| 1 | /* |
| 2 | * Copyright (C) 2015-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "B3LowerToAir.h" |
| 28 | |
| 29 | #if ENABLE(B3_JIT) |
| 30 | |
| 31 | #include "AirBlockInsertionSet.h" |
| 32 | #include "AirCCallSpecial.h" |
| 33 | #include "AirCode.h" |
| 34 | #include "AirInsertionSet.h" |
| 35 | #include "AirInstInlines.h" |
| 36 | #include "AirPrintSpecial.h" |
| 37 | #include "AirStackSlot.h" |
| 38 | #include "B3ArgumentRegValue.h" |
| 39 | #include "B3AtomicValue.h" |
| 40 | #include "B3BasicBlockInlines.h" |
| 41 | #include "B3BlockWorklist.h" |
| 42 | #include "B3CCallValue.h" |
| 43 | #include "B3CheckSpecial.h" |
| 44 | #include "B3Commutativity.h" |
| 45 | #include "B3Dominators.h" |
| 46 | #include "B3FenceValue.h" |
| 47 | #include "B3MemoryValueInlines.h" |
| 48 | #include "B3PatchpointSpecial.h" |
| 49 | #include "B3PatchpointValue.h" |
| 50 | #include "B3PhaseScope.h" |
| 51 | #include "B3PhiChildren.h" |
| 52 | #include "B3Procedure.h" |
| 53 | #include "B3SlotBaseValue.h" |
| 54 | #include "B3StackSlot.h" |
| 55 | #include "B3UpsilonValue.h" |
| 56 | #include "B3UseCounts.h" |
| 57 | #include "B3ValueInlines.h" |
| 58 | #include "B3Variable.h" |
| 59 | #include "B3VariableValue.h" |
| 60 | #include "B3WasmAddressValue.h" |
| 61 | #include <wtf/IndexMap.h> |
| 62 | #include <wtf/IndexSet.h> |
| 63 | #include <wtf/ListDump.h> |
| 64 | |
| 65 | #if ASSERT_DISABLED |
| 66 | IGNORE_RETURN_TYPE_WARNINGS_BEGIN |
| 67 | #endif |
| 68 | |
| 69 | namespace JSC { namespace B3 { |
| 70 | |
| 71 | namespace { |
| 72 | |
| 73 | namespace B3LowerToAirInternal { |
| 74 | static const bool verbose = false; |
| 75 | } |
| 76 | |
| 77 | using Arg = Air::Arg; |
| 78 | using Inst = Air::Inst; |
| 79 | using Code = Air::Code; |
| 80 | using Tmp = Air::Tmp; |
| 81 | |
| 82 | // FIXME: We wouldn't need this if Air supported Width modifiers in Air::Kind. |
| 83 | // https://bugs.webkit.org/show_bug.cgi?id=169247 |
| 84 | #define OPCODE_FOR_WIDTH(opcode, width) ( \ |
| 85 | (width) == Width8 ? Air::opcode ## 8 : \ |
| 86 | (width) == Width16 ? Air::opcode ## 16 : \ |
| 87 | (width) == Width32 ? Air::opcode ## 32 : \ |
| 88 | Air::opcode ## 64) |
| 89 | #define OPCODE_FOR_CANONICAL_WIDTH(opcode, width) ( \ |
| 90 | (width) == Width64 ? Air::opcode ## 64 : Air::opcode ## 32) |
| 91 | |
| 92 | class LowerToAir { |
| 93 | public: |
| 94 | LowerToAir(Procedure& procedure) |
| 95 | : m_valueToTmp(procedure.values().size()) |
| 96 | , m_phiToTmp(procedure.values().size()) |
| 97 | , m_blockToBlock(procedure.size()) |
| 98 | , m_useCounts(procedure) |
| 99 | , m_phiChildren(procedure) |
| 100 | , m_dominators(procedure.dominators()) |
| 101 | , m_procedure(procedure) |
| 102 | , m_code(procedure.code()) |
| 103 | , m_blockInsertionSet(m_code) |
| 104 | #if CPU(X86) || CPU(X86_64) |
| 105 | , m_eax(X86Registers::eax) |
| 106 | , m_ecx(X86Registers::ecx) |
| 107 | , m_edx(X86Registers::edx) |
| 108 | #endif |
| 109 | { |
| 110 | } |
| 111 | |
| 112 | void run() |
| 113 | { |
| 114 | using namespace Air; |
| 115 | for (B3::BasicBlock* block : m_procedure) |
| 116 | m_blockToBlock[block] = m_code.addBlock(block->frequency()); |
| 117 | |
| 118 | for (Value* value : m_procedure.values()) { |
| 119 | switch (value->opcode()) { |
| 120 | case Phi: { |
| 121 | m_phiToTmp[value] = m_code.newTmp(value->resultBank()); |
| 122 | if (B3LowerToAirInternal::verbose) |
| 123 | dataLog("Phi tmp for " , *value, ": " , m_phiToTmp[value], "\n" ); |
| 124 | break; |
| 125 | } |
| 126 | default: |
| 127 | break; |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | for (B3::StackSlot* stack : m_procedure.stackSlots()) |
| 132 | m_stackToStack.add(stack, m_code.addStackSlot(stack)); |
| 133 | for (Variable* variable : m_procedure.variables()) |
| 134 | m_variableToTmp.add(variable, m_code.newTmp(variable->bank())); |
| 135 | |
| 136 | // Figure out which blocks are not rare. |
| 137 | m_fastWorklist.push(m_procedure[0]); |
| 138 | while (B3::BasicBlock* block = m_fastWorklist.pop()) { |
| 139 | for (B3::FrequentedBlock& successor : block->successors()) { |
| 140 | if (!successor.isRare()) |
| 141 | m_fastWorklist.push(successor.block()); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | m_procedure.resetValueOwners(); // Used by crossesInterference(). |
| 146 | |
| 147 | // Lower defs before uses on a global level. This is a good heuristic to lock down a |
| 148 | // hoisted address expression before we duplicate it back into the loop. |
| 149 | for (B3::BasicBlock* block : m_procedure.blocksInPreOrder()) { |
| 150 | m_block = block; |
| 151 | |
| 152 | m_isRare = !m_fastWorklist.saw(block); |
| 153 | |
| 154 | if (B3LowerToAirInternal::verbose) |
| 155 | dataLog("Lowering Block " , *block, ":\n" ); |
| 156 | |
| 157 | // Make sure that the successors are set up correctly. |
| 158 | for (B3::FrequentedBlock successor : block->successors()) { |
| 159 | m_blockToBlock[block]->successors().append( |
| 160 | Air::FrequentedBlock(m_blockToBlock[successor.block()], successor.frequency())); |
| 161 | } |
| 162 | |
| 163 | // Process blocks in reverse order so we see uses before defs. That's what allows us |
| 164 | // to match patterns effectively. |
| 165 | for (unsigned i = block->size(); i--;) { |
| 166 | m_index = i; |
| 167 | m_value = block->at(i); |
| 168 | if (m_locked.contains(m_value)) |
| 169 | continue; |
| 170 | m_insts.append(Vector<Inst>()); |
| 171 | if (B3LowerToAirInternal::verbose) |
| 172 | dataLog("Lowering " , deepDump(m_procedure, m_value), ":\n" ); |
| 173 | lower(); |
| 174 | if (B3LowerToAirInternal::verbose) { |
| 175 | for (Inst& inst : m_insts.last()) |
| 176 | dataLog(" " , inst, "\n" ); |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | finishAppendingInstructions(m_blockToBlock[block]); |
| 181 | } |
| 182 | |
| 183 | m_blockInsertionSet.execute(); |
| 184 | |
| 185 | Air::InsertionSet insertionSet(m_code); |
| 186 | for (Inst& inst : m_prologue) |
| 187 | insertionSet.insertInst(0, WTFMove(inst)); |
| 188 | insertionSet.execute(m_code[0]); |
| 189 | } |
| 190 | |
| 191 | private: |
| 192 | bool shouldCopyPropagate(Value* value) |
| 193 | { |
| 194 | switch (value->opcode()) { |
| 195 | case Trunc: |
| 196 | case Identity: |
| 197 | case Opaque: |
| 198 | return true; |
| 199 | default: |
| 200 | return false; |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | class ArgPromise { |
| 205 | WTF_MAKE_NONCOPYABLE(ArgPromise); |
| 206 | public: |
| 207 | ArgPromise() { } |
| 208 | |
| 209 | ArgPromise(const Arg& arg, Value* valueToLock = nullptr) |
| 210 | : m_arg(arg) |
| 211 | , m_value(valueToLock) |
| 212 | { |
| 213 | } |
| 214 | |
| 215 | void swap(ArgPromise& other) |
| 216 | { |
| 217 | std::swap(m_arg, other.m_arg); |
| 218 | std::swap(m_value, other.m_value); |
| 219 | std::swap(m_wasConsumed, other.m_wasConsumed); |
| 220 | std::swap(m_wasWrapped, other.m_wasWrapped); |
| 221 | std::swap(m_traps, other.m_traps); |
| 222 | } |
| 223 | |
| 224 | ArgPromise(ArgPromise&& other) |
| 225 | { |
| 226 | swap(other); |
| 227 | } |
| 228 | |
| 229 | ArgPromise& operator=(ArgPromise&& other) |
| 230 | { |
| 231 | swap(other); |
| 232 | return *this; |
| 233 | } |
| 234 | |
| 235 | ~ArgPromise() |
| 236 | { |
| 237 | if (m_wasConsumed) |
| 238 | RELEASE_ASSERT(m_wasWrapped); |
| 239 | } |
| 240 | |
| 241 | void setTraps(bool value) |
| 242 | { |
| 243 | m_traps = value; |
| 244 | } |
| 245 | |
| 246 | static ArgPromise tmp(Value* value) |
| 247 | { |
| 248 | ArgPromise result; |
| 249 | result.m_value = value; |
| 250 | return result; |
| 251 | } |
| 252 | |
| 253 | explicit operator bool() const { return m_arg || m_value; } |
| 254 | |
| 255 | Arg::Kind kind() const |
| 256 | { |
| 257 | if (!m_arg && m_value) |
| 258 | return Arg::Tmp; |
| 259 | return m_arg.kind(); |
| 260 | } |
| 261 | |
| 262 | const Arg& peek() const |
| 263 | { |
| 264 | return m_arg; |
| 265 | } |
| 266 | |
| 267 | Arg consume(LowerToAir& lower) |
| 268 | { |
| 269 | m_wasConsumed = true; |
| 270 | if (!m_arg && m_value) |
| 271 | return lower.tmp(m_value); |
| 272 | if (m_value) |
| 273 | lower.commitInternal(m_value); |
| 274 | return m_arg; |
| 275 | } |
| 276 | |
| 277 | template<typename... Args> |
| 278 | Inst inst(Args&&... args) |
| 279 | { |
| 280 | Inst result(std::forward<Args>(args)...); |
| 281 | result.kind.effects |= m_traps; |
| 282 | m_wasWrapped = true; |
| 283 | return result; |
| 284 | } |
| 285 | |
| 286 | private: |
| 287 | // Three forms: |
| 288 | // Everything null: invalid. |
| 289 | // Arg non-null, value null: just use the arg, nothing special. |
| 290 | // Arg null, value non-null: it's a tmp, pin it when necessary. |
| 291 | // Arg non-null, value non-null: use the arg, lock the value. |
| 292 | Arg m_arg; |
| 293 | Value* m_value { nullptr }; |
| 294 | bool m_wasConsumed { false }; |
| 295 | bool m_wasWrapped { false }; |
| 296 | bool m_traps { false }; |
| 297 | }; |
| 298 | |
| 299 | // Consider using tmpPromise() in cases where you aren't sure that you want to pin the value yet. |
| 300 | // Here are three canonical ways of using tmp() and tmpPromise(): |
| 301 | // |
| 302 | // Idiom #1: You know that you want a tmp() and you know that it will be valid for the |
| 303 | // instruction you're emitting. |
| 304 | // |
| 305 | // append(Foo, tmp(bar)); |
| 306 | // |
| 307 | // Idiom #2: You don't know if you want to use a tmp() because you haven't determined if the |
| 308 | // instruction will accept it, so you query first. Note that the call to tmp() happens only after |
| 309 | // you are sure that you will use it. |
| 310 | // |
| 311 | // if (isValidForm(Foo, Arg::Tmp)) |
| 312 | // append(Foo, tmp(bar)) |
| 313 | // |
| 314 | // Idiom #3: Same as Idiom #2, but using tmpPromise. Notice that this calls consume() only after |
| 315 | // it's sure it will use the tmp. That's deliberate. Also note that you're required to pass any |
| 316 | // Inst you create with consumed promises through that promise's inst() function. |
| 317 | // |
| 318 | // ArgPromise promise = tmpPromise(bar); |
| 319 | // if (isValidForm(Foo, promise.kind())) |
| 320 | // append(promise.inst(Foo, promise.consume(*this))) |
| 321 | // |
| 322 | // In both idiom #2 and idiom #3, we don't pin the value to a temporary except when we actually |
| 323 | // emit the instruction. Both tmp() and tmpPromise().consume(*this) will pin it. Pinning means |
| 324 | // that we will henceforth require that the value of 'bar' is generated as a separate |
| 325 | // instruction. We don't want to pin the value to a temporary if we might change our minds, and |
| 326 | // pass an address operand representing 'bar' to Foo instead. |
| 327 | // |
| 328 | // Because tmp() pins, the following is not an idiom you should use: |
| 329 | // |
| 330 | // Tmp tmp = this->tmp(bar); |
| 331 | // if (isValidForm(Foo, tmp.kind())) |
| 332 | // append(Foo, tmp); |
| 333 | // |
| 334 | // That's because if isValidForm() returns false, you will have already pinned the 'bar' to a |
| 335 | // temporary. You might later want to try to do something like loadPromise(), and that will fail. |
| 336 | // This arises in operations that have both a Addr,Tmp and Tmp,Addr forms. The following code |
| 337 | // seems right, but will actually fail to ever match the Tmp,Addr form because by then, the right |
| 338 | // value is already pinned. |
| 339 | // |
| 340 | // auto tryThings = [this] (const Arg& left, const Arg& right) { |
| 341 | // if (isValidForm(Foo, left.kind(), right.kind())) |
| 342 | // return Inst(Foo, m_value, left, right); |
| 343 | // return Inst(); |
| 344 | // }; |
| 345 | // if (Inst result = tryThings(loadAddr(left), tmp(right))) |
| 346 | // return result; |
| 347 | // if (Inst result = tryThings(tmp(left), loadAddr(right))) // this never succeeds. |
| 348 | // return result; |
| 349 | // return Inst(Foo, m_value, tmp(left), tmp(right)); |
| 350 | // |
| 351 | // If you imagine that loadAddr(value) is just loadPromise(value).consume(*this), then this code |
| 352 | // will run correctly - it will generate OK code - but the second form is never matched. |
| 353 | // loadAddr(right) will never succeed because it will observe that 'right' is already pinned. |
| 354 | // Of course, it's exactly because of the risky nature of such code that we don't have a |
| 355 | // loadAddr() helper and require you to balance ArgPromise's in code like this. Such code will |
| 356 | // work fine if written as: |
| 357 | // |
| 358 | // auto tryThings = [this] (ArgPromise& left, ArgPromise& right) { |
| 359 | // if (isValidForm(Foo, left.kind(), right.kind())) |
| 360 | // return left.inst(right.inst(Foo, m_value, left.consume(*this), right.consume(*this))); |
| 361 | // return Inst(); |
| 362 | // }; |
| 363 | // if (Inst result = tryThings(loadPromise(left), tmpPromise(right))) |
| 364 | // return result; |
| 365 | // if (Inst result = tryThings(tmpPromise(left), loadPromise(right))) |
| 366 | // return result; |
| 367 | // return Inst(Foo, m_value, tmp(left), tmp(right)); |
| 368 | // |
| 369 | // Notice that we did use tmp in the fall-back case at the end, because by then, we know for sure |
| 370 | // that we want a tmp. But using tmpPromise in the tryThings() calls ensures that doing so |
| 371 | // doesn't prevent us from trying loadPromise on the same value. |
| 372 | Tmp tmp(Value* value) |
| 373 | { |
| 374 | Tmp& tmp = m_valueToTmp[value]; |
| 375 | if (!tmp) { |
| 376 | while (shouldCopyPropagate(value)) |
| 377 | value = value->child(0); |
| 378 | |
| 379 | if (value->opcode() == FramePointer) |
| 380 | return Tmp(GPRInfo::callFrameRegister); |
| 381 | |
| 382 | Tmp& realTmp = m_valueToTmp[value]; |
| 383 | if (!realTmp) { |
| 384 | realTmp = m_code.newTmp(value->resultBank()); |
| 385 | if (m_procedure.isFastConstant(value->key())) |
| 386 | m_code.addFastTmp(realTmp); |
| 387 | if (B3LowerToAirInternal::verbose) |
| 388 | dataLog("Tmp for " , *value, ": " , realTmp, "\n" ); |
