| 1 | /* |
| 2 | * Copyright (C) 2009-2019 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #include "ExecutableAllocator.h" |
| 29 | #include "JSCPtrTag.h" |
| 30 | #include <wtf/DataLog.h> |
| 31 | #include <wtf/PrintStream.h> |
| 32 | #include <wtf/RefPtr.h> |
| 33 | #include <wtf/text/CString.h> |
| 34 | |
| 35 | // ASSERT_VALID_CODE_POINTER checks that ptr is a non-null pointer, and that it is a valid |
| 36 | // instruction address on the platform (for example, check any alignment requirements). |
| 37 | #if CPU(ARM_THUMB2) && ENABLE(JIT) |
| 38 | // ARM instructions must be 16-bit aligned. Thumb2 code pointers to be loaded into |
| 39 | // into the processor are decorated with the bottom bit set, while traditional ARM has |
| 40 | // the lower bit clear. Since we don't know what kind of pointer, we check for both |
| 41 | // decorated and undecorated null. |
| 42 | #define ASSERT_NULL_OR_VALID_CODE_POINTER(ptr) \ |
| 43 | ASSERT(!ptr || reinterpret_cast<intptr_t>(ptr) & ~1) |
| 44 | #define ASSERT_VALID_CODE_POINTER(ptr) \ |
| 45 | ASSERT(reinterpret_cast<intptr_t>(ptr) & ~1) |
| 46 | #define ASSERT_VALID_CODE_OFFSET(offset) \ |
| 47 | ASSERT(!(offset & 1)) // Must be multiple of 2. |
| 48 | #else |
| 49 | #define ASSERT_NULL_OR_VALID_CODE_POINTER(ptr) // Anything goes! |
| 50 | #define ASSERT_VALID_CODE_POINTER(ptr) \ |
| 51 | ASSERT(ptr) |
| 52 | #define ASSERT_VALID_CODE_OFFSET(offset) // Anything goes! |
| 53 | #endif |
| 54 | |
| 55 | namespace JSC { |
| 56 | |
| 57 | template<PtrTag> class MacroAssemblerCodePtr; |
| 58 | |
| 59 | enum OpcodeID : unsigned; |
| 60 | |
| 61 | // FunctionPtr: |
| 62 | // |
| 63 | // FunctionPtr should be used to wrap pointers to C/C++ functions in JSC |
| 64 | // (particularly, the stub functions). |
| 65 | template<PtrTag tag = CFunctionPtrTag> |
| 66 | class FunctionPtr { |
| 67 | public: |
| 68 | FunctionPtr() { } |
| 69 | FunctionPtr(std::nullptr_t) { } |
| 70 | |
| 71 | template<typename ReturnType, typename... Arguments> |
| 72 | FunctionPtr(ReturnType(*value)(Arguments...)) |
| 73 | : m_value(tagCFunctionPtr<void*, tag>(value)) |
| 74 | { |
| 75 | assertIsNullOrCFunctionPtr(value); |
| 76 | ASSERT_NULL_OR_VALID_CODE_POINTER(m_value); |
| 77 | } |
| 78 | |
| 79 | // MSVC doesn't seem to treat functions with different calling conventions as |
| 80 | // different types; these methods already defined for fastcall, below. |
| 81 | #if CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS) |
| 82 | |
| 83 | template<typename ReturnType, typename... Arguments> |
| 84 | FunctionPtr(ReturnType(CDECL *value)(Arguments...)) |
| 85 | : m_value(tagCFunctionPtr<void*, tag>(value)) |
| 86 | { |
| 87 | assertIsNullOrCFunctionPtr(value); |
| 88 | ASSERT_NULL_OR_VALID_CODE_POINTER(m_value); |
| 89 | } |
| 90 | |
| 91 | #endif // CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS) |
| 92 | |
| 93 | #if COMPILER_SUPPORTS(FASTCALL_CALLING_CONVENTION) |
| 94 | |
| 95 | template<typename ReturnType, typename... Arguments> |
| 96 | FunctionPtr(ReturnType(FASTCALL *value)(Arguments...)) |
| 97 | : m_value(tagCFunctionPtr<void*, tag>(value)) |
| 98 | { |
| 99 | assertIsNullOrCFunctionPtr(value); |
| 100 | ASSERT_NULL_OR_VALID_CODE_POINTER(m_value); |
| 101 | } |
| 102 | |
| 103 | #endif // COMPILER_SUPPORTS(FASTCALL_CALLING_CONVENTION) |
| 104 | |
| 105 | template<typename PtrType, typename = std::enable_if_t<std::is_pointer<PtrType>::value && !std::is_function<typename std::remove_pointer<PtrType>::type>::value>> |
