
| 270 | { |
| 271 | } |
| 272 | |
| 273 | void dump(PrintStream& out) const override |
| 274 | { |
| 275 | out.print("Linking put_to_scope in " , FunctionExecutableDump(jsCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())), " for " , m_ident); |
| 276 | } |
| 277 | |
| 278 | private: |
| 279 | CodeBlock* m_codeBlock; |
| 280 | const Identifier& m_ident; |
| 281 | }; |
| 282 | |
| 283 | } // anonymous namespace |
| 284 | |
| 285 | CodeBlock::CodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, CodeBlock& other) |
| 286 | : JSCell(*vm, structure) |
| 287 | , m_globalObject(other.m_globalObject) |
| 288 | , m_shouldAlwaysBeInlined(true) |
| 289 | #if ENABLE(JIT) |
| 290 | , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| 291 | #endif |
| 292 | , m_didFailJITCompilation(false) |
| 293 | , m_didFailFTLCompilation(false) |
| 294 | , m_hasBeenCompiledWithFTL(false) |
| 295 | , m_numCalleeLocals(other.m_numCalleeLocals) |
| 296 | , m_numVars(other.m_numVars) |
| 297 | , m_numberOfArgumentsToSkip(other.m_numberOfArgumentsToSkip) |
| 298 | , m_hasDebuggerStatement(false) |
| 299 | , m_steppingMode(SteppingModeDisabled) |
| 300 | , m_numBreakpoints(0) |
| 301 | , m_bytecodeCost(other.m_bytecodeCost) |
| 302 | , m_scopeRegister(other.m_scopeRegister) |
| 303 | , m_hash(other.m_hash) |
| 304 | , m_unlinkedCode(*other.vm(), this, other.m_unlinkedCode.get()) |
| 305 | , m_ownerExecutable(*other.vm(), this, other.m_ownerExecutable.get()) |
| 306 | , m_vm(other.m_vm) |
| 307 | , m_instructionsRawPointer(other.m_instructionsRawPointer) |
| 308 | , m_constantRegisters(other.m_constantRegisters) |
| 309 | , m_constantsSourceCodeRepresentation(other.m_constantsSourceCodeRepresentation) |
| 310 | , m_functionDecls(other.m_functionDecls) |
| 311 | , m_functionExprs(other.m_functionExprs) |
| 312 | , m_osrExitCounter(0) |
| 313 | , m_optimizationDelayCounter(0) |
| 314 | , m_reoptimizationRetryCounter(0) |
| 315 | , m_metadata(other.m_metadata) |
| 316 | , m_creationTime(MonotonicTime::now()) |
| 317 | { |
| 318 | ASSERT(heap()->isDeferred()); |
| 319 | ASSERT(m_scopeRegister.isLocal()); |
| 320 | |
| 321 | ASSERT(source().provider()); |
| 322 | setNumParameters(other.numParameters()); |
| 323 | |
| 324 | vm->heap.codeBlockSet().add(this); |
| 325 | } |
| 326 | |
| 327 | void CodeBlock::finishCreation(VM& vm, CopyParsedBlockTag, CodeBlock& other) |
| 328 | { |
| 329 | Base::finishCreation(vm); |
| 330 | finishCreationCommon(vm); |
| 331 | |
| 332 | optimizeAfterWarmUp(); |
| 333 | jitAfterWarmUp(); |
| 334 | |
| 335 | if (other.m_rareData) { |
| 336 | createRareDataIfNecessary(); |
| 337 | |
| 338 | m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; |
| 339 | m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables; |
| 340 | m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | CodeBlock::CodeBlock(VM* vm, Structure* structure, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope) |
| 345 | : JSCell(*vm, structure) |
| 346 | , m_globalObject(*vm, this, scope->globalObject(*vm)) |
| 347 | , m_shouldAlwaysBeInlined(true) |
| 348 | #if ENABLE(JIT) |
| 349 | , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| 350 | #endif |
| 351 | , m_didFailJITCompilation(false) |
| 352 | , m_didFailFTLCompilation(false) |
| 353 | , m_hasBeenCompiledWithFTL(false) |
| 354 | , m_numCalleeLocals(unlinkedCodeBlock->numCalleeLocals()) |
| 355 | , m_numVars(unlinkedCodeBlock->numVars()) |
| 356 | , m_hasDebuggerStatement(false) |
| 357 | , m_steppingMode(SteppingModeDisabled) |
| 358 | , m_numBreakpoints(0) |
| 359 | , m_scopeRegister(unlinkedCodeBlock->scopeRegister()) |
| 360 | , m_unlinkedCode(*vm, this, unlinkedCodeBlock) |
| 361 | , m_ownerExecutable(*vm, this, ownerExecutable) |
| 362 | , m_vm(vm) |
| 363 | , m_instructionsRawPointer(unlinkedCodeBlock->instructions().rawPointer()) |
| 364 | , m_osrExitCounter(0) |
| 365 | , m_optimizationDelayCounter(0) |
| 366 | , m_reoptimizationRetryCounter(0) |
| 367 | , m_metadata(unlinkedCodeBlock->metadata().link()) |
| 368 | , m_creationTime(MonotonicTime::now()) |
| 369 | { |
| 370 | ASSERT(heap()->isDeferred()); |
| 371 | ASSERT(m_scopeRegister.isLocal()); |
| 372 | |
| 373 | ASSERT(source().provider()); |
| 374 | setNumParameters(unlinkedCodeBlock->numParameters()); |
| 375 | |
| 376 | vm->heap.codeBlockSet().add(this); |
| 377 | } |
| 378 | |
| 379 | // The main purpose of this function is to generate linked bytecode from unlinked bytecode. The process |
| 380 | // of linking is taking an abstract representation of bytecode and tying it to a GlobalObject and scope |
| 381 | // chain. For example, this process allows us to cache the depth of lexical environment reads that reach |
| 382 | // outside of this CodeBlock's compilation unit. It also allows us to generate particular constants that |
| 383 | // we can't generate during unlinked bytecode generation. This process is not allowed to generate control |
| 384 | // flow or introduce new locals. The reason for this is we rely on liveness analysis to be the same for |
| 385 | // all the CodeBlocks of an UnlinkedCodeBlock. We rely on this fact by caching the liveness analysis |
| 386 | // inside UnlinkedCodeBlock. |
| 387 | bool CodeBlock::finishCreation(VM& vm, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, |
| 388 | JSScope* scope) |
| 389 | { |
| 390 | Base::finishCreation(vm); |
| 391 | finishCreationCommon(vm); |
| 392 | |
| 393 | auto throwScope = DECLARE_THROW_SCOPE(vm); |
| 394 | |
| 395 | if (m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes() || m_unlinkedCode->wasCompiledWithControlFlowProfilerOpcodes()) |
| 396 | vm.functionHasExecutedCache()->removeUnexecutedRange(ownerExecutable->sourceID(), ownerExecutable->typeProfilingStartOffset(vm), ownerExecutable->typeProfilingEndOffset(vm)); |
| 397 | |
| 398 | ScriptExecutable* topLevelExecutable = ownerExecutable->topLevelExecutable(); |
| 399 | setConstantRegisters(unlinkedCodeBlock->constantRegisters(), unlinkedCodeBlock->constantsSourceCodeRepresentation(), topLevelExecutable); |
| 400 | RETURN_IF_EXCEPTION(throwScope, false); |
| 401 | |
| 402 | for (unsigned i = 0; i < LinkTimeConstantCount; i++) { |
| 403 | LinkTimeConstant type = static_cast<LinkTimeConstant>(i); |
| 404 | if (unsigned registerIndex = unlinkedCodeBlock->registerIndexForLinkTimeConstant(type)) |
| 405 | m_constantRegisters[registerIndex].set(vm, this, m_globalObject->jsCellForLinkTimeConstant(type)); |
| 406 | } |
| 407 | |
| 408 | // We already have the cloned symbol table for the module environment since we need to instantiate |
| 409 | // the module environments before linking the code block. We replace the stored symbol table with the already cloned one. |
| 410 | if (UnlinkedModuleProgramCodeBlock* unlinkedModuleProgramCodeBlock = jsDynamicCast<UnlinkedModuleProgramCodeBlock*>(vm, unlinkedCodeBlock)) { |
| 411 | SymbolTable* clonedSymbolTable = jsCast<ModuleProgramExecutable*>(ownerExecutable)->moduleEnvironmentSymbolTable(); |
| 412 | if (m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes()) { |
| 413 | ConcurrentJSLocker locker(clonedSymbolTable->m_lock); |
| 414 | clonedSymbolTable->prepareForTypeProfiling(locker); |
| 415 | } |
| 416 | replaceConstant(unlinkedModuleProgramCodeBlock->moduleEnvironmentSymbolTableConstantRegisterOffset(), clonedSymbolTable); |
| 417 | } |
| 418 | |
| 419 | bool shouldUpdateFunctionHasExecutedCache = m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes() || m_unlinkedCode->wasCompiledWithControlFlowProfilerOpcodes(); |
| 420 | m_functionDecls = RefCountedArray<WriteBarrier<FunctionExecutable>>(unlinkedCodeBlock->numberOfFunctionDecls()); |
| 421 | for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { |
| 422 | UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); |
| 423 | if (shouldUpdateFunctionHasExecutedCache) |
| 424 | vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); |
| 425 | m_functionDecls[i].set(vm, this, unlinkedExecutable->link(vm, topLevelExecutable, ownerExecutable->source())); |
| 426 | } |
| 427 | |
| 428 | m_functionExprs = RefCountedArray<WriteBarrier<FunctionExecutable>>(unlinkedCodeBlock->numberOfFunctionExprs()); |
| 429 | for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { |
| 430 | UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); |
| 431 | if (shouldUpdateFunctionHasExecutedCache) |
| 432 | vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); |
| 433 | m_functionExprs[i].set(vm, this, unlinkedExecutable->link(vm, topLevelExecutable, ownerExecutable->source())); |
| 434 | } |
| 435 | |
| 436 | if (unlinkedCodeBlock->hasRareData()) { |
| 437 | createRareDataIfNecessary(); |
| 438 | |
| 439 | setConstantIdentifierSetRegisters(vm, unlinkedCodeBlock->constantIdentifierSets()); |
| 440 | RETURN_IF_EXCEPTION(throwScope, false); |
| 441 | |
| 442 | if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { |
| 443 | m_rareData->m_exceptionHandlers.resizeToFit(count); |
| 444 | for (size_t i = 0; i < count; i++) { |
| 445 | const UnlinkedHandlerInfo& unlinkedHandler = unlinkedCodeBlock->exceptionHandler(i); |
| 446 | HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; |
| 447 | #if ENABLE(JIT) |
| 448 | MacroAssemblerCodePtr<BytecodePtrTag> codePtr = instructions().at(unlinkedHandler.target)->isWide() |
| 449 | ? LLInt::getWideCodePtr<BytecodePtrTag>(op_catch) |
| 450 | : LLInt::getCodePtr<BytecodePtrTag>(op_catch); |
| 451 | handler.initialize(unlinkedHandler, CodeLocationLabel<ExceptionHandlerPtrTag>(codePtr.retagged<ExceptionHandlerPtrTag>())); |
| 452 | #else |
| 453 | handler.initialize(unlinkedHandler); |
| 454 | #endif |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { |
| 459 | m_rareData->m_stringSwitchJumpTables.grow(count); |
| 460 | for (size_t i = 0; i < count; i++) { |
| 461 | UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); |
| 462 | UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); |
| 463 | for (; ptr != end; ++ptr) { |
| 464 | OffsetLocation offset; |
| 465 | offset.branchOffset = ptr->value.branchOffset; |
| 466 | m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) { |
| 472 | m_rareData->m_switchJumpTables.grow(count); |
| 473 | for (size_t i = 0; i < count; i++) { |
| 474 | UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i); |
| 475 | SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i]; |
| 476 | destTable.branchOffsets = sourceTable.branchOffsets; |
| 477 | destTable.min = sourceTable.min; |
| 478 | } |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | // Bookkeep the strongly referenced module environments. |
| 483 | HashSet<JSModuleEnvironment*> stronglyReferencedModuleEnvironments; |
| 484 | |
| 485 | auto link_profile = [&](const auto& instruction, auto /*bytecode*/, auto& metadata) { |
| 486 | m_numberOfNonArgumentValueProfiles++; |
| 487 | metadata.m_profile.m_bytecodeOffset = instruction.offset(); |
| 488 | }; |
| 489 | |
| 490 | auto link_arrayProfile = [&](const auto& instruction, auto /*bytecode*/, auto& metadata) { |
| 491 | metadata.m_arrayProfile.m_bytecodeOffset = instruction.offset(); |
| 492 | }; |
| 493 | |
| 494 | auto link_objectAllocationProfile = [&](const auto& /*instruction*/, auto bytecode, auto& metadata) { |
| 495 | metadata.m_objectAllocationProfile.initializeProfile(vm, m_globalObject.get(), this, m_globalObject->objectPrototype(), bytecode.m_inlineCapacity); |
| 496 | }; |
| 497 | |
| 498 | auto link_arrayAllocationProfile = [&](const auto& /*instruction*/, auto bytecode, auto& metadata) { |
| 499 | metadata.m_arrayAllocationProfile.initializeIndexingMode(bytecode.m_recommendedIndexingType); |
| 500 | }; |
| 501 | |
| 502 | auto link_hitCountForLLIntCaching = [&](const auto& /*instruction*/, auto /*bytecode*/, auto& metadata) { |
| 503 | metadata.m_hitCountForLLIntCaching = Options::prototypeHitCountForLLIntCaching(); |
| 504 | }; |
| 505 | |
| 506 | #define LINK_FIELD(__field) \ |
| 507 | WTF_LAZY_JOIN(link_, __field)(instruction, bytecode, metadata); |
| 508 | |
| 509 | #define INITIALIZE_METADATA(__op) \ |
| 510 | auto bytecode = instruction->as<__op>(); \ |
| 511 | auto& metadata = bytecode.metadata(this); \ |
| 512 | new (&metadata) __op::Metadata { bytecode }; \ |
| 513 | |
| 514 | #define CASE(__op) case __op::opcodeID |
| 515 | |
| 516 | #define LINK(...) \ |
| 517 | CASE(WTF_LAZY_FIRST(__VA_ARGS__)): { \ |
| 518 | INITIALIZE_METADATA(WTF_LAZY_FIRST(__VA_ARGS__)) \ |
| 519 | WTF_LAZY_HAS_REST(__VA_ARGS__)({ \ |
| 520 | WTF_LAZY_FOR_EACH_TERM(LINK_FIELD, WTF_LAZY_REST_(__VA_ARGS__)) \ |
| 521 | }) \ |
| 522 | break; \ |
| 523 | } |
| 524 | |
| 525 | const InstructionStream& instructionStream = instructions(); |
| 526 | for (const auto& instruction : instructionStream) { |
| 527 | OpcodeID opcodeID = instruction->opcodeID(); |
| 528 | m_bytecodeCost += opcodeLengths[opcodeID]; |
| 529 | switch (opcodeID) { |
| 530 | LINK(OpHasIndexedProperty, arrayProfile) |
| 531 | |
| 532 | LINK(OpCallVarargs, arrayProfile, profile) |
| 533 | LINK(OpTailCallVarargs, arrayProfile, profile) |
| 534 | LINK(OpTailCallForwardArguments, arrayProfile, profile) |
| 535 | LINK(OpConstructVarargs, arrayProfile, profile) |
| 536 | LINK(OpGetByVal, arrayProfile, profile) |
| 537 | |
| 538 | LINK(OpGetDirectPname, profile) |
| 539 | LINK(OpGetByIdWithThis, profile) |
| 540 | LINK(OpTryGetById, profile) |
| 541 | LINK(OpGetByIdDirect, profile) |
| 542 | LINK(OpGetByValWithThis, profile) |
| 543 | LINK(OpGetFromArguments, profile) |
| 544 | LINK(OpToNumber, profile) |
| 545 | LINK(OpToObject, profile) |
| 546 | LINK(OpGetArgument, profile) |
| 547 | LINK(OpToThis, profile) |
| 548 | LINK(OpBitand, profile) |
| 549 | LINK(OpBitor, profile) |
| 550 | LINK(OpBitnot, profile) |
| 551 | LINK(OpBitxor, profile) |
| 552 | |
| 553 | LINK(OpGetById, profile, hitCountForLLIntCaching) |
| 554 | |
| 555 | LINK(OpCall, profile, arrayProfile) |
| 556 | LINK(OpTailCall, profile, arrayProfile) |
| 557 | LINK(OpCallEval, profile, arrayProfile) |
| 558 | LINK(OpConstruct, profile, arrayProfile) |
| 559 | |
| 560 | LINK(OpInByVal, arrayProfile) |
| 561 | LINK(OpPutByVal, arrayProfile) |
| 562 | LINK(OpPutByValDirect, arrayProfile) |
| 563 | |
| 564 | LINK(OpNewArray) |
| 565 | LINK(OpNewArrayWithSize) |
| 566 | LINK(OpNewArrayBuffer, arrayAllocationProfile) |
| 567 | |
| 568 | LINK(OpNewObject, objectAllocationProfile) |
| 569 | |
| 570 | LINK(OpPutById) |
| 571 | LINK(OpCreateThis) |
| 572 | |
| 573 | LINK(OpAdd) |
| 574 | LINK(OpMul) |
| 575 | LINK(OpDiv) |
| 576 | LINK(OpSub) |
| 577 | |
| 578 | LINK(OpNegate) |
| 579 | |
| 580 | LINK(OpJneqPtr) |
| 581 | |
| 582 | LINK(OpCatch) |
| 583 | LINK(OpProfileControlFlow) |
| 584 | |
| 585 | case op_resolve_scope: { |
| 586 | INITIALIZE_METADATA(OpResolveScope) |
| 587 | |
| 588 | const Identifier& ident = identifier(bytecode.m_var); |
| 589 | RELEASE_ASSERT(bytecode.m_resolveType != LocalClosureVar); |
| 590 | |
| 591 | ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), bytecode.m_localScopeDepth, scope, ident, Get, bytecode.m_resolveType, InitializationMode::NotInitialization); |
| 592 | RETURN_IF_EXCEPTION(throwScope, false); |
| 593 | |
| 594 | metadata.m_resolveType = op.type; |
| 595 | metadata.m_localScopeDepth = op.depth; |
| 596 | if (op.lexicalEnvironment) { |
| 597 | if (op.type == ModuleVar) { |
| 598 | // Keep the linked module environment strongly referenced. |
| 599 | if (stronglyReferencedModuleEnvironments.add(jsCast<JSModuleEnvironment*>(op.lexicalEnvironment)).isNewEntry) |
| 600 | addConstant(op.lexicalEnvironment); |
| 601 | metadata.m_lexicalEnvironment.set(vm, this, op.lexicalEnvironment); |
| 602 | } else |
| 603 | metadata.m_symbolTable.set(vm, this, op.lexicalEnvironment->symbolTable()); |
| 604 | } else if (JSScope* constantScope = JSScope::constantScopeForCodeBlock(op.type, this)) { |
| 605 | metadata.m_constantScope.set(vm, this, constantScope); |
| 606 | if (op.type == GlobalProperty || op.type == GlobalPropertyWithVarInjectionChecks) |
| 607 | metadata.m_globalLexicalBindingEpoch = m_globalObject->globalLexicalBindingEpoch(); |
| 608 | } else |
| 609 | metadata.m_globalObject = nullptr; |
| 610 | break; |
| 611 | } |
| 612 | |
| 613 | case op_get_from_scope: { |
| 614 | INITIALIZE_METADATA(OpGetFromScope) |
| 615 | |
| 616 | link_profile(instruction, bytecode, metadata); |
| 617 | metadata.m_watchpointSet = nullptr; |