| 389 | } |
| 390 | tmp = realTmp; |
| 391 | } |
| 392 | return tmp; |
| 393 | } |
| 394 | |
| 395 | ArgPromise tmpPromise(Value* value) |
| 396 | { |
| 397 | return ArgPromise::tmp(value); |
| 398 | } |
| 399 | |
| 400 | bool canBeInternal(Value* value) |
| 401 | { |
| 402 | // If one of the internal things has already been computed, then we don't want to cause |
| 403 | // it to be recomputed again. |
| 404 | if (m_valueToTmp[value]) |
| 405 | return false; |
| 406 | |
| 407 | // We require internals to have only one use - us. It's not clear if this should be numUses() or |
| 408 | // numUsingInstructions(). Ideally, it would be numUsingInstructions(), except that it's not clear |
| 409 | // if we'd actually do the right thing when matching over such a DAG pattern. For now, it simply |
| 410 | // doesn't matter because we don't implement patterns that would trigger this. |
| 411 | if (m_useCounts.numUses(value) != 1) |
| 412 | return false; |
| 413 | |
| 414 | return true; |
| 415 | } |
| 416 | |
| 417 | // If you ask canBeInternal() and then construct something from that, and you commit to emitting |
| 418 | // that code, then you must commitInternal() on that value. This is tricky, and you only need to |
| 419 | // do it if you're pattern matching by hand rather than using the patterns language. Long story |
| 420 | // short, you should avoid this by using the pattern matcher to match patterns. |
| 421 | void commitInternal(Value* value) |
| 422 | { |
| 423 | if (value) |
| 424 | m_locked.add(value); |
| 425 | } |
| 426 | |
| 427 | bool crossesInterference(Value* value) |
| 428 | { |
| 429 | // If it's in a foreign block, then be conservative. We could handle this if we were |
| 430 | // willing to do heavier analysis. For example, if we had liveness, then we could label |
| 431 | // values as "crossing interference" if they interfere with anything that they are live |
| 432 | // across. But, it's not clear how useful this would be. |
| 433 | if (value->owner != m_value->owner) |
| 434 | return true; |
| 435 | |
| 436 | Effects effects = value->effects(); |
| 437 | |
| 438 | for (unsigned i = m_index; i--;) { |
| 439 | Value* otherValue = m_block->at(i); |
| 440 | if (otherValue == value) |
| 441 | return false; |
| 442 | if (effects.interferes(otherValue->effects())) |
| 443 | return true; |
| 444 | } |
| 445 | |
| 446 | ASSERT_NOT_REACHED(); |
| 447 | return true; |
| 448 | } |
| 449 | |
| 450 | template<typename Int, typename = Value::IsLegalOffset<Int>> |
| 451 | Optional<unsigned> scaleForShl(Value* shl, Int offset, Optional<Width> width = WTF::nullopt) |
| 452 | { |
| 453 | if (shl->opcode() != Shl) |
| 454 | return WTF::nullopt; |
| 455 | if (!shl->child(1)->hasInt32()) |
| 456 | return WTF::nullopt; |
| 457 | unsigned logScale = shl->child(1)->asInt32(); |
| 458 | if (shl->type() == Int32) |
| 459 | logScale &= 31; |
| 460 | else |
| 461 | logScale &= 63; |
| 462 | // Use 64-bit math to perform the shift so that <<32 does the right thing, but then switch |
| 463 | // to signed since that's what all of our APIs want. |
| 464 | int64_t bigScale = static_cast<uint64_t>(1) << static_cast<uint64_t>(logScale); |
| 465 | if (!isRepresentableAs<int32_t>(bigScale)) |
| 466 | return WTF::nullopt; |
| 467 | unsigned scale = static_cast<int32_t>(bigScale); |
| 468 | if (!Arg::isValidIndexForm(scale, offset, width)) |
| 469 | return WTF::nullopt; |
| 470 | return scale; |
| 471 | } |
| 472 | |
| 473 | // This turns the given operand into an address. |
| 474 | template<typename Int, typename = Value::IsLegalOffset<Int>> |
| 475 | Arg effectiveAddr(Value* address, Int offset, Width width) |
| 476 | { |
| 477 | ASSERT(Arg::isValidAddrForm(offset, width)); |
| 478 | |
| 479 | auto fallback = [&] () -> Arg { |
| 480 | return Arg::addr(tmp(address), offset); |
| 481 | }; |
| 482 | |
| 483 | static const unsigned lotsOfUses = 10; // This is arbitrary and we should tune it eventually. |
| 484 | |
| 485 | // Only match if the address value isn't used in some large number of places. |
| 486 | if (m_useCounts.numUses(address) > lotsOfUses) |
| 487 | return fallback(); |
| 488 | |
| 489 | switch (address->opcode()) { |
| 490 | case Add: { |
| 491 | Value* left = address->child(0); |
| 492 | Value* right = address->child(1); |
| 493 | |
| 494 | auto tryIndex = [&] (Value* index, Value* base) -> Arg { |
| 495 | Optional<unsigned> scale = scaleForShl(index, offset, width); |
| 496 | if (!scale) |
| 497 | return Arg(); |
| 498 | if (m_locked.contains(index->child(0)) || m_locked.contains(base)) |
| 499 | return Arg(); |
| 500 | return Arg::index(tmp(base), tmp(index->child(0)), *scale, offset); |
| 501 | }; |
| 502 | |
| 503 | if (Arg result = tryIndex(left, right)) |
| 504 | return result; |
| 505 | if (Arg result = tryIndex(right, left)) |
| 506 | return result; |
| 507 | |
| 508 | if (m_locked.contains(left) || m_locked.contains(right) |
| 509 | || !Arg::isValidIndexForm(1, offset, width)) |
| 510 | return fallback(); |
| 511 | |
| 512 | return Arg::index(tmp(left), tmp(right), 1, offset); |
| 513 | } |
| 514 | |
| 515 | case Shl: { |
| 516 | Value* left = address->child(0); |
| 517 | |
| 518 | // We'll never see child(1)->isInt32(0), since that would have been reduced. If the shift |
| 519 | // amount is greater than 1, then there isn't really anything smart that we could do here. |
| 520 | // We avoid using baseless indexes because their encoding isn't particularly efficient. |
| 521 | if (m_locked.contains(left) || !address->child(1)->isInt32(1) |
| 522 | || !Arg::isValidIndexForm(1, offset, width)) |
| 523 | return fallback(); |
| 524 | |
| 525 | return Arg::index(tmp(left), tmp(left), 1, offset); |
| 526 | } |
| 527 | |
| 528 | case FramePointer: |
| 529 | return Arg::addr(Tmp(GPRInfo::callFrameRegister), offset); |
| 530 | |
| 531 | case SlotBase: |
| 532 | return Arg::stack(m_stackToStack.get(address->as<SlotBaseValue>()->slot()), offset); |
| 533 | |
| 534 | case WasmAddress: { |
| 535 | WasmAddressValue* wasmAddress = address->as<WasmAddressValue>(); |
| 536 | Value* pointer = wasmAddress->child(0); |
| 537 | if (!Arg::isValidIndexForm(1, offset, width) || m_locked.contains(pointer)) |
| 538 | return fallback(); |
| 539 | |
| 540 | // FIXME: We should support ARM64 LDR 32-bit addressing, which will |
| 541 | // allow us to fuse a Shl ptr, 2 into the address. Additionally, and |
| 542 | // perhaps more importantly, it would allow us to avoid a truncating |
| 543 | // move. See: https://bugs.webkit.org/show_bug.cgi?id=163465 |
| 544 | |
| 545 | return Arg::index(Tmp(wasmAddress->pinnedGPR()), tmp(pointer), 1, offset); |
| 546 | } |
| 547 | |
| 548 | default: |
| 549 | return fallback(); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | // This gives you the address of the given Load or Store. If it's not a Load or Store, then |
| 554 | // it returns Arg(). |
| 555 | Arg addr(Value* memoryValue) |
| 556 | { |
| 557 | MemoryValue* value = memoryValue->as<MemoryValue>(); |
| 558 | if (!value) |
| 559 | return Arg(); |
| 560 | |
| 561 | if (value->requiresSimpleAddr()) |
| 562 | return Arg::simpleAddr(tmp(value->lastChild())); |
| 563 | |
| 564 | Value::OffsetType offset = value->offset(); |
| 565 | Width width = value->accessWidth(); |
| 566 | |
| 567 | Arg result = effectiveAddr(value->lastChild(), offset, width); |
| 568 | RELEASE_ASSERT(result.isValidForm(width)); |
| 569 | |
| 570 | return result; |
| 571 | } |
| 572 | |
| 573 | template<typename... Args> |
| 574 | Inst trappingInst(bool traps, Args&&... args) |
| 575 | { |
| 576 | Inst result(std::forward<Args>(args)...); |
| 577 | result.kind.effects |= traps; |
| 578 | return result; |
| 579 | } |
| 580 | |
| 581 | template<typename... Args> |
| 582 | Inst trappingInst(Value* value, Args&&... args) |
| 583 | { |
| 584 | return trappingInst(value->traps(), std::forward<Args>(args)...); |
| 585 | } |
| 586 | |
| 587 | ArgPromise loadPromiseAnyOpcode(Value* loadValue) |
| 588 | { |
| 589 | RELEASE_ASSERT(loadValue->as<MemoryValue>()); |
| 590 | if (!canBeInternal(loadValue)) |
| 591 | return Arg(); |
| 592 | if (crossesInterference(loadValue)) |
| 593 | return Arg(); |
| 594 | // On x86, all loads have fences. Doing this kind of instruction selection will move the load, |
| 595 | // but that's fine because our interference analysis stops the motion of fences around other |
| 596 | // fences. So, any load motion we introduce here would not be observable. |
| 597 | if (!isX86() && loadValue->as<MemoryValue>()->hasFence()) |
| 598 | return Arg(); |
| 599 | Arg loadAddr = addr(loadValue); |
| 600 | RELEASE_ASSERT(loadAddr); |
| 601 | ArgPromise result(loadAddr, loadValue); |
| 602 | if (loadValue->traps()) |
| 603 | result.setTraps(true); |
| 604 | return result; |
| 605 | } |
| 606 | |
| 607 | ArgPromise loadPromise(Value* loadValue, B3::Opcode loadOpcode) |
| 608 | { |
| 609 | if (loadValue->opcode() != loadOpcode) |
| 610 | return Arg(); |
| 611 | return loadPromiseAnyOpcode(loadValue); |
| 612 | } |
| 613 | |
| 614 | ArgPromise loadPromise(Value* loadValue) |
| 615 | { |
| 616 | return loadPromise(loadValue, Load); |
| 617 | } |
| 618 | |
| 619 | Arg imm(int64_t intValue) |
| 620 | { |
| 621 | if (Arg::isValidImmForm(intValue)) |
| 622 | return Arg::imm(intValue); |
| 623 | return Arg(); |
| 624 | } |
| 625 | |
| 626 | Arg imm(Value* value) |
| 627 | { |
| 628 | if (value->hasInt()) |
| 629 | return imm(value->asInt()); |
| 630 | return Arg(); |
| 631 | } |
| 632 | |
| 633 | Arg bitImm(Value* value) |
| 634 | { |
| 635 | if (value->hasInt()) { |
| 636 | int64_t intValue = value->asInt(); |
| 637 | if (Arg::isValidBitImmForm(intValue)) |
| 638 | return Arg::bitImm(intValue); |
| 639 | } |
| 640 | return Arg(); |
| 641 | } |
| 642 | |
| 643 | Arg bitImm64(Value* value) |
| 644 | { |
| 645 | if (value->hasInt()) { |
| 646 | int64_t intValue = value->asInt(); |
| 647 | if (Arg::isValidBitImm64Form(intValue)) |
| 648 | return Arg::bitImm64(intValue); |
| 649 | } |
| 650 | return Arg(); |
| 651 | } |
| 652 | |
| 653 | Arg immOrTmp(Value* value) |
| 654 | { |
| 655 | if (Arg result = imm(value)) |
| 656 | return result; |
| 657 | return tmp(value); |
| 658 | } |
| 659 | |
| 660 | // By convention, we use Oops to mean "I don't know". |
| 661 | Air::Opcode tryOpcodeForType( |
| 662 | Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Type type) |
| 663 | { |
| 664 | Air::Opcode opcode; |
| 665 | switch (type) { |
| 666 | case Int32: |
| 667 | opcode = opcode32; |
| 668 | break; |
| 669 | case Int64: |
| 670 | opcode = opcode64; |
| 671 | break; |
| 672 | case Float: |
| 673 | opcode = opcodeFloat; |
| 674 | break; |
| 675 | case Double: |
| 676 | opcode = opcodeDouble; |
| 677 | break; |
| 678 | default: |
| 679 | opcode = Air::Oops; |
| 680 | break; |
| 681 | } |
| 682 | |
| 683 | return opcode; |
| 684 | } |
| 685 | |
| 686 | Air::Opcode tryOpcodeForType(Air::Opcode opcode32, Air::Opcode opcode64, Type type) |
| 687 | { |
| 688 | return tryOpcodeForType(opcode32, opcode64, Air::Oops, Air::Oops, type); |
| 689 | } |
| 690 | |
| 691 | Air::Opcode opcodeForType( |
| 692 | Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Type type) |
| 693 | { |
| 694 | Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, type); |
| 695 | RELEASE_ASSERT(opcode != Air::Oops); |
| 696 | return opcode; |
| 697 | } |
| 698 | |
| 699 | Air::Opcode opcodeForType(Air::Opcode opcode32, Air::Opcode opcode64, Type type) |
| 700 | { |
| 701 | return tryOpcodeForType(opcode32, opcode64, Air::Oops, Air::Oops, type); |
| 702 | } |
| 703 | |
| 704 | template<Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble = Air::Oops, Air::Opcode opcodeFloat = Air::Oops> |
| 705 | void appendUnOp(Value* value) |
| 706 | { |
| 707 | Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, value->type()); |
| 708 | |
| 709 | Tmp result = tmp(m_value); |
| 710 | |
| 711 | // Two operand forms like: |
| 712 | // Op a, b |
| 713 | // mean something like: |
| 714 | // b = Op a |
| 715 | |
| 716 | ArgPromise addr = loadPromise(value); |
| 717 | if (isValidForm(opcode, addr.kind(), Arg::Tmp)) { |
| 718 | append(addr.inst(opcode, m_value, addr.consume(*this), result)); |
| 719 | return; |
| 720 | } |
| 721 | |
| 722 | if (isValidForm(opcode, Arg::Tmp, Arg::Tmp)) { |
| 723 | append(opcode, tmp(value), result); |
| 724 | return; |
| 725 | } |
| 726 | |
| 727 | ASSERT(value->type() == m_value->type()); |
| 728 | append(relaxedMoveForType(m_value->type()), tmp(value), result); |
| 729 | append(opcode, result); |
| 730 | } |
| 731 | |
| 732 | // Call this method when doing two-operand lowering of a commutative operation. You have a choice of |
| 733 | // which incoming Value is moved into the result. This will select which one is likely to be most |
| 734 | // profitable to use as the result. Doing the right thing can have big performance consequences in tight |
| 735 | // kernels. |
| 736 | bool preferRightForResult(Value* left, Value* right) |
| 737 | { |
| 738 | // The default is to move left into result, because that's required for non-commutative instructions. |
| 739 | // The value that we want to move into result position is the one that dies here. So, if we're |
| 740 | // compiling a commutative operation and we know that actually right is the one that dies right here, |
| 741 | // then we can flip things around to help coalescing, which then kills the move instruction. |
| 742 | // |
| 743 | // But it's more complicated: |
| 744 | // - Used-once is a bad estimate of whether the variable dies here. |
| 745 | // - A child might be a candidate for coalescing with this value. |
| 746 | // |
| 747 | // Currently, we have machinery in place to recognize super obvious forms of the latter issue. |
| 748 | |
| 749 | // We recognize when a child is a Phi that has this value as one of its children. We're very |
| 750 | // conservative about this; for example we don't even consider transitive Phi children. |