| 106 | explicit FunctionPtr(PtrType value) |
| 107 | // Using a C-ctyle cast here to avoid compiler error on RVTC: |
| 108 | // Error: #694: reinterpret_cast cannot cast away const or other type qualifiers |
| 109 | // (I guess on RVTC function pointers have a different constness to GCC/MSVC?) |
| 110 | : m_value(tagCFunctionPtr<void*, tag>(value)) |
| 111 | { |
| 112 | assertIsNullOrCFunctionPtr(value); |
| 113 | ASSERT_NULL_OR_VALID_CODE_POINTER(m_value); |
| 114 | } |
| 115 | |
| 116 | explicit FunctionPtr(MacroAssemblerCodePtr<tag>); |
| 117 | |
| 118 | template<PtrTag otherTag> |
| 119 | FunctionPtr<otherTag> retagged() const |
| 120 | { |
| 121 | if (!m_value) |
| 122 | return FunctionPtr<otherTag>(); |
| 123 | return FunctionPtr<otherTag>(*this); |
| 124 | } |
| 125 | |
| 126 | void* executableAddress() const |
| 127 | { |
| 128 | return m_value; |
| 129 | } |
| 130 | |
| 131 | template<PtrTag newTag> |
| 132 | void* retaggedExecutableAddress() const |
| 133 | { |
| 134 | return retagCodePtr<tag, newTag>(m_value); |
| 135 | } |
| 136 | |
| 137 | explicit operator bool() const { return !!m_value; } |
| 138 | bool operator!() const { return !m_value; } |
| 139 | |
| 140 | bool operator==(const FunctionPtr& other) const { return m_value == other.m_value; } |
| 141 | bool operator!=(const FunctionPtr& other) const { return m_value != other.m_value; } |
| 142 | |
| 143 | private: |
| 144 | template<PtrTag otherTag> |
| 145 | explicit FunctionPtr(const FunctionPtr<otherTag>& other) |
| 146 | : m_value(retagCodePtr<otherTag, tag>(other.executableAddress())) |
| 147 | { |
| 148 | ASSERT_NULL_OR_VALID_CODE_POINTER(m_value); |
| 149 | } |
| 150 | |
| 151 | void* m_value { nullptr }; |
| 152 | |
| 153 | template<PtrTag> friend class FunctionPtr; |
| 154 | }; |
| 155 | |
| 156 | static_assert(sizeof(FunctionPtr<CFunctionPtrTag>) == sizeof(void*), "" ); |
| 157 | #if COMPILER_SUPPORTS(BUILTIN_IS_TRIVIALLY_COPYABLE) |
| 158 | static_assert(__is_trivially_copyable(FunctionPtr<CFunctionPtrTag>), "" ); |
| 159 | #endif |
| 160 | |
| 161 | // ReturnAddressPtr: |
| 162 | // |
| 163 | // ReturnAddressPtr should be used to wrap return addresses generated by processor |
| 164 | // 'call' instructions exectued in JIT code. We use return addresses to look up |
| 165 | // exception and optimization information, and to repatch the call instruction |
| 166 | // that is the source of the return address. |
| 167 | class ReturnAddressPtr { |
| 168 | public: |
| 169 | ReturnAddressPtr() { } |
| 170 | |
| 171 | explicit ReturnAddressPtr(const void* value) |
| 172 | : m_value(value) |
| 173 | { |
| 174 | ASSERT_VALID_CODE_POINTER(m_value); |
| 175 | } |
| 176 | |
| 177 | template<PtrTag tag> |
| 178 | explicit ReturnAddressPtr(FunctionPtr<tag> function) |
| 179 | : m_value(untagCodePtr<tag>(function.executableAddress())) |
| 180 | { |
| 181 | ASSERT_VALID_CODE_POINTER(m_value); |
| 182 | } |
| 183 | |
| 184 | const void* value() const |
| 185 | { |
| 186 | return m_value; |
| 187 | } |
| 188 | |
| 189 | void dump(PrintStream& out) const |
| 190 | { |
| 191 | out.print(RawPointer(m_value)); |
| 192 | } |
| 193 | |
| 194 | private: |
| 195 | const void* m_value { nullptr }; |
| 196 | }; |
| 197 | |
| 198 | // MacroAssemblerCodePtr: |
| 199 | // |
| 200 | // MacroAssemblerCodePtr should be used to wrap pointers to JIT generated code. |