| 618 | |
| 619 | ASSERT(!isInitialization(bytecode.m_getPutInfo.initializationMode())); |
| 620 | if (bytecode.m_getPutInfo.resolveType() == LocalClosureVar) { |
| 621 | metadata.m_getPutInfo = GetPutInfo(bytecode.m_getPutInfo.resolveMode(), ClosureVar, bytecode.m_getPutInfo.initializationMode()); |
| 622 | break; |
| 623 | } |
| 624 | |
| 625 | const Identifier& ident = identifier(bytecode.m_var); |
| 626 | ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), bytecode.m_localScopeDepth, scope, ident, Get, bytecode.m_getPutInfo.resolveType(), InitializationMode::NotInitialization); |
| 627 | RETURN_IF_EXCEPTION(throwScope, false); |
| 628 | |
| 629 | metadata.m_getPutInfo = GetPutInfo(bytecode.m_getPutInfo.resolveMode(), op.type, bytecode.m_getPutInfo.initializationMode()); |
| 630 | if (op.type == ModuleVar) |
| 631 | metadata.m_getPutInfo = GetPutInfo(bytecode.m_getPutInfo.resolveMode(), ClosureVar, bytecode.m_getPutInfo.initializationMode()); |
| 632 | if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) |
| 633 | metadata.m_watchpointSet = op.watchpointSet; |
| 634 | else if (op.structure) |
| 635 | metadata.m_structure.set(vm, this, op.structure); |
| 636 | metadata.m_operand = op.operand; |
| 637 | break; |
| 638 | } |
| 639 | |
| 640 | case op_put_to_scope: { |
| 641 | INITIALIZE_METADATA(OpPutToScope) |
| 642 | |
| 643 | if (bytecode.m_getPutInfo.resolveType() == LocalClosureVar) { |
| 644 | // Only do watching if the property we're putting to is not anonymous. |
| 645 | if (bytecode.m_var != UINT_MAX) { |
| 646 | SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(bytecode.m_symbolTableOrScopeDepth.symbolTable().offset())); |
| 647 | const Identifier& ident = identifier(bytecode.m_var); |
| 648 | ConcurrentJSLocker locker(symbolTable->m_lock); |
| 649 | auto iter = symbolTable->find(locker, ident.impl()); |
| 650 | ASSERT(iter != symbolTable->end(locker)); |
| 651 | iter->value.prepareToWatch(); |
| 652 | metadata.m_watchpointSet = iter->value.watchpointSet(); |
| 653 | } else |
| 654 | metadata.m_watchpointSet = nullptr; |
| 655 | break; |
| 656 | } |
| 657 | |
| 658 | const Identifier& ident = identifier(bytecode.m_var); |
| 659 | metadata.m_watchpointSet = nullptr; |
| 660 | ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), bytecode.m_symbolTableOrScopeDepth.scopeDepth(), scope, ident, Put, bytecode.m_getPutInfo.resolveType(), bytecode.m_getPutInfo.initializationMode()); |
| 661 | RETURN_IF_EXCEPTION(throwScope, false); |
| 662 | |
| 663 | metadata.m_getPutInfo = GetPutInfo(bytecode.m_getPutInfo.resolveMode(), op.type, bytecode.m_getPutInfo.initializationMode()); |
| 664 | if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) |
| 665 | metadata.m_watchpointSet = op.watchpointSet; |
| 666 | else if (op.type == ClosureVar || op.type == ClosureVarWithVarInjectionChecks) { |
| 667 | if (op.watchpointSet) |
| 668 | op.watchpointSet->invalidate(vm, PutToScopeFireDetail(this, ident)); |
| 669 | } else if (op.structure) |
| 670 | metadata.m_structure.set(vm, this, op.structure); |
| 671 | metadata.m_operand = op.operand; |
| 672 | break; |
| 673 | } |
| 674 | |
| 675 | case op_profile_type: { |
| 676 | RELEASE_ASSERT(m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes()); |
| 677 | |
| 678 | INITIALIZE_METADATA(OpProfileType) |
| 679 | |
| 680 | size_t instructionOffset = instruction.offset() + instruction->size() - 1; |
| 681 | unsigned divotStart, divotEnd; |
| 682 | GlobalVariableID globalVariableID = 0; |
| 683 | RefPtr<TypeSet> globalTypeSet; |
| 684 | bool shouldAnalyze = m_unlinkedCode->typeProfilerExpressionInfoForBytecodeOffset(instructionOffset, divotStart, divotEnd); |
| 685 | SymbolTable* symbolTable = nullptr; |
| 686 | |
| 687 | switch (bytecode.m_flag) { |
| 688 | case ProfileTypeBytecodeClosureVar: { |
| 689 | const Identifier& ident = identifier(bytecode.m_identifier); |
| 690 | unsigned localScopeDepth = bytecode.m_symbolTableOrScopeDepth.scopeDepth(); |
| 691 | // Even though type profiling may be profiling either a Get or a Put, we can always claim a Get because |
| 692 | // we're abstractly "read"ing from a JSScope. |
| 693 | ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, bytecode.m_resolveType, InitializationMode::NotInitialization); |
| 694 | RETURN_IF_EXCEPTION(throwScope, false); |
| 695 | |
| 696 | if (op.type == ClosureVar || op.type == ModuleVar) |
| 697 | symbolTable = op.lexicalEnvironment->symbolTable(); |
| 698 | else if (op.type == GlobalVar) |
| 699 | symbolTable = m_globalObject.get()->symbolTable(); |
| 700 | |
| 701 | UniquedStringImpl* impl = (op.type == ModuleVar) ? op.importedName.get() : ident.impl(); |
| 702 | if (symbolTable) { |
| 703 | ConcurrentJSLocker locker(symbolTable->m_lock); |
| 704 | // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. |
| 705 | symbolTable->prepareForTypeProfiling(locker); |
| 706 | globalVariableID = symbolTable->uniqueIDForVariable(locker, impl, vm); |
| 707 | globalTypeSet = symbolTable->globalTypeSetForVariable(locker, impl, vm); |
| 708 | } else |
| 709 | globalVariableID = TypeProfilerNoGlobalIDExists; |
| 710 | |
| 711 | break; |
| 712 | } |
| 713 | case ProfileTypeBytecodeLocallyResolved: { |
| 714 | int symbolTableIndex = bytecode.m_symbolTableOrScopeDepth.symbolTable().offset(); |
| 715 | SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(symbolTableIndex)); |
| 716 | const Identifier& ident = identifier(bytecode.m_identifier); |
| 717 | ConcurrentJSLocker locker(symbolTable->m_lock); |
| 718 | // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. |
| 719 | globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), vm); |
| 720 | globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), vm); |
| 721 | |
| 722 | break; |
| 723 | } |
| 724 | case ProfileTypeBytecodeDoesNotHaveGlobalID: |
| 725 | case ProfileTypeBytecodeFunctionArgument: { |
| 726 | globalVariableID = TypeProfilerNoGlobalIDExists; |
| 727 | break; |
| 728 | } |
| 729 | case ProfileTypeBytecodeFunctionReturnStatement: { |
| 730 | RELEASE_ASSERT(ownerExecutable->isFunctionExecutable()); |
| 731 | globalTypeSet = jsCast<FunctionExecutable*>(ownerExecutable)->returnStatementTypeSet(); |
| 732 | globalVariableID = TypeProfilerReturnStatement; |
| 733 | if (!shouldAnalyze) { |
| 734 | // Because a return statement can be added implicitly to return undefined at the end of a function, |
| 735 | // and these nodes don't emit expression ranges because they aren't in the actual source text of |
| 736 | // the user's program, give the type profiler some range to identify these return statements. |
| 737 | // Currently, the text offset that is used as identification is "f" in the function keyword |
| 738 | // and is stored on TypeLocation's m_divotForFunctionOffsetIfReturnStatement member variable. |
| 739 | divotStart = divotEnd = ownerExecutable->typeProfilingStartOffset(vm); |
| 740 | shouldAnalyze = true; |
| 741 | } |
| 742 | break; |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | std::pair<TypeLocation*, bool> locationPair = vm.typeProfiler()->typeLocationCache()->getTypeLocation(globalVariableID, |
| 747 | ownerExecutable->sourceID(), divotStart, divotEnd, WTFMove(globalTypeSet), &vm); |
| 748 | TypeLocation* location = locationPair.first; |
| 749 | bool isNewLocation = locationPair.second; |
| 750 | |
| 751 | if (bytecode.m_flag == ProfileTypeBytecodeFunctionReturnStatement) |
| 752 | location->m_divotForFunctionOffsetIfReturnStatement = ownerExecutable->typeProfilingStartOffset(vm); |
| 753 | |
| 754 | if (shouldAnalyze && isNewLocation) |
| 755 | vm.typeProfiler()->insertNewLocation(location); |
| 756 | |
| 757 | metadata.m_typeLocation = location; |
| 758 | break; |
| 759 | } |
| 760 | |
| 761 | case op_debug: { |
| 762 | if (instruction->as<OpDebug>().m_debugHookType == DidReachBreakpoint) |
| 763 | m_hasDebuggerStatement = true; |
| 764 | break; |
| 765 | } |
| 766 | |
| 767 | case op_create_rest: { |
| 768 | int numberOfArgumentsToSkip = instruction->as<OpCreateRest>().m_numParametersToSkip; |
| 769 | ASSERT_UNUSED(numberOfArgumentsToSkip, numberOfArgumentsToSkip >= 0); |
| 770 | // This is used when rematerializing the rest parameter during OSR exit in the FTL JIT."); |
| 771 | m_numberOfArgumentsToSkip = numberOfArgumentsToSkip; |
| 772 | break; |
| 773 | } |
| 774 | |
| 775 | default: |
| 776 | break; |
| 777 | } |
| 778 | } |
| 779 | |
| 780 | #undef CASE |
| 781 | #undef INITIALIZE_METADATA |
| 782 | #undef LINK_FIELD |
| 783 | #undef LINK |
| 784 | |
| 785 | if (m_unlinkedCode->wasCompiledWithControlFlowProfilerOpcodes()) |
| 786 | insertBasicBlockBoundariesForControlFlowProfiler(); |
| 787 | |
| 788 | // Set optimization thresholds only after instructions is initialized, since these |
| 789 | // rely on the instruction count (and are in theory permitted to also inspect the |
| 790 | // instruction stream to more accurate assess the cost of tier-up). |
| 791 | optimizeAfterWarmUp(); |
| 792 | jitAfterWarmUp(); |
| 793 | |
| 794 | // If the concurrent thread will want the code block's hash, then compute it here |
| 795 | // synchronously. |
| 796 | if (Options::alwaysComputeHash()) |
| 797 | hash(); |
| 798 | |
| 799 | if (Options::dumpGeneratedBytecodes()) |
| 800 | dumpBytecode(); |
| 801 | |
| 802 | if (m_metadata) |
| 803 | vm.heap.reportExtraMemoryAllocated(m_metadata->sizeInBytes()); |
| 804 | |
| 805 | return true; |
| 806 | } |
| 807 | |
| 808 | void CodeBlock::finishCreationCommon(VM& vm) |
| 809 | { |
| 810 | m_ownerEdge.set(vm, this, ExecutableToCodeBlockEdge::create(vm, this)); |
| 811 | } |
| 812 | |
| 813 | CodeBlock::~CodeBlock() |
| 814 | { |
| 815 | VM& vm = *m_vm; |
| 816 | |
| 817 | vm.heap.codeBlockSet().remove(this); |
| 818 | |
| 819 | if (UNLIKELY(vm.m_perBytecodeProfiler)) |
| 820 | vm.m_perBytecodeProfiler->notifyDestruction(this); |
| 821 | |
| 822 | if (!vm.heap.isShuttingDown() && unlinkedCodeBlock()->didOptimize() == MixedTriState) |
| 823 | unlinkedCodeBlock()->setDidOptimize(FalseTriState); |
| 824 | |
| 825 | #if ENABLE(VERBOSE_VALUE_PROFILE) |
| 826 | dumpValueProfiles(); |
| 827 | #endif |
| 828 | |
| 829 | // We may be destroyed before any CodeBlocks that refer to us are destroyed. |
| 830 | // Consider that two CodeBlocks become unreachable at the same time. There |
| 831 | // is no guarantee about the order in which the CodeBlocks are destroyed. |
| 832 | // So, if we don't remove incoming calls, and get destroyed before the |
| 833 | // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's |
| 834 | // destructor will try to remove nodes from our (no longer valid) linked list. |
| 835 | unlinkIncomingCalls(); |
| 836 | |
| 837 | // Note that our outgoing calls will be removed from other CodeBlocks' |
| 838 | // m_incomingCalls linked lists through the execution of the ~CallLinkInfo |
| 839 | // destructors. |
| 840 | |
| 841 | #if ENABLE(JIT) |
| 842 | if (auto* jitData = m_jitData.get()) { |
| 843 | for (StructureStubInfo* stubInfo : jitData->m_stubInfos) { |
| 844 | stubInfo->aboutToDie(); |
| 845 | stubInfo->deref(); |
| 846 | } |
| 847 | } |
| 848 | #endif // ENABLE(JIT) |
| 849 | } |
| 850 | |
| 851 | void CodeBlock::setConstantIdentifierSetRegisters(VM& vm, const Vector<ConstantIdentifierSetEntry>& constants) |
| 852 | { |
| 853 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 854 | JSGlobalObject* globalObject = m_globalObject.get(); |
| 855 | ExecState* exec = globalObject->globalExec(); |
| 856 | |
| 857 | for (const auto& entry : constants) { |
| 858 | const IdentifierSet& set = entry.first; |
| 859 | |
| 860 | Structure* setStructure = globalObject->setStructure(); |
| 861 | RETURN_IF_EXCEPTION(scope, void()); |
| 862 | JSSet* jsSet = JSSet::create(exec, vm, setStructure, set.size()); |
| 863 | RETURN_IF_EXCEPTION(scope, void()); |
| 864 | |
| 865 | for (auto setEntry : set) { |
| 866 | JSString* jsString = jsOwnedString(&vm, setEntry.get()); |
| 867 | jsSet->add(exec, jsString); |
| 868 | RETURN_IF_EXCEPTION(scope, void()); |
| 869 | } |
| 870 | m_constantRegisters[entry.second].set(vm, this, jsSet); |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | void CodeBlock::setConstantRegisters(const Vector<WriteBarrier<Unknown>>& constants, const Vector<SourceCodeRepresentation>& constantsSourceCodeRepresentation, ScriptExecutable* topLevelExecutable) |
| 875 | { |
| 876 | VM& vm = *m_vm; |
| 877 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 878 | JSGlobalObject* globalObject = m_globalObject.get(); |
| 879 | ExecState* exec = globalObject->globalExec(); |
| 880 | |
| 881 | ASSERT(constants.size() == constantsSourceCodeRepresentation.size()); |
| 882 | size_t count = constants.size(); |
| 883 | m_constantRegisters.resizeToFit(count); |
| 884 | for (size_t i = 0; i < count; i++) { |
| 885 | JSValue constant = constants[i].get(); |
| 886 | |
| 887 | if (!constant.isEmpty()) { |
| 888 | if (constant.isCell()) { |
| 889 | JSCell* cell = constant.asCell(); |
| 890 | if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(vm, cell)) { |
| 891 | if (m_unlinkedCode->wasCompiledWithTypeProfilerOpcodes()) { |
| 892 | ConcurrentJSLocker locker(symbolTable->m_lock); |
| 893 | symbolTable->prepareForTypeProfiling(locker); |
| 894 | } |
| 895 | |
| 896 | SymbolTable* clone = symbolTable->cloneScopePart(vm); |
| 897 | if (wasCompiledWithDebuggingOpcodes()) |
| 898 | clone->setRareDataCodeBlock(this); |
| 899 | |
| 900 | constant = clone; |
| 901 | } else if (auto* descriptor = jsDynamicCast<JSTemplateObjectDescriptor*>(vm, cell)) { |
| 902 | auto* templateObject = topLevelExecutable->createTemplateObject(exec, descriptor); |
| 903 | RETURN_IF_EXCEPTION(scope, void()); |
| 904 | constant = templateObject; |
| 905 | } |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | m_constantRegisters[i].set(vm, this, constant); |
| 910 | } |
| 911 | |
| 912 | m_constantsSourceCodeRepresentation = constantsSourceCodeRepresentation; |
| 913 | } |
| 914 | |
| 915 | void CodeBlock::setAlternative(VM& vm, CodeBlock* alternative) |
| 916 | { |
| 917 | RELEASE_ASSERT(alternative); |
| 918 | RELEASE_ASSERT(alternative->jitCode()); |
| 919 | m_alternative.set(vm, this, alternative); |
| 920 | } |
| 921 | |
| 922 | void CodeBlock::setNumParameters(int newValue) |
| 923 | { |
| 924 | m_numParameters = newValue; |
| 925 | |
| 926 | m_argumentValueProfiles = RefCountedArray<ValueProfile>(vm()->canUseJIT() ? newValue : 0); |
| 927 | } |
| 928 | |
| 929 | CodeBlock* CodeBlock::specialOSREntryBlockOrNull() |
| 930 | { |
| 931 | #if ENABLE(FTL_JIT) |
| 932 | if (jitType() != JITType::DFGJIT) |
| 933 | return 0; |
| 934 | DFG::JITCode* jitCode = m_jitCode->dfg(); |
| 935 | return jitCode->osrEntryBlock(); |
| 936 | #else // ENABLE(FTL_JIT) |
| 937 | return 0; |
| 938 | #endif // ENABLE(FTL_JIT) |
| 939 | } |
| 940 | |
| 941 | size_t CodeBlock::estimatedSize(JSCell* cell, VM& vm) |
| 942 | { |
| 943 | CodeBlock* thisObject = jsCast<CodeBlock*>(cell); |
| 944 | size_t = 0; |
| 945 | if (thisObject->m_metadata) |
| 946 | extraMemoryAllocated += thisObject->m_metadata->sizeInBytes(); |
| 947 | RefPtr<JITCode> jitCode = thisObject->m_jitCode; |
| 948 | if (jitCode && !jitCode->isShared()) |
| 949 | extraMemoryAllocated += jitCode->size(); |
| 950 | return Base::estimatedSize(cell, vm) + extraMemoryAllocated; |
| 951 | } |
| 952 | |
| 953 | void CodeBlock::visitChildren(JSCell* cell, SlotVisitor& visitor) |
| 954 | { |
| 955 | CodeBlock* thisObject = jsCast<CodeBlock*>(cell); |
| 956 | ASSERT_GC_OBJECT_INHERITS(thisObject, info()); |
| 957 | Base::visitChildren(cell, visitor); |
| 958 | visitor.append(thisObject->m_ownerEdge); |
| 959 | thisObject->visitChildren(visitor); |
| 960 | } |
| 961 | |
| 962 | void CodeBlock::visitChildren(SlotVisitor& visitor) |
| 963 | { |
| 964 | ConcurrentJSLocker locker(m_lock); |
| 965 | if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) |
| 966 | visitor.appendUnbarriered(otherBlock); |
| 967 | |
| 968 | size_t = 0; |
| 969 | if (m_metadata) |
| 970 | extraMemory += m_metadata->sizeInBytes(); |
| 971 | if (m_jitCode && !m_jitCode->isShared()) |
| 972 | extraMemory += m_jitCode->size(); |
| 973 | visitor.reportExtraMemoryVisited(extraMemory); |
| 974 | |
| 975 | stronglyVisitStrongReferences(locker, visitor); |
| 976 | stronglyVisitWeakReferences(locker, visitor); |
| 977 | |
| 978 | VM::SpaceAndSet::setFor(*subspace()).add(this); |