| 751 | bool leftIsPhiWithThis = m_phiChildren[left].transitivelyUses(m_value); |
| 752 | bool rightIsPhiWithThis = m_phiChildren[right].transitivelyUses(m_value); |
| 753 | |
| 754 | if (leftIsPhiWithThis != rightIsPhiWithThis) |
| 755 | return rightIsPhiWithThis; |
| 756 | |
| 757 | if (m_useCounts.numUsingInstructions(right) != 1) |
| 758 | return false; |
| 759 | |
| 760 | if (m_useCounts.numUsingInstructions(left) != 1) |
| 761 | return true; |
| 762 | |
| 763 | // The use count might be 1 if the variable is live around a loop. We can guarantee that we |
| 764 | // pick the variable that is least likely to suffer this problem if we pick the one that |
| 765 | // is closest to us in an idom walk. By convention, we slightly bias this in favor of |
| 766 | // returning true. |
| 767 | |
| 768 | // We cannot prefer right if right is further away in an idom walk. |
| 769 | if (m_dominators.strictlyDominates(right->owner, left->owner)) |
| 770 | return false; |
| 771 | |
| 772 | return true; |
| 773 | } |
| 774 | |
| 775 | template<Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Air::Opcode opcodeFloat, Commutativity commutativity = NotCommutative> |
| 776 | void appendBinOp(Value* left, Value* right) |
| 777 | { |
| 778 | Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, opcodeFloat, left->type()); |
| 779 | |
| 780 | Tmp result = tmp(m_value); |
| 781 | |
| 782 | // Three-operand forms like: |
| 783 | // Op a, b, c |
| 784 | // mean something like: |
| 785 | // c = a Op b |
| 786 | |
| 787 | if (isValidForm(opcode, Arg::Imm, Arg::Tmp, Arg::Tmp)) { |
| 788 | if (commutativity == Commutative) { |
| 789 | if (imm(right)) { |
| 790 | append(opcode, imm(right), tmp(left), result); |
| 791 | return; |
| 792 | } |
| 793 | } else { |
| 794 | // A non-commutative operation could have an immediate in left. |
| 795 | if (imm(left)) { |
| 796 | append(opcode, imm(left), tmp(right), result); |
| 797 | return; |
| 798 | } |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | if (isValidForm(opcode, Arg::BitImm, Arg::Tmp, Arg::Tmp)) { |
| 803 | if (commutativity == Commutative) { |
| 804 | if (Arg rightArg = bitImm(right)) { |
| 805 | append(opcode, rightArg, tmp(left), result); |
| 806 | return; |
| 807 | } |
| 808 | } else { |
| 809 | // A non-commutative operation could have an immediate in left. |
| 810 | if (Arg leftArg = bitImm(left)) { |
| 811 | append(opcode, leftArg, tmp(right), result); |
| 812 | return; |
| 813 | } |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | if (isValidForm(opcode, Arg::BitImm64, Arg::Tmp, Arg::Tmp)) { |
| 818 | if (commutativity == Commutative) { |
| 819 | if (Arg rightArg = bitImm64(right)) { |
| 820 | append(opcode, rightArg, tmp(left), result); |
| 821 | return; |
| 822 | } |
| 823 | } else { |
| 824 | // A non-commutative operation could have an immediate in left. |
| 825 | if (Arg leftArg = bitImm64(left)) { |
| 826 | append(opcode, leftArg, tmp(right), result); |
| 827 | return; |
| 828 | } |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | if (imm(right) && isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) { |
| 833 | append(opcode, tmp(left), imm(right), result); |
| 834 | return; |
| 835 | } |
| 836 | |
| 837 | // Note that no extant architecture has a three-operand form of binary operations that also |
| 838 | // load from memory. If such an abomination did exist, we would handle it somewhere around |
| 839 | // here. |
| 840 | |
| 841 | // Two-operand forms like: |
| 842 | // Op a, b |
| 843 | // mean something like: |
| 844 | // b = b Op a |
| 845 | |
| 846 | // At this point, we prefer versions of the operation that have a fused load or an immediate |
| 847 | // over three operand forms. |
| 848 | |
| 849 | if (left != right) { |
| 850 | ArgPromise leftAddr = loadPromise(left); |
| 851 | if (isValidForm(opcode, leftAddr.kind(), Arg::Tmp, Arg::Tmp)) { |
| 852 | append(leftAddr.inst(opcode, m_value, leftAddr.consume(*this), tmp(right), result)); |
| 853 | return; |
| 854 | } |
| 855 | |
| 856 | if (commutativity == Commutative) { |
| 857 | if (isValidForm(opcode, leftAddr.kind(), Arg::Tmp)) { |
| 858 | append(relaxedMoveForType(m_value->type()), tmp(right), result); |
| 859 | append(leftAddr.inst(opcode, m_value, leftAddr.consume(*this), result)); |
| 860 | return; |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | ArgPromise rightAddr = loadPromise(right); |
| 865 | if (isValidForm(opcode, Arg::Tmp, rightAddr.kind(), Arg::Tmp)) { |
| 866 | append(rightAddr.inst(opcode, m_value, tmp(left), rightAddr.consume(*this), result)); |
| 867 | return; |
| 868 | } |
| 869 | |
| 870 | if (commutativity == Commutative) { |
| 871 | if (isValidForm(opcode, rightAddr.kind(), Arg::Tmp, Arg::Tmp)) { |
| 872 | append(rightAddr.inst(opcode, m_value, rightAddr.consume(*this), tmp(left), result)); |
| 873 | return; |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | if (isValidForm(opcode, rightAddr.kind(), Arg::Tmp)) { |
| 878 | append(relaxedMoveForType(m_value->type()), tmp(left), result); |
| 879 | append(rightAddr.inst(opcode, m_value, rightAddr.consume(*this), result)); |
| 880 | return; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | if (imm(right) && isValidForm(opcode, Arg::Imm, Arg::Tmp)) { |
| 885 | append(relaxedMoveForType(m_value->type()), tmp(left), result); |
| 886 | append(opcode, imm(right), result); |
| 887 | return; |
| 888 | } |
| 889 | |
| 890 | if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) { |
| 891 | append(opcode, tmp(left), tmp(right), result); |
| 892 | return; |
| 893 | } |
| 894 | |
| 895 | if (commutativity == Commutative && preferRightForResult(left, right)) { |
| 896 | append(relaxedMoveForType(m_value->type()), tmp(right), result); |
| 897 | append(opcode, tmp(left), result); |
| 898 | return; |
| 899 | } |
| 900 | |
| 901 | append(relaxedMoveForType(m_value->type()), tmp(left), result); |
| 902 | append(opcode, tmp(right), result); |
| 903 | } |
| 904 | |
| 905 | template<Air::Opcode opcode32, Air::Opcode opcode64, Commutativity commutativity = NotCommutative> |
| 906 | void appendBinOp(Value* left, Value* right) |
| 907 | { |
| 908 | appendBinOp<opcode32, opcode64, Air::Oops, Air::Oops, commutativity>(left, right); |
| 909 | } |
| 910 | |
| 911 | template<Air::Opcode opcode32, Air::Opcode opcode64> |
| 912 | void appendShift(Value* value, Value* amount) |
| 913 | { |
| 914 | using namespace Air; |
| 915 | Air::Opcode opcode = opcodeForType(opcode32, opcode64, value->type()); |
| 916 | |
| 917 | if (imm(amount)) { |
| 918 | if (isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) { |
| 919 | append(opcode, tmp(value), imm(amount), tmp(m_value)); |
| 920 | return; |
| 921 | } |
| 922 | if (isValidForm(opcode, Arg::Imm, Arg::Tmp)) { |
| 923 | append(Move, tmp(value), tmp(m_value)); |
| 924 | append(opcode, imm(amount), tmp(m_value)); |
| 925 | return; |
| 926 | } |
| 927 | } |
| 928 | |
| 929 | if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) { |
| 930 | append(opcode, tmp(value), tmp(amount), tmp(m_value)); |
| 931 | return; |
| 932 | } |
| 933 | |
| 934 | append(Move, tmp(value), tmp(m_value)); |
| 935 | append(Move, tmp(amount), m_ecx); |
| 936 | append(opcode, m_ecx, tmp(m_value)); |
| 937 | } |
| 938 | |
| 939 | template<Air::Opcode opcode32, Air::Opcode opcode64> |
| 940 | bool tryAppendStoreUnOp(Value* value) |
| 941 | { |
| 942 | Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, value->type()); |
| 943 | if (opcode == Air::Oops) |
| 944 | return false; |
| 945 | |
| 946 | Arg storeAddr = addr(m_value); |
| 947 | ASSERT(storeAddr); |
| 948 | |
| 949 | ArgPromise loadPromise = this->loadPromise(value); |
| 950 | if (loadPromise.peek() != storeAddr) |
| 951 | return false; |
| 952 | |
| 953 | if (!isValidForm(opcode, storeAddr.kind())) |
| 954 | return false; |
| 955 | |
| 956 | loadPromise.consume(*this); |
| 957 | append(trappingInst(m_value, loadPromise.inst(opcode, m_value, storeAddr))); |
| 958 | return true; |
| 959 | } |
| 960 | |
| 961 | template< |
| 962 | Air::Opcode opcode32, Air::Opcode opcode64, Commutativity commutativity = NotCommutative> |
| 963 | bool tryAppendStoreBinOp(Value* left, Value* right) |
| 964 | { |
| 965 | RELEASE_ASSERT(m_value->as<MemoryValue>()); |
| 966 | |
| 967 | Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, left->type()); |
| 968 | if (opcode == Air::Oops) |
| 969 | return false; |
| 970 | |
| 971 | if (m_value->as<MemoryValue>()->hasFence()) |
| 972 | return false; |
| 973 | |
| 974 | Arg storeAddr = addr(m_value); |
| 975 | ASSERT(storeAddr); |
| 976 | |
| 977 | auto getLoadPromise = [&] (Value* load) -> ArgPromise { |
| 978 | switch (m_value->opcode()) { |
| 979 | case B3::Store: |
| 980 | if (load->opcode() != B3::Load) |
| 981 | return ArgPromise(); |
| 982 | break; |
| 983 | case B3::Store8: |
| 984 | if (load->opcode() != B3::Load8Z && load->opcode() != B3::Load8S) |
| 985 | return ArgPromise(); |
| 986 | break; |
| 987 | case B3::Store16: |
| 988 | if (load->opcode() != B3::Load16Z && load->opcode() != B3::Load16S) |
| 989 | return ArgPromise(); |
| 990 | break; |
| 991 | default: |
| 992 | return ArgPromise(); |
| 993 | } |
| 994 | return loadPromiseAnyOpcode(load); |
| 995 | }; |
| 996 | |
| 997 | ArgPromise loadPromise; |
| 998 | Value* otherValue = nullptr; |
| 999 | |
| 1000 | loadPromise = getLoadPromise(left); |
| 1001 | if (loadPromise.peek() == storeAddr) |
| 1002 | otherValue = right; |
| 1003 | else if (commutativity == Commutative) { |
| 1004 | loadPromise = getLoadPromise(right); |
| 1005 | if (loadPromise.peek() == storeAddr) |
| 1006 | otherValue = left; |
| 1007 | } |
| 1008 | |
| 1009 | if (!otherValue) |
| 1010 | return false; |
| 1011 | |
| 1012 | if (isValidForm(opcode, Arg::Imm, storeAddr.kind()) && imm(otherValue)) { |
| 1013 | loadPromise.consume(*this); |
| 1014 | append(trappingInst(m_value, loadPromise.inst(opcode, m_value, imm(otherValue), storeAddr))); |
| 1015 | return true; |
| 1016 | } |
| 1017 | |
| 1018 | if (!isValidForm(opcode, Arg::Tmp, storeAddr.kind())) |
| 1019 | return false; |
| 1020 | |
| 1021 | loadPromise.consume(*this); |
| 1022 | append(trappingInst(m_value, loadPromise.inst(opcode, m_value, tmp(otherValue), storeAddr))); |
| 1023 | return true; |
| 1024 | } |
| 1025 | |
| 1026 | Inst createStore(Air::Kind move, Value* value, const Arg& dest) |
| 1027 | { |
| 1028 | using namespace Air; |
| 1029 | if (auto imm_value = imm(value)) { |
| 1030 | if (isARM64() && imm_value.value() == 0) { |
| 1031 | switch (move.opcode) { |
| 1032 | default: |
| 1033 | break; |
| 1034 | case Air::Move32: |
| 1035 | if (isValidForm(StoreZero32, dest.kind()) && dest.isValidForm(Width32)) |
| 1036 | return Inst(StoreZero32, m_value, dest); |
| 1037 | break; |
| 1038 | case Air::Move: |
| 1039 | if (isValidForm(StoreZero64, dest.kind()) && dest.isValidForm(Width64)) |
| 1040 | return Inst(StoreZero64, m_value, dest); |
| 1041 | break; |
| 1042 | } |
| 1043 | } |
| 1044 | if (isValidForm(move.opcode, Arg::Imm, dest.kind())) |
| 1045 | return Inst(move, m_value, imm_value, dest); |
| 1046 | } |
| 1047 | |
| 1048 | return Inst(move, m_value, tmp(value), dest); |
| 1049 | } |
| 1050 | |
| 1051 | Air::Opcode storeOpcode(Width width, Bank bank) |
| 1052 | { |
| 1053 | using namespace Air; |
| 1054 | switch (width) { |
| 1055 | case Width8: |
| 1056 | RELEASE_ASSERT(bank == GP); |
| 1057 | return Air::Store8; |
| 1058 | case Width16: |
| 1059 | RELEASE_ASSERT(bank == GP); |
| 1060 | return Air::Store16; |
| 1061 | case Width32: |
| 1062 | switch (bank) { |
| 1063 | case GP: |
| 1064 | return Move32; |
| 1065 | case FP: |
| 1066 | return MoveFloat; |
| 1067 | } |
| 1068 | break; |
| 1069 | case Width64: |
| 1070 | RELEASE_ASSERT(is64Bit()); |
| 1071 | switch (bank) { |
| 1072 | case GP: |
| 1073 | return Move; |
| 1074 | case FP: |
| 1075 | return MoveDouble; |
| 1076 | } |
| 1077 | break; |
| 1078 | } |
| 1079 | RELEASE_ASSERT_NOT_REACHED(); |
| 1080 | } |
| 1081 | |
| 1082 | void appendStore(Value* value, const Arg& dest) |
| 1083 | { |
| 1084 | using namespace Air; |
| 1085 | MemoryValue* memory = value->as<MemoryValue>(); |
| 1086 | RELEASE_ASSERT(memory->isStore()); |
| 1087 | |
| 1088 | Air::Kind kind; |
| 1089 | if (memory->hasFence()) { |
| 1090 | RELEASE_ASSERT(memory->accessBank() == GP); |
| 1091 | |
| 1092 | if (isX86()) { |
| 1093 | kind = OPCODE_FOR_WIDTH(Xchg, memory->accessWidth()); |
| 1094 | kind.effects = true; |
| 1095 | Tmp swapTmp = m_code.newTmp(GP); |
| 1096 | append(relaxedMoveForType(memory->accessType()), tmp(memory->child(0)), swapTmp); |
| 1097 | append(kind, swapTmp, dest); |
| 1098 | return; |
| 1099 | } |
| 1100 | |
| 1101 | kind = OPCODE_FOR_WIDTH(StoreRel, memory->accessWidth()); |
| 1102 | } else |
| 1103 | kind = storeOpcode(memory->accessWidth(), memory->accessBank()); |
| 1104 | |
| 1105 | kind.effects |= memory->traps(); |
| 1106 | |
| 1107 | append(createStore(kind, memory->child(0), dest)); |
| 1108 | } |
| 1109 | |
| 1110 | Air::Opcode moveForType(Type type) |
| 1111 | { |
| 1112 | using namespace Air; |
| 1113 | switch (type) { |
| 1114 | case Int32: |
| 1115 | return Move32; |
| 1116 | case Int64: |
| 1117 | RELEASE_ASSERT(is64Bit()); |
| 1118 | return Move; |
| 1119 | case Float: |
| 1120 | return MoveFloat; |
| 1121 | case Double: |
| 1122 | return MoveDouble; |
| 1123 | case Void: |
| 1124 | break; |
| 1125 | } |
| 1126 | RELEASE_ASSERT_NOT_REACHED(); |
| 1127 | return Air::Oops; |
| 1128 | } |
| 1129 | |
| 1130 | Air::Opcode relaxedMoveForType(Type type) |
| 1131 | { |
| 1132 | using namespace Air; |
| 1133 | switch (type) { |
| 1134 | case Int32: |
| 1135 | case Int64: |
| 1136 | // For Int32, we could return Move or Move32. It's a trade-off. |
| 1137 | // |
| 1138 | // Move32: Using Move32 guarantees that we use the narrower move, but in cases where the |
| 1139 | // register allocator can't prove that the variables involved are 32-bit, this will |
| 1140 | // disable coalescing. |
| 1141 | // |