| 201 | class MacroAssemblerCodePtrBase { |
| 202 | protected: |
| 203 | static void dumpWithName(void* executableAddress, void* dataLocation, const char* name, PrintStream& out); |
| 204 | }; |
| 205 | |
| 206 | // FIXME: Make JSC MacroAssemblerCodePtr injerit from MetaAllocatorPtr. |
| 207 | // https://bugs.webkit.org/show_bug.cgi?id=185145 |
| 208 | template<PtrTag tag> |
| 209 | class MacroAssemblerCodePtr : private MacroAssemblerCodePtrBase { |
| 210 | public: |
| 211 | MacroAssemblerCodePtr() = default; |
| 212 | MacroAssemblerCodePtr(std::nullptr_t) : m_value(nullptr) { } |
| 213 | |
| 214 | explicit MacroAssemblerCodePtr(const void* value) |
| 215 | #if CPU(ARM_THUMB2) |
| 216 | // Decorate the pointer as a thumb code pointer. |
| 217 | : m_value(reinterpret_cast<const char*>(value) + 1) |
| 218 | #else |
| 219 | : m_value(value) |
| 220 | #endif |
| 221 | { |
| 222 | assertIsTaggedWith(value, tag); |
| 223 | ASSERT(value); |
| 224 | #if CPU(ARM_THUMB2) |
| 225 | ASSERT(!(reinterpret_cast<uintptr_t>(value) & 1)); |
| 226 | #endif |
| 227 | ASSERT_VALID_CODE_POINTER(m_value); |
| 228 | } |
| 229 | |
| 230 | static MacroAssemblerCodePtr createFromExecutableAddress(const void* value) |
| 231 | { |
| 232 | ASSERT(value); |
| 233 | ASSERT_VALID_CODE_POINTER(value); |
| 234 | assertIsTaggedWith(value, tag); |
| 235 | MacroAssemblerCodePtr result; |
| 236 | result.m_value = value; |
| 237 | return result; |
| 238 | } |
| 239 | |
| 240 | explicit MacroAssemblerCodePtr(ReturnAddressPtr ra) |
| 241 | : m_value(tagCodePtr<tag>(ra.value())) |
| 242 | { |
| 243 | assertIsNotTagged(ra.value()); |
| 244 | ASSERT(ra.value()); |
| 245 | ASSERT_VALID_CODE_POINTER(m_value); |
| 246 | } |
| 247 | |
| 248 | template<PtrTag newTag> |
| 249 | MacroAssemblerCodePtr<newTag> retagged() const |
| 250 | { |
| 251 | if (!m_value) |
| 252 | return MacroAssemblerCodePtr<newTag>(); |
| 253 | return MacroAssemblerCodePtr<newTag>::createFromExecutableAddress(retaggedExecutableAddress<newTag>()); |
| 254 | } |
| 255 | |
| 256 | template<typename T = void*> |
| 257 | T executableAddress() const |
| 258 | { |
| 259 | return bitwise_cast<T>(m_value); |
| 260 | } |
| 261 | |
| 262 | template<typename T = void*> |
| 263 | T untaggedExecutableAddress() const |
| 264 | { |
| 265 | return untagCodePtr<T, tag>(m_value); |
| 266 | } |
| 267 | |
| 268 | template<PtrTag newTag, typename T = void*> |
| 269 | T retaggedExecutableAddress() const |
| 270 | { |
| 271 | return retagCodePtr<T, tag, newTag>(m_value); |
| 272 | } |
| 273 | |
| 274 | #if CPU(ARM_THUMB2) |
| 275 | // To use this pointer as a data address remove the decoration. |
| 276 | template<typename T = void*> |
| 277 | T dataLocation() const |
| 278 | { |
| 279 | ASSERT_VALID_CODE_POINTER(m_value); |
| 280 | return bitwise_cast<T>(m_value ? bitwise_cast<char*>(m_value) - 1 : nullptr); |
| 281 | } |
| 282 | #else |
| 283 | template<typename T = void*> |
| 284 | T dataLocation() const |
| 285 | { |
| 286 | ASSERT_VALID_CODE_POINTER(m_value); |
| 287 | return untagCodePtr<T, tag>(m_value); |
| 288 | } |
| 289 | #endif |
| 290 | |
| 291 | bool operator!() const |
| 292 | { |
| 293 | return !m_value; |
| 294 | } |
| 295 | explicit operator bool() const { return !(!*this); } |
| 296 | |
| 297 | bool operator==(const MacroAssemblerCodePtr& other) const |
| 298 | { |
| 299 | return m_value == other.m_value; |
| 300 | } |
| 301 | |
| 302 | // Disallow any casting operations (except for booleans). Instead, the client |