| 979 | } |
| 980 | |
| 981 | bool CodeBlock::shouldVisitStrongly(const ConcurrentJSLocker& locker) |
| 982 | { |
| 983 | if (Options::forceCodeBlockLiveness()) |
| 984 | return true; |
| 985 | |
| 986 | if (shouldJettisonDueToOldAge(locker)) |
| 987 | return false; |
| 988 | |
| 989 | // Interpreter and Baseline JIT CodeBlocks don't need to be jettisoned when |
| 990 | // their weak references go stale. So if a basline JIT CodeBlock gets |
| 991 | // scanned, we can assume that this means that it's live. |
| 992 | if (!JITCode::isOptimizingJIT(jitType())) |
| 993 | return true; |
| 994 | |
| 995 | return false; |
| 996 | } |
| 997 | |
| 998 | bool CodeBlock::shouldJettisonDueToWeakReference(VM& vm) |
| 999 | { |
| 1000 | if (!JITCode::isOptimizingJIT(jitType())) |
| 1001 | return false; |
| 1002 | return !vm.heap.isMarked(this); |
| 1003 | } |
| 1004 | |
| 1005 | static Seconds timeToLive(JITType jitType) |
| 1006 | { |
| 1007 | if (UNLIKELY(Options::useEagerCodeBlockJettisonTiming())) { |
| 1008 | switch (jitType) { |
| 1009 | case JITType::InterpreterThunk: |
| 1010 | return 10_ms; |
| 1011 | case JITType::BaselineJIT: |
| 1012 | return 30_ms; |
| 1013 | case JITType::DFGJIT: |
| 1014 | return 40_ms; |
| 1015 | case JITType::FTLJIT: |
| 1016 | return 120_ms; |
| 1017 | default: |
| 1018 | return Seconds::infinity(); |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | switch (jitType) { |
| 1023 | case JITType::InterpreterThunk: |
| 1024 | return 5_s; |
| 1025 | case JITType::BaselineJIT: |
| 1026 | // Effectively 10 additional seconds, since BaselineJIT and |
| 1027 | // InterpreterThunk share a CodeBlock. |
| 1028 | return 15_s; |
| 1029 | case JITType::DFGJIT: |
| 1030 | return 20_s; |
| 1031 | case JITType::FTLJIT: |
| 1032 | return 60_s; |
| 1033 | default: |
| 1034 | return Seconds::infinity(); |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | bool CodeBlock::shouldJettisonDueToOldAge(const ConcurrentJSLocker&) |
| 1039 | { |
| 1040 | if (m_vm->heap.isMarked(this)) |
| 1041 | return false; |
| 1042 | |
| 1043 | if (UNLIKELY(Options::forceCodeBlockToJettisonDueToOldAge())) |
| 1044 | return true; |
| 1045 | |
| 1046 | if (timeSinceCreation() < timeToLive(jitType())) |
| 1047 | return false; |
| 1048 | |
| 1049 | return true; |
| 1050 | } |
| 1051 | |
| 1052 | #if ENABLE(DFG_JIT) |
| 1053 | static bool shouldMarkTransition(VM& vm, DFG::WeakReferenceTransition& transition) |
| 1054 | { |
| 1055 | if (transition.m_codeOrigin && !vm.heap.isMarked(transition.m_codeOrigin.get())) |
| 1056 | return false; |
| 1057 | |
| 1058 | if (!vm.heap.isMarked(transition.m_from.get())) |
| 1059 | return false; |
| 1060 | |
| 1061 | return true; |
| 1062 | } |
| 1063 | #endif // ENABLE(DFG_JIT) |
| 1064 | |
| 1065 | void CodeBlock::propagateTransitions(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| 1066 | { |
| 1067 | UNUSED_PARAM(visitor); |
| 1068 | |
| 1069 | VM& vm = *m_vm; |
| 1070 | |
| 1071 | if (jitType() == JITType::InterpreterThunk) { |
| 1072 | const Vector<InstructionStream::Offset>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); |
| 1073 | const InstructionStream& instructionStream = instructions(); |
| 1074 | for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) { |
| 1075 | auto instruction = instructionStream.at(propertyAccessInstructions[i]); |
| 1076 | if (instruction->is<OpPutById>()) { |
| 1077 | auto& metadata = instruction->as<OpPutById>().metadata(this); |
| 1078 | StructureID oldStructureID = metadata.m_oldStructureID; |
| 1079 | StructureID newStructureID = metadata.m_newStructureID; |
| 1080 | if (!oldStructureID || !newStructureID) |
| 1081 | continue; |
| 1082 | Structure* oldStructure = |
| 1083 | vm.heap.structureIDTable().get(oldStructureID); |
| 1084 | Structure* newStructure = |
| 1085 | vm.heap.structureIDTable().get(newStructureID); |
| 1086 | if (vm.heap.isMarked(oldStructure)) |
| 1087 | visitor.appendUnbarriered(newStructure); |
| 1088 | continue; |
| 1089 | } |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | #if ENABLE(JIT) |
| 1094 | if (JITCode::isJIT(jitType())) { |
| 1095 | if (auto* jitData = m_jitData.get()) { |
| 1096 | for (StructureStubInfo* stubInfo : jitData->m_stubInfos) |
| 1097 | stubInfo->propagateTransitions(visitor); |
| 1098 | } |
| 1099 | } |
| 1100 | #endif // ENABLE(JIT) |
| 1101 | |
| 1102 | #if ENABLE(DFG_JIT) |
| 1103 | if (JITCode::isOptimizingJIT(jitType())) { |
| 1104 | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| 1105 | |
| 1106 | dfgCommon->recordedStatuses.markIfCheap(visitor); |
| 1107 | |
| 1108 | for (auto& weakReference : dfgCommon->weakStructureReferences) |
| 1109 | weakReference->markIfCheap(visitor); |
| 1110 | |
| 1111 | for (auto& transition : dfgCommon->transitions) { |
| 1112 | if (shouldMarkTransition(vm, transition)) { |
| 1113 | // If the following three things are live, then the target of the |
| 1114 | // transition is also live: |
| 1115 | // |
| 1116 | // - This code block. We know it's live already because otherwise |
| 1117 | // we wouldn't be scanning ourselves. |
| 1118 | // |
| 1119 | // - The code origin of the transition. Transitions may arise from |
| 1120 | // code that was inlined. They are not relevant if the user's |
| 1121 | // object that is required for the inlinee to run is no longer |
| 1122 | // live. |
| 1123 | // |
| 1124 | // - The source of the transition. The transition checks if some |
| 1125 | // heap location holds the source, and if so, stores the target. |
| 1126 | // Hence the source must be live for the transition to be live. |
| 1127 | // |
| 1128 | // We also short-circuit the liveness if the structure is harmless |
| 1129 | // to mark (i.e. its global object and prototype are both already |
| 1130 | // live). |
| 1131 | |
| 1132 | visitor.append(transition.m_to); |
| 1133 | } |
| 1134 | } |
| 1135 | } |
| 1136 | #endif // ENABLE(DFG_JIT) |
| 1137 | } |
| 1138 | |
| 1139 | void CodeBlock::determineLiveness(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| 1140 | { |
| 1141 | UNUSED_PARAM(visitor); |
| 1142 | |
| 1143 | #if ENABLE(DFG_JIT) |
| 1144 | VM& vm = *m_vm; |
| 1145 | if (vm.heap.isMarked(this)) |
| 1146 | return; |
| 1147 | |
| 1148 | // In rare and weird cases, this could be called on a baseline CodeBlock. One that I found was |
| 1149 | // that we might decide that the CodeBlock should be jettisoned due to old age, so the |
| 1150 | // isMarked check doesn't protect us. |
| 1151 | if (!JITCode::isOptimizingJIT(jitType())) |
| 1152 | return; |
| 1153 | |
| 1154 | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| 1155 | // Now check all of our weak references. If all of them are live, then we |
| 1156 | // have proved liveness and so we scan our strong references. If at end of |
| 1157 | // GC we still have not proved liveness, then this code block is toast. |
| 1158 | bool allAreLiveSoFar = true; |
| 1159 | for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| 1160 | JSCell* reference = dfgCommon->weakReferences[i].get(); |
| 1161 | ASSERT(!jsDynamicCast<CodeBlock*>(vm, reference)); |
| 1162 | if (!vm.heap.isMarked(reference)) { |
| 1163 | allAreLiveSoFar = false; |
| 1164 | break; |
| 1165 | } |
| 1166 | } |
| 1167 | if (allAreLiveSoFar) { |
| 1168 | for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) { |
| 1169 | if (!vm.heap.isMarked(dfgCommon->weakStructureReferences[i].get())) { |
| 1170 | allAreLiveSoFar = false; |
| 1171 | break; |
| 1172 | } |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | // If some weak references are dead, then this fixpoint iteration was |
| 1177 | // unsuccessful. |
| 1178 | if (!allAreLiveSoFar) |
| 1179 | return; |
| 1180 | |
| 1181 | // All weak references are live. Record this information so we don't |
| 1182 | // come back here again, and scan the strong references. |
| 1183 | visitor.appendUnbarriered(this); |
| 1184 | #endif // ENABLE(DFG_JIT) |
| 1185 | } |
| 1186 | |
| 1187 | void CodeBlock::finalizeLLIntInlineCaches() |
| 1188 | { |
| 1189 | VM& vm = *m_vm; |
| 1190 | const Vector<InstructionStream::Offset>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); |
| 1191 | |
| 1192 | auto handleGetPutFromScope = [&] (auto& metadata) { |
| 1193 | GetPutInfo getPutInfo = metadata.m_getPutInfo; |
| 1194 | if (getPutInfo.resolveType() == GlobalVar || getPutInfo.resolveType() == GlobalVarWithVarInjectionChecks |
| 1195 | || getPutInfo.resolveType() == LocalClosureVar || getPutInfo.resolveType() == GlobalLexicalVar || getPutInfo.resolveType() == GlobalLexicalVarWithVarInjectionChecks) |
| 1196 | return; |
| 1197 | WriteBarrierBase<Structure>& structure = metadata.m_structure; |
| 1198 | if (!structure || vm.heap.isMarked(structure.get())) |
| 1199 | return; |
| 1200 | if (Options::verboseOSR()) |
| 1201 | dataLogF("Clearing scope access with structure %p.\n" , structure.get()); |
| 1202 | structure.clear(); |
| 1203 | }; |
| 1204 | |
| 1205 | const InstructionStream& instructionStream = instructions(); |
| 1206 | for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) { |
| 1207 | const auto curInstruction = instructionStream.at(propertyAccessInstructions[i]); |
| 1208 | switch (curInstruction->opcodeID()) { |
| 1209 | case op_get_by_id: { |
| 1210 | auto& metadata = curInstruction->as<OpGetById>().metadata(this); |
| 1211 | if (metadata.m_mode != GetByIdMode::Default) |
| 1212 | break; |
| 1213 | StructureID oldStructureID = metadata.m_modeMetadata.defaultMode.structureID; |
| 1214 | if (!oldStructureID || vm.heap.isMarked(vm.heap.structureIDTable().get(oldStructureID))) |
| 1215 | break; |
| 1216 | if (Options::verboseOSR()) |
| 1217 | dataLogF("Clearing LLInt property access.\n" ); |
| 1218 | LLIntPrototypeLoadAdaptiveStructureWatchpoint::clearLLIntGetByIdCache(metadata); |
| 1219 | break; |
| 1220 | } |
| 1221 | case op_get_by_id_direct: { |
| 1222 | auto& metadata = curInstruction->as<OpGetByIdDirect>().metadata(this); |
| 1223 | StructureID oldStructureID = metadata.m_structureID; |
| 1224 | if (!oldStructureID || vm.heap.isMarked(vm.heap.structureIDTable().get(oldStructureID))) |
| 1225 | break; |
| 1226 | if (Options::verboseOSR()) |
| 1227 | dataLogF("Clearing LLInt property access.\n" ); |
| 1228 | metadata.m_structureID = 0; |
| 1229 | metadata.m_offset = 0; |
| 1230 | break; |
| 1231 | } |
| 1232 | case op_put_by_id: { |
| 1233 | auto& metadata = curInstruction->as<OpPutById>().metadata(this); |
| 1234 | StructureID oldStructureID = metadata.m_oldStructureID; |
| 1235 | StructureID newStructureID = metadata.m_newStructureID; |
| 1236 | StructureChain* chain = metadata.m_structureChain.get(); |
| 1237 | if ((!oldStructureID || vm.heap.isMarked(vm.heap.structureIDTable().get(oldStructureID))) |
| 1238 | && (!newStructureID || vm.heap.isMarked(vm.heap.structureIDTable().get(newStructureID))) |
| 1239 | && (!chain || vm.heap.isMarked(chain))) |
| 1240 | break; |
| 1241 | if (Options::verboseOSR()) |
| 1242 | dataLogF("Clearing LLInt put transition.\n" ); |
| 1243 | metadata.m_oldStructureID = 0; |
| 1244 | metadata.m_offset = 0; |
| 1245 | metadata.m_newStructureID = 0; |
| 1246 | metadata.m_structureChain.clear(); |
| 1247 | break; |
| 1248 | } |
| 1249 | // FIXME: https://bugs.webkit.org/show_bug.cgi?id=166418 |
| 1250 | // We need to add optimizations for op_resolve_scope_for_hoisting_func_decl_in_eval to do link time scope resolution. |
| 1251 | case op_resolve_scope_for_hoisting_func_decl_in_eval: |
| 1252 | break; |
| 1253 | case op_to_this: { |
| 1254 | auto& metadata = curInstruction->as<OpToThis>().metadata(this); |
| 1255 | if (!metadata.m_cachedStructure || vm.heap.isMarked(metadata.m_cachedStructure.get())) |
| 1256 | break; |
| 1257 | if (Options::verboseOSR()) |
| 1258 | dataLogF("Clearing LLInt to_this with structure %p.\n" , metadata.m_cachedStructure.get()); |
| 1259 | metadata.m_cachedStructure.clear(); |
| 1260 | metadata.m_toThisStatus = merge(metadata.m_toThisStatus, ToThisClearedByGC); |
| 1261 | break; |
| 1262 | } |
| 1263 | case op_create_this: { |
| 1264 | auto& metadata = curInstruction->as<OpCreateThis>().metadata(this); |
| 1265 | auto& cacheWriteBarrier = metadata.m_cachedCallee; |
| 1266 | if (!cacheWriteBarrier || cacheWriteBarrier.unvalidatedGet() == JSCell::seenMultipleCalleeObjects()) |
| 1267 | break; |
| 1268 | JSCell* cachedFunction = cacheWriteBarrier.get(); |
| 1269 | if (vm.heap.isMarked(cachedFunction)) |
| 1270 | break; |
| 1271 | if (Options::verboseOSR()) |
| 1272 | dataLogF("Clearing LLInt create_this with cached callee %p.\n" , cachedFunction); |
| 1273 | cacheWriteBarrier.clear(); |
| 1274 | break; |
| 1275 | } |
| 1276 | case op_resolve_scope: { |
| 1277 | // Right now this isn't strictly necessary. Any symbol tables that this will refer to |
| 1278 | // are for outer functions, and we refer to those functions strongly, and they refer |
| 1279 | // to the symbol table strongly. But it's nice to be on the safe side. |
| 1280 | auto& metadata = curInstruction->as<OpResolveScope>().metadata(this); |
| 1281 | WriteBarrierBase<SymbolTable>& symbolTable = metadata.m_symbolTable; |
| 1282 | if (!symbolTable || vm.heap.isMarked(symbolTable.get())) |
| 1283 | break; |
| 1284 | if (Options::verboseOSR()) |
| 1285 | dataLogF("Clearing dead symbolTable %p.\n" , symbolTable.get()); |
| 1286 | symbolTable.clear(); |
| 1287 | break; |
| 1288 | } |
| 1289 | case op_get_from_scope: |
| 1290 | handleGetPutFromScope(curInstruction->as<OpGetFromScope>().metadata(this)); |
| 1291 | break; |
| 1292 | case op_put_to_scope: |
| 1293 | handleGetPutFromScope(curInstruction->as<OpPutToScope>().metadata(this)); |
| 1294 | break; |
| 1295 | default: |
| 1296 | OpcodeID opcodeID = curInstruction->opcodeID(); |
| 1297 | ASSERT_WITH_MESSAGE_UNUSED(opcodeID, false, "Unhandled opcode in CodeBlock::finalizeUnconditionally, %s(%d) at bc %u" , opcodeNames[opcodeID], opcodeID, propertyAccessInstructions[i]); |
| 1298 | } |
| 1299 | } |
| 1300 | |
| 1301 | // We can't just remove all the sets when we clear the caches since we might have created a watchpoint set |
| 1302 | // then cleared the cache without GCing in between. |
| 1303 | m_llintGetByIdWatchpointMap.removeIf([&] (const StructureWatchpointMap::KeyValuePairType& pair) -> bool { |
| 1304 | auto clear = [&] () { |
| 1305 | auto& instruction = instructions().at(std::get<1>(pair.key)); |
| 1306 | OpcodeID opcode = instruction->opcodeID(); |
| 1307 | if (opcode == op_get_by_id) { |
| 1308 | if (Options::verboseOSR()) |
| 1309 | dataLogF("Clearing LLInt property access.\n" ); |
| 1310 | LLIntPrototypeLoadAdaptiveStructureWatchpoint::clearLLIntGetByIdCache(instruction->as<OpGetById>().metadata(this)); |
| 1311 | } |
| 1312 | return true; |
| 1313 | }; |
| 1314 | |
| 1315 | if (!vm.heap.isMarked(vm.heap.structureIDTable().get(std::get<0>(pair.key)))) |
| 1316 | return clear(); |
| 1317 | |
| 1318 | for (const LLIntPrototypeLoadAdaptiveStructureWatchpoint& watchpoint : pair.value) { |
| 1319 | if (!watchpoint.key().isStillLive(vm)) |
| 1320 | return clear(); |
| 1321 | } |
| 1322 | |
| 1323 | return false; |
| 1324 | }); |
| 1325 | |
| 1326 | forEachLLIntCallLinkInfo([&](LLIntCallLinkInfo& callLinkInfo) { |
| 1327 | if (callLinkInfo.isLinked() && !vm.heap.isMarked(callLinkInfo.callee.get())) { |
| 1328 | if (Options::verboseOSR()) |
| 1329 | dataLog("Clearing LLInt call from " , *this, "\n" ); |
| 1330 | callLinkInfo.unlink(); |
| 1331 | } |
| 1332 | if (!!callLinkInfo.lastSeenCallee && !vm.heap.isMarked(callLinkInfo.lastSeenCallee.get())) |
| 1333 | callLinkInfo.lastSeenCallee.clear(); |
| 1334 | }); |
| 1335 | } |
| 1336 | |
| 1337 | #if ENABLE(JIT) |
| 1338 | CodeBlock::JITData& CodeBlock::ensureJITDataSlow(const ConcurrentJSLocker&) |
| 1339 | { |
| 1340 | ASSERT(!m_jitData); |
| 1341 | m_jitData = std::make_unique<JITData>(); |
| 1342 | return *m_jitData; |
| 1343 | } |
| 1344 | |
| 1345 | void CodeBlock::finalizeBaselineJITInlineCaches() |
| 1346 | { |
| 1347 | if (auto* jitData = m_jitData.get()) { |
| 1348 | for (CallLinkInfo* callLinkInfo : jitData->m_callLinkInfos) |
| 1349 | callLinkInfo->visitWeak(*vm()); |
| 1350 | |
| 1351 | for (StructureStubInfo* stubInfo : jitData->m_stubInfos) |
| 1352 | stubInfo->visitWeakReferences(this); |
| 1353 | } |
| 1354 | } |
| 1355 | #endif |
| 1356 | |
| 1357 | void CodeBlock::finalizeUnconditionally(VM& vm) |
| 1358 | { |