| 1142 | // Move: Using Move guarantees that the register allocator can coalesce normally, but in |
| 1143 | // cases where it can't prove that the variables are 32-bit and it doesn't coalesce, |
| 1144 | // this will force us to use a full 64-bit Move instead of the slightly cheaper |
| 1145 | // 32-bit Move32. |
| 1146 | // |
| 1147 | // Coalescing is a lot more profitable than turning Move into Move32. So, it's better to |
| 1148 | // use Move here because in cases where the register allocator cannot prove that |
| 1149 | // everything is 32-bit, we still get coalescing. |
| 1150 | return Move; |
| 1151 | case Float: |
| 1152 | // MoveFloat is always coalescable and we never convert MoveDouble to MoveFloat, so we |
| 1153 | // should use MoveFloat when we know that the temporaries involved are 32-bit. |
| 1154 | return MoveFloat; |
| 1155 | case Double: |
| 1156 | return MoveDouble; |
| 1157 | case Void: |
| 1158 | break; |
| 1159 | } |
| 1160 | RELEASE_ASSERT_NOT_REACHED(); |
| 1161 | return Air::Oops; |
| 1162 | } |
| 1163 | |
| 1164 | #if ENABLE(MASM_PROBE) |
| 1165 | template<typename... Arguments> |
| 1166 | void print(Arguments&&... arguments) |
| 1167 | { |
| 1168 | Value* origin = m_value; |
| 1169 | print(origin, std::forward<Arguments>(arguments)...); |
| 1170 | } |
| 1171 | |
| 1172 | template<typename... Arguments> |
| 1173 | void print(Value* origin, Arguments&&... arguments) |
| 1174 | { |
| 1175 | auto printList = Printer::makePrintRecordList(arguments...); |
| 1176 | auto printSpecial = static_cast<Air::PrintSpecial*>(m_code.addSpecial(std::make_unique<Air::PrintSpecial>(printList))); |
| 1177 | Inst inst(Air::Patch, origin, Arg::special(printSpecial)); |
| 1178 | Printer::appendAirArgs(inst, std::forward<Arguments>(arguments)...); |
| 1179 | append(WTFMove(inst)); |
| 1180 | } |
| 1181 | #endif // ENABLE(MASM_PROBE) |
| 1182 | |
| 1183 | template<typename... Arguments> |
| 1184 | void append(Air::Kind kind, Arguments&&... arguments) |
| 1185 | { |
| 1186 | m_insts.last().append(Inst(kind, m_value, std::forward<Arguments>(arguments)...)); |
| 1187 | } |
| 1188 | |
| 1189 | template<typename... Arguments> |
| 1190 | void appendTrapping(Air::Kind kind, Arguments&&... arguments) |
| 1191 | { |
| 1192 | m_insts.last().append(trappingInst(m_value, kind, m_value, std::forward<Arguments>(arguments)...)); |
| 1193 | } |
| 1194 | |
| 1195 | void append(Inst&& inst) |
| 1196 | { |
| 1197 | m_insts.last().append(WTFMove(inst)); |
| 1198 | } |
| 1199 | void append(const Inst& inst) |
| 1200 | { |
| 1201 | m_insts.last().append(inst); |
| 1202 | } |
| 1203 | |
| 1204 | void finishAppendingInstructions(Air::BasicBlock* target) |
| 1205 | { |
| 1206 | // Now append the instructions. m_insts contains them in reverse order, so we process |
| 1207 | // it in reverse. |
| 1208 | for (unsigned i = m_insts.size(); i--;) { |
| 1209 | for (Inst& inst : m_insts[i]) |
| 1210 | target->appendInst(WTFMove(inst)); |
| 1211 | } |
| 1212 | m_insts.shrink(0); |
| 1213 | } |
| 1214 | |
| 1215 | Air::BasicBlock* newBlock() |
| 1216 | { |
| 1217 | return m_blockInsertionSet.insertAfter(m_blockToBlock[m_block]); |
| 1218 | } |
| 1219 | |
| 1220 | // NOTE: This will create a continuation block (`nextBlock`) *after* any blocks you've created using |
| 1221 | // newBlock(). So, it's preferable to create all of your blocks upfront using newBlock(). Also note |
| 1222 | // that any code you emit before this will be prepended to the continuation, and any code you emit |
| 1223 | // after this will be appended to the previous block. |
| 1224 | void splitBlock(Air::BasicBlock*& previousBlock, Air::BasicBlock*& nextBlock) |
| 1225 | { |
| 1226 | Air::BasicBlock* block = m_blockToBlock[m_block]; |
| 1227 | |
| 1228 | previousBlock = block; |
| 1229 | nextBlock = m_blockInsertionSet.insertAfter(block); |
| 1230 | |
| 1231 | finishAppendingInstructions(nextBlock); |
| 1232 | nextBlock->successors() = block->successors(); |
| 1233 | block->successors().clear(); |
| 1234 | |
| 1235 | m_insts.append(Vector<Inst>()); |
| 1236 | } |
| 1237 | |
| 1238 | template<typename T, typename... Arguments> |
| 1239 | T* ensureSpecial(T*& field, Arguments&&... arguments) |
| 1240 | { |
| 1241 | if (!field) { |
| 1242 | field = static_cast<T*>( |
| 1243 | m_code.addSpecial(std::make_unique<T>(std::forward<Arguments>(arguments)...))); |
| 1244 | } |
| 1245 | return field; |
| 1246 | } |
| 1247 | |
| 1248 | template<typename... Arguments> |
| 1249 | CheckSpecial* ensureCheckSpecial(Arguments&&... arguments) |
| 1250 | { |
| 1251 | CheckSpecial::Key key(std::forward<Arguments>(arguments)...); |
| 1252 | auto result = m_checkSpecials.add(key, nullptr); |
| 1253 | return ensureSpecial(result.iterator->value, key); |
| 1254 | } |
| 1255 | |
| 1256 | void fillStackmap(Inst& inst, StackmapValue* stackmap, unsigned numSkipped) |
| 1257 | { |
| 1258 | for (unsigned i = numSkipped; i < stackmap->numChildren(); ++i) { |
| 1259 | ConstrainedValue value = stackmap->constrainedChild(i); |
| 1260 | |
| 1261 | Arg arg; |
| 1262 | switch (value.rep().kind()) { |
| 1263 | case ValueRep::WarmAny: |
| 1264 | case ValueRep::ColdAny: |
| 1265 | case ValueRep::LateColdAny: |
| 1266 | if (imm(value.value())) |
| 1267 | arg = imm(value.value()); |
| 1268 | else if (value.value()->hasInt64()) |
| 1269 | arg = Arg::bigImm(value.value()->asInt64()); |
| 1270 | else if (value.value()->hasDouble() && canBeInternal(value.value())) { |
| 1271 | commitInternal(value.value()); |
| 1272 | arg = Arg::bigImm(bitwise_cast<int64_t>(value.value()->asDouble())); |
| 1273 | } else |
| 1274 | arg = tmp(value.value()); |
| 1275 | break; |
| 1276 | case ValueRep::SomeRegister: |
| 1277 | case ValueRep::SomeLateRegister: |
| 1278 | arg = tmp(value.value()); |
| 1279 | break; |
| 1280 | case ValueRep::SomeRegisterWithClobber: { |
| 1281 | Tmp dstTmp = m_code.newTmp(value.value()->resultBank()); |
| 1282 | append(relaxedMoveForType(value.value()->type()), immOrTmp(value.value()), dstTmp); |
| 1283 | arg = dstTmp; |
| 1284 | break; |
| 1285 | } |
| 1286 | case ValueRep::LateRegister: |
| 1287 | case ValueRep::Register: |
| 1288 | stackmap->earlyClobbered().clear(value.rep().reg()); |
| 1289 | arg = Tmp(value.rep().reg()); |
| 1290 | append(relaxedMoveForType(value.value()->type()), immOrTmp(value.value()), arg); |
| 1291 | break; |
| 1292 | case ValueRep::StackArgument: |
| 1293 | arg = Arg::callArg(value.rep().offsetFromSP()); |
| 1294 | append(trappingInst(m_value, createStore(moveForType(value.value()->type()), value.value(), arg))); |
| 1295 | break; |
| 1296 | default: |
| 1297 | RELEASE_ASSERT_NOT_REACHED(); |
| 1298 | break; |
| 1299 | } |
| 1300 | inst.args.append(arg); |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | // Create an Inst to do the comparison specified by the given value. |
| 1305 | template<typename CompareFunctor, typename TestFunctor, typename CompareDoubleFunctor, typename CompareFloatFunctor> |
| 1306 | Inst createGenericCompare( |
| 1307 | Value* value, |
| 1308 | const CompareFunctor& compare, // Signature: (Width, Arg relCond, Arg, Arg) -> Inst |
| 1309 | const TestFunctor& test, // Signature: (Width, Arg resCond, Arg, Arg) -> Inst |
| 1310 | const CompareDoubleFunctor& compareDouble, // Signature: (Arg doubleCond, Arg, Arg) -> Inst |
| 1311 | const CompareFloatFunctor& compareFloat, // Signature: (Arg doubleCond, Arg, Arg) -> Inst |
| 1312 | bool inverted = false) |
| 1313 | { |
| 1314 | // NOTE: This is totally happy to match comparisons that have already been computed elsewhere |
| 1315 | // since on most architectures, the cost of branching on a previously computed comparison |
| 1316 | // result is almost always higher than just doing another fused compare/branch. The only time |
| 1317 | // it could be worse is if we have a binary comparison and both operands are variables (not |
| 1318 | // constants), and we encounter register pressure. Even in this case, duplicating the compare |
| 1319 | // so that we can fuse it to the branch will be more efficient most of the time, since |
| 1320 | // register pressure is not *that* common. For this reason, this algorithm will always |
| 1321 | // duplicate the comparison. |
| 1322 | // |
| 1323 | // However, we cannot duplicate loads. The canBeInternal() on a load will assume that we |
| 1324 | // already validated canBeInternal() on all of the values that got us to the load. So, even |
| 1325 | // if we are sharing a value, we still need to call canBeInternal() for the purpose of |
| 1326 | // tracking whether we are still in good shape to fuse loads. |
| 1327 | // |
| 1328 | // We could even have a chain of compare values that we fuse, and any member of the chain |
| 1329 | // could be shared. Once any of them are shared, then the shared one's transitive children |
| 1330 | // cannot be locked (i.e. commitInternal()). But if none of them are shared, then we want to |
| 1331 | // lock all of them because that's a prerequisite to fusing the loads so that the loads don't |
| 1332 | // get duplicated. For example, we might have: |
| 1333 | // |
| 1334 | // @tmp1 = LessThan(@a, @b) |
| 1335 | // @tmp2 = Equal(@tmp1, 0) |
| 1336 | // Branch(@tmp2) |
| 1337 | // |
| 1338 | // If either @a or @b are loads, then we want to have locked @tmp1 and @tmp2 so that they |
| 1339 | // don't emit the loads a second time. But if we had another use of @tmp2, then we cannot |
| 1340 | // lock @tmp1 (or @a or @b) because then we'll get into trouble when the other values that |
| 1341 | // try to share @tmp1 with us try to do their lowering. |
| 1342 | // |
| 1343 | // There's one more wrinkle. If we don't lock an internal value, then this internal value may |
| 1344 | // have already separately locked its children. So, if we're not locking a value then we need |
| 1345 | // to make sure that its children aren't locked. We encapsulate this in two ways: |
| 1346 | // |
| 1347 | // canCommitInternal: This variable tells us if the values that we've fused so far are |
| 1348 | // locked. This means that we're not sharing any of them with anyone. This permits us to fuse |
| 1349 | // loads. If it's false, then we cannot fuse loads and we also need to ensure that the |
| 1350 | // children of any values we try to fuse-by-sharing are not already locked. You don't have to |
| 1351 | // worry about the children locking thing if you use prepareToFuse() before trying to fuse a |
| 1352 | // sharable value. But, you do need to guard any load fusion by checking if canCommitInternal |
| 1353 | // is true. |
| 1354 | // |
| 1355 | // FusionResult prepareToFuse(value): Call this when you think that you would like to fuse |
| 1356 | // some value and that value is not a load. It will automatically handle the shared-or-locked |
| 1357 | // issues and it will clear canCommitInternal if necessary. This will return CannotFuse |
| 1358 | // (which acts like false) if the value cannot be locked and its children are locked. That's |
| 1359 | // rare, but you just need to make sure that you do smart things when this happens (i.e. just |
| 1360 | // use the value rather than trying to fuse it). After you call prepareToFuse(), you can |
| 1361 | // still change your mind about whether you will actually fuse the value. If you do fuse it, |
| 1362 | // you need to call commitFusion(value, fusionResult). |
| 1363 | // |
| 1364 | // commitFusion(value, fusionResult): Handles calling commitInternal(value) if fusionResult |
| 1365 | // is FuseAndCommit. |
| 1366 | |
| 1367 | bool canCommitInternal = true; |
| 1368 | |
| 1369 | enum FusionResult { |
| 1370 | CannotFuse, |
| 1371 | FuseAndCommit, |
| 1372 | Fuse |
| 1373 | }; |
| 1374 | auto prepareToFuse = [&] (Value* value) -> FusionResult { |
| 1375 | if (value == m_value) { |
| 1376 | // It's not actually internal. It's the root value. We're good to go. |
| 1377 | return Fuse; |
| 1378 | } |
| 1379 | |
| 1380 | if (canCommitInternal && canBeInternal(value)) { |
| 1381 | // We are the only users of this value. This also means that the value's children |
| 1382 | // could not have been locked, since we have now proved that m_value dominates value |
| 1383 | // in the data flow graph. To only other way to value is from a user of m_value. If |
| 1384 | // value's children are shared with others, then they could not have been locked |
| 1385 | // because their use count is greater than 1. If they are only used from value, then |
| 1386 | // in order for value's children to be locked, value would also have to be locked, |
| 1387 | // and we just proved that it wasn't. |
| 1388 | return FuseAndCommit; |
| 1389 | } |
| 1390 | |
| 1391 | // We're going to try to share value with others. It's possible that some other basic |
| 1392 | // block had already emitted code for value and then matched over its children and then |
| 1393 | // locked them, in which case we just want to use value instead of duplicating it. So, we |
| 1394 | // validate the children. Note that this only arises in linear chains like: |
| 1395 | // |
| 1396 | // BB#1: |
| 1397 | // @1 = Foo(...) |
| 1398 | // @2 = Bar(@1) |
| 1399 | // Jump(#2) |
| 1400 | // BB#2: |
| 1401 | // @3 = Baz(@2) |
| 1402 | // |
| 1403 | // Notice how we could start by generating code for BB#1 and then decide to lock @1 when |
| 1404 | // generating code for @2, if we have some way of fusing Bar and Foo into a single |
| 1405 | // instruction. This is legal, since indeed @1 only has one user. The fact that @2 now |
| 1406 | // has a tmp (i.e. @2 is pinned), canBeInternal(@2) will return false, which brings us |
| 1407 | // here. In that case, we cannot match over @2 because then we'd hit a hazard if we end |
| 1408 | // up deciding not to fuse Foo into the fused Baz/Bar. |
| 1409 | // |
| 1410 | // Happily, there are only two places where this kind of child validation happens is in |
| 1411 | // rules that admit sharing, like this and effectiveAddress(). |
| 1412 | // |