| 303 | // should be asking executableAddress() explicitly. |
| 304 | template<typename T, typename = std::enable_if_t<!std::is_same<T, bool>::value>> |
| 305 | operator T() = delete; |
| 306 | |
| 307 | void dumpWithName(const char* name, PrintStream& out) const |
| 308 | { |
| 309 | MacroAssemblerCodePtrBase::dumpWithName(executableAddress(), dataLocation(), name, out); |
| 310 | } |
| 311 | |
| 312 | void dump(PrintStream& out) const { dumpWithName("CodePtr" , out); } |
| 313 | |
| 314 | enum EmptyValueTag { EmptyValue }; |
| 315 | enum DeletedValueTag { DeletedValue }; |
| 316 | |
| 317 | MacroAssemblerCodePtr(EmptyValueTag) |
| 318 | : m_value(emptyValue()) |
| 319 | { } |
| 320 | |
| 321 | MacroAssemblerCodePtr(DeletedValueTag) |
| 322 | : m_value(deletedValue()) |
| 323 | { } |
| 324 | |
| 325 | bool isEmptyValue() const { return m_value == emptyValue(); } |
| 326 | bool isDeletedValue() const { return m_value == deletedValue(); } |
| 327 | |
| 328 | unsigned hash() const { return PtrHash<const void*>::hash(m_value); } |
| 329 | |
| 330 | static void initialize(); |
| 331 | |
| 332 | private: |
| 333 | static const void* emptyValue() { return bitwise_cast<void*>(static_cast<intptr_t>(1)); } |
| 334 | static const void* deletedValue() { return bitwise_cast<void*>(static_cast<intptr_t>(2)); } |
| 335 | |
| 336 | const void* m_value { nullptr }; |
| 337 | }; |
| 338 | |
| 339 | template<PtrTag tag> |
| 340 | struct MacroAssemblerCodePtrHash { |
| 341 | static unsigned hash(const MacroAssemblerCodePtr<tag>& ptr) { return ptr.hash(); } |
| 342 | static bool equal(const MacroAssemblerCodePtr<tag>& a, const MacroAssemblerCodePtr<tag>& b) |
| 343 | { |
| 344 | return a == b; |
| 345 | } |
| 346 | static const bool safeToCompareToEmptyOrDeleted = true; |
| 347 | }; |
| 348 | |
| 349 | // MacroAssemblerCodeRef: |
| 350 | // |
| 351 | // A reference to a section of JIT generated code. A CodeRef consists of a |
| 352 | // pointer to the code, and a ref pointer to the pool from within which it |
| 353 | // was allocated. |
| 354 | class MacroAssemblerCodeRefBase { |
| 355 | protected: |
| 356 | static bool tryToDisassemble(MacroAssemblerCodePtr<DisassemblyPtrTag>, size_t, const char* prefix, PrintStream& out); |
| 357 | static bool tryToDisassemble(MacroAssemblerCodePtr<DisassemblyPtrTag>, size_t, const char* prefix); |
| 358 | JS_EXPORT_PRIVATE static CString disassembly(MacroAssemblerCodePtr<DisassemblyPtrTag>, size_t); |
| 359 | }; |
| 360 | |
| 361 | template<PtrTag tag> |
| 362 | class MacroAssemblerCodeRef : private MacroAssemblerCodeRefBase { |
| 363 | private: |
| 364 | // This is private because it's dangerous enough that we want uses of it |
| 365 | // to be easy to find - hence the static create method below. |
| 366 | explicit MacroAssemblerCodeRef(MacroAssemblerCodePtr<tag> codePtr) |
| 367 | : m_codePtr(codePtr) |
| 368 | { |
| 369 | ASSERT(m_codePtr); |
| 370 | } |
| 371 | |
| 372 | public: |
| 373 | MacroAssemblerCodeRef() = default; |
| 374 | |
| 375 | MacroAssemblerCodeRef(Ref<ExecutableMemoryHandle>&& executableMemory) |
| 376 | : m_codePtr(executableMemory->start().retaggedPtr<tag>()) |
| 377 | , m_executableMemory(WTFMove(executableMemory)) |
| 378 | { |
| 379 | ASSERT(m_executableMemory->isManaged()); |
| 380 | ASSERT(m_executableMemory->start()); |
| 381 | ASSERT(m_codePtr); |
| 382 | } |
| 383 | |
| 384 | template<PtrTag otherTag> |