| 1359 | UNUSED_PARAM(vm); |
| 1360 | |
| 1361 | updateAllPredictions(); |
| 1362 | |
| 1363 | if (JITCode::couldBeInterpreted(jitType())) |
| 1364 | finalizeLLIntInlineCaches(); |
| 1365 | |
| 1366 | #if ENABLE(JIT) |
| 1367 | if (!!jitCode()) |
| 1368 | finalizeBaselineJITInlineCaches(); |
| 1369 | #endif |
| 1370 | |
| 1371 | #if ENABLE(DFG_JIT) |
| 1372 | if (JITCode::isOptimizingJIT(jitType())) { |
| 1373 | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| 1374 | dfgCommon->recordedStatuses.finalize(vm); |
| 1375 | } |
| 1376 | #endif // ENABLE(DFG_JIT) |
| 1377 | |
| 1378 | VM::SpaceAndSet::setFor(*subspace()).remove(this); |
| 1379 | } |
| 1380 | |
| 1381 | void CodeBlock::destroy(JSCell* cell) |
| 1382 | { |
| 1383 | static_cast<CodeBlock*>(cell)->~CodeBlock(); |
| 1384 | } |
| 1385 | |
| 1386 | void CodeBlock::getICStatusMap(const ConcurrentJSLocker&, ICStatusMap& result) |
| 1387 | { |
| 1388 | #if ENABLE(JIT) |
| 1389 | if (JITCode::isJIT(jitType())) { |
| 1390 | if (auto* jitData = m_jitData.get()) { |
| 1391 | for (StructureStubInfo* stubInfo : jitData->m_stubInfos) |
| 1392 | result.add(stubInfo->codeOrigin, ICStatus()).iterator->value.stubInfo = stubInfo; |
| 1393 | for (CallLinkInfo* callLinkInfo : jitData->m_callLinkInfos) |
| 1394 | result.add(callLinkInfo->codeOrigin(), ICStatus()).iterator->value.callLinkInfo = callLinkInfo; |
| 1395 | for (ByValInfo* byValInfo : jitData->m_byValInfos) |
| 1396 | result.add(CodeOrigin(byValInfo->bytecodeIndex), ICStatus()).iterator->value.byValInfo = byValInfo; |
| 1397 | } |
| 1398 | #if ENABLE(DFG_JIT) |
| 1399 | if (JITCode::isOptimizingJIT(jitType())) { |
| 1400 | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| 1401 | for (auto& pair : dfgCommon->recordedStatuses.calls) |
| 1402 | result.add(pair.first, ICStatus()).iterator->value.callStatus = pair.second.get(); |
| 1403 | for (auto& pair : dfgCommon->recordedStatuses.gets) |
| 1404 | result.add(pair.first, ICStatus()).iterator->value.getStatus = pair.second.get(); |
| 1405 | for (auto& pair : dfgCommon->recordedStatuses.puts) |
| 1406 | result.add(pair.first, ICStatus()).iterator->value.putStatus = pair.second.get(); |
| 1407 | for (auto& pair : dfgCommon->recordedStatuses.ins) |
| 1408 | result.add(pair.first, ICStatus()).iterator->value.inStatus = pair.second.get(); |
| 1409 | } |
| 1410 | #endif |
| 1411 | } |
| 1412 | #else |
| 1413 | UNUSED_PARAM(result); |
| 1414 | #endif |
| 1415 | } |
| 1416 | |
| 1417 | void CodeBlock::getICStatusMap(ICStatusMap& result) |
| 1418 | { |
| 1419 | ConcurrentJSLocker locker(m_lock); |
| 1420 | getICStatusMap(locker, result); |
| 1421 | } |
| 1422 | |
| 1423 | #if ENABLE(JIT) |
| 1424 | StructureStubInfo* CodeBlock::addStubInfo(AccessType accessType) |
| 1425 | { |
| 1426 | ConcurrentJSLocker locker(m_lock); |
| 1427 | return ensureJITData(locker).m_stubInfos.add(accessType); |
| 1428 | } |
| 1429 | |
| 1430 | JITAddIC* CodeBlock::addJITAddIC(ArithProfile* arithProfile) |
| 1431 | { |
| 1432 | ConcurrentJSLocker locker(m_lock); |
| 1433 | return ensureJITData(locker).m_addICs.add(arithProfile); |
| 1434 | } |
| 1435 | |
| 1436 | JITMulIC* CodeBlock::addJITMulIC(ArithProfile* arithProfile) |
| 1437 | { |
| 1438 | ConcurrentJSLocker locker(m_lock); |
| 1439 | return ensureJITData(locker).m_mulICs.add(arithProfile); |
| 1440 | } |
| 1441 | |
| 1442 | JITSubIC* CodeBlock::addJITSubIC(ArithProfile* arithProfile) |
| 1443 | { |
| 1444 | ConcurrentJSLocker locker(m_lock); |
| 1445 | return ensureJITData(locker).m_subICs.add(arithProfile); |
| 1446 | } |
| 1447 | |
| 1448 | JITNegIC* CodeBlock::addJITNegIC(ArithProfile* arithProfile) |
| 1449 | { |
| 1450 | ConcurrentJSLocker locker(m_lock); |
| 1451 | return ensureJITData(locker).m_negICs.add(arithProfile); |
| 1452 | } |
| 1453 | |
| 1454 | StructureStubInfo* CodeBlock::findStubInfo(CodeOrigin codeOrigin) |
| 1455 | { |
| 1456 | ConcurrentJSLocker locker(m_lock); |
| 1457 | if (auto* jitData = m_jitData.get()) { |
| 1458 | for (StructureStubInfo* stubInfo : jitData->m_stubInfos) { |
| 1459 | if (stubInfo->codeOrigin == codeOrigin) |
| 1460 | return stubInfo; |
| 1461 | } |
| 1462 | } |
| 1463 | return nullptr; |
| 1464 | } |
| 1465 | |
| 1466 | ByValInfo* CodeBlock::addByValInfo() |
| 1467 | { |
| 1468 | ConcurrentJSLocker locker(m_lock); |
| 1469 | return ensureJITData(locker).m_byValInfos.add(); |
| 1470 | } |
| 1471 | |
| 1472 | CallLinkInfo* CodeBlock::addCallLinkInfo() |
| 1473 | { |
| 1474 | ConcurrentJSLocker locker(m_lock); |
| 1475 | return ensureJITData(locker).m_callLinkInfos.add(); |
| 1476 | } |
| 1477 | |
| 1478 | CallLinkInfo* CodeBlock::getCallLinkInfoForBytecodeIndex(unsigned index) |
| 1479 | { |
| 1480 | ConcurrentJSLocker locker(m_lock); |
| 1481 | if (auto* jitData = m_jitData.get()) { |
| 1482 | for (CallLinkInfo* callLinkInfo : jitData->m_callLinkInfos) { |
| 1483 | if (callLinkInfo->codeOrigin() == CodeOrigin(index)) |
| 1484 | return callLinkInfo; |
| 1485 | } |
| 1486 | } |
| 1487 | return nullptr; |
| 1488 | } |
| 1489 | |
| 1490 | RareCaseProfile* CodeBlock::addRareCaseProfile(int bytecodeOffset) |
| 1491 | { |
| 1492 | ConcurrentJSLocker locker(m_lock); |
| 1493 | auto& jitData = ensureJITData(locker); |
| 1494 | jitData.m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset)); |
| 1495 | return &jitData.m_rareCaseProfiles.last(); |
| 1496 | } |
| 1497 | |
| 1498 | RareCaseProfile* CodeBlock::rareCaseProfileForBytecodeOffset(const ConcurrentJSLocker&, int bytecodeOffset) |
| 1499 | { |
| 1500 | if (auto* jitData = m_jitData.get()) { |
| 1501 | return tryBinarySearch<RareCaseProfile, int>( |
| 1502 | jitData->m_rareCaseProfiles, jitData->m_rareCaseProfiles.size(), bytecodeOffset, |
| 1503 | getRareCaseProfileBytecodeOffset); |
| 1504 | } |
| 1505 | return nullptr; |
| 1506 | } |
| 1507 | |
| 1508 | unsigned CodeBlock::rareCaseProfileCountForBytecodeOffset(const ConcurrentJSLocker& locker, int bytecodeOffset) |
| 1509 | { |
| 1510 | RareCaseProfile* profile = rareCaseProfileForBytecodeOffset(locker, bytecodeOffset); |
| 1511 | if (profile) |
| 1512 | return profile->m_counter; |
| 1513 | return 0; |
| 1514 | } |
| 1515 | |
| 1516 | void CodeBlock::setCalleeSaveRegisters(RegisterSet calleeSaveRegisters) |
| 1517 | { |
| 1518 | ConcurrentJSLocker locker(m_lock); |
| 1519 | ensureJITData(locker).m_calleeSaveRegisters = std::make_unique<RegisterAtOffsetList>(calleeSaveRegisters); |
| 1520 | } |
| 1521 | |
| 1522 | void CodeBlock::setCalleeSaveRegisters(std::unique_ptr<RegisterAtOffsetList> registerAtOffsetList) |
| 1523 | { |
| 1524 | ConcurrentJSLocker locker(m_lock); |
| 1525 | ensureJITData(locker).m_calleeSaveRegisters = WTFMove(registerAtOffsetList); |
| 1526 | } |
| 1527 | |
| 1528 | void CodeBlock::resetJITData() |
| 1529 | { |
| 1530 | RELEASE_ASSERT(!JITCode::isJIT(jitType())); |
| 1531 | ConcurrentJSLocker locker(m_lock); |
| 1532 | |
| 1533 | if (auto* jitData = m_jitData.get()) { |
| 1534 | // We can clear these because no other thread will have references to any stub infos, call |
| 1535 | // link infos, or by val infos if we don't have JIT code. Attempts to query these data |
| 1536 | // structures using the concurrent API (getICStatusMap and friends) will return nothing if we |
| 1537 | // don't have JIT code. |
| 1538 | jitData->m_stubInfos.clear(); |
| 1539 | jitData->m_callLinkInfos.clear(); |
| 1540 | jitData->m_byValInfos.clear(); |
| 1541 | // We can clear this because the DFG's queries to these data structures are guarded by whether |
| 1542 | // there is JIT code. |
| 1543 | jitData->m_rareCaseProfiles.clear(); |
| 1544 | } |
| 1545 | } |
| 1546 | #endif |
| 1547 | |
| 1548 | void CodeBlock::visitOSRExitTargets(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| 1549 | { |
| 1550 | // We strongly visit OSR exits targets because we don't want to deal with |
| 1551 | // the complexity of generating an exit target CodeBlock on demand and |
| 1552 | // guaranteeing that it matches the details of the CodeBlock we compiled |
| 1553 | // the OSR exit against. |
| 1554 | |
| 1555 | visitor.append(m_alternative); |
| 1556 | |
| 1557 | #if ENABLE(DFG_JIT) |
| 1558 | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| 1559 | if (dfgCommon->inlineCallFrames) { |
| 1560 | for (auto* inlineCallFrame : *dfgCommon->inlineCallFrames) { |
| 1561 | ASSERT(inlineCallFrame->baselineCodeBlock); |
| 1562 | visitor.append(inlineCallFrame->baselineCodeBlock); |
| 1563 | } |
| 1564 | } |
| 1565 | #endif |
| 1566 | } |
| 1567 | |
| 1568 | void CodeBlock::stronglyVisitStrongReferences(const ConcurrentJSLocker& locker, SlotVisitor& visitor) |
| 1569 | { |
| 1570 | UNUSED_PARAM(locker); |
| 1571 | |
| 1572 | visitor.append(m_globalObject); |
| 1573 | visitor.append(m_ownerExecutable); // This is extra important since it causes the ExecutableToCodeBlockEdge to be marked. |
| 1574 | visitor.append(m_unlinkedCode); |
| 1575 | if (m_rareData) |
| 1576 | m_rareData->m_directEvalCodeCache.visitAggregate(visitor); |
| 1577 | visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); |
| 1578 | for (auto& functionExpr : m_functionExprs) |
| 1579 | visitor.append(functionExpr); |
| 1580 | for (auto& functionDecl : m_functionDecls) |
| 1581 | visitor.append(functionDecl); |
| 1582 | forEachObjectAllocationProfile([&](ObjectAllocationProfile& objectAllocationProfile) { |
| 1583 | objectAllocationProfile.visitAggregate(visitor); |
| 1584 | }); |
| 1585 | |
| 1586 | #if ENABLE(JIT) |
| 1587 | if (auto* jitData = m_jitData.get()) { |
| 1588 | for (ByValInfo* byValInfo : jitData->m_byValInfos) |
| 1589 | visitor.append(byValInfo->cachedSymbol); |
| 1590 | } |
| 1591 | #endif |
| 1592 | |
| 1593 | #if ENABLE(DFG_JIT) |
| 1594 | if (JITCode::isOptimizingJIT(jitType())) |
| 1595 | visitOSRExitTargets(locker, visitor); |
| 1596 | #endif |
| 1597 | } |
| 1598 | |
| 1599 | void CodeBlock::stronglyVisitWeakReferences(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| 1600 | { |
| 1601 | UNUSED_PARAM(visitor); |
| 1602 | |
| 1603 | #if ENABLE(DFG_JIT) |
| 1604 | if (!JITCode::isOptimizingJIT(jitType())) |
| 1605 | return; |
| 1606 | |
| 1607 | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| 1608 | |
| 1609 | for (auto& transition : dfgCommon->transitions) { |
| 1610 | if (!!transition.m_codeOrigin) |
| 1611 | visitor.append(transition.m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. |
| 1612 | visitor.append(transition.m_from); |
| 1613 | visitor.append(transition.m_to); |
| 1614 | } |
| 1615 | |
| 1616 | for (auto& weakReference : dfgCommon->weakReferences) |
| 1617 | visitor.append(weakReference); |
| 1618 | |
| 1619 | for (auto& weakStructureReference : dfgCommon->weakStructureReferences) |
| 1620 | visitor.append(weakStructureReference); |
| 1621 | |
| 1622 | dfgCommon->livenessHasBeenProved = true; |
| 1623 | #endif |
| 1624 | } |
| 1625 | |
| 1626 | CodeBlock* CodeBlock::baselineAlternative() |
| 1627 | { |
| 1628 | #if ENABLE(JIT) |
| 1629 | CodeBlock* result = this; |
| 1630 | while (result->alternative()) |
| 1631 | result = result->alternative(); |
| 1632 | RELEASE_ASSERT(result); |
| 1633 | RELEASE_ASSERT(JITCode::isBaselineCode(result->jitType()) || result->jitType() == JITType::None); |
| 1634 | return result; |
| 1635 | #else |
| 1636 | return this; |
| 1637 | #endif |
| 1638 | } |
| 1639 | |
| 1640 | CodeBlock* CodeBlock::baselineVersion() |
| 1641 | { |
| 1642 | #if ENABLE(JIT) |
| 1643 | JITType selfJITType = jitType(); |
| 1644 | if (JITCode::isBaselineCode(selfJITType)) |
| 1645 | return this; |
| 1646 | CodeBlock* result = replacement(); |
| 1647 | if (!result) { |
| 1648 | if (JITCode::isOptimizingJIT(selfJITType)) { |
| 1649 | // The replacement can be null if we've had a memory clean up and the executable |
| 1650 | // has been purged of its codeBlocks (see ExecutableBase::clearCode()). Regardless, |
| 1651 | // the current codeBlock is still live on the stack, and as an optimizing JIT |
| 1652 | // codeBlock, it will keep its baselineAlternative() alive for us to fetch below. |
| 1653 | result = this; |
| 1654 | } else { |
| 1655 | // This can happen if we're creating the original CodeBlock for an executable. |
| 1656 | // Assume that we're the baseline CodeBlock. |
| 1657 | RELEASE_ASSERT(selfJITType == JITType::None); |
| 1658 | return this; |
| 1659 | } |
| 1660 | } |
| 1661 | result = result->baselineAlternative(); |
| 1662 | ASSERT(result); |
| 1663 | return result; |
| 1664 | #else |
| 1665 | return this; |
| 1666 | #endif |
| 1667 | } |
| 1668 | |
| 1669 | #if ENABLE(JIT) |
| 1670 | bool CodeBlock::hasOptimizedReplacement(JITType typeToReplace) |
| 1671 | { |
| 1672 | CodeBlock* replacement = this->replacement(); |
| 1673 | return replacement && JITCode::isHigherTier(replacement->jitType(), typeToReplace); |
| 1674 | } |
| 1675 | |
| 1676 | bool CodeBlock::hasOptimizedReplacement() |
| 1677 | { |
| 1678 | return hasOptimizedReplacement(jitType()); |
| 1679 | } |
| 1680 | #endif |
| 1681 | |
| 1682 | HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler requiredHandler) |
| 1683 | { |
| 1684 | RELEASE_ASSERT(bytecodeOffset < instructions().size()); |
| 1685 | return handlerForIndex(bytecodeOffset, requiredHandler); |
| 1686 | } |
| 1687 | |
| 1688 | HandlerInfo* CodeBlock::handlerForIndex(unsigned index, RequiredHandler requiredHandler) |
| 1689 | { |
| 1690 | if (!m_rareData) |
| 1691 | return 0; |
| 1692 | return HandlerInfo::handlerForIndex(m_rareData->m_exceptionHandlers, index, requiredHandler); |
| 1693 | } |
| 1694 | |
| 1695 | CallSiteIndex CodeBlock::newExceptionHandlingCallSiteIndex(CallSiteIndex originalCallSite) |
| 1696 | { |
| 1697 | #if ENABLE(DFG_JIT) |
| 1698 | RELEASE_ASSERT(JITCode::isOptimizingJIT(jitType())); |
| 1699 | RELEASE_ASSERT(canGetCodeOrigin(originalCallSite)); |
| 1700 | ASSERT(!!handlerForIndex(originalCallSite.bits())); |
| 1701 | CodeOrigin originalOrigin = codeOrigin(originalCallSite); |
| 1702 | return m_jitCode->dfgCommon()->addUniqueCallSiteIndex(originalOrigin); |
| 1703 | #else |
| 1704 | // We never create new on-the-fly exception handling |
| 1705 | // call sites outside the DFG/FTL inline caches. |
| 1706 | UNUSED_PARAM(originalCallSite); |
| 1707 | RELEASE_ASSERT_NOT_REACHED(); |
| 1708 | return CallSiteIndex(0u); |
| 1709 | #endif |
| 1710 | } |
| 1711 | |
| 1712 | |
| 1713 | |
| 1714 | void CodeBlock::ensureCatchLivenessIsComputedForBytecodeOffset(InstructionStream::Offset bytecodeOffset) |
| 1715 | { |
| 1716 | auto& instruction = instructions().at(bytecodeOffset); |
| 1717 | OpCatch op = instruction->as<OpCatch>(); |
| 1718 | auto& metadata = op.metadata(this); |
| 1719 | if (!!metadata.m_buffer) { |
| 1720 | #if !ASSERT_DISABLED |
| 1721 | ConcurrentJSLocker locker(m_lock); |
| 1722 | bool found = false; |
| 1723 | auto* rareData = m_rareData.get(); |
| 1724 | ASSERT(rareData); |
| 1725 | for (auto& profile : rareData->m_catchProfiles) { |
| 1726 | if (profile.get() == metadata.m_buffer) { |
| 1727 | found = true; |
| 1728 | break; |
| 1729 | } |
| 1730 | } |
| 1731 | ASSERT(found); |
| 1732 | #endif |
| 1733 | return; |
| 1734 | } |
| 1735 | |
| 1736 | ensureCatchLivenessIsComputedForBytecodeOffsetSlow(op, bytecodeOffset); |
| 1737 | } |
| 1738 | |
| 1739 | void CodeBlock::ensureCatchLivenessIsComputedForBytecodeOffsetSlow(const OpCatch& op, InstructionStream::Offset bytecodeOffset) |
| 1740 | { |
| 1741 | BytecodeLivenessAnalysis& bytecodeLiveness = livenessAnalysis(); |
| 1742 | |
| 1743 | // We get the live-out set of variables at op_catch, not the live-in. This |
| 1744 | // is because the variables that the op_catch defines might be dead, and |
| 1745 | // we can avoid profiling them and extracting them when doing OSR entry |
| 1746 | // into the DFG. |
| 1747 | |
| 1748 | auto nextOffset = instructions().at(bytecodeOffset).next().offset(); |
| 1749 | FastBitVector liveLocals = bytecodeLiveness.getLivenessInfoAtBytecodeOffset(this, nextOffset); |
| 1750 | Vector<VirtualRegister> liveOperands; |
| 1751 | liveOperands.reserveInitialCapacity(liveLocals.bitCount()); |
| 1752 | liveLocals.forEachSetBit([&] (unsigned liveLocal) { |
| 1753 | liveOperands.append(virtualRegisterForLocal(liveLocal)); |
| 1754 | }); |
| 1755 | |
| 1756 | for (int i = 0; i < numParameters(); ++i) |
| 1757 | liveOperands.append(virtualRegisterForArgument(i)); |
| 1758 | |