| 1413 | // N.B. We could probably avoid the need to do value locking if we committed to a well |
| 1414 | // chosen code generation order. For example, if we guaranteed that all of the users of |
| 1415 | // a value get generated before that value, then there's no way for the lowering of @3 to |
| 1416 | // see @1 locked. But we don't want to do that, since this is a greedy instruction |
| 1417 | // selector and so we want to be able to play with order. |
| 1418 | for (Value* child : value->children()) { |
| 1419 | if (m_locked.contains(child)) |
| 1420 | return CannotFuse; |
| 1421 | } |
| 1422 | |
| 1423 | // It's safe to share value, but since we're sharing, it means that we aren't locking it. |
| 1424 | // If we don't lock it, then fusing loads is off limits and all of value's children will |
| 1425 | // have to go through the sharing path as well. Fusing loads is off limits because the load |
| 1426 | // could already have been emitted elsehwere - so fusing it here would duplicate the load. |
| 1427 | // We don't consider that to be a legal optimization. |
| 1428 | canCommitInternal = false; |
| 1429 | |
| 1430 | return Fuse; |
| 1431 | }; |
| 1432 | |
| 1433 | auto commitFusion = [&] (Value* value, FusionResult result) { |
| 1434 | if (result == FuseAndCommit) |
| 1435 | commitInternal(value); |
| 1436 | }; |
| 1437 | |
| 1438 | // Chew through any inversions. This loop isn't necessary for comparisons and branches, but |
| 1439 | // we do need at least one iteration of it for Check. |
| 1440 | for (;;) { |
| 1441 | bool shouldInvert = |
| 1442 | (value->opcode() == BitXor && value->child(1)->hasInt() && (value->child(1)->asInt() == 1) && value->child(0)->returnsBool()) |
| 1443 | || (value->opcode() == Equal && value->child(1)->isInt(0)); |
| 1444 | if (!shouldInvert) |
| 1445 | break; |
| 1446 | |
| 1447 | FusionResult fusionResult = prepareToFuse(value); |
| 1448 | if (fusionResult == CannotFuse) |
| 1449 | break; |
| 1450 | commitFusion(value, fusionResult); |
| 1451 | |
| 1452 | value = value->child(0); |
| 1453 | inverted = !inverted; |
| 1454 | } |
| 1455 | |
| 1456 | auto createRelCond = [&] ( |
| 1457 | MacroAssembler::RelationalCondition relationalCondition, |
| 1458 | MacroAssembler::DoubleCondition doubleCondition) { |
| 1459 | Arg relCond = Arg::relCond(relationalCondition).inverted(inverted); |
| 1460 | Arg doubleCond = Arg::doubleCond(doubleCondition).inverted(inverted); |
| 1461 | Value* left = value->child(0); |
| 1462 | Value* right = value->child(1); |
| 1463 | |
| 1464 | if (isInt(value->child(0)->type())) { |
| 1465 | Arg rightImm = imm(right); |
| 1466 | |
| 1467 | auto tryCompare = [&] ( |
| 1468 | Width width, ArgPromise&& left, ArgPromise&& right) -> Inst { |
| 1469 | if (Inst result = compare(width, relCond, left, right)) |
| 1470 | return result; |
| 1471 | if (Inst result = compare(width, relCond.flipped(), right, left)) |
| 1472 | return result; |
| 1473 | return Inst(); |
| 1474 | }; |
| 1475 | |
| 1476 | auto tryCompareLoadImm = [&] ( |
| 1477 | Width width, B3::Opcode loadOpcode, Arg::Signedness signedness) -> Inst { |
| 1478 | if (rightImm && rightImm.isRepresentableAs(width, signedness)) { |
| 1479 | if (Inst result = tryCompare(width, loadPromise(left, loadOpcode), rightImm)) { |
| 1480 | commitInternal(left); |
| 1481 | return result; |
| 1482 | } |
| 1483 | } |
| 1484 | return Inst(); |
| 1485 | }; |
| 1486 | |
| 1487 | Width width = value->child(0)->resultWidth(); |
| 1488 | |
| 1489 | if (canCommitInternal) { |
| 1490 | // First handle compares that involve fewer bits than B3's type system supports. |
| 1491 | // This is pretty important. For example, we want this to be a single |
| 1492 | // instruction: |
| 1493 | // |
| 1494 | // @1 = Load8S(...) |
| 1495 | // @2 = Const32(...) |
| 1496 | // @3 = LessThan(@1, @2) |
| 1497 | // Branch(@3) |
| 1498 | |
| 1499 | if (relCond.isSignedCond()) { |
| 1500 | if (Inst result = tryCompareLoadImm(Width8, Load8S, Arg::Signed)) |
| 1501 | return result; |
| 1502 | } |
| 1503 | |
| 1504 | if (relCond.isUnsignedCond()) { |
| 1505 | if (Inst result = tryCompareLoadImm(Width8, Load8Z, Arg::Unsigned)) |
| 1506 | return result; |
| 1507 | } |
| 1508 | |
| 1509 | if (relCond.isSignedCond()) { |
| 1510 | if (Inst result = tryCompareLoadImm(Width16, Load16S, Arg::Signed)) |
| 1511 | return result; |
| 1512 | } |
| 1513 | |
| 1514 | if (relCond.isUnsignedCond()) { |
| 1515 | if (Inst result = tryCompareLoadImm(Width16, Load16Z, Arg::Unsigned)) |
| 1516 | return result; |
| 1517 | } |
| 1518 | |
| 1519 | // Now handle compares that involve a load and an immediate. |
| 1520 | |
| 1521 | if (Inst result = tryCompareLoadImm(width, Load, Arg::Signed)) |
| 1522 | return result; |
| 1523 | |
| 1524 | // Now handle compares that involve a load. It's not obvious that it's better to |
| 1525 | // handle this before the immediate cases or not. Probably doesn't matter. |
| 1526 | |
| 1527 | if (Inst result = tryCompare(width, loadPromise(left), tmpPromise(right))) { |
| 1528 | commitInternal(left); |
| 1529 | return result; |
| 1530 | } |
| 1531 | |
| 1532 | if (Inst result = tryCompare(width, tmpPromise(left), loadPromise(right))) { |
| 1533 | commitInternal(right); |
| 1534 | return result; |
| 1535 | } |
| 1536 | } |
| 1537 | |
| 1538 | // Now handle compares that involve an immediate and a tmp. |
| 1539 | |
| 1540 | if (rightImm && rightImm.isRepresentableAs<int32_t>()) { |
| 1541 | if (Inst result = tryCompare(width, tmpPromise(left), rightImm)) |
| 1542 | return result; |
| 1543 | } |
| 1544 | |
| 1545 | // Finally, handle comparison between tmps. |
| 1546 | ArgPromise leftPromise = tmpPromise(left); |
| 1547 | ArgPromise rightPromise = tmpPromise(right); |
| 1548 | return compare(width, relCond, leftPromise, rightPromise); |
| 1549 | } |
| 1550 | |
| 1551 | // Floating point comparisons can't really do anything smart. |
| 1552 | ArgPromise leftPromise = tmpPromise(left); |
| 1553 | ArgPromise rightPromise = tmpPromise(right); |
| 1554 | if (value->child(0)->type() == Float) |
| 1555 | return compareFloat(doubleCond, leftPromise, rightPromise); |
| 1556 | return compareDouble(doubleCond, leftPromise, rightPromise); |
| 1557 | }; |
| 1558 | |
| 1559 | Width width = value->resultWidth(); |
| 1560 | Arg resCond = Arg::resCond(MacroAssembler::NonZero).inverted(inverted); |
| 1561 | |
| 1562 | auto tryTest = [&] ( |
| 1563 | Width width, ArgPromise&& left, ArgPromise&& right) -> Inst { |
| 1564 | if (Inst result = test(width, resCond, left, right)) |
| 1565 | return result; |
| 1566 | if (Inst result = test(width, resCond, right, left)) |
| 1567 | return result; |
| 1568 | return Inst(); |
| 1569 | }; |
| 1570 | |
| 1571 | auto attemptFused = [&] () -> Inst { |
| 1572 | switch (value->opcode()) { |
| 1573 | case NotEqual: |
| 1574 | return createRelCond(MacroAssembler::NotEqual, MacroAssembler::DoubleNotEqualOrUnordered); |
| 1575 | case Equal: |
| 1576 | return createRelCond(MacroAssembler::Equal, MacroAssembler::DoubleEqual); |
| 1577 | case LessThan: |
| 1578 | return createRelCond(MacroAssembler::LessThan, MacroAssembler::DoubleLessThan); |
| 1579 | case GreaterThan: |
| 1580 | return createRelCond(MacroAssembler::GreaterThan, MacroAssembler::DoubleGreaterThan); |
| 1581 | case LessEqual: |
| 1582 | return createRelCond(MacroAssembler::LessThanOrEqual, MacroAssembler::DoubleLessThanOrEqual); |
| 1583 | case GreaterEqual: |
| 1584 | return createRelCond(MacroAssembler::GreaterThanOrEqual, MacroAssembler::DoubleGreaterThanOrEqual); |
| 1585 | case EqualOrUnordered: |
| 1586 | // The integer condition is never used in this case. |
| 1587 | return createRelCond(MacroAssembler::Equal, MacroAssembler::DoubleEqualOrUnordered); |
| 1588 | case Above: |
| 1589 | // We use a bogus double condition because these integer comparisons won't got down that |
| 1590 | // path anyway. |
| 1591 | return createRelCond(MacroAssembler::Above, MacroAssembler::DoubleEqual); |
| 1592 | case Below: |
| 1593 | return createRelCond(MacroAssembler::Below, MacroAssembler::DoubleEqual); |
| 1594 | case AboveEqual: |
| 1595 | return createRelCond(MacroAssembler::AboveOrEqual, MacroAssembler::DoubleEqual); |
| 1596 | case BelowEqual: |
| 1597 | return createRelCond(MacroAssembler::BelowOrEqual, MacroAssembler::DoubleEqual); |
| 1598 | case BitAnd: { |
| 1599 | Value* left = value->child(0); |
| 1600 | Value* right = value->child(1); |
| 1601 | |
| 1602 | bool hasRightConst; |
| 1603 | int64_t rightConst; |
| 1604 | Arg rightImm; |
| 1605 | Arg rightImm64; |
| 1606 | |
| 1607 | hasRightConst = right->hasInt(); |
| 1608 | if (hasRightConst) { |
| 1609 | rightConst = right->asInt(); |
| 1610 | rightImm = bitImm(right); |
| 1611 | rightImm64 = bitImm64(right); |
| 1612 | } |
| 1613 | |
| 1614 | auto tryTestLoadImm = [&] (Width width, Arg::Signedness signedness, B3::Opcode loadOpcode) -> Inst { |
| 1615 | if (!hasRightConst) |
| 1616 | return Inst(); |
| 1617 | // Signed loads will create high bits, so if the immediate has high bits |
| 1618 | // then we cannot proceed. Consider BitAnd(Load8S(ptr), 0x101). This cannot |
| 1619 | // be turned into testb (ptr), $1, since if the high bit within that byte |
| 1620 | // was set then it would be extended to include 0x100. The handling below |
| 1621 | // won't anticipate this, so we need to catch it here. |
| 1622 | if (signedness == Arg::Signed |
| 1623 | && !Arg::isRepresentableAs(width, Arg::Unsigned, rightConst)) |
| 1624 | return Inst(); |
| 1625 | |
| 1626 | // FIXME: If this is unsigned then we can chop things off of the immediate. |
| 1627 | // This might make the immediate more legal. Perhaps that's a job for |
| 1628 | // strength reduction? |
| 1629 | // https://bugs.webkit.org/show_bug.cgi?id=169248 |
| 1630 | |
| 1631 | if (rightImm) { |
| 1632 | if (Inst result = tryTest(width, loadPromise(left, loadOpcode), rightImm)) { |
| 1633 | commitInternal(left); |
| 1634 | return result; |
| 1635 | } |
| 1636 | } |
| 1637 | if (rightImm64) { |
| 1638 | if (Inst result = tryTest(width, loadPromise(left, loadOpcode), rightImm64)) { |
| 1639 | commitInternal(left); |
| 1640 | return result; |
| 1641 | } |
| 1642 | } |
| 1643 | return Inst(); |
| 1644 | }; |
| 1645 | |
| 1646 | if (canCommitInternal) { |
| 1647 | // First handle test's that involve fewer bits than B3's type system supports. |
| 1648 | |
| 1649 | if (Inst result = tryTestLoadImm(Width8, Arg::Unsigned, Load8Z)) |
| 1650 | return result; |
| 1651 | |
| 1652 | if (Inst result = tryTestLoadImm(Width8, Arg::Signed, Load8S)) |
| 1653 | return result; |
| 1654 | |
| 1655 | if (Inst result = tryTestLoadImm(Width16, Arg::Unsigned, Load16Z)) |
| 1656 | return result; |
| 1657 | |
| 1658 | if (Inst result = tryTestLoadImm(Width16, Arg::Signed, Load16S)) |
| 1659 | return result; |
| 1660 | |
| 1661 | // This allows us to use a 32-bit test for 64-bit BitAnd if the immediate is |
| 1662 | // representable as an unsigned 32-bit value. The logic involved is the same |
| 1663 | // as if we were pondering using a 32-bit test for |
| 1664 | // BitAnd(SExt(Load(ptr)), const), in the sense that in both cases we have |
| 1665 | // to worry about high bits. So, we use the "Signed" version of this helper. |
| 1666 | if (Inst result = tryTestLoadImm(Width32, Arg::Signed, Load)) |
| 1667 | return result; |
| 1668 | |
| 1669 | // This is needed to handle 32-bit test for arbitrary 32-bit immediates. |
| 1670 | if (Inst result = tryTestLoadImm(width, Arg::Unsigned, Load)) |
| 1671 | return result; |
| 1672 | |
| 1673 | // Now handle test's that involve a load. |
| 1674 | |
| 1675 | Width width = value->child(0)->resultWidth(); |
| 1676 | if (Inst result = tryTest(width, loadPromise(left), tmpPromise(right))) { |
| 1677 | commitInternal(left); |
| 1678 | return result; |
| 1679 | } |
| 1680 | |
| 1681 | if (Inst result = tryTest(width, tmpPromise(left), loadPromise(right))) { |
| 1682 | commitInternal(right); |
| 1683 | return result; |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | // Now handle test's that involve an immediate and a tmp. |
| 1688 | |
| 1689 | if (hasRightConst) { |
| 1690 | if ((width == Width32 && rightConst == 0xffffffff) |
| 1691 | || (width == Width64 && rightConst == -1)) { |
| 1692 | if (Inst result = tryTest(width, tmpPromise(left), tmpPromise(left))) |
| 1693 | return result; |
| 1694 | } |
| 1695 | if (isRepresentableAs<uint32_t>(rightConst)) { |
| 1696 | if (Inst result = tryTest(Width32, tmpPromise(left), rightImm)) |
| 1697 | return result; |
| 1698 | if (Inst result = tryTest(Width32, tmpPromise(left), rightImm64)) |
| 1699 | return result; |
| 1700 | } |
| 1701 | if (Inst result = tryTest(width, tmpPromise(left), rightImm)) |
| 1702 | return result; |
| 1703 | if (Inst result = tryTest(width, tmpPromise(left), rightImm64)) |
| 1704 | return result; |
| 1705 | } |
| 1706 | |
| 1707 | // Finally, just do tmp's. |
| 1708 | return tryTest(width, tmpPromise(left), tmpPromise(right)); |
| 1709 | } |
| 1710 | default: |
| 1711 | return Inst(); |
| 1712 | } |
| 1713 | }; |
| 1714 | |
| 1715 | if (FusionResult fusionResult = prepareToFuse(value)) { |
| 1716 | if (Inst result = attemptFused()) { |
| 1717 | commitFusion(value, fusionResult); |
| 1718 | return result; |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | if (Arg::isValidBitImmForm(-1)) { |
| 1723 | if (canCommitInternal && value->as<MemoryValue>()) { |
| 1724 | // Handle things like Branch(Load8Z(value)) |
| 1725 | |
| 1726 | if (Inst result = tryTest(Width8, loadPromise(value, Load8Z), Arg::bitImm(-1))) { |
| 1727 | commitInternal(value); |
| 1728 | return result; |
| 1729 | } |
| 1730 | |
| 1731 | if (Inst result = tryTest(Width8, loadPromise(value, Load8S), Arg::bitImm(-1))) { |
| 1732 | commitInternal(value); |
| 1733 | return result; |
| 1734 | } |
| 1735 | |
| 1736 | if (Inst result = tryTest(Width16, loadPromise(value, Load16Z), Arg::bitImm(-1))) { |
| 1737 | commitInternal(value); |
| 1738 | return result; |
| 1739 | } |
| 1740 | |