| 385 | MacroAssemblerCodeRef& operator=(const MacroAssemblerCodeRef<otherTag>& otherCodeRef) |
| 386 | { |
| 387 | m_codePtr = MacroAssemblerCodePtr<tag>::createFromExecutableAddress(otherCodeRef.code().template retaggedExecutableAddress<tag>()); |
| 388 | m_executableMemory = otherCodeRef.m_executableMemory; |
| 389 | return *this; |
| 390 | } |
| 391 | |
| 392 | // Use this only when you know that the codePtr refers to code that is |
| 393 | // already being kept alive through some other means. Typically this means |
| 394 | // that codePtr is immortal. |
| 395 | static MacroAssemblerCodeRef createSelfManagedCodeRef(MacroAssemblerCodePtr<tag> codePtr) |
| 396 | { |
| 397 | return MacroAssemblerCodeRef(codePtr); |
| 398 | } |
| 399 | |
| 400 | ExecutableMemoryHandle* executableMemory() const |
| 401 | { |
| 402 | return m_executableMemory.get(); |
| 403 | } |
| 404 | |
| 405 | MacroAssemblerCodePtr<tag> code() const |
| 406 | { |
| 407 | return m_codePtr; |
| 408 | } |
| 409 | |
| 410 | template<PtrTag newTag> |
| 411 | MacroAssemblerCodePtr<newTag> retaggedCode() const |
| 412 | { |
| 413 | return m_codePtr.template retagged<newTag>(); |
| 414 | } |
| 415 | |
| 416 | template<PtrTag newTag> |
| 417 | MacroAssemblerCodeRef<newTag> retagged() const |
| 418 | { |
| 419 | return MacroAssemblerCodeRef<newTag>(*this); |
| 420 | } |
| 421 | |
| 422 | size_t size() const |
| 423 | { |
| 424 | if (!m_executableMemory) |
| 425 | return 0; |
| 426 | return m_executableMemory->sizeInBytes(); |
| 427 | } |
| 428 | |
| 429 | bool tryToDisassemble(PrintStream& out, const char* prefix = "" ) const |
| 430 | { |
| 431 | return tryToDisassemble(retaggedCode<DisassemblyPtrTag>(), size(), prefix, out); |
| 432 | } |
| 433 | |
| 434 | bool tryToDisassemble(const char* prefix = "" ) const |
| 435 | { |
| 436 | return tryToDisassemble(retaggedCode<DisassemblyPtrTag>(), size(), prefix); |
| 437 | } |
| 438 | |
| 439 | CString disassembly() const |
| 440 | { |
| 441 | return MacroAssemblerCodeRefBase::disassembly(retaggedCode<DisassemblyPtrTag>(), size()); |
| 442 | } |
| 443 | |
| 444 | explicit operator bool() const { return !!m_codePtr; } |
| 445 | |
| 446 | void dump(PrintStream& out) const |
| 447 | { |
| 448 | m_codePtr.dumpWithName("CodeRef" , out); |
| 449 | } |
| 450 | |
| 451 | private: |
| 452 | template<PtrTag otherTag> |
| 453 | MacroAssemblerCodeRef(const MacroAssemblerCodeRef<otherTag>& otherCodeRef) |
| 454 | { |
| 455 | *this = otherCodeRef; |
| 456 | } |
| 457 | |
| 458 | MacroAssemblerCodePtr<tag> m_codePtr; |
| 459 | RefPtr<ExecutableMemoryHandle> m_executableMemory; |
| 460 | |
| 461 | template<PtrTag> friend class MacroAssemblerCodeRef; |
| 462 | }; |
| 463 | |
| 464 | template<PtrTag tag> |
| 465 | inline FunctionPtr<tag>::FunctionPtr(MacroAssemblerCodePtr<tag> ptr) |
| 466 | : m_value(ptr.executableAddress()) |
| 467 | { |
| 468 | } |
| 469 | |
| 470 | } // namespace JSC |
| 471 | |
| 472 | namespace WTF { |
| 473 | |
| 474 | template<typename T> struct DefaultHash; |
| 475 | template<JSC::PtrTag tag> struct DefaultHash<JSC::MacroAssemblerCodePtr<tag>> { |
| 476 | typedef JSC::MacroAssemblerCodePtrHash<tag> Hash; |
| 477 | }; |
| 478 | |
| 479 | template<typename T> struct HashTraits; |
| 480 | template<JSC::PtrTag tag> struct HashTraits<JSC::MacroAssemblerCodePtr<tag>> : public CustomHashTraits<JSC::MacroAssemblerCodePtr<tag>> { }; |
| 481 | |
| 482 | } // namespace WTF |
| 483 | |