| 1759 | auto profiles = std::make_unique<ValueProfileAndOperandBuffer>(liveOperands.size()); |
| 1760 | RELEASE_ASSERT(profiles->m_size == liveOperands.size()); |
| 1761 | for (unsigned i = 0; i < profiles->m_size; ++i) |
| 1762 | profiles->m_buffer.get()[i].m_operand = liveOperands[i].offset(); |
| 1763 | |
| 1764 | createRareDataIfNecessary(); |
| 1765 | |
| 1766 | // The compiler thread will read this pointer value and then proceed to dereference it |
| 1767 | // if it is not null. We need to make sure all above stores happen before this store so |
| 1768 | // the compiler thread reads fully initialized data. |
| 1769 | WTF::storeStoreFence(); |
| 1770 | |
| 1771 | op.metadata(this).m_buffer = profiles.get(); |
| 1772 | { |
| 1773 | ConcurrentJSLocker locker(m_lock); |
| 1774 | m_rareData->m_catchProfiles.append(WTFMove(profiles)); |
| 1775 | } |
| 1776 | } |
| 1777 | |
| 1778 | void CodeBlock::removeExceptionHandlerForCallSite(CallSiteIndex callSiteIndex) |
| 1779 | { |
| 1780 | RELEASE_ASSERT(m_rareData); |
| 1781 | Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers; |
| 1782 | unsigned index = callSiteIndex.bits(); |
| 1783 | for (size_t i = 0; i < exceptionHandlers.size(); ++i) { |
| 1784 | HandlerInfo& handler = exceptionHandlers[i]; |
| 1785 | if (handler.start <= index && handler.end > index) { |
| 1786 | exceptionHandlers.remove(i); |
| 1787 | return; |
| 1788 | } |
| 1789 | } |
| 1790 | |
| 1791 | RELEASE_ASSERT_NOT_REACHED(); |
| 1792 | } |
| 1793 | |
| 1794 | unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) |
| 1795 | { |
| 1796 | RELEASE_ASSERT(bytecodeOffset < instructions().size()); |
| 1797 | return ownerExecutable()->firstLine() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset); |
| 1798 | } |
| 1799 | |
| 1800 | unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset) |
| 1801 | { |
| 1802 | int divot; |
| 1803 | int startOffset; |
| 1804 | int endOffset; |
| 1805 | unsigned line; |
| 1806 | unsigned column; |
| 1807 | expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); |
| 1808 | return column; |
| 1809 | } |
| 1810 | |
| 1811 | void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) const |
| 1812 | { |
| 1813 | m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); |
| 1814 | divot += sourceOffset(); |
| 1815 | column += line ? 1 : firstLineColumnOffset(); |
| 1816 | line += ownerExecutable()->firstLine(); |
| 1817 | } |
| 1818 | |
| 1819 | bool CodeBlock::hasOpDebugForLineAndColumn(unsigned line, unsigned column) |
| 1820 | { |
| 1821 | const InstructionStream& instructionStream = instructions(); |
| 1822 | for (const auto& it : instructionStream) { |
| 1823 | if (it->is<OpDebug>()) { |
| 1824 | int unused; |
| 1825 | unsigned opDebugLine; |
| 1826 | unsigned opDebugColumn; |
| 1827 | expressionRangeForBytecodeOffset(it.offset(), unused, unused, unused, opDebugLine, opDebugColumn); |
| 1828 | if (line == opDebugLine && (column == Breakpoint::unspecifiedColumn || column == opDebugColumn)) |
| 1829 | return true; |
| 1830 | } |
| 1831 | } |
| 1832 | return false; |
| 1833 | } |
| 1834 | |
| 1835 | void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) |
| 1836 | { |
| 1837 | ConcurrentJSLocker locker(m_lock); |
| 1838 | |
| 1839 | #if ENABLE(JIT) |
| 1840 | if (auto* jitData = m_jitData.get()) |
| 1841 | jitData->m_rareCaseProfiles.shrinkToFit(); |
| 1842 | #endif |
| 1843 | |
| 1844 | if (shrinkMode == EarlyShrink) { |
| 1845 | m_constantRegisters.shrinkToFit(); |
| 1846 | m_constantsSourceCodeRepresentation.shrinkToFit(); |
| 1847 | |
| 1848 | if (m_rareData) { |
| 1849 | m_rareData->m_switchJumpTables.shrinkToFit(); |
| 1850 | m_rareData->m_stringSwitchJumpTables.shrinkToFit(); |
| 1851 | } |
| 1852 | } // else don't shrink these, because we would have already pointed pointers into these tables. |
| 1853 | } |
| 1854 | |
| 1855 | #if ENABLE(JIT) |
| 1856 | void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming) |
| 1857 | { |
| 1858 | noticeIncomingCall(callerFrame); |
| 1859 | ConcurrentJSLocker locker(m_lock); |
| 1860 | ensureJITData(locker).m_incomingCalls.push(incoming); |
| 1861 | } |
| 1862 | |
| 1863 | void CodeBlock::linkIncomingPolymorphicCall(ExecState* callerFrame, PolymorphicCallNode* incoming) |
| 1864 | { |
| 1865 | noticeIncomingCall(callerFrame); |
| 1866 | { |
| 1867 | ConcurrentJSLocker locker(m_lock); |
| 1868 | ensureJITData(locker).m_incomingPolymorphicCalls.push(incoming); |
| 1869 | } |
| 1870 | } |
| 1871 | #endif // ENABLE(JIT) |
| 1872 | |
| 1873 | void CodeBlock::unlinkIncomingCalls() |
| 1874 | { |
| 1875 | while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) |
| 1876 | m_incomingLLIntCalls.begin()->unlink(); |
| 1877 | #if ENABLE(JIT) |
| 1878 | JITData* jitData = nullptr; |
| 1879 | { |
| 1880 | ConcurrentJSLocker locker(m_lock); |
| 1881 | jitData = m_jitData.get(); |
| 1882 | } |
| 1883 | if (jitData) { |
| 1884 | while (jitData->m_incomingCalls.begin() != jitData->m_incomingCalls.end()) |
| 1885 | jitData->m_incomingCalls.begin()->unlink(*vm()); |
| 1886 | while (jitData->m_incomingPolymorphicCalls.begin() != jitData->m_incomingPolymorphicCalls.end()) |
| 1887 | jitData->m_incomingPolymorphicCalls.begin()->unlink(*vm()); |
| 1888 | } |
| 1889 | #endif // ENABLE(JIT) |
| 1890 | } |
| 1891 | |
| 1892 | void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming) |
| 1893 | { |
| 1894 | noticeIncomingCall(callerFrame); |
| 1895 | m_incomingLLIntCalls.push(incoming); |
| 1896 | } |
| 1897 | |
| 1898 | CodeBlock* CodeBlock::newReplacement() |
| 1899 | { |
| 1900 | return ownerExecutable()->newReplacementCodeBlockFor(specializationKind()); |
| 1901 | } |
| 1902 | |
| 1903 | #if ENABLE(JIT) |
| 1904 | CodeBlock* CodeBlock::replacement() |
| 1905 | { |
| 1906 | const ClassInfo* classInfo = this->classInfo(*vm()); |
| 1907 | |
| 1908 | if (classInfo == FunctionCodeBlock::info()) |
| 1909 | return jsCast<FunctionExecutable*>(ownerExecutable())->codeBlockFor(isConstructor() ? CodeForConstruct : CodeForCall); |
| 1910 | |
| 1911 | if (classInfo == EvalCodeBlock::info()) |
| 1912 | return jsCast<EvalExecutable*>(ownerExecutable())->codeBlock(); |
| 1913 | |
| 1914 | if (classInfo == ProgramCodeBlock::info()) |
| 1915 | return jsCast<ProgramExecutable*>(ownerExecutable())->codeBlock(); |
| 1916 | |
| 1917 | if (classInfo == ModuleProgramCodeBlock::info()) |
| 1918 | return jsCast<ModuleProgramExecutable*>(ownerExecutable())->codeBlock(); |
| 1919 | |
| 1920 | RELEASE_ASSERT_NOT_REACHED(); |
| 1921 | return nullptr; |
| 1922 | } |
| 1923 | |
| 1924 | DFG::CapabilityLevel CodeBlock::computeCapabilityLevel() |
| 1925 | { |
| 1926 | const ClassInfo* classInfo = this->classInfo(*vm()); |
| 1927 | |
| 1928 | if (classInfo == FunctionCodeBlock::info()) { |
| 1929 | if (isConstructor()) |
| 1930 | return DFG::functionForConstructCapabilityLevel(this); |
| 1931 | return DFG::functionForCallCapabilityLevel(this); |
| 1932 | } |
| 1933 | |
| 1934 | if (classInfo == EvalCodeBlock::info()) |
| 1935 | return DFG::evalCapabilityLevel(this); |
| 1936 | |
| 1937 | if (classInfo == ProgramCodeBlock::info()) |
| 1938 | return DFG::programCapabilityLevel(this); |
| 1939 | |
| 1940 | if (classInfo == ModuleProgramCodeBlock::info()) |
| 1941 | return DFG::programCapabilityLevel(this); |
| 1942 | |
| 1943 | RELEASE_ASSERT_NOT_REACHED(); |
| 1944 | return DFG::CannotCompile; |
| 1945 | } |
| 1946 | |
| 1947 | #endif // ENABLE(JIT) |
| 1948 | |
| 1949 | void CodeBlock::jettison(Profiler::JettisonReason reason, ReoptimizationMode mode, const FireDetail* detail) |
| 1950 | { |
| 1951 | #if !ENABLE(DFG_JIT) |
| 1952 | UNUSED_PARAM(mode); |
| 1953 | UNUSED_PARAM(detail); |
| 1954 | #endif |
| 1955 | |
| 1956 | VM& vm = *m_vm; |
| 1957 | |
| 1958 | CODEBLOCK_LOG_EVENT(this, "jettison" , ("due to " , reason, ", counting = " , mode == CountReoptimization, ", detail = " , pointerDump(detail))); |
| 1959 | |
| 1960 | RELEASE_ASSERT(reason != Profiler::NotJettisoned); |
| 1961 | |
| 1962 | #if ENABLE(DFG_JIT) |
| 1963 | if (DFG::shouldDumpDisassembly()) { |
| 1964 | dataLog("Jettisoning " , *this); |
| 1965 | if (mode == CountReoptimization) |
| 1966 | dataLog(" and counting reoptimization" ); |
| 1967 | dataLog(" due to " , reason); |
| 1968 | if (detail) |
| 1969 | dataLog(", " , *detail); |
| 1970 | dataLog(".\n" ); |
| 1971 | } |
| 1972 | |
| 1973 | if (reason == Profiler::JettisonDueToWeakReference) { |
| 1974 | if (DFG::shouldDumpDisassembly()) { |
| 1975 | dataLog(*this, " will be jettisoned because of the following dead references:\n" ); |
| 1976 | DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| 1977 | for (auto& transition : dfgCommon->transitions) { |
| 1978 | JSCell* origin = transition.m_codeOrigin.get(); |
| 1979 | JSCell* from = transition.m_from.get(); |
| 1980 | JSCell* to = transition.m_to.get(); |
| 1981 | if ((!origin || vm.heap.isMarked(origin)) && vm.heap.isMarked(from)) |
| 1982 | continue; |
| 1983 | dataLog(" Transition under " , RawPointer(origin), ", " , RawPointer(from), " -> " , RawPointer(to), ".\n" ); |
| 1984 | } |
| 1985 | for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| 1986 | JSCell* weak = dfgCommon->weakReferences[i].get(); |
| 1987 | if (vm.heap.isMarked(weak)) |
| 1988 | continue; |
| 1989 | dataLog(" Weak reference " , RawPointer(weak), ".\n" ); |
| 1990 | } |
| 1991 | } |
| 1992 | } |
| 1993 | #endif // ENABLE(DFG_JIT) |
| 1994 | |
| 1995 | DeferGCForAWhile deferGC(*heap()); |
| 1996 | |
| 1997 | // We want to accomplish two things here: |
| 1998 | // 1) Make sure that if this CodeBlock is on the stack right now, then if we return to it |
| 1999 | // we should OSR exit at the top of the next bytecode instruction after the return. |
| 2000 | // 2) Make sure that if we call the owner executable, then we shouldn't call this CodeBlock. |
| 2001 | |
| 2002 | #if ENABLE(DFG_JIT) |
| 2003 | if (JITCode::isOptimizingJIT(jitType())) |
| 2004 | jitCode()->dfgCommon()->clearWatchpoints(); |
| 2005 | |
| 2006 | if (reason != Profiler::JettisonDueToOldAge) { |
| 2007 | Profiler::Compilation* compilation = jitCode()->dfgCommon()->compilation.get(); |
| 2008 | if (UNLIKELY(compilation)) |
| 2009 | compilation->setJettisonReason(reason, detail); |
| 2010 | |
| 2011 | // This accomplishes (1), and does its own book-keeping about whether it has already happened. |
| 2012 | if (!jitCode()->dfgCommon()->invalidate()) { |
| 2013 | // We've already been invalidated. |
| 2014 | RELEASE_ASSERT(this != replacement() || (vm.heap.isCurrentThreadBusy() && !vm.heap.isMarked(ownerExecutable()))); |
| 2015 | return; |
| 2016 | } |
| 2017 | } |
| 2018 | |
| 2019 | if (DFG::shouldDumpDisassembly()) |
| 2020 | dataLog(" Did invalidate " , *this, "\n" ); |
| 2021 | |
| 2022 | // Count the reoptimization if that's what the user wanted. |
| 2023 | if (mode == CountReoptimization) { |
| 2024 | // FIXME: Maybe this should call alternative(). |
| 2025 | // https://bugs.webkit.org/show_bug.cgi?id=123677 |
| 2026 | baselineAlternative()->countReoptimization(); |
| 2027 | if (DFG::shouldDumpDisassembly()) |
| 2028 | dataLog(" Did count reoptimization for " , *this, "\n" ); |
| 2029 | } |
| 2030 | |
| 2031 | if (this != replacement()) { |
| 2032 | // This means that we were never the entrypoint. This can happen for OSR entry code |
| 2033 | // blocks. |
| 2034 | return; |
| 2035 | } |
| 2036 | |
| 2037 | if (alternative()) |
| 2038 | alternative()->optimizeAfterWarmUp(); |
| 2039 | |
| 2040 | if (reason != Profiler::JettisonDueToOldAge && reason != Profiler::JettisonDueToVMTraps) |
| 2041 | tallyFrequentExitSites(); |
| 2042 | #endif // ENABLE(DFG_JIT) |
| 2043 | |
| 2044 | // Jettison can happen during GC. We don't want to install code to a dead executable |
| 2045 | // because that would add a dead object to the remembered set. |
| 2046 | if (vm.heap.isCurrentThreadBusy() && !vm.heap.isMarked(ownerExecutable())) |
| 2047 | return; |
| 2048 | |
| 2049 | #if ENABLE(JIT) |
| 2050 | { |
| 2051 | ConcurrentJSLocker locker(m_lock); |
| 2052 | if (JITData* jitData = m_jitData.get()) { |
| 2053 | for (CallLinkInfo* callLinkInfo : jitData->m_callLinkInfos) |
| 2054 | callLinkInfo->setClearedByJettison(); |
| 2055 | } |
| 2056 | } |
| 2057 | #endif |
| 2058 | |
| 2059 | // This accomplishes (2). |
| 2060 | ownerExecutable()->installCode(vm, alternative(), codeType(), specializationKind()); |
| 2061 | |
| 2062 | #if ENABLE(DFG_JIT) |
| 2063 | if (DFG::shouldDumpDisassembly()) |
| 2064 | dataLog(" Did install baseline version of " , *this, "\n" ); |
| 2065 | #endif // ENABLE(DFG_JIT) |
| 2066 | } |
| 2067 | |
| 2068 | JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) |
| 2069 | { |
| 2070 | auto* inlineCallFrame = codeOrigin.inlineCallFrame(); |
| 2071 | if (!inlineCallFrame) |
| 2072 | return globalObject(); |
| 2073 | return inlineCallFrame->baselineCodeBlock->globalObject(); |
| 2074 | } |
| 2075 | |
| 2076 | class RecursionCheckFunctor { |
| 2077 | public: |
| 2078 | RecursionCheckFunctor(CallFrame* startCallFrame, CodeBlock* codeBlock, unsigned depthToCheck) |
| 2079 | : m_startCallFrame(startCallFrame) |
| 2080 | , m_codeBlock(codeBlock) |
| 2081 | , m_depthToCheck(depthToCheck) |
| 2082 | , m_foundStartCallFrame(false) |
| 2083 | , m_didRecurse(false) |
| 2084 | { } |
| 2085 | |
| 2086 | StackVisitor::Status operator()(StackVisitor& visitor) const |
| 2087 | { |
| 2088 | CallFrame* currentCallFrame = visitor->callFrame(); |
| 2089 | |
| 2090 | if (currentCallFrame == m_startCallFrame) |
| 2091 | m_foundStartCallFrame = true; |
| 2092 | |
| 2093 | if (m_foundStartCallFrame) { |
| 2094 | if (visitor->callFrame()->codeBlock() == m_codeBlock) { |
| 2095 | m_didRecurse = true; |
| 2096 | return StackVisitor::Done; |
| 2097 | } |
| 2098 | |
| 2099 | if (!m_depthToCheck--) |
| 2100 | return StackVisitor::Done; |
| 2101 | } |
| 2102 | |
| 2103 | return StackVisitor::Continue; |
| 2104 | } |
| 2105 | |
| 2106 | bool didRecurse() const { return m_didRecurse; } |
| 2107 | |
| 2108 | private: |
| 2109 | CallFrame* m_startCallFrame; |
| 2110 | CodeBlock* m_codeBlock; |
| 2111 | mutable unsigned m_depthToCheck; |
| 2112 | mutable bool m_foundStartCallFrame; |
| 2113 | mutable bool m_didRecurse; |
| 2114 | }; |
| 2115 | |
| 2116 | void CodeBlock::noticeIncomingCall(ExecState* callerFrame) |
| 2117 | { |
| 2118 | CodeBlock* callerCodeBlock = callerFrame->codeBlock(); |
| 2119 | |
| 2120 | if (Options::verboseCallLink()) |
| 2121 | dataLog("Noticing call link from " , pointerDump(callerCodeBlock), " to " , *this, "\n" ); |
| 2122 | |
| 2123 | #if ENABLE(DFG_JIT) |
| 2124 | if (!m_shouldAlwaysBeInlined) |
| 2125 | return; |
| 2126 | |
| 2127 | if (!callerCodeBlock) { |
| 2128 | m_shouldAlwaysBeInlined = false; |
| 2129 | if (Options::verboseCallLink()) |
| 2130 | dataLog(" Clearing SABI because caller is native.\n" ); |
| 2131 | return; |
| 2132 | } |
| 2133 | |
| 2134 | if (!hasBaselineJITProfiling()) |
| 2135 | return; |
| 2136 | |
| 2137 | if (!DFG::mightInlineFunction(this)) |
| 2138 | return; |
| 2139 | |
| 2140 | if (!canInline(capabilityLevelState())) |
| 2141 | return; |
| 2142 | |
| 2143 | if (!DFG::isSmallEnoughToInlineCodeInto(callerCodeBlock)) { |
| 2144 | m_shouldAlwaysBeInlined = false; |
| 2145 | if (Options::verboseCallLink()) |
| 2146 | dataLog(" Clearing SABI because caller is too large.\n" ); |
| 2147 | return; |
| 2148 | } |
| 2149 | |
| 2150 | if (callerCodeBlock->jitType() == JITType::InterpreterThunk) { |
| 2151 | // If the caller is still in the interpreter, then we can't expect inlining to |
| 2152 | // happen anytime soon. Assume it's profitable to optimize it separately. This |
| 2153 | // ensures that a function is SABI only if it is called no more frequently than |
| 2154 | // any of its callers. |
| 2155 | m_shouldAlwaysBeInlined = false; |
| 2156 | if (Options::verboseCallLink()) |
| 2157 | dataLog(" Clearing SABI because caller is in LLInt.\n" ); |
| 2158 | return; |
| 2159 | } |
| 2160 | |
| 2161 | if (JITCode::isOptimizingJIT(callerCodeBlock->jitType())) { |
| 2162 | m_shouldAlwaysBeInlined = false; |
| 2163 | if (Options::verboseCallLink()) |
| 2164 | dataLog(" Clearing SABI bcause caller was already optimized.\n" ); |
| 2165 | return; |
| 2166 | } |
| 2167 | |
| 2168 | if (callerCodeBlock->codeType() != FunctionCode) { |
| 2169 | // If the caller is either eval or global code, assume that that won't be |