| 1741 | if (Inst result = tryTest(Width16, loadPromise(value, Load16S), Arg::bitImm(-1))) { |
| 1742 | commitInternal(value); |
| 1743 | return result; |
| 1744 | } |
| 1745 | |
| 1746 | if (Inst result = tryTest(width, loadPromise(value), Arg::bitImm(-1))) { |
| 1747 | commitInternal(value); |
| 1748 | return result; |
| 1749 | } |
| 1750 | } |
| 1751 | |
| 1752 | ArgPromise leftPromise = tmpPromise(value); |
| 1753 | ArgPromise rightPromise = Arg::bitImm(-1); |
| 1754 | if (Inst result = test(width, resCond, leftPromise, rightPromise)) |
| 1755 | return result; |
| 1756 | } |
| 1757 | |
| 1758 | // Sometimes this is the only form of test available. We prefer not to use this because |
| 1759 | // it's less canonical. |
| 1760 | ArgPromise leftPromise = tmpPromise(value); |
| 1761 | ArgPromise rightPromise = tmpPromise(value); |
| 1762 | return test(width, resCond, leftPromise, rightPromise); |
| 1763 | } |
| 1764 | |
| 1765 | Inst createBranch(Value* value, bool inverted = false) |
| 1766 | { |
| 1767 | using namespace Air; |
| 1768 | return createGenericCompare( |
| 1769 | value, |
| 1770 | [this] ( |
| 1771 | Width width, const Arg& relCond, |
| 1772 | ArgPromise& left, ArgPromise& right) -> Inst { |
| 1773 | switch (width) { |
| 1774 | case Width8: |
| 1775 | if (isValidForm(Branch8, Arg::RelCond, left.kind(), right.kind())) { |
| 1776 | return left.inst(right.inst( |
| 1777 | Branch8, m_value, relCond, |
| 1778 | left.consume(*this), right.consume(*this))); |
| 1779 | } |
| 1780 | return Inst(); |
| 1781 | case Width16: |
| 1782 | return Inst(); |
| 1783 | case Width32: |
| 1784 | if (isValidForm(Branch32, Arg::RelCond, left.kind(), right.kind())) { |
| 1785 | return left.inst(right.inst( |
| 1786 | Branch32, m_value, relCond, |
| 1787 | left.consume(*this), right.consume(*this))); |
| 1788 | } |
| 1789 | return Inst(); |
| 1790 | case Width64: |
| 1791 | if (isValidForm(Branch64, Arg::RelCond, left.kind(), right.kind())) { |
| 1792 | return left.inst(right.inst( |
| 1793 | Branch64, m_value, relCond, |
| 1794 | left.consume(*this), right.consume(*this))); |
| 1795 | } |
| 1796 | return Inst(); |
| 1797 | } |
| 1798 | ASSERT_NOT_REACHED(); |
| 1799 | }, |
| 1800 | [this] ( |
| 1801 | Width width, const Arg& resCond, |
| 1802 | ArgPromise& left, ArgPromise& right) -> Inst { |
| 1803 | switch (width) { |
| 1804 | case Width8: |
| 1805 | if (isValidForm(BranchTest8, Arg::ResCond, left.kind(), right.kind())) { |
| 1806 | return left.inst(right.inst( |
| 1807 | BranchTest8, m_value, resCond, |
| 1808 | left.consume(*this), right.consume(*this))); |
| 1809 | } |
| 1810 | return Inst(); |
| 1811 | case Width16: |
| 1812 | return Inst(); |
| 1813 | case Width32: |
| 1814 | if (isValidForm(BranchTest32, Arg::ResCond, left.kind(), right.kind())) { |
| 1815 | return left.inst(right.inst( |
| 1816 | BranchTest32, m_value, resCond, |
| 1817 | left.consume(*this), right.consume(*this))); |
| 1818 | } |
| 1819 | return Inst(); |
| 1820 | case Width64: |
| 1821 | if (isValidForm(BranchTest64, Arg::ResCond, left.kind(), right.kind())) { |
| 1822 | return left.inst(right.inst( |
| 1823 | BranchTest64, m_value, resCond, |
| 1824 | left.consume(*this), right.consume(*this))); |
| 1825 | } |
| 1826 | return Inst(); |
| 1827 | } |
| 1828 | ASSERT_NOT_REACHED(); |
| 1829 | }, |
| 1830 | [this] (Arg doubleCond, ArgPromise& left, ArgPromise& right) -> Inst { |
| 1831 | if (isValidForm(BranchDouble, Arg::DoubleCond, left.kind(), right.kind())) { |
| 1832 | return left.inst(right.inst( |
| 1833 | BranchDouble, m_value, doubleCond, |
| 1834 | left.consume(*this), right.consume(*this))); |
| 1835 | } |
| 1836 | return Inst(); |
| 1837 | }, |
| 1838 | [this] (Arg doubleCond, ArgPromise& left, ArgPromise& right) -> Inst { |
| 1839 | if (isValidForm(BranchFloat, Arg::DoubleCond, left.kind(), right.kind())) { |
| 1840 | return left.inst(right.inst( |
| 1841 | BranchFloat, m_value, doubleCond, |
| 1842 | left.consume(*this), right.consume(*this))); |
| 1843 | } |
| 1844 | return Inst(); |
| 1845 | }, |
| 1846 | inverted); |
| 1847 | } |
| 1848 | |
| 1849 | Inst createCompare(Value* value, bool inverted = false) |
| 1850 | { |
| 1851 | using namespace Air; |
| 1852 | return createGenericCompare( |
| 1853 | value, |
| 1854 | [this] ( |
| 1855 | Width width, const Arg& relCond, |
| 1856 | ArgPromise& left, ArgPromise& right) -> Inst { |
| 1857 | switch (width) { |
| 1858 | case Width8: |
| 1859 | case Width16: |
| 1860 | return Inst(); |
| 1861 | case Width32: |
| 1862 | if (isValidForm(Compare32, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) { |
| 1863 | return left.inst(right.inst( |
| 1864 | Compare32, m_value, relCond, |
| 1865 | left.consume(*this), right.consume(*this), tmp(m_value))); |
| 1866 | } |
| 1867 | return Inst(); |
| 1868 | case Width64: |
| 1869 | if (isValidForm(Compare64, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) { |
| 1870 | return left.inst(right.inst( |
| 1871 | Compare64, m_value, relCond, |
| 1872 | left.consume(*this), right.consume(*this), tmp(m_value))); |
| 1873 | } |
| 1874 | return Inst(); |
| 1875 | } |
| 1876 | ASSERT_NOT_REACHED(); |
| 1877 | }, |
| 1878 | [this] ( |
| 1879 | Width width, const Arg& resCond, |
| 1880 | ArgPromise& left, ArgPromise& right) -> Inst { |
| 1881 | switch (width) { |
| 1882 | case Width8: |
| 1883 | case Width16: |
| 1884 | return Inst(); |
| 1885 | case Width32: |
| 1886 | if (isValidForm(Test32, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) { |
| 1887 | return left.inst(right.inst( |
| 1888 | Test32, m_value, resCond, |
| 1889 | left.consume(*this), right.consume(*this), tmp(m_value))); |
| 1890 | } |
| 1891 | return Inst(); |
| 1892 | case Width64: |
| 1893 | if (isValidForm(Test64, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) { |
| 1894 | return left.inst(right.inst( |
| 1895 | Test64, m_value, resCond, |
| 1896 | left.consume(*this), right.consume(*this), tmp(m_value))); |
| 1897 | } |
| 1898 | return Inst(); |
| 1899 | } |
| 1900 | ASSERT_NOT_REACHED(); |
| 1901 | }, |
| 1902 | [this] (const Arg& doubleCond, ArgPromise& left, ArgPromise& right) -> Inst { |
| 1903 | if (isValidForm(CompareDouble, Arg::DoubleCond, left.kind(), right.kind(), Arg::Tmp)) { |
| 1904 | return left.inst(right.inst( |
| 1905 | CompareDouble, m_value, doubleCond, |
| 1906 | left.consume(*this), right.consume(*this), tmp(m_value))); |
| 1907 | } |
| 1908 | return Inst(); |
| 1909 | }, |
| 1910 | [this] (const Arg& doubleCond, ArgPromise& left, ArgPromise& right) -> Inst { |
| 1911 | if (isValidForm(CompareFloat, Arg::DoubleCond, left.kind(), right.kind(), Arg::Tmp)) { |
| 1912 | return left.inst(right.inst( |
| 1913 | CompareFloat, m_value, doubleCond, |
| 1914 | left.consume(*this), right.consume(*this), tmp(m_value))); |
| 1915 | } |
| 1916 | return Inst(); |
| 1917 | }, |
| 1918 | inverted); |
| 1919 | } |
| 1920 | |
| 1921 | struct MoveConditionallyConfig { |
| 1922 | Air::Opcode moveConditionally32; |
| 1923 | Air::Opcode moveConditionally64; |
| 1924 | Air::Opcode moveConditionallyTest32; |
| 1925 | Air::Opcode moveConditionallyTest64; |
| 1926 | Air::Opcode moveConditionallyDouble; |
| 1927 | Air::Opcode moveConditionallyFloat; |
| 1928 | }; |
| 1929 | Inst createSelect(const MoveConditionallyConfig& config) |
| 1930 | { |
| 1931 | using namespace Air; |
| 1932 | auto createSelectInstruction = [&] (Air::Opcode opcode, const Arg& condition, ArgPromise& left, ArgPromise& right) -> Inst { |
| 1933 | if (isValidForm(opcode, condition.kind(), left.kind(), right.kind(), Arg::Tmp, Arg::Tmp, Arg::Tmp)) { |
| 1934 | Tmp result = tmp(m_value); |
| 1935 | Tmp thenCase = tmp(m_value->child(1)); |
| 1936 | Tmp elseCase = tmp(m_value->child(2)); |
| 1937 | return left.inst(right.inst( |
| 1938 | opcode, m_value, condition, |
| 1939 | left.consume(*this), right.consume(*this), thenCase, elseCase, result)); |
| 1940 | } |
| 1941 | if (isValidForm(opcode, condition.kind(), left.kind(), right.kind(), Arg::Tmp, Arg::Tmp)) { |
| 1942 | Tmp result = tmp(m_value); |
| 1943 | Tmp source = tmp(m_value->child(1)); |
| 1944 | append(relaxedMoveForType(m_value->type()), tmp(m_value->child(2)), result); |
| 1945 | return left.inst(right.inst( |
| 1946 | opcode, m_value, condition, |
| 1947 | left.consume(*this), right.consume(*this), source, result)); |
| 1948 | } |
| 1949 | return Inst(); |
| 1950 | }; |
| 1951 | |
| 1952 | return createGenericCompare( |
| 1953 | m_value->child(0), |
| 1954 | [&] (Width width, const Arg& relCond, ArgPromise& left, ArgPromise& right) -> Inst { |
| 1955 | switch (width) { |
| 1956 | case Width8: |
| 1957 | // FIXME: Support these things. |
| 1958 | // https://bugs.webkit.org/show_bug.cgi?id=151504 |
| 1959 | return Inst(); |
| 1960 | case Width16: |
| 1961 | return Inst(); |
| 1962 | case Width32: |
| 1963 | return createSelectInstruction(config.moveConditionally32, relCond, left, right); |
| 1964 | case Width64: |
| 1965 | return createSelectInstruction(config.moveConditionally64, relCond, left, right); |
| 1966 | } |
| 1967 | ASSERT_NOT_REACHED(); |
| 1968 | }, |
| 1969 | [&] (Width width, const Arg& resCond, ArgPromise& left, ArgPromise& right) -> Inst { |
| 1970 | switch (width) { |
| 1971 | case Width8: |
| 1972 | // FIXME: Support more things. |
| 1973 | // https://bugs.webkit.org/show_bug.cgi?id=151504 |
| 1974 | return Inst(); |
| 1975 | case Width16: |
| 1976 | return Inst(); |
| 1977 | case Width32: |
| 1978 | return createSelectInstruction(config.moveConditionallyTest32, resCond, left, right); |
| 1979 | case Width64: |
| 1980 | return createSelectInstruction(config.moveConditionallyTest64, resCond, left, right); |
| 1981 | } |
| 1982 | ASSERT_NOT_REACHED(); |
| 1983 | }, |
| 1984 | [&] (Arg doubleCond, ArgPromise& left, ArgPromise& right) -> Inst { |
| 1985 | return createSelectInstruction(config.moveConditionallyDouble, doubleCond, left, right); |
| 1986 | }, |
| 1987 | [&] (Arg doubleCond, ArgPromise& left, ArgPromise& right) -> Inst { |
| 1988 | return createSelectInstruction(config.moveConditionallyFloat, doubleCond, left, right); |
| 1989 | }, |
| 1990 | false); |
| 1991 | } |
| 1992 | |
| 1993 | bool tryAppendLea() |
| 1994 | { |
| 1995 | using namespace Air; |
| 1996 | Air::Opcode leaOpcode = tryOpcodeForType(Lea32, Lea64, m_value->type()); |
| 1997 | if (!isValidForm(leaOpcode, Arg::Index, Arg::Tmp)) |
| 1998 | return false; |
| 1999 | |
| 2000 | // This lets us turn things like this: |
| 2001 | // |
| 2002 | // Add(Add(@x, Shl(@y, $2)), $100) |
| 2003 | // |
| 2004 | // Into this: |
| 2005 | // |
| 2006 | // lea 100(%rdi,%rsi,4), %rax |
| 2007 | // |
| 2008 | // We have a choice here between committing the internal bits of an index or sharing |
| 2009 | // them. There are solid arguments for both. |
| 2010 | // |
| 2011 | // Sharing: The word on the street is that the cost of a lea is one cycle no matter |
| 2012 | // what it does. Every experiment I've ever seen seems to confirm this. So, sharing |
| 2013 | // helps us in situations where Wasm input did this: |
| 2014 | // |
| 2015 | // x = a[i].x; |
| 2016 | // y = a[i].y; |
| 2017 | // |
| 2018 | // With sharing we would do: |
| 2019 | // |
| 2020 | // leal (%a,%i,4), %tmp |
| 2021 | // cmp (%size, %tmp) |
| 2022 | // ja _fail |
| 2023 | // movl (%base, %tmp), %x |
| 2024 | // leal 4(%a,%i,4), %tmp |
| 2025 | // cmp (%size, %tmp) |
| 2026 | // ja _fail |
| 2027 | // movl (%base, %tmp), %y |
| 2028 | // |
| 2029 | // In the absence of sharing, we may find ourselves needing separate registers for |
| 2030 | // the innards of the index. That's relatively unlikely to be a thing due to other |
| 2031 | // optimizations that we already have, but it could happen |
| 2032 | // |
| 2033 | // Committing: The worst case is that there is a complicated graph of additions and |
| 2034 | // shifts, where each value has multiple uses. In that case, it's better to compute |
| 2035 | // each one separately from the others since that way, each calculation will use a |
| 2036 | // relatively nearby tmp as its input. That seems uncommon, but in those cases, |
| 2037 | // committing is a clear winner: it would result in a simple interference graph |
| 2038 | // while sharing would result in a complex one. Interference sucks because it means |
| 2039 | // more time in IRC and it means worse code. |
| 2040 | // |
| 2041 | // It's not super clear if any of these corner cases would ever arise. Committing |
| 2042 | // has the benefit that it's easier to reason about, and protects a much darker |
| 2043 | // corner case (more interference). |
| 2044 | |
| 2045 | // Here are the things we want to match: |
| 2046 | // Add(Add(@x, @y), $c) |
| 2047 | // Add(Shl(@x, $c), @y) |
| 2048 | // Add(@x, Shl(@y, $c)) |
| 2049 | // Add(Add(@x, Shl(@y, $c)), $d) |
| 2050 | // Add(Add(Shl(@x, $c), @y), $d) |
| 2051 | // |
| 2052 | // Note that if you do Add(Shl(@x, $c), $d) then we will treat $d as a non-constant and |
| 2053 | // force it to materialize. You'll get something like this: |
| 2054 | // |
| 2055 | // movl $d, %tmp |
| 2056 | // leal (%tmp,%x,1<<c), %result |
| 2057 | // |
| 2058 | // Which is pretty close to optimal and has the nice effect of being able to handle large |
| 2059 | // constants gracefully. |
| 2060 | |
| 2061 | Value* innerAdd = nullptr; |
| 2062 | |
| 2063 | Value* value = m_value; |
| 2064 | |
| 2065 | // We're going to consume Add(Add(_), $c). If we succeed at consuming it then we have these |
| 2066 | // patterns left (i.e. in the Add(_)): |
| 2067 | // |
| 2068 | // Add(Add(@x, @y), $c) |
| 2069 | // Add(Add(@x, Shl(@y, $c)), $d) |
| 2070 | // Add(Add(Shl(@x, $c), @y), $d) |
| 2071 | // |
| 2072 | // Otherwise we are looking at these patterns: |
| 2073 | // |
| 2074 | // Add(Shl(@x, $c), @y) |
| 2075 | // Add(@x, Shl(@y, $c)) |
| 2076 | // |
| 2077 | // This means that the subsequent code only has to worry about three patterns: |
| 2078 | // |
| 2079 | // Add(Shl(@x, $c), @y) |
| 2080 | // Add(@x, Shl(@y, $c)) |