| 2170 | // optimized anytime soon. For eval code this is particularly true since we |
| 2171 | // delay eval optimization by a *lot*. |
| 2172 | m_shouldAlwaysBeInlined = false; |
| 2173 | if (Options::verboseCallLink()) |
| 2174 | dataLog(" Clearing SABI because caller is not a function.\n" ); |
| 2175 | return; |
| 2176 | } |
| 2177 | |
| 2178 | // Recursive calls won't be inlined. |
| 2179 | RecursionCheckFunctor functor(callerFrame, this, Options::maximumInliningDepth()); |
| 2180 | vm()->topCallFrame->iterate(functor); |
| 2181 | |
| 2182 | if (functor.didRecurse()) { |
| 2183 | if (Options::verboseCallLink()) |
| 2184 | dataLog(" Clearing SABI because recursion was detected.\n" ); |
| 2185 | m_shouldAlwaysBeInlined = false; |
| 2186 | return; |
| 2187 | } |
| 2188 | |
| 2189 | if (callerCodeBlock->capabilityLevelState() == DFG::CapabilityLevelNotSet) { |
| 2190 | dataLog("In call from " , FullCodeOrigin(callerCodeBlock, callerFrame->codeOrigin()), " to " , *this, ": caller's DFG capability level is not set.\n" ); |
| 2191 | CRASH(); |
| 2192 | } |
| 2193 | |
| 2194 | if (canCompile(callerCodeBlock->capabilityLevelState())) |
| 2195 | return; |
| 2196 | |
| 2197 | if (Options::verboseCallLink()) |
| 2198 | dataLog(" Clearing SABI because the caller is not a DFG candidate.\n" ); |
| 2199 | |
| 2200 | m_shouldAlwaysBeInlined = false; |
| 2201 | #endif |
| 2202 | } |
| 2203 | |
| 2204 | unsigned CodeBlock::reoptimizationRetryCounter() const |
| 2205 | { |
| 2206 | #if ENABLE(JIT) |
| 2207 | ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); |
| 2208 | return m_reoptimizationRetryCounter; |
| 2209 | #else |
| 2210 | return 0; |
| 2211 | #endif // ENABLE(JIT) |
| 2212 | } |
| 2213 | |
| 2214 | #if !ENABLE(C_LOOP) |
| 2215 | const RegisterAtOffsetList* CodeBlock::calleeSaveRegisters() const |
| 2216 | { |
| 2217 | #if ENABLE(JIT) |
| 2218 | if (auto* jitData = m_jitData.get()) { |
| 2219 | if (const RegisterAtOffsetList* registers = jitData->m_calleeSaveRegisters.get()) |
| 2220 | return registers; |
| 2221 | } |
| 2222 | #endif |
| 2223 | return &RegisterAtOffsetList::llintBaselineCalleeSaveRegisters(); |
| 2224 | } |
| 2225 | |
| 2226 | |
| 2227 | static size_t roundCalleeSaveSpaceAsVirtualRegisters(size_t calleeSaveRegisters) |
| 2228 | { |
| 2229 | |
| 2230 | return (WTF::roundUpToMultipleOf(sizeof(Register), calleeSaveRegisters * sizeof(CPURegister)) / sizeof(Register)); |
| 2231 | |
| 2232 | } |
| 2233 | |
| 2234 | size_t CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters() |
| 2235 | { |
| 2236 | return roundCalleeSaveSpaceAsVirtualRegisters(numberOfLLIntBaselineCalleeSaveRegisters()); |
| 2237 | } |
| 2238 | |
| 2239 | size_t CodeBlock::calleeSaveSpaceAsVirtualRegisters() |
| 2240 | { |
| 2241 | return roundCalleeSaveSpaceAsVirtualRegisters(calleeSaveRegisters()->size()); |
| 2242 | } |
| 2243 | #endif |
| 2244 | |
| 2245 | #if ENABLE(JIT) |
| 2246 | |
| 2247 | void CodeBlock::countReoptimization() |
| 2248 | { |
| 2249 | m_reoptimizationRetryCounter++; |
| 2250 | if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) |
| 2251 | m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); |
| 2252 | } |
| 2253 | |
| 2254 | unsigned CodeBlock::numberOfDFGCompiles() |
| 2255 | { |
| 2256 | ASSERT(JITCode::isBaselineCode(jitType())); |
| 2257 | if (Options::testTheFTL()) { |
| 2258 | if (m_didFailFTLCompilation) |
| 2259 | return 1000000; |
| 2260 | return (m_hasBeenCompiledWithFTL ? 1 : 0) + m_reoptimizationRetryCounter; |
| 2261 | } |
| 2262 | CodeBlock* replacement = this->replacement(); |
| 2263 | return ((replacement && JITCode::isOptimizingJIT(replacement->jitType())) ? 1 : 0) + m_reoptimizationRetryCounter; |
| 2264 | } |
| 2265 | |
| 2266 | int32_t CodeBlock::codeTypeThresholdMultiplier() const |
| 2267 | { |
| 2268 | if (codeType() == EvalCode) |
| 2269 | return Options::evalThresholdMultiplier(); |
| 2270 | |
| 2271 | return 1; |
| 2272 | } |
| 2273 | |
| 2274 | double CodeBlock::optimizationThresholdScalingFactor() |
| 2275 | { |
| 2276 | // This expression arises from doing a least-squares fit of |
| 2277 | // |
| 2278 | // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d |
| 2279 | // |
| 2280 | // against the data points: |
| 2281 | // |
| 2282 | // x F[x_] |
| 2283 | // 10 0.9 (smallest reasonable code block) |
| 2284 | // 200 1.0 (typical small-ish code block) |
| 2285 | // 320 1.2 (something I saw in 3d-cube that I wanted to optimize) |
| 2286 | // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize) |
| 2287 | // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort) |
| 2288 | // 10000 6.0 (similar to above) |
| 2289 | // |
| 2290 | // I achieve the minimization using the following Mathematica code: |
| 2291 | // |
| 2292 | // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d |
| 2293 | // |
| 2294 | // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} |
| 2295 | // |
| 2296 | // solution = |
| 2297 | // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), |
| 2298 | // {a, b, c, d}][[2]] |
| 2299 | // |
| 2300 | // And the code below (to initialize a, b, c, d) is generated by: |
| 2301 | // |
| 2302 | // Print["const double " <> ToString[#[[1]]] <> " = " <> |
| 2303 | // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution |
| 2304 | // |
| 2305 | // We've long known the following to be true: |
| 2306 | // - Small code blocks are cheap to optimize and so we should do it sooner rather |
| 2307 | // than later. |
| 2308 | // - Large code blocks are expensive to optimize and so we should postpone doing so, |
| 2309 | // and sometimes have a large enough threshold that we never optimize them. |
| 2310 | // - The difference in cost is not totally linear because (a) just invoking the |
| 2311 | // DFG incurs some base cost and (b) for large code blocks there is enough slop |
| 2312 | // in the correlation between instruction count and the actual compilation cost |
| 2313 | // that for those large blocks, the instruction count should not have a strong |
| 2314 | // influence on our threshold. |
| 2315 | // |
| 2316 | // I knew the goals but I didn't know how to achieve them; so I picked an interesting |
| 2317 | // example where the heuristics were right (code block in 3d-cube with instruction |
| 2318 | // count 320, which got compiled early as it should have been) and one where they were |
| 2319 | // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive |
| 2320 | // to compile and didn't run often enough to warrant compilation in my opinion), and |
| 2321 | // then threw in additional data points that represented my own guess of what our |
| 2322 | // heuristics should do for some round-numbered examples. |
| 2323 | // |
| 2324 | // The expression to which I decided to fit the data arose because I started with an |
| 2325 | // affine function, and then did two things: put the linear part in an Abs to ensure |
| 2326 | // that the fit didn't end up choosing a negative value of c (which would result in |
| 2327 | // the function turning over and going negative for large x) and I threw in a Sqrt |
| 2328 | // term because Sqrt represents my intution that the function should be more sensitive |
| 2329 | // to small changes in small values of x, but less sensitive when x gets large. |
| 2330 | |
| 2331 | // Note that the current fit essentially eliminates the linear portion of the |
| 2332 | // expression (c == 0.0). |
| 2333 | const double a = 0.061504; |
| 2334 | const double b = 1.02406; |
| 2335 | const double c = 0.0; |
| 2336 | const double d = 0.825914; |
| 2337 | |
| 2338 | double bytecodeCost = this->bytecodeCost(); |
| 2339 | |
| 2340 | ASSERT(bytecodeCost); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. |
| 2341 | |
| 2342 | double result = d + a * sqrt(bytecodeCost + b) + c * bytecodeCost; |
| 2343 | |
| 2344 | result *= codeTypeThresholdMultiplier(); |
| 2345 | |
| 2346 | if (Options::verboseOSR()) { |
| 2347 | dataLog( |
| 2348 | *this, ": bytecode cost is " , bytecodeCost, |
| 2349 | ", scaling execution counter by " , result, " * " , codeTypeThresholdMultiplier(), |
| 2350 | "\n" ); |
| 2351 | } |
| 2352 | return result; |
| 2353 | } |
| 2354 | |
| 2355 | static int32_t clipThreshold(double threshold) |
| 2356 | { |
| 2357 | if (threshold < 1.0) |
| 2358 | return 1; |
| 2359 | |
| 2360 | if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max())) |
| 2361 | return std::numeric_limits<int32_t>::max(); |
| 2362 | |
| 2363 | return static_cast<int32_t>(threshold); |
| 2364 | } |
| 2365 | |
| 2366 | int32_t CodeBlock::adjustedCounterValue(int32_t desiredThreshold) |
| 2367 | { |
| 2368 | return clipThreshold( |
| 2369 | static_cast<double>(desiredThreshold) * |
| 2370 | optimizationThresholdScalingFactor() * |
| 2371 | (1 << reoptimizationRetryCounter())); |
| 2372 | } |
| 2373 | |
| 2374 | bool CodeBlock::checkIfOptimizationThresholdReached() |
| 2375 | { |
| 2376 | #if ENABLE(DFG_JIT) |
| 2377 | if (DFG::Worklist* worklist = DFG::existingGlobalDFGWorklistOrNull()) { |
| 2378 | if (worklist->compilationState(DFG::CompilationKey(this, DFG::DFGMode)) |
| 2379 | == DFG::Worklist::Compiled) { |
| 2380 | optimizeNextInvocation(); |
| 2381 | return true; |
| 2382 | } |
| 2383 | } |
| 2384 | #endif |
| 2385 | |
| 2386 | return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); |
| 2387 | } |
| 2388 | |
| 2389 | #if ENABLE(DFG_JIT) |
| 2390 | auto CodeBlock::updateOSRExitCounterAndCheckIfNeedToReoptimize(DFG::OSRExitState& exitState) -> OptimizeAction |
| 2391 | { |
| 2392 | DFG::OSRExitBase& exit = exitState.exit; |
| 2393 | if (!exitKindMayJettison(exit.m_kind)) { |
| 2394 | // FIXME: We may want to notice that we're frequently exiting |
| 2395 | // at an op_catch that we didn't compile an entrypoint for, and |
| 2396 | // then trigger a reoptimization of this CodeBlock: |
| 2397 | // https://bugs.webkit.org/show_bug.cgi?id=175842 |
| 2398 | return OptimizeAction::None; |
| 2399 | } |
| 2400 | |
| 2401 | exit.m_count++; |
| 2402 | m_osrExitCounter++; |
| 2403 | |
| 2404 | CodeBlock* baselineCodeBlock = exitState.baselineCodeBlock; |
| 2405 | ASSERT(baselineCodeBlock == baselineAlternative()); |
| 2406 | if (UNLIKELY(baselineCodeBlock->jitExecuteCounter().hasCrossedThreshold())) |
| 2407 | return OptimizeAction::ReoptimizeNow; |
| 2408 | |
| 2409 | // We want to figure out if there's a possibility that we're in a loop. For the outermost |
| 2410 | // code block in the inline stack, we handle this appropriately by having the loop OSR trigger |
| 2411 | // check the exit count of the replacement of the CodeBlock from which we are OSRing. The |
| 2412 | // problem is the inlined functions, which might also have loops, but whose baseline versions |
| 2413 | // don't know where to look for the exit count. Figure out if those loops are severe enough |
| 2414 | // that we had tried to OSR enter. If so, then we should use the loop reoptimization trigger. |
| 2415 | // Otherwise, we should use the normal reoptimization trigger. |
| 2416 | |
| 2417 | bool didTryToEnterInLoop = false; |
| 2418 | for (InlineCallFrame* inlineCallFrame = exit.m_codeOrigin.inlineCallFrame(); inlineCallFrame; inlineCallFrame = inlineCallFrame->directCaller.inlineCallFrame()) { |
| 2419 | if (inlineCallFrame->baselineCodeBlock->ownerExecutable()->didTryToEnterInLoop()) { |
| 2420 | didTryToEnterInLoop = true; |
| 2421 | break; |
| 2422 | } |
| 2423 | } |
| 2424 | |
| 2425 | uint32_t exitCountThreshold = didTryToEnterInLoop |
| 2426 | ? exitCountThresholdForReoptimizationFromLoop() |
| 2427 | : exitCountThresholdForReoptimization(); |
| 2428 | |
| 2429 | if (m_osrExitCounter > exitCountThreshold) |
| 2430 | return OptimizeAction::ReoptimizeNow; |
| 2431 | |
| 2432 | // Too few fails. Adjust the execution counter such that the target is to only optimize after a while. |
| 2433 | baselineCodeBlock->m_jitExecuteCounter.setNewThresholdForOSRExit(exitState.activeThreshold, exitState.memoryUsageAdjustedThreshold); |
| 2434 | return OptimizeAction::None; |
| 2435 | } |
| 2436 | #endif |
| 2437 | |
| 2438 | void CodeBlock::optimizeNextInvocation() |
| 2439 | { |
| 2440 | if (Options::verboseOSR()) |
| 2441 | dataLog(*this, ": Optimizing next invocation.\n" ); |
| 2442 | m_jitExecuteCounter.setNewThreshold(0, this); |
| 2443 | } |
| 2444 | |
| 2445 | void CodeBlock::dontOptimizeAnytimeSoon() |
| 2446 | { |
| 2447 | if (Options::verboseOSR()) |
| 2448 | dataLog(*this, ": Not optimizing anytime soon.\n" ); |
| 2449 | m_jitExecuteCounter.deferIndefinitely(); |
| 2450 | } |
| 2451 | |
| 2452 | void CodeBlock::optimizeAfterWarmUp() |
| 2453 | { |
| 2454 | if (Options::verboseOSR()) |
| 2455 | dataLog(*this, ": Optimizing after warm-up.\n" ); |
| 2456 | #if ENABLE(DFG_JIT) |
| 2457 | m_jitExecuteCounter.setNewThreshold( |
| 2458 | adjustedCounterValue(Options::thresholdForOptimizeAfterWarmUp()), this); |
| 2459 | #endif |
| 2460 | } |
| 2461 | |
| 2462 | void CodeBlock::optimizeAfterLongWarmUp() |
| 2463 | { |
| 2464 | if (Options::verboseOSR()) |
| 2465 | dataLog(*this, ": Optimizing after long warm-up.\n" ); |
| 2466 | #if ENABLE(DFG_JIT) |
| 2467 | m_jitExecuteCounter.setNewThreshold( |
| 2468 | adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp()), this); |
| 2469 | #endif |
| 2470 | } |
| 2471 | |
| 2472 | void CodeBlock::optimizeSoon() |
| 2473 | { |
| 2474 | if (Options::verboseOSR()) |
| 2475 | dataLog(*this, ": Optimizing soon.\n" ); |
| 2476 | #if ENABLE(DFG_JIT) |
| 2477 | m_jitExecuteCounter.setNewThreshold( |
| 2478 | adjustedCounterValue(Options::thresholdForOptimizeSoon()), this); |
| 2479 | #endif |
| 2480 | } |
| 2481 | |
| 2482 | void CodeBlock::forceOptimizationSlowPathConcurrently() |
| 2483 | { |
| 2484 | if (Options::verboseOSR()) |
| 2485 | dataLog(*this, ": Forcing slow path concurrently.\n" ); |
| 2486 | m_jitExecuteCounter.forceSlowPathConcurrently(); |
| 2487 | } |
| 2488 | |
| 2489 | #if ENABLE(DFG_JIT) |
| 2490 | void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result) |
| 2491 | { |
| 2492 | JITType type = jitType(); |
| 2493 | if (type != JITType::BaselineJIT) { |
| 2494 | dataLog(*this, ": expected to have baseline code but have " , type, "\n" ); |
| 2495 | CRASH_WITH_INFO(bitwise_cast<uintptr_t>(jitCode().get()), static_cast<uint8_t>(type)); |
| 2496 | } |
| 2497 | |
| 2498 | CodeBlock* replacement = this->replacement(); |
| 2499 | bool hasReplacement = (replacement && replacement != this); |
| 2500 | if ((result == CompilationSuccessful) != hasReplacement) { |
| 2501 | dataLog(*this, ": we have result = " , result, " but " ); |
| 2502 | if (replacement == this) |
| 2503 | dataLog("we are our own replacement.\n" ); |
| 2504 | else |
| 2505 | dataLog("our replacement is " , pointerDump(replacement), "\n" ); |
| 2506 | RELEASE_ASSERT_NOT_REACHED(); |
| 2507 | } |
| 2508 | |
| 2509 | switch (result) { |
| 2510 | case CompilationSuccessful: |
| 2511 | RELEASE_ASSERT(replacement && JITCode::isOptimizingJIT(replacement->jitType())); |
| 2512 | optimizeNextInvocation(); |
| 2513 | return; |
| 2514 | case CompilationFailed: |
| 2515 | dontOptimizeAnytimeSoon(); |
| 2516 | return; |
| 2517 | case CompilationDeferred: |
| 2518 | // We'd like to do dontOptimizeAnytimeSoon() but we cannot because |
| 2519 | // forceOptimizationSlowPathConcurrently() is inherently racy. It won't |
| 2520 | // necessarily guarantee anything. So, we make sure that even if that |
| 2521 | // function ends up being a no-op, we still eventually retry and realize |
| 2522 | // that we have optimized code ready. |
| 2523 | optimizeAfterWarmUp(); |
| 2524 | return; |
| 2525 | case CompilationInvalidated: |
| 2526 | // Retry with exponential backoff. |
| 2527 | countReoptimization(); |
| 2528 | optimizeAfterWarmUp(); |
| 2529 | return; |
| 2530 | } |
| 2531 | |
| 2532 | dataLog("Unrecognized result: " , static_cast<int>(result), "\n" ); |
| 2533 | RELEASE_ASSERT_NOT_REACHED(); |
| 2534 | } |
| 2535 | |
| 2536 | #endif |
| 2537 | |
| 2538 | uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) |
| 2539 | { |
| 2540 | ASSERT(JITCode::isOptimizingJIT(jitType())); |
| 2541 | // Compute this the lame way so we don't saturate. This is called infrequently |
| 2542 | // enough that this loop won't hurt us. |
| 2543 | unsigned result = desiredThreshold; |
| 2544 | for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { |
| 2545 | unsigned newResult = result << 1; |
| 2546 | if (newResult < result) |
| 2547 | return std::numeric_limits<uint32_t>::max(); |
| 2548 | result = newResult; |
| 2549 | } |
| 2550 | return result; |
| 2551 | } |
| 2552 | |
| 2553 | uint32_t CodeBlock::exitCountThresholdForReoptimization() |
| 2554 | { |
| 2555 | return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); |
| 2556 | } |
| 2557 | |
| 2558 | uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() |
| 2559 | { |
| 2560 | return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); |
| 2561 | } |
| 2562 | |
| 2563 | bool CodeBlock::shouldReoptimizeNow() |
| 2564 | { |
| 2565 | return osrExitCounter() >= exitCountThresholdForReoptimization(); |
| 2566 | } |
| 2567 | |
| 2568 | bool CodeBlock::shouldReoptimizeFromLoopNow() |
| 2569 | { |
| 2570 | return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); |
| 2571 | } |
| 2572 | #endif |
| 2573 | |
| 2574 | ArrayProfile* CodeBlock::getArrayProfile(const ConcurrentJSLocker&, unsigned bytecodeOffset) |
| 2575 | { |
| 2576 | auto instruction = instructions().at(bytecodeOffset); |
| 2577 | switch (instruction->opcodeID()) { |
| 2578 | #define CASE(Op) \ |
| 2579 | case Op::opcodeID: \ |
| 2580 | return &instruction->as<Op>().metadata(this).m_arrayProfile; |
| 2581 | |
| 2582 | FOR_EACH_OPCODE_WITH_ARRAY_PROFILE(CASE) |
| 2583 | #undef CASE |
| 2584 | |
| 2585 | case OpGetById::opcodeID: { |
| 2586 | auto bytecode = instruction->as<OpGetById>(); |
| 2587 | auto& metadata = bytecode.metadata(this); |
| 2588 | if (metadata.m_mode == GetByIdMode::ArrayLength) |
| 2589 | return &metadata.m_modeMetadata.arrayLengthMode.arrayProfile; |
| 2590 | break; |
| 2591 | } |
| 2592 | default: |
| 2593 | break; |
| 2594 | } |
| 2595 | |
| 2596 | return nullptr; |
| 2597 | } |
| 2598 | |
| 2599 | ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset) |
| 2600 | { |
| 2601 | ConcurrentJSLocker locker(m_lock); |
| 2602 | return getArrayProfile(locker, bytecodeOffset); |
| 2603 | } |
| 2604 | |
| 2605 | #if ENABLE(DFG_JIT) |
| 2606 | Vector<CodeOrigin, 0, UnsafeVectorOverflow>& CodeBlock::codeOrigins() |
| 2607 | { |
| 2608 | return m_jitCode->dfgCommon()->codeOrigins; |
| 2609 | } |
| 2610 | |
| 2611 | size_t CodeBlock::numberOfDFGIdentifiers() const |
| 2612 | { |
| 2613 | if (!JITCode::isOptimizingJIT(jitType())) |
| 2614 | return 0; |
| 2615 | |
| 2616 | return m_jitCode->dfgCommon()->dfgIdentifiers.size(); |
| 2617 | } |
| 2618 | |
| 2619 | const Identifier& CodeBlock::identifier(int index) const |
| 2620 | { |
| 2621 | size_t unlinkedIdentifiers = m_unlinkedCode->numberOfIdentifiers(); |
| 2622 | if (static_cast<unsigned>(index) < unlinkedIdentifiers) |
| 2623 | return m_unlinkedCode->identifier(index); |
| 2624 | ASSERT(JITCode::isOptimizingJIT(jitType())); |
| 2625 | return m_jitCode->dfgCommon()->dfgIdentifiers[index - unlinkedIdentifiers]; |
| 2626 | } |
| 2627 | #endif // ENABLE(DFG_JIT) |
| 2628 | |
| 2629 | void CodeBlock::updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) |
| 2630 | { |
| 2631 | ConcurrentJSLocker locker(m_lock); |
| 2632 | |
| 2633 | numberOfLiveNonArgumentValueProfiles = 0; |
| 2634 | numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. |
| 2635 | |
| 2636 | forEachValueProfile([&](ValueProfile& profile) { |
| 2637 | unsigned numSamples = profile.totalNumberOfSamples(); |
| 2638 | if (numSamples > ValueProfile::numberOfBuckets) |
| 2639 | numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. |
| 2640 | numberOfSamplesInProfiles += numSamples; |
| 2641 | if (profile.m_bytecodeOffset < 0) { |
| 2642 | profile.computeUpdatedPrediction(locker); |
| 2643 | return; |
| 2644 | } |
| 2645 | if (profile.numberOfSamples() || profile.m_prediction != SpecNone) |
| 2646 | numberOfLiveNonArgumentValueProfiles++; |
| 2647 | profile.computeUpdatedPrediction(locker); |
| 2648 | }); |
| 2649 | |
| 2650 | if (auto* rareData = m_rareData.get()) { |
| 2651 | for (auto& profileBucket : rareData->m_catchProfiles) { |
| 2652 | profileBucket->forEach([&] (ValueProfileAndOperand& profile) { |
| 2653 | profile.m_profile.computeUpdatedPrediction(locker); |
| 2654 | }); |
| 2655 | } |
| 2656 | } |
| 2657 | |
| 2658 | #if ENABLE(DFG_JIT) |
| 2659 | lazyOperandValueProfiles(locker).computeUpdatedPredictions(locker); |
| 2660 | #endif |
| 2661 | } |
| 2662 | |
| 2663 | void CodeBlock::updateAllValueProfilePredictions() |
| 2664 | { |
| 2665 | unsigned ignoredValue1, ignoredValue2; |
| 2666 | updateAllPredictionsAndCountLiveness(ignoredValue1, ignoredValue2); |
| 2667 | } |
| 2668 | |
| 2669 | void CodeBlock::updateAllArrayPredictions() |
| 2670 | { |
| 2671 | ConcurrentJSLocker locker(m_lock); |
| 2672 | |
| 2673 | forEachArrayProfile([&](ArrayProfile& profile) { |
| 2674 | profile.computeUpdatedPrediction(locker, this); |
| 2675 | }); |
| 2676 | |
| 2677 | forEachArrayAllocationProfile([&](ArrayAllocationProfile& profile) { |
| 2678 | profile.updateProfile(); |
| 2679 | }); |
| 2680 | } |
| 2681 | |
| 2682 | void CodeBlock::updateAllPredictions() |
| 2683 | { |
| 2684 | updateAllValueProfilePredictions(); |
| 2685 | updateAllArrayPredictions(); |
| 2686 | } |
| 2687 | |
| 2688 | bool CodeBlock::shouldOptimizeNow() |
| 2689 | { |
| 2690 | if (Options::verboseOSR()) |
| 2691 | dataLog("Considering optimizing " , *this, "...\n" ); |
| 2692 | |
| 2693 | if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) |
| 2694 | return true; |
| 2695 | |
| 2696 | updateAllArrayPredictions(); |
| 2697 | |
| 2698 | unsigned numberOfLiveNonArgumentValueProfiles; |
| 2699 | unsigned numberOfSamplesInProfiles; |
| 2700 | updateAllPredictionsAndCountLiveness(numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); |
| 2701 | |
| 2702 | if (Options::verboseOSR()) { |
| 2703 | dataLogF( |
| 2704 | "Profile hotness: %lf (%u / %u), %lf (%u / %u)\n" , |
| 2705 | (double)numberOfLiveNonArgumentValueProfiles / numberOfNonArgumentValueProfiles(), |
| 2706 | numberOfLiveNonArgumentValueProfiles, numberOfNonArgumentValueProfiles(), |
| 2707 | (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfNonArgumentValueProfiles(), |
| 2708 | numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfNonArgumentValueProfiles()); |
| 2709 | } |
| 2710 | |
| 2711 | if ((!numberOfNonArgumentValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfNonArgumentValueProfiles() >= Options::desiredProfileLivenessRate()) |
| 2712 | && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) |
| 2713 | && static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) |
| 2714 | return true; |
| 2715 | |
| 2716 | ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max()); |
| 2717 | m_optimizationDelayCounter++; |
| 2718 | optimizeAfterWarmUp(); |
| 2719 | return false; |
| 2720 | } |
| 2721 | |
| 2722 | #if ENABLE(DFG_JIT) |
| 2723 | void CodeBlock::tallyFrequentExitSites() |
| 2724 | { |
| 2725 | ASSERT(JITCode::isOptimizingJIT(jitType())); |
| 2726 | ASSERT(alternative()->jitType() == JITType::BaselineJIT); |
| 2727 | |
| 2728 | CodeBlock* profiledBlock = alternative(); |
| 2729 | |
| 2730 | switch (jitType()) { |
| 2731 | case JITType::DFGJIT: { |
| 2732 | DFG::JITCode* jitCode = m_jitCode->dfg(); |
| 2733 | for (auto& exit : jitCode->osrExit) |
| 2734 | exit.considerAddingAsFrequentExitSite(profiledBlock); |
| 2735 | break; |
| 2736 | } |
| 2737 | |
| 2738 | #if ENABLE(FTL_JIT) |
| 2739 | case JITType::FTLJIT: { |
| 2740 | // There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit |
| 2741 | // vector contains a totally different type, that just so happens to behave like |
| 2742 | // DFG::JITCode::osrExit. |
| 2743 | FTL::JITCode* jitCode = m_jitCode->ftl(); |
| 2744 | for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { |
| 2745 | FTL::OSRExit& exit = jitCode->osrExit[i]; |
| 2746 | exit.considerAddingAsFrequentExitSite(profiledBlock); |
| 2747 | } |
| 2748 | break; |
| 2749 | } |
| 2750 | #endif |
| 2751 | |
| 2752 | default: |
| 2753 | RELEASE_ASSERT_NOT_REACHED(); |
| 2754 | break; |
| 2755 | } |
| 2756 | } |
| 2757 | #endif // ENABLE(DFG_JIT) |
| 2758 | |
| 2759 | void CodeBlock::notifyLexicalBindingUpdate() |
| 2760 | { |
| 2761 | // FIXME: Currently, module code do not query to JSGlobalLexicalEnvironment. So this case should be removed once it is fixed. |
| 2762 | // https://bugs.webkit.org/show_bug.cgi?id=193347 |
| 2763 | if (scriptMode() == JSParserScriptMode::Module) |
| 2764 | return; |
| 2765 | JSGlobalObject* globalObject = m_globalObject.get(); |
| 2766 | JSGlobalLexicalEnvironment* globalLexicalEnvironment = jsCast<JSGlobalLexicalEnvironment*>(globalObject->globalScope()); |
| 2767 | SymbolTable* symbolTable = globalLexicalEnvironment->symbolTable(); |
| 2768 | |
| 2769 | ConcurrentJSLocker locker(m_lock); |
| 2770 | |
| 2771 | auto isShadowed = [&] (UniquedStringImpl* uid) { |
| 2772 | ConcurrentJSLocker locker(symbolTable->m_lock); |
| 2773 | return symbolTable->contains(locker, uid); |
| 2774 | }; |
| 2775 | |
| 2776 | const InstructionStream& instructionStream = instructions(); |
| 2777 | for (const auto& instruction : instructionStream) { |
| 2778 | OpcodeID opcodeID = instruction->opcodeID(); |
| 2779 | switch (opcodeID) { |
| 2780 | case op_resolve_scope: { |
| 2781 | auto bytecode = instruction->as<OpResolveScope>(); |
| 2782 | auto& metadata = bytecode.metadata(this); |
| 2783 | ResolveType originalResolveType = metadata.m_resolveType; |
| 2784 | if (originalResolveType == GlobalProperty || originalResolveType == GlobalPropertyWithVarInjectionChecks) { |
| 2785 | const Identifier& ident = identifier(bytecode.m_var); |
| 2786 | if (isShadowed(ident.impl())) |
| 2787 | metadata.m_globalLexicalBindingEpoch = 0; |
| 2788 | else |
| 2789 | metadata.m_globalLexicalBindingEpoch = globalObject->globalLexicalBindingEpoch(); |
| 2790 | } |
| 2791 | break; |
| 2792 | } |
| 2793 | default: |
| 2794 | break; |
| 2795 | } |
| 2796 | } |
| 2797 | } |
| 2798 | |
| 2799 | #if ENABLE(VERBOSE_VALUE_PROFILE) |
| 2800 | void CodeBlock::dumpValueProfiles() |
| 2801 | { |
| 2802 | dataLog("ValueProfile for " , *this, ":\n" ); |
| 2803 | forEachValueProfile([](ValueProfile& profile) { |
| 2804 | if (profile.m_bytecodeOffset < 0) { |
| 2805 | ASSERT(profile.m_bytecodeOffset == -1); |
| 2806 | dataLogF(" arg = %u: " , i); |
| 2807 | } else |
| 2808 | dataLogF(" bc = %d: " , profile.m_bytecodeOffset); |
| 2809 | if (!profile.numberOfSamples() && profile.m_prediction == SpecNone) { |
| 2810 | dataLogF("<empty>\n" ); |
| 2811 | continue; |
| 2812 | } |
| 2813 | profile.dump(WTF::dataFile()); |
| 2814 | dataLogF("\n" ); |
| 2815 | }); |
| 2816 | dataLog("RareCaseProfile for " , *this, ":\n" ); |
| 2817 | if (auto* jitData = m_jitData.get()) { |
| 2818 | for (RareCaseProfile* profile : jitData->m_rareCaseProfiles) |
| 2819 | dataLogF(" bc = %d: %u\n" , profile->m_bytecodeOffset, profile->m_counter); |
| 2820 | } |
| 2821 | } |
| 2822 | #endif // ENABLE(VERBOSE_VALUE_PROFILE) |
| 2823 | |
| 2824 | unsigned CodeBlock::frameRegisterCount() |
| 2825 | { |
| 2826 | switch (jitType()) { |
| 2827 | case JITType::InterpreterThunk: |
| 2828 | return LLInt::frameRegisterCountFor(this); |
| 2829 | |
| 2830 | #if ENABLE(JIT) |
| 2831 | case JITType::BaselineJIT: |
| 2832 | return JIT::frameRegisterCountFor(this); |
| 2833 | #endif // ENABLE(JIT) |
| 2834 | |
| 2835 | #if ENABLE(DFG_JIT) |
| 2836 | case JITType::DFGJIT: |
| 2837 | case JITType::FTLJIT: |
| 2838 | return jitCode()->dfgCommon()->frameRegisterCount; |
| 2839 | #endif // ENABLE(DFG_JIT) |
| 2840 | |
| 2841 | default: |
| 2842 | RELEASE_ASSERT_NOT_REACHED(); |
| 2843 | return 0; |
| 2844 | } |
| 2845 | } |
| 2846 | |
| 2847 | int CodeBlock::stackPointerOffset() |
| 2848 | { |
| 2849 | return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); |
| 2850 | } |
| 2851 | |
| 2852 | size_t CodeBlock::predictedMachineCodeSize() |
| 2853 | { |
| 2854 | VM* vm = m_vm; |
| 2855 | // This will be called from CodeBlock::CodeBlock before either m_vm or the |
| 2856 | // instructions have been initialized. It's OK to return 0 because what will really |
| 2857 | // matter is the recomputation of this value when the slow path is triggered. |
| 2858 | if (!vm) |
| 2859 | return 0; |
| 2860 | |
| 2861 | if (!*vm->machineCodeBytesPerBytecodeWordForBaselineJIT) |
| 2862 | return 0; // It's as good of a prediction as we'll get. |
| 2863 | |
| 2864 | // Be conservative: return a size that will be an overestimation 84% of the time. |
| 2865 | double multiplier = vm->machineCodeBytesPerBytecodeWordForBaselineJIT->mean() + |
| 2866 | vm->machineCodeBytesPerBytecodeWordForBaselineJIT->standardDeviation(); |
| 2867 | |
| 2868 | // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing |
| 2869 | // here is OK, since this whole method is just a heuristic. |
| 2870 | if (multiplier < 0 || multiplier > 1000) |
| 2871 | return 0; |
| 2872 | |
| 2873 | double doubleResult = multiplier * bytecodeCost(); |
| 2874 | |
| 2875 | // Be even more paranoid: silently reject values that won't fit into a size_t. If |
| 2876 | // the function is so huge that we can't even fit it into virtual memory then we |
| 2877 | // should probably have some other guards in place to prevent us from even getting |
| 2878 | // to this point. |
| 2879 | if (doubleResult > std::numeric_limits<size_t>::max()) |
| 2880 | return 0; |
| 2881 | |
| 2882 | return static_cast<size_t>(doubleResult); |
| 2883 | } |
| 2884 | |
| 2885 | String CodeBlock::nameForRegister(VirtualRegister virtualRegister) |
| 2886 | { |
| 2887 | for (auto& constantRegister : m_constantRegisters) { |
| 2888 | if (constantRegister.get().isEmpty()) |
| 2889 | continue; |
| 2890 | if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(*vm(), constantRegister.get())) { |
| 2891 | ConcurrentJSLocker locker(symbolTable->m_lock); |
| 2892 | auto end = symbolTable->end(locker); |
| 2893 | for (auto ptr = symbolTable->begin(locker); ptr != end; ++ptr) { |
| 2894 | if (ptr->value.varOffset() == VarOffset(virtualRegister)) { |
| 2895 | // FIXME: This won't work from the compilation thread. |
| 2896 | // https://bugs.webkit.org/show_bug.cgi?id=115300 |
| 2897 | return ptr->key.get(); |
| 2898 | } |
| 2899 | } |
| 2900 | } |
| 2901 | } |
| 2902 | if (virtualRegister == thisRegister()) |
| 2903 | return "this"_s ; |
| 2904 | if (virtualRegister.isArgument()) |
| 2905 | return makeString("arguments[" , pad(' ', 3, virtualRegister.toArgument()), ']'); |
| 2906 | |
| 2907 | return emptyString(); |
| 2908 | } |
| 2909 | |
| 2910 | ValueProfile* CodeBlock::tryGetValueProfileForBytecodeOffset(int bytecodeOffset) |
| 2911 | { |
| 2912 | auto instruction = instructions().at(bytecodeOffset); |
| 2913 | switch (instruction->opcodeID()) { |
| 2914 | |
| 2915 | #define CASE(Op) \ |
| 2916 | case Op::opcodeID: \ |
| 2917 | return &instruction->as<Op>().metadata(this).m_profile; |
| 2918 | |
| 2919 | FOR_EACH_OPCODE_WITH_VALUE_PROFILE(CASE) |
| 2920 | |
| 2921 | #undef CASE |
| 2922 | |
| 2923 | default: |
| 2924 | return nullptr; |
| 2925 | |
| 2926 | } |
| 2927 | } |
| 2928 | |
| 2929 | SpeculatedType CodeBlock::valueProfilePredictionForBytecodeOffset(const ConcurrentJSLocker& locker, int bytecodeOffset) |
| 2930 | { |
| 2931 | if (ValueProfile* valueProfile = tryGetValueProfileForBytecodeOffset(bytecodeOffset)) |
| 2932 | return valueProfile->computeUpdatedPrediction(locker); |
| 2933 | return SpecNone; |
| 2934 | } |
| 2935 | |
| 2936 | ValueProfile& CodeBlock::valueProfileForBytecodeOffset(int bytecodeOffset) |
| 2937 | { |
| 2938 | return *tryGetValueProfileForBytecodeOffset(bytecodeOffset); |
| 2939 | } |
| 2940 | |
| 2941 | void CodeBlock::validate() |
| 2942 | { |
| 2943 | BytecodeLivenessAnalysis liveness(this); // Compute directly from scratch so it doesn't effect CodeBlock footprint. |
| 2944 | |
| 2945 | FastBitVector liveAtHead = liveness.getLivenessInfoAtBytecodeOffset(this, 0); |
| 2946 | |
| 2947 | if (liveAtHead.numBits() != static_cast<size_t>(m_numCalleeLocals)) { |
| 2948 | beginValidationDidFail(); |
| 2949 | dataLog(" Wrong number of bits in result!\n" ); |
| 2950 | dataLog(" Result: " , liveAtHead, "\n" ); |
| 2951 | dataLog(" Bit count: " , liveAtHead.numBits(), "\n" ); |
| 2952 | endValidationDidFail(); |
| 2953 | } |
| 2954 | |
| 2955 | for (unsigned i = m_numCalleeLocals; i--;) { |
| 2956 | VirtualRegister reg = virtualRegisterForLocal(i); |
| 2957 | |