| 2081 | // Add(@x, @y) (only if offset != 0) |
| 2082 | Value::OffsetType offset = 0; |
| 2083 | if (value->child(1)->isRepresentableAs<Value::OffsetType>() |
| 2084 | && canBeInternal(value->child(0)) |
| 2085 | && value->child(0)->opcode() == Add) { |
| 2086 | innerAdd = value->child(0); |
| 2087 | offset = static_cast<Value::OffsetType>(value->child(1)->asInt()); |
| 2088 | value = value->child(0); |
| 2089 | } |
| 2090 | |
| 2091 | auto tryShl = [&] (Value* shl, Value* other) -> bool { |
| 2092 | Optional<unsigned> scale = scaleForShl(shl, offset); |
| 2093 | if (!scale) |
| 2094 | return false; |
| 2095 | if (!canBeInternal(shl)) |
| 2096 | return false; |
| 2097 | |
| 2098 | ASSERT(!m_locked.contains(shl->child(0))); |
| 2099 | ASSERT(!m_locked.contains(other)); |
| 2100 | |
| 2101 | append(leaOpcode, Arg::index(tmp(other), tmp(shl->child(0)), *scale, offset), tmp(m_value)); |
| 2102 | commitInternal(innerAdd); |
| 2103 | commitInternal(shl); |
| 2104 | return true; |
| 2105 | }; |
| 2106 | |
| 2107 | if (tryShl(value->child(0), value->child(1))) |
| 2108 | return true; |
| 2109 | if (tryShl(value->child(1), value->child(0))) |
| 2110 | return true; |
| 2111 | |
| 2112 | // The remaining pattern is just: |
| 2113 | // Add(@x, @y) (only if offset != 0) |
| 2114 | if (!offset) |
| 2115 | return false; |
| 2116 | ASSERT(!m_locked.contains(value->child(0))); |
| 2117 | ASSERT(!m_locked.contains(value->child(1))); |
| 2118 | append(leaOpcode, Arg::index(tmp(value->child(0)), tmp(value->child(1)), 1, offset), tmp(m_value)); |
| 2119 | commitInternal(innerAdd); |
| 2120 | return true; |
| 2121 | } |
| 2122 | |
| 2123 | void appendX86Div(B3::Opcode op) |
| 2124 | { |
| 2125 | using namespace Air; |
| 2126 | Air::Opcode convertToDoubleWord; |
| 2127 | Air::Opcode div; |
| 2128 | switch (m_value->type()) { |
| 2129 | case Int32: |
| 2130 | convertToDoubleWord = X86ConvertToDoubleWord32; |
| 2131 | div = X86Div32; |
| 2132 | break; |
| 2133 | case Int64: |
| 2134 | convertToDoubleWord = X86ConvertToQuadWord64; |
| 2135 | div = X86Div64; |
| 2136 | break; |
| 2137 | default: |
| 2138 | RELEASE_ASSERT_NOT_REACHED(); |
| 2139 | return; |
| 2140 | } |
| 2141 | |
| 2142 | ASSERT(op == Div || op == Mod); |
| 2143 | Tmp result = op == Div ? m_eax : m_edx; |
| 2144 | |
| 2145 | append(Move, tmp(m_value->child(0)), m_eax); |
| 2146 | append(convertToDoubleWord, m_eax, m_edx); |
| 2147 | append(div, m_eax, m_edx, tmp(m_value->child(1))); |
| 2148 | append(Move, result, tmp(m_value)); |
| 2149 | } |
| 2150 | |
| 2151 | void appendX86UDiv(B3::Opcode op) |
| 2152 | { |
| 2153 | using namespace Air; |
| 2154 | Air::Opcode div = m_value->type() == Int32 ? X86UDiv32 : X86UDiv64; |
| 2155 | |
| 2156 | ASSERT(op == UDiv || op == UMod); |
| 2157 | Tmp result = op == UDiv ? m_eax : m_edx; |
| 2158 | |
| 2159 | append(Move, tmp(m_value->child(0)), m_eax); |
| 2160 | append(Xor64, m_edx, m_edx); |
| 2161 | append(div, m_eax, m_edx, tmp(m_value->child(1))); |
| 2162 | append(Move, result, tmp(m_value)); |
| 2163 | } |
| 2164 | |
| 2165 | Air::Opcode loadLinkOpcode(Width width, bool fence) |
| 2166 | { |
| 2167 | return fence ? OPCODE_FOR_WIDTH(LoadLinkAcq, width) : OPCODE_FOR_WIDTH(LoadLink, width); |
| 2168 | } |
| 2169 | |
| 2170 | Air::Opcode storeCondOpcode(Width width, bool fence) |
| 2171 | { |
| 2172 | return fence ? OPCODE_FOR_WIDTH(StoreCondRel, width) : OPCODE_FOR_WIDTH(StoreCond, width); |
| 2173 | } |
| 2174 | |
| 2175 | // This can emit code for the following patterns: |
| 2176 | // AtomicWeakCAS |
| 2177 | // BitXor(AtomicWeakCAS, 1) |
| 2178 | // AtomicStrongCAS |
| 2179 | // Equal(AtomicStrongCAS, expected) |
| 2180 | // NotEqual(AtomicStrongCAS, expected) |
| 2181 | // Branch(AtomicWeakCAS) |
| 2182 | // Branch(Equal(AtomicStrongCAS, expected)) |
| 2183 | // Branch(NotEqual(AtomicStrongCAS, expected)) |
| 2184 | // |
| 2185 | // It assumes that atomicValue points to the CAS, and m_value points to the instruction being |
| 2186 | // generated. It assumes that you've consumed everything that needs to be consumed. |
| 2187 | void appendCAS(Value* atomicValue, bool invert) |
| 2188 | { |
| 2189 | using namespace Air; |
| 2190 | AtomicValue* atomic = atomicValue->as<AtomicValue>(); |
| 2191 | RELEASE_ASSERT(atomic); |
| 2192 | |
| 2193 | bool isBranch = m_value->opcode() == Branch; |
| 2194 | bool isStrong = atomic->opcode() == AtomicStrongCAS; |
| 2195 | bool returnsOldValue = m_value->opcode() == AtomicStrongCAS; |
| 2196 | bool hasFence = atomic->hasFence(); |
| 2197 | |
| 2198 | Width width = atomic->accessWidth(); |
| 2199 | Arg address = addr(atomic); |
| 2200 | |
| 2201 | Tmp valueResultTmp; |
| 2202 | Tmp boolResultTmp; |
| 2203 | if (returnsOldValue) { |
| 2204 | RELEASE_ASSERT(!invert); |
| 2205 | valueResultTmp = tmp(m_value); |
| 2206 | boolResultTmp = m_code.newTmp(GP); |
| 2207 | } else if (isBranch) { |
| 2208 | valueResultTmp = m_code.newTmp(GP); |
| 2209 | boolResultTmp = m_code.newTmp(GP); |
| 2210 | } else { |
| 2211 | valueResultTmp = m_code.newTmp(GP); |
| 2212 | boolResultTmp = tmp(m_value); |
| 2213 | } |
| 2214 | |
| 2215 | Tmp successBoolResultTmp; |
| 2216 | if (isStrong && !isBranch) |
| 2217 | successBoolResultTmp = m_code.newTmp(GP); |
| 2218 | else |
| 2219 | successBoolResultTmp = boolResultTmp; |
| 2220 | |
| 2221 | Tmp expectedValueTmp = tmp(atomic->child(0)); |
| 2222 | Tmp newValueTmp = tmp(atomic->child(1)); |
| 2223 | |
| 2224 | Air::FrequentedBlock success; |
| 2225 | Air::FrequentedBlock failure; |
| 2226 | if (isBranch) { |
| 2227 | success = m_blockToBlock[m_block]->successor(invert); |
| 2228 | failure = m_blockToBlock[m_block]->successor(!invert); |
| 2229 | } |
| 2230 | |
| 2231 | if (isX86()) { |
| 2232 | append(relaxedMoveForType(atomic->accessType()), immOrTmp(atomic->child(0)), m_eax); |
| 2233 | if (returnsOldValue) { |
| 2234 | appendTrapping(OPCODE_FOR_WIDTH(AtomicStrongCAS, width), m_eax, newValueTmp, address); |
| 2235 | append(relaxedMoveForType(atomic->accessType()), m_eax, valueResultTmp); |
| 2236 | } else if (isBranch) { |
| 2237 | appendTrapping(OPCODE_FOR_WIDTH(BranchAtomicStrongCAS, width), Arg::statusCond(MacroAssembler::Success), m_eax, newValueTmp, address); |
| 2238 | m_blockToBlock[m_block]->setSuccessors(success, failure); |
| 2239 | } else |
| 2240 | appendTrapping(OPCODE_FOR_WIDTH(AtomicStrongCAS, width), Arg::statusCond(invert ? MacroAssembler::Failure : MacroAssembler::Success), m_eax, tmp(atomic->child(1)), address, boolResultTmp); |
| 2241 | return; |
| 2242 | } |
| 2243 | |
| 2244 | RELEASE_ASSERT(isARM64()); |
| 2245 | // We wish to emit: |
| 2246 | // |
| 2247 | // Block #reloop: |
| 2248 | // LoadLink |
| 2249 | // Branch NotEqual |
| 2250 | // Successors: Then:#fail, Else: #store |
| 2251 | // Block #store: |
| 2252 | // StoreCond |
| 2253 | // Xor $1, %result <--- only if !invert |
| 2254 | // Jump |
| 2255 | // Successors: #done |
| 2256 | // Block #fail: |
| 2257 | // Move $invert, %result |
| 2258 | // Jump |
| 2259 | // Successors: #done |
| 2260 | // Block #done: |
| 2261 | |
| 2262 | Air::BasicBlock* reloopBlock = newBlock(); |
| 2263 | Air::BasicBlock* storeBlock = newBlock(); |
| 2264 | Air::BasicBlock* successBlock = nullptr; |
| 2265 | if (!isBranch && isStrong) |
| 2266 | successBlock = newBlock(); |
| 2267 | Air::BasicBlock* failBlock = nullptr; |
| 2268 | if (!isBranch) { |
| 2269 | failBlock = newBlock(); |
| 2270 | failure = failBlock; |
| 2271 | } |
| 2272 | Air::BasicBlock* strongFailBlock; |
| 2273 | if (isStrong && hasFence) |
| 2274 | strongFailBlock = newBlock(); |
| 2275 | Air::FrequentedBlock comparisonFail = failure; |
| 2276 | Air::FrequentedBlock weakFail; |
| 2277 | if (isStrong) { |
| 2278 | if (hasFence) |
| 2279 | comparisonFail = strongFailBlock; |
| 2280 | weakFail = reloopBlock; |
| 2281 | } else |
| 2282 | weakFail = failure; |
| 2283 | Air::BasicBlock* beginBlock; |
| 2284 | Air::BasicBlock* doneBlock; |
| 2285 | splitBlock(beginBlock, doneBlock); |
| 2286 | |
| 2287 | append(Air::Jump); |
| 2288 | beginBlock->setSuccessors(reloopBlock); |
| 2289 | |
| 2290 | reloopBlock->append(trappingInst(m_value, loadLinkOpcode(width, atomic->hasFence()), m_value, address, valueResultTmp)); |
| 2291 | reloopBlock->append(OPCODE_FOR_CANONICAL_WIDTH(Branch, width), m_value, Arg::relCond(MacroAssembler::NotEqual), valueResultTmp, expectedValueTmp); |
| 2292 | reloopBlock->setSuccessors(comparisonFail, storeBlock); |
| 2293 | |
| 2294 | storeBlock->append(trappingInst(m_value, storeCondOpcode(width, atomic->hasFence()), m_value, newValueTmp, address, successBoolResultTmp)); |
| 2295 | if (isBranch) { |
| 2296 | storeBlock->append(BranchTest32, m_value, Arg::resCond(MacroAssembler::Zero), boolResultTmp, boolResultTmp); |
| 2297 | storeBlock->setSuccessors(success, weakFail); |
| 2298 | doneBlock->successors().clear(); |
| 2299 | RELEASE_ASSERT(!doneBlock->size()); |
| 2300 | doneBlock->append(Air::Oops, m_value); |
| 2301 | } else { |
| 2302 | if (isStrong) { |
| 2303 | storeBlock->append(BranchTest32, m_value, Arg::resCond(MacroAssembler::Zero), successBoolResultTmp, successBoolResultTmp); |
| 2304 | storeBlock->setSuccessors(successBlock, reloopBlock); |
| 2305 | |
| 2306 | successBlock->append(Move, m_value, Arg::imm(!invert), boolResultTmp); |
| 2307 | successBlock->append(Air::Jump, m_value); |
| 2308 | successBlock->setSuccessors(doneBlock); |
| 2309 | } else { |
| 2310 | if (!invert) |
| 2311 | storeBlock->append(Xor32, m_value, Arg::bitImm(1), boolResultTmp, boolResultTmp); |
| 2312 | |
| 2313 | storeBlock->append(Air::Jump, m_value); |
| 2314 | storeBlock->setSuccessors(doneBlock); |
| 2315 | } |
| 2316 | |
| 2317 | failBlock->append(Move, m_value, Arg::imm(invert), boolResultTmp); |
| 2318 | failBlock->append(Air::Jump, m_value); |
| 2319 | failBlock->setSuccessors(doneBlock); |
| 2320 | } |
| 2321 | |
| 2322 | if (isStrong && hasFence) { |
| 2323 | Tmp tmp = m_code.newTmp(GP); |
| 2324 | strongFailBlock->append(trappingInst(m_value, storeCondOpcode(width, atomic->hasFence()), m_value, valueResultTmp, address, tmp)); |
| 2325 | strongFailBlock->append(BranchTest32, m_value, Arg::resCond(MacroAssembler::Zero), tmp, tmp); |
| 2326 | strongFailBlock->setSuccessors(failure, reloopBlock); |
| 2327 | } |
| 2328 | } |
| 2329 | |
| 2330 | bool appendVoidAtomic(Air::Opcode atomicOpcode) |
| 2331 | { |
| 2332 | if (m_useCounts.numUses(m_value)) |
| 2333 | return false; |
| 2334 | |
| 2335 | Arg address = addr(m_value); |
| 2336 | |
| 2337 | if (isValidForm(atomicOpcode, Arg::Imm, address.kind()) && imm(m_value->child(0))) { |
| 2338 | append(atomicOpcode, imm(m_value->child(0)), address); |
| 2339 | return true; |
| 2340 | } |
| 2341 | |
| 2342 | if (isValidForm(atomicOpcode, Arg::Tmp, address.kind())) { |
| 2343 | append(atomicOpcode, tmp(m_value->child(0)), address); |
| 2344 | return true; |
| 2345 | } |
| 2346 | |
| 2347 | return false; |
| 2348 | } |
| 2349 | |
| 2350 | void appendGeneralAtomic(Air::Opcode opcode, Commutativity commutativity = NotCommutative) |
| 2351 | { |
| 2352 | using namespace Air; |
| 2353 | AtomicValue* atomic = m_value->as<AtomicValue>(); |
| 2354 | |
| 2355 | Arg address = addr(m_value); |
| 2356 | Tmp oldValue = m_code.newTmp(GP); |
| 2357 | Tmp newValue = opcode == Air::Nop ? tmp(atomic->child(0)) : m_code.newTmp(GP); |
| 2358 | |
| 2359 | // We need a CAS loop or a LL/SC loop. Using prepare/attempt jargon, we want: |
| 2360 | // |
| 2361 | // Block #reloop: |
| 2362 | // Prepare |
| 2363 | // opcode |
| 2364 | // Attempt |
| 2365 | // Successors: Then:#done, Else:#reloop |
| 2366 | // Block #done: |
| 2367 | // Move oldValue, result |
| 2368 | |
| 2369 | append(relaxedMoveForType(atomic->type()), oldValue, tmp(atomic)); |
| 2370 | |
| 2371 | Air::BasicBlock* reloopBlock = newBlock(); |
| 2372 | Air::BasicBlock* beginBlock; |
| 2373 | Air::BasicBlock* doneBlock; |
| 2374 | splitBlock(beginBlock, doneBlock); |
| 2375 | |
| 2376 | append(Air::Jump); |
| 2377 | beginBlock->setSuccessors(reloopBlock); |
| 2378 | |
| 2379 | Air::Opcode prepareOpcode; |
| 2380 | if (isX86()) { |
| 2381 | switch (atomic->accessWidth()) { |
| 2382 | case Width8: |
| 2383 | prepareOpcode = Load8SignedExtendTo32; |
| 2384 | break; |
| 2385 | case Width16: |
| 2386 | prepareOpcode = Load16SignedExtendTo32; |
| 2387 | break; |
| 2388 | case Width32: |
| 2389 | prepareOpcode = Move32; |
| 2390 | break; |
| 2391 | case Width64: |
| 2392 | prepareOpcode = Move; |
| 2393 | break; |
| 2394 | } |
| 2395 | } else { |
| 2396 | RELEASE_ASSERT(isARM64()); |
| 2397 | prepareOpcode = loadLinkOpcode(atomic->accessWidth(), atomic->hasFence()); |
| 2398 | } |
| 2399 | reloopBlock->append(trappingInst(m_value, prepareOpcode, m_value, address, oldValue)); |
| 2400 | |
| 2401 | if (opcode != Air::Nop) { |
| 2402 | // FIXME: If we ever have to write this again, we need to find a way to share the code with |
| 2403 | // appendBinOp. |
| 2404 | // https://bugs.webkit.org/show_bug.cgi?id=169249 |
| 2405 | if (commutativity == Commutative && imm(atomic->child(0)) && isValidForm(opcode, Arg::Imm, Arg::Tmp, Arg::Tmp)) |
| 2406 | reloopBlock->append(opcode, m_value, imm(atomic->child(0)), oldValue, newValue); |
| 2407 | else if (imm(atomic->child(0)) && isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) |
| 2408 | reloopBlock->append(opcode, m_value, oldValue, imm(atomic->child(0)), newValue); |
| 2409 | else if (commutativity == Commutative && bitImm(atomic->child(0)) && isValidForm(opcode, Arg::BitImm, Arg::Tmp, Arg::Tmp)) |
| 2410 | reloopBlock->append(opcode, m_value, bitImm(atomic->child(0)), oldValue, newValue); |
| 2411 | else if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) |
| 2412 | reloopBlock->append(opcode, m_value, oldValue, tmp(atomic->child(0)), newValue); |
| 2413 | else { |
| 2414 | reloopBlock->append(relaxedMoveForType(atomic->type()), m_value, oldValue, newValue); |
| 2415 | if (imm(atomic->child(0)) && isValidForm(opcode, Arg::Imm, Arg::Tmp)) |