| 2958 | if (liveAtHead[i]) { |
| 2959 | beginValidationDidFail(); |
| 2960 | dataLog(" Variable " , reg, " is expected to be dead.\n" ); |
| 2961 | dataLog(" Result: " , liveAtHead, "\n" ); |
| 2962 | endValidationDidFail(); |
| 2963 | } |
| 2964 | } |
| 2965 | |
| 2966 | const InstructionStream& instructionStream = instructions(); |
| 2967 | for (const auto& instruction : instructionStream) { |
| 2968 | OpcodeID opcode = instruction->opcodeID(); |
| 2969 | if (!!baselineAlternative()->handlerForBytecodeOffset(instruction.offset())) { |
| 2970 | if (opcode == op_catch || opcode == op_enter) { |
| 2971 | // op_catch/op_enter logically represent an entrypoint. Entrypoints are not allowed to be |
| 2972 | // inside of a try block because they are responsible for bootstrapping state. And they |
| 2973 | // are never allowed throw an exception because of this. We rely on this when compiling |
| 2974 | // in the DFG. Because an entrypoint never throws, the bytecode generator will never |
| 2975 | // allow once inside a try block. |
| 2976 | beginValidationDidFail(); |
| 2977 | dataLog(" entrypoint not allowed inside a try block." ); |
| 2978 | endValidationDidFail(); |
| 2979 | } |
| 2980 | } |
| 2981 | } |
| 2982 | } |
| 2983 | |
| 2984 | void CodeBlock::beginValidationDidFail() |
| 2985 | { |
| 2986 | dataLog("Validation failure in " , *this, ":\n" ); |
| 2987 | dataLog("\n" ); |
| 2988 | } |
| 2989 | |
| 2990 | void CodeBlock::endValidationDidFail() |
| 2991 | { |
| 2992 | dataLog("\n" ); |
| 2993 | dumpBytecode(); |
| 2994 | dataLog("\n" ); |
| 2995 | dataLog("Validation failure.\n" ); |
| 2996 | RELEASE_ASSERT_NOT_REACHED(); |
| 2997 | } |
| 2998 | |
| 2999 | void CodeBlock::addBreakpoint(unsigned numBreakpoints) |
| 3000 | { |
| 3001 | m_numBreakpoints += numBreakpoints; |
| 3002 | ASSERT(m_numBreakpoints); |
| 3003 | if (JITCode::isOptimizingJIT(jitType())) |
| 3004 | jettison(Profiler::JettisonDueToDebuggerBreakpoint); |
| 3005 | } |
| 3006 | |
| 3007 | void CodeBlock::setSteppingMode(CodeBlock::SteppingMode mode) |
| 3008 | { |
| 3009 | m_steppingMode = mode; |
| 3010 | if (mode == SteppingModeEnabled && JITCode::isOptimizingJIT(jitType())) |
| 3011 | jettison(Profiler::JettisonDueToDebuggerStepping); |
| 3012 | } |
| 3013 | |
| 3014 | int CodeBlock::outOfLineJumpOffset(const Instruction* pc) |
| 3015 | { |
| 3016 | int offset = bytecodeOffset(pc); |
| 3017 | return m_unlinkedCode->outOfLineJumpOffset(offset); |
| 3018 | } |
| 3019 | |
| 3020 | const Instruction* CodeBlock::outOfLineJumpTarget(const Instruction* pc) |
| 3021 | { |
| 3022 | int offset = bytecodeOffset(pc); |
| 3023 | int target = m_unlinkedCode->outOfLineJumpOffset(offset); |
| 3024 | return instructions().at(offset + target).ptr(); |
| 3025 | } |
| 3026 | |
| 3027 | ArithProfile* CodeBlock::arithProfileForBytecodeOffset(InstructionStream::Offset bytecodeOffset) |
| 3028 | { |
| 3029 | return arithProfileForPC(instructions().at(bytecodeOffset).ptr()); |
| 3030 | } |
| 3031 | |
| 3032 | ArithProfile* CodeBlock::arithProfileForPC(const Instruction* pc) |
| 3033 | { |
| 3034 | switch (pc->opcodeID()) { |
| 3035 | case op_negate: |
| 3036 | return &pc->as<OpNegate>().metadata(this).m_arithProfile; |
| 3037 | case op_add: |
| 3038 | return &pc->as<OpAdd>().metadata(this).m_arithProfile; |
| 3039 | case op_mul: |
| 3040 | return &pc->as<OpMul>().metadata(this).m_arithProfile; |
| 3041 | case op_sub: |
| 3042 | return &pc->as<OpSub>().metadata(this).m_arithProfile; |
| 3043 | case op_div: |
| 3044 | return &pc->as<OpDiv>().metadata(this).m_arithProfile; |
| 3045 | default: |
| 3046 | break; |
| 3047 | } |
| 3048 | |
| 3049 | return nullptr; |
| 3050 | } |
| 3051 | |
| 3052 | bool CodeBlock::couldTakeSpecialFastCase(InstructionStream::Offset bytecodeOffset) |
| 3053 | { |
| 3054 | if (!hasBaselineJITProfiling()) |
| 3055 | return false; |
| 3056 | ArithProfile* profile = arithProfileForBytecodeOffset(bytecodeOffset); |
| 3057 | if (!profile) |
| 3058 | return false; |
| 3059 | return profile->tookSpecialFastPath(); |
| 3060 | } |
| 3061 | |
| 3062 | #if ENABLE(JIT) |
| 3063 | DFG::CapabilityLevel CodeBlock::capabilityLevel() |
| 3064 | { |
| 3065 | DFG::CapabilityLevel result = computeCapabilityLevel(); |
| 3066 | m_capabilityLevelState = result; |
| 3067 | return result; |
| 3068 | } |
| 3069 | #endif |
| 3070 | |
| 3071 | void CodeBlock::insertBasicBlockBoundariesForControlFlowProfiler() |
| 3072 | { |
| 3073 | if (!unlinkedCodeBlock()->hasOpProfileControlFlowBytecodeOffsets()) |
| 3074 | return; |
| 3075 | const Vector<InstructionStream::Offset>& bytecodeOffsets = unlinkedCodeBlock()->opProfileControlFlowBytecodeOffsets(); |
| 3076 | for (size_t i = 0, offsetsLength = bytecodeOffsets.size(); i < offsetsLength; i++) { |
| 3077 | // Because op_profile_control_flow is emitted at the beginning of every basic block, finding |
| 3078 | // the next op_profile_control_flow will give us the text range of a single basic block. |
| 3079 | size_t startIdx = bytecodeOffsets[i]; |
| 3080 | auto instruction = instructions().at(startIdx); |
| 3081 | RELEASE_ASSERT(instruction->opcodeID() == op_profile_control_flow); |
| 3082 | auto bytecode = instruction->as<OpProfileControlFlow>(); |
| 3083 | auto& metadata = bytecode.metadata(this); |
| 3084 | int basicBlockStartOffset = bytecode.m_textOffset; |
| 3085 | int basicBlockEndOffset; |
| 3086 | if (i + 1 < offsetsLength) { |
| 3087 | size_t endIdx = bytecodeOffsets[i + 1]; |
| 3088 | auto endInstruction = instructions().at(endIdx); |
| 3089 | RELEASE_ASSERT(endInstruction->opcodeID() == op_profile_control_flow); |
| 3090 | basicBlockEndOffset = endInstruction->as<OpProfileControlFlow>().m_textOffset - 1; |
| 3091 | } else { |
| 3092 | basicBlockEndOffset = sourceOffset() + ownerExecutable()->source().length() - 1; // Offset before the closing brace. |
| 3093 | basicBlockStartOffset = std::min(basicBlockStartOffset, basicBlockEndOffset); // Some start offsets may be at the closing brace, ensure it is the offset before. |
| 3094 | } |
| 3095 | |
| 3096 | // The following check allows for the same textual JavaScript basic block to have its bytecode emitted more |
| 3097 | // than once and still play nice with the control flow profiler. When basicBlockStartOffset is larger than |
| 3098 | // basicBlockEndOffset, it indicates that the bytecode generator has emitted code for the same AST node |
| 3099 | // more than once (for example: ForInNode, Finally blocks in TryNode, etc). Though these are different |
| 3100 | // basic blocks at the bytecode level, they are generated from the same textual basic block in the JavaScript |
| 3101 | // program. The condition: |
| 3102 | // (basicBlockEndOffset < basicBlockStartOffset) |
| 3103 | // is encountered when op_profile_control_flow lies across the boundary of these duplicated bytecode basic |
| 3104 | // blocks and the textual offset goes from the end of the duplicated block back to the beginning. These |
| 3105 | // ranges are dummy ranges and are ignored. The duplicated bytecode basic blocks point to the same |
| 3106 | // internal data structure, so if any of them execute, it will record the same textual basic block in the |
| 3107 | // JavaScript program as executing. |
| 3108 | // At the bytecode level, this situation looks like: |
| 3109 | // j: op_profile_control_flow (from j->k, we have basicBlockEndOffset < basicBlockStartOffset) |
| 3110 | // ... |
| 3111 | // k: op_profile_control_flow (we want to skip over the j->k block and start fresh at offset k as the start of a new basic block k->m). |
| 3112 | // ... |
| 3113 | // m: op_profile_control_flow |
| 3114 | if (basicBlockEndOffset < basicBlockStartOffset) { |
| 3115 | RELEASE_ASSERT(i + 1 < offsetsLength); // We should never encounter dummy blocks at the end of a CodeBlock. |
| 3116 | metadata.m_basicBlockLocation = vm()->controlFlowProfiler()->dummyBasicBlock(); |
| 3117 | continue; |
| 3118 | } |
| 3119 | |
| 3120 | BasicBlockLocation* basicBlockLocation = vm()->controlFlowProfiler()->getBasicBlockLocation(ownerExecutable()->sourceID(), basicBlockStartOffset, basicBlockEndOffset); |
| 3121 | |
| 3122 | // Find all functions that are enclosed within the range: [basicBlockStartOffset, basicBlockEndOffset] |
| 3123 | // and insert these functions' start/end offsets as gaps in the current BasicBlockLocation. |
| 3124 | // This is necessary because in the original source text of a JavaScript program, |
| 3125 | // function literals form new basic blocks boundaries, but they aren't represented |
| 3126 | // inside the CodeBlock's instruction stream. |
| 3127 | auto insertFunctionGaps = [basicBlockLocation, basicBlockStartOffset, basicBlockEndOffset] (const WriteBarrier<FunctionExecutable>& functionExecutable) { |
| 3128 | const UnlinkedFunctionExecutable* executable = functionExecutable->unlinkedExecutable(); |
| 3129 | int functionStart = executable->typeProfilingStartOffset(); |
| 3130 | int functionEnd = executable->typeProfilingEndOffset(); |
| 3131 | if (functionStart >= basicBlockStartOffset && functionEnd <= basicBlockEndOffset) |
| 3132 | basicBlockLocation->insertGap(functionStart, functionEnd); |
| 3133 | }; |
| 3134 | |
| 3135 | for (const WriteBarrier<FunctionExecutable>& executable : m_functionDecls) |
| 3136 | insertFunctionGaps(executable); |
| 3137 | for (const WriteBarrier<FunctionExecutable>& executable : m_functionExprs) |
| 3138 | insertFunctionGaps(executable); |
| 3139 | |
| 3140 | metadata.m_basicBlockLocation = basicBlockLocation; |
| 3141 | } |
| 3142 | } |
| 3143 | |
| 3144 | #if ENABLE(JIT) |
| 3145 | void CodeBlock::setPCToCodeOriginMap(std::unique_ptr<PCToCodeOriginMap>&& map) |
| 3146 | { |
| 3147 | ConcurrentJSLocker locker(m_lock); |
| 3148 | ensureJITData(locker).m_pcToCodeOriginMap = WTFMove(map); |
| 3149 | } |
| 3150 | |
| 3151 | Optional<CodeOrigin> CodeBlock::findPC(void* pc) |
| 3152 | { |
| 3153 | { |
| 3154 | ConcurrentJSLocker locker(m_lock); |
| 3155 | if (auto* jitData = m_jitData.get()) { |
| 3156 | if (jitData->m_pcToCodeOriginMap) { |
| 3157 | if (Optional<CodeOrigin> codeOrigin = jitData->m_pcToCodeOriginMap->findPC(pc)) |
| 3158 | return codeOrigin; |
| 3159 | } |
| 3160 | |
| 3161 | for (StructureStubInfo* stubInfo : jitData->m_stubInfos) { |
| 3162 | if (stubInfo->containsPC(pc)) |
| 3163 | return Optional<CodeOrigin>(stubInfo->codeOrigin); |
| 3164 | } |
| 3165 | } |
| 3166 | } |
| 3167 | |
| 3168 | if (Optional<CodeOrigin> codeOrigin = m_jitCode->findPC(this, pc)) |
| 3169 | return codeOrigin; |
| 3170 | |
| 3171 | return WTF::nullopt; |
| 3172 | } |
| 3173 | #endif // ENABLE(JIT) |
| 3174 | |
| 3175 | Optional<unsigned> CodeBlock::bytecodeOffsetFromCallSiteIndex(CallSiteIndex callSiteIndex) |
| 3176 | { |
| 3177 | Optional<unsigned> bytecodeOffset; |
| 3178 | JITType jitType = this->jitType(); |
| 3179 | if (jitType == JITType::InterpreterThunk || jitType == JITType::BaselineJIT) { |
| 3180 | #if USE(JSVALUE64) |
| 3181 | bytecodeOffset = callSiteIndex.bits(); |
| 3182 | #else |
| 3183 | Instruction* instruction = bitwise_cast<Instruction*>(callSiteIndex.bits()); |
| 3184 | bytecodeOffset = this->bytecodeOffset(instruction); |
| 3185 | #endif |
| 3186 | } else if (jitType == JITType::DFGJIT || jitType == JITType::FTLJIT) { |
| 3187 | #if ENABLE(DFG_JIT) |
| 3188 | RELEASE_ASSERT(canGetCodeOrigin(callSiteIndex)); |
| 3189 | CodeOrigin origin = codeOrigin(callSiteIndex); |
| 3190 | bytecodeOffset = origin.bytecodeIndex(); |
| 3191 | #else |
| 3192 | RELEASE_ASSERT_NOT_REACHED(); |
| 3193 | #endif |
| 3194 | } |
| 3195 | |
| 3196 | return bytecodeOffset; |
| 3197 | } |
| 3198 | |
| 3199 | int32_t CodeBlock::thresholdForJIT(int32_t threshold) |
| 3200 | { |
| 3201 | switch (unlinkedCodeBlock()->didOptimize()) { |
| 3202 | case MixedTriState: |
| 3203 | return threshold; |
| 3204 | case FalseTriState: |
| 3205 | return threshold * 4; |
| 3206 | case TrueTriState: |
| 3207 | return threshold / 2; |
| 3208 | } |
| 3209 | ASSERT_NOT_REACHED(); |
| 3210 | return threshold; |
| 3211 | } |
| 3212 | |
| 3213 | void CodeBlock::jitAfterWarmUp() |
| 3214 | { |
| 3215 | m_llintExecuteCounter.setNewThreshold(thresholdForJIT(Options::thresholdForJITAfterWarmUp()), this); |
| 3216 | } |
| 3217 | |
| 3218 | void CodeBlock::jitSoon() |
| 3219 | { |
| 3220 | m_llintExecuteCounter.setNewThreshold(thresholdForJIT(Options::thresholdForJITSoon()), this); |
| 3221 | } |
| 3222 | |
| 3223 | bool CodeBlock::hasInstalledVMTrapBreakpoints() const |
| 3224 | { |
| 3225 | #if ENABLE(SIGNAL_BASED_VM_TRAPS) |
| 3226 | // This function may be called from a signal handler. We need to be |
| 3227 | // careful to not call anything that is not signal handler safe, e.g. |
| 3228 | // we should not perturb the refCount of m_jitCode. |
| 3229 | if (!JITCode::isOptimizingJIT(jitType())) |
| 3230 | return false; |
| 3231 | return m_jitCode->dfgCommon()->hasInstalledVMTrapsBreakpoints(); |
| 3232 | #else |
| 3233 | return false; |
| 3234 | #endif |
| 3235 | } |
| 3236 | |
| 3237 | bool CodeBlock::installVMTrapBreakpoints() |
| 3238 | { |
| 3239 | #if ENABLE(SIGNAL_BASED_VM_TRAPS) |
| 3240 | // This function may be called from a signal handler. We need to be |
| 3241 | // careful to not call anything that is not signal handler safe, e.g. |
| 3242 | // we should not perturb the refCount of m_jitCode. |
| 3243 | if (!JITCode::isOptimizingJIT(jitType())) |
| 3244 | return false; |
| 3245 | auto& commonData = *m_jitCode->dfgCommon(); |
| 3246 | commonData.installVMTrapBreakpoints(this); |
| 3247 | return true; |
| 3248 | #else |
| 3249 | UNREACHABLE_FOR_PLATFORM(); |
| 3250 | return false; |
| 3251 | #endif |
| 3252 | } |
| 3253 | |
| 3254 | void CodeBlock::dumpMathICStats() |
| 3255 | { |
| 3256 | #if ENABLE(MATH_IC_STATS) |
| 3257 | double numAdds = 0.0; |
| 3258 | double totalAddSize = 0.0; |
| 3259 | double numMuls = 0.0; |
| 3260 | double totalMulSize = 0.0; |
| 3261 | double numNegs = 0.0; |
| 3262 | double totalNegSize = 0.0; |
| 3263 | double numSubs = 0.0; |
| 3264 | double totalSubSize = 0.0; |
| 3265 | |
| 3266 | auto countICs = [&] (CodeBlock* codeBlock) { |
| 3267 | if (auto* jitData = codeBlock->m_jitData.get()) { |
| 3268 | for (JITAddIC* addIC : jitData->m_addICs) { |
| 3269 | numAdds++; |
| 3270 | totalAddSize += addIC->codeSize(); |
| 3271 | } |
| 3272 | |
| 3273 | for (JITMulIC* mulIC : jitData->m_mulICs) { |
| 3274 | numMuls++; |
| 3275 | totalMulSize += mulIC->codeSize(); |
| 3276 | } |
| 3277 | |
| 3278 | for (JITNegIC* negIC : jitData->m_negICs) { |
| 3279 | numNegs++; |
| 3280 | totalNegSize += negIC->codeSize(); |
| 3281 | } |
| 3282 | |
| 3283 | for (JITSubIC* subIC : jitData->m_subICs) { |
| 3284 | numSubs++; |
| 3285 | totalSubSize += subIC->codeSize(); |
| 3286 | } |
| 3287 | } |
| 3288 | }; |
| 3289 | heap()->forEachCodeBlock(countICs); |
| 3290 | |
| 3291 | dataLog("Num Adds: " , numAdds, "\n" ); |
| 3292 | dataLog("Total Add size in bytes: " , totalAddSize, "\n" ); |
| 3293 | dataLog("Average Add size: " , totalAddSize / numAdds, "\n" ); |
| 3294 | dataLog("\n" ); |
| 3295 | dataLog("Num Muls: " , numMuls, "\n" ); |
| 3296 | dataLog("Total Mul size in bytes: " , totalMulSize, "\n" ); |
| 3297 | dataLog("Average Mul size: " , totalMulSize / numMuls, "\n" ); |
| 3298 | dataLog("\n" ); |
| 3299 | dataLog("Num Negs: " , numNegs, "\n" ); |
| 3300 | dataLog("Total Neg size in bytes: " , totalNegSize, "\n" ); |
| 3301 | dataLog("Average Neg size: " , totalNegSize / numNegs, "\n" ); |
| 3302 | dataLog("\n" ); |
| 3303 | dataLog("Num Subs: " , numSubs, "\n" ); |
| 3304 | dataLog("Total Sub size in bytes: " , totalSubSize, "\n" ); |
| 3305 | dataLog("Average Sub size: " , totalSubSize / numSubs, "\n" ); |
| 3306 | |
| 3307 | dataLog("-----------------------\n" ); |
| 3308 | #endif |
| 3309 | } |
| 3310 | |
| 3311 | void setPrinter(Printer::PrintRecord& record, CodeBlock* codeBlock) |
| 3312 | { |
| 3313 | Printer::setPrinter(record, toCString(codeBlock)); |
| 3314 | } |
| 3315 | |
| 3316 | } // namespace JSC |
| 3317 | |
| 3318 | namespace WTF { |
| 3319 | |
| 3320 | void printInternal(PrintStream& out, JSC::CodeBlock* codeBlock) |
| 3321 | { |
| 3322 | if (UNLIKELY(!codeBlock)) { |
| 3323 | out.print("<null codeBlock>" ); |
| 3324 | return; |
| 3325 | } |
| 3326 | out.print(*codeBlock); |
| 3327 | } |
| 3328 | |
| 3329 | } // namespace WTF |
| 3330 | |