| 2416 | reloopBlock->append(opcode, m_value, imm(atomic->child(0)), newValue); |
| 2417 | else |
| 2418 | reloopBlock->append(opcode, m_value, tmp(atomic->child(0)), newValue); |
| 2419 | } |
| 2420 | } |
| 2421 | |
| 2422 | if (isX86()) { |
| 2423 | Air::Opcode casOpcode = OPCODE_FOR_WIDTH(BranchAtomicStrongCAS, atomic->accessWidth()); |
| 2424 | reloopBlock->append(relaxedMoveForType(atomic->type()), m_value, oldValue, m_eax); |
| 2425 | reloopBlock->append(trappingInst(m_value, casOpcode, m_value, Arg::statusCond(MacroAssembler::Success), m_eax, newValue, address)); |
| 2426 | } else { |
| 2427 | RELEASE_ASSERT(isARM64()); |
| 2428 | Tmp boolResult = m_code.newTmp(GP); |
| 2429 | reloopBlock->append(trappingInst(m_value, storeCondOpcode(atomic->accessWidth(), atomic->hasFence()), m_value, newValue, address, boolResult)); |
| 2430 | reloopBlock->append(BranchTest32, m_value, Arg::resCond(MacroAssembler::Zero), boolResult, boolResult); |
| 2431 | } |
| 2432 | reloopBlock->setSuccessors(doneBlock, reloopBlock); |
| 2433 | } |
| 2434 | |
| 2435 | void lower() |
| 2436 | { |
| 2437 | using namespace Air; |
| 2438 | switch (m_value->opcode()) { |
| 2439 | case B3::Nop: { |
| 2440 | // Yes, we will totally see Nop's because some phases will replaceWithNop() instead of |
| 2441 | // properly removing things. |
| 2442 | return; |
| 2443 | } |
| 2444 | |
| 2445 | case Load: { |
| 2446 | MemoryValue* memory = m_value->as<MemoryValue>(); |
| 2447 | Air::Kind kind = moveForType(memory->type()); |
| 2448 | if (memory->hasFence()) { |
| 2449 | if (isX86()) |
| 2450 | kind.effects = true; |
| 2451 | else { |
| 2452 | switch (memory->type()) { |
| 2453 | case Int32: |
| 2454 | kind = LoadAcq32; |
| 2455 | break; |
| 2456 | case Int64: |
| 2457 | kind = LoadAcq64; |
| 2458 | break; |
| 2459 | default: |
| 2460 | RELEASE_ASSERT_NOT_REACHED(); |
| 2461 | break; |
| 2462 | } |
| 2463 | } |
| 2464 | } |
| 2465 | append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value))); |
| 2466 | return; |
| 2467 | } |
| 2468 | |
| 2469 | case Load8S: { |
| 2470 | Air::Kind kind = Load8SignedExtendTo32; |
| 2471 | if (m_value->as<MemoryValue>()->hasFence()) { |
| 2472 | if (isX86()) |
| 2473 | kind.effects = true; |
| 2474 | else |
| 2475 | kind = LoadAcq8SignedExtendTo32; |
| 2476 | } |
| 2477 | append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value))); |
| 2478 | return; |
| 2479 | } |
| 2480 | |
| 2481 | case Load8Z: { |
| 2482 | Air::Kind kind = Load8; |
| 2483 | if (m_value->as<MemoryValue>()->hasFence()) { |
| 2484 | if (isX86()) |
| 2485 | kind.effects = true; |
| 2486 | else |
| 2487 | kind = LoadAcq8; |
| 2488 | } |
| 2489 | append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value))); |
| 2490 | return; |
| 2491 | } |
| 2492 | |
| 2493 | case Load16S: { |
| 2494 | Air::Kind kind = Load16SignedExtendTo32; |
| 2495 | if (m_value->as<MemoryValue>()->hasFence()) { |
| 2496 | if (isX86()) |
| 2497 | kind.effects = true; |
| 2498 | else |
| 2499 | kind = LoadAcq16SignedExtendTo32; |
| 2500 | } |
| 2501 | append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value))); |
| 2502 | return; |
| 2503 | } |
| 2504 | |
| 2505 | case Load16Z: { |
| 2506 | Air::Kind kind = Load16; |
| 2507 | if (m_value->as<MemoryValue>()->hasFence()) { |
| 2508 | if (isX86()) |
| 2509 | kind.effects = true; |
| 2510 | else |
| 2511 | kind = LoadAcq16; |
| 2512 | } |
| 2513 | append(trappingInst(m_value, kind, m_value, addr(m_value), tmp(m_value))); |
| 2514 | return; |
| 2515 | } |
| 2516 | |
| 2517 | case Add: { |
| 2518 | if (tryAppendLea()) |
| 2519 | return; |
| 2520 | |
| 2521 | Air::Opcode multiplyAddOpcode = tryOpcodeForType(MultiplyAdd32, MultiplyAdd64, m_value->type()); |
| 2522 | if (isValidForm(multiplyAddOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) { |
| 2523 | Value* left = m_value->child(0); |
| 2524 | Value* right = m_value->child(1); |
| 2525 | if (!imm(right) || m_valueToTmp[right]) { |
| 2526 | auto tryAppendMultiplyAdd = [&] (Value* left, Value* right) -> bool { |
| 2527 | if (left->opcode() != Mul || !canBeInternal(left)) |
| 2528 | return false; |
| 2529 | |
| 2530 | Value* multiplyLeft = left->child(0); |
| 2531 | Value* multiplyRight = left->child(1); |
| 2532 | if (canBeInternal(multiplyLeft) || canBeInternal(multiplyRight)) |
| 2533 | return false; |
| 2534 | |
| 2535 | append(multiplyAddOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(right), tmp(m_value)); |
| 2536 | commitInternal(left); |
| 2537 | |
| 2538 | return true; |
| 2539 | }; |
| 2540 | |
| 2541 | if (tryAppendMultiplyAdd(left, right)) |
| 2542 | return; |
| 2543 | if (tryAppendMultiplyAdd(right, left)) |
| 2544 | return; |
| 2545 | } |
| 2546 | } |
| 2547 | |
| 2548 | appendBinOp<Add32, Add64, AddDouble, AddFloat, Commutative>( |
| 2549 | m_value->child(0), m_value->child(1)); |
| 2550 | return; |
| 2551 | } |
| 2552 | |
| 2553 | case Sub: { |
| 2554 | Air::Opcode multiplySubOpcode = tryOpcodeForType(MultiplySub32, MultiplySub64, m_value->type()); |
| 2555 | if (multiplySubOpcode != Air::Oops |
| 2556 | && isValidForm(multiplySubOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) { |
| 2557 | Value* left = m_value->child(0); |
| 2558 | Value* right = m_value->child(1); |
| 2559 | if (!imm(right) || m_valueToTmp[right]) { |
| 2560 | auto tryAppendMultiplySub = [&] () -> bool { |
| 2561 | if (right->opcode() != Mul || !canBeInternal(right)) |
| 2562 | return false; |
| 2563 | |
| 2564 | Value* multiplyLeft = right->child(0); |
| 2565 | Value* multiplyRight = right->child(1); |
| 2566 | if (m_locked.contains(multiplyLeft) || m_locked.contains(multiplyRight)) |
| 2567 | return false; |
| 2568 | |
| 2569 | append(multiplySubOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(left), tmp(m_value)); |
| 2570 | commitInternal(right); |
| 2571 | |
| 2572 | return true; |
| 2573 | }; |
| 2574 | |
| 2575 | if (tryAppendMultiplySub()) |
| 2576 | return; |
| 2577 | } |
| 2578 | } |
| 2579 | |
| 2580 | appendBinOp<Sub32, Sub64, SubDouble, SubFloat>(m_value->child(0), m_value->child(1)); |
| 2581 | return; |
| 2582 | } |
| 2583 | |
| 2584 | case Neg: { |
| 2585 | Air::Opcode multiplyNegOpcode = tryOpcodeForType(MultiplyNeg32, MultiplyNeg64, m_value->type()); |
| 2586 | if (multiplyNegOpcode != Air::Oops |
| 2587 | && isValidForm(multiplyNegOpcode, Arg::Tmp, Arg::Tmp, Arg::Tmp) |
| 2588 | && m_value->child(0)->opcode() == Mul |
| 2589 | && canBeInternal(m_value->child(0))) { |
| 2590 | Value* multiplyOperation = m_value->child(0); |
| 2591 | Value* multiplyLeft = multiplyOperation->child(0); |
| 2592 | Value* multiplyRight = multiplyOperation->child(1); |
| 2593 | if (!m_locked.contains(multiplyLeft) && !m_locked.contains(multiplyRight)) { |
| 2594 | append(multiplyNegOpcode, tmp(multiplyLeft), tmp(multiplyRight), tmp(m_value)); |
| 2595 | commitInternal(multiplyOperation); |
| 2596 | return; |
| 2597 | } |
| 2598 | } |
| 2599 | |
| 2600 | appendUnOp<Neg32, Neg64, NegateDouble, NegateFloat>(m_value->child(0)); |
| 2601 | return; |
| 2602 | } |
| 2603 | |
| 2604 | case Mul: { |
| 2605 | appendBinOp<Mul32, Mul64, MulDouble, MulFloat, Commutative>( |
| 2606 | m_value->child(0), m_value->child(1)); |
| 2607 | return; |
| 2608 | } |
| 2609 | |
| 2610 | case Div: { |
| 2611 | if (m_value->isChill()) |
| 2612 | RELEASE_ASSERT(isARM64()); |
| 2613 | if (isInt(m_value->type()) && isX86()) { |
| 2614 | appendX86Div(Div); |
| 2615 | return; |
| 2616 | } |
| 2617 | ASSERT(!isX86() || isFloat(m_value->type())); |
| 2618 | |
| 2619 | appendBinOp<Div32, Div64, DivDouble, DivFloat>(m_value->child(0), m_value->child(1)); |
| 2620 | return; |
| 2621 | } |
| 2622 | |
| 2623 | case UDiv: { |
| 2624 | if (isInt(m_value->type()) && isX86()) { |
| 2625 | appendX86UDiv(UDiv); |
| 2626 | return; |
| 2627 | } |
| 2628 | |
| 2629 | ASSERT(!isX86() && !isFloat(m_value->type())); |
| 2630 | |
| 2631 | appendBinOp<UDiv32, UDiv64, Air::Oops, Air::Oops>(m_value->child(0), m_value->child(1)); |
| 2632 | return; |
| 2633 | |
| 2634 | } |
| 2635 | |
| 2636 | case Mod: { |
| 2637 | RELEASE_ASSERT(isX86()); |
| 2638 | RELEASE_ASSERT(!m_value->isChill()); |
| 2639 | appendX86Div(Mod); |
| 2640 | return; |
| 2641 | } |
| 2642 | |
| 2643 | case UMod: { |
| 2644 | RELEASE_ASSERT(isX86()); |
| 2645 | appendX86UDiv(UMod); |
| 2646 | return; |
| 2647 | } |
| 2648 | |
| 2649 | case BitAnd: { |
| 2650 | if (m_value->child(1)->isInt(0xff)) { |
| 2651 | appendUnOp<ZeroExtend8To32, ZeroExtend8To32>(m_value->child(0)); |
| 2652 | return; |
| 2653 | } |
| 2654 | |
| 2655 | if (m_value->child(1)->isInt(0xffff)) { |
| 2656 | appendUnOp<ZeroExtend16To32, ZeroExtend16To32>(m_value->child(0)); |
| 2657 | return; |
| 2658 | } |
| 2659 | |
| 2660 | if (m_value->child(1)->isInt(0xffffffff)) { |
| 2661 | appendUnOp<Move32, Move32>(m_value->child(0)); |
| 2662 | return; |
| 2663 | } |
| 2664 | |
| 2665 | appendBinOp<And32, And64, AndDouble, AndFloat, Commutative>( |
| 2666 | m_value->child(0), m_value->child(1)); |
| 2667 | return; |
| 2668 | } |
| 2669 | |
| 2670 | case BitOr: { |
| 2671 | appendBinOp<Or32, Or64, OrDouble, OrFloat, Commutative>( |
| 2672 | m_value->child(0), m_value->child(1)); |
| 2673 | return; |
| 2674 | } |
| 2675 | |
| 2676 | case BitXor: { |
| 2677 | // FIXME: If canBeInternal(child), we should generate this using the comparison path. |
| 2678 | // https://bugs.webkit.org/show_bug.cgi?id=152367 |
| 2679 | |
| 2680 | if (m_value->child(1)->isInt(-1)) { |
| 2681 | appendUnOp<Not32, Not64>(m_value->child(0)); |
| 2682 | return; |
| 2683 | } |
| 2684 | |
| 2685 | // This pattern is super useful on both x86 and ARM64, since the inversion of the CAS result |
| 2686 | // can be done with zero cost on x86 (just flip the set from E to NE) and it's a progression |
| 2687 | // on ARM64 (since STX returns 0 on success, so ordinarily we have to flip it). |
| 2688 | if (m_value->child(1)->isInt(1) |
| 2689 | && m_value->child(0)->opcode() == AtomicWeakCAS |
| 2690 | && canBeInternal(m_value->child(0))) { |
| 2691 | commitInternal(m_value->child(0)); |
| 2692 | appendCAS(m_value->child(0), true); |
| 2693 | return; |
| 2694 | } |
| 2695 | |
| 2696 | appendBinOp<Xor32, Xor64, XorDouble, XorFloat, Commutative>( |
| 2697 | m_value->child(0), m_value->child(1)); |
| 2698 | return; |
| 2699 | } |
| 2700 | |
| 2701 | case Depend: { |
| 2702 | RELEASE_ASSERT(isARM64()); |
| 2703 | appendUnOp<Depend32, Depend64>(m_value->child(0)); |
| 2704 | return; |
| 2705 | } |
| 2706 | |
| 2707 | case Shl: { |
| 2708 | if (m_value->child(1)->isInt32(1)) { |
| 2709 | appendBinOp<Add32, Add64, AddDouble, AddFloat, Commutative>(m_value->child(0), m_value->child(0)); |
| 2710 | return; |
| 2711 | } |
| 2712 | |
| 2713 | appendShift<Lshift32, Lshift64>(m_value->child(0), m_value->child(1)); |
| 2714 | return; |
| 2715 | } |
| 2716 | |
| 2717 | case SShr: { |
| 2718 | appendShift<Rshift32, Rshift64>(m_value->child(0), m_value->child(1)); |
| 2719 | return; |
| 2720 | } |
| 2721 | |
| 2722 | case ZShr: { |
| 2723 | appendShift<Urshift32, Urshift64>(m_value->child(0), m_value->child(1)); |
| 2724 | return; |
| 2725 | } |
| 2726 | |
| 2727 | case RotR: { |
| 2728 | appendShift<RotateRight32, RotateRight64>(m_value->child(0), m_value->child(1)); |
| 2729 | return; |
| 2730 | } |
| 2731 | |
| 2732 | case RotL: { |
| 2733 | appendShift<RotateLeft32, RotateLeft64>(m_value->child(0), m_value->child(1)); |
| 2734 | return; |
| 2735 | } |
| 2736 | |
| 2737 | case Clz: { |
| 2738 | appendUnOp<CountLeadingZeros32, CountLeadingZeros64>(m_value->child(0)); |
| 2739 | return; |
| 2740 | } |
| 2741 | |
| 2742 | case Abs: { |
| 2743 | RELEASE_ASSERT_WITH_MESSAGE(!isX86(), "Abs is not supported natively on x86. It must be replaced before generation." ); |
| 2744 | appendUnOp<Air::Oops, Air::Oops, AbsDouble, AbsFloat>(m_value->child(0)); |
| 2745 | return; |
| 2746 | } |
| 2747 | |
| 2748 | case Ceil: { |
| 2749 | appendUnOp<Air::Oops, Air::Oops, CeilDouble, CeilFloat>(m_value->child(0)); |
| 2750 | return; |
| 2751 | } |
| 2752 | |
| 2753 | case Floor: { |
| 2754 | appendUnOp<Air::Oops, Air::Oops, FloorDouble, FloorFloat>(m_value->child(0)); |
| 2755 | return; |
| 2756 | } |
| 2757 | |
| 2758 | case Sqrt: { |
| 2759 | appendUnOp<Air::Oops, Air::Oops, SqrtDouble, SqrtFloat>(m_value->child(0)); |
| 2760 | return; |
| 2761 | } |
| 2762 | |
| 2763 | case BitwiseCast: { |
| 2764 | appendUnOp<Move32ToFloat, Move64ToDouble, MoveDoubleTo64, MoveFloatTo32>(m_value->child(0)); |
| 2765 | return; |
| 2766 | } |
| 2767 | |
| 2768 | case Store: { |
| 2769 | Value* valueToStore = m_value->child(0); |
| 2770 | if (canBeInternal(valueToStore)) { |
| 2771 | bool matched = false; |
| 2772 | switch (valueToStore->opcode()) { |
| 2773 | case Add: |
| 2774 | matched = tryAppendStoreBinOp<Add32, Add64, Commutative>( |
| 2775 | valueToStore->child(0), valueToStore->child(1)); |
| 2776 | break; |
| 2777 | case Sub: |
| 2778 | if (valueToStore->child(0)->isInt(0)) { |
| 2779 | matched = tryAppendStoreUnOp<Neg32, Neg64>(valueToStore->child(1)); |
| 2780 | break; |
| 2781 | } |
| 2782 | matched = tryAppendStoreBinOp<Sub32, Sub64>( |
| 2783 | valueToStore->child(0), valueToStore->child(1)); |
| 2784 | break; |
| 2785 | case BitAnd: |
| 2786 | matched = tryAppendStoreBinOp<And32, And64, Commutative>( |
| 2787 | valueToStore->child(0), valueToStore->child(1)); |
| 2788 | break; |
| 2789 | case BitXor: |
| 2790 | if (valueToStore->child(1)->isInt(-1)) { |
| 2791 | matched = tryAppendStoreUnOp<Not32, Not64>(valueToStore->child(0)); |
| 2792 | break; |
| 2793 | } |
| 2794 | matched = tryAppendStoreBinOp<Xor32, Xor64, Commutative>( |
| 2795 | valueToStore->child(0), valueToStore->child(1)); |
| 2796 | break; |
| 2797 | default: |
| 2798 | break; |
| 2799 | } |
| 2800 | if (matched) { |
| 2801 | commitInternal(valueToStore); |
| 2802 | return; |
| 2803 | } |
| 2804 | } |
| 2805 | |
| 2806 | appendStore(m_value, addr(m_value)); |
| 2807 | return; |
| 2808 | } |
| 2809 | |
| 2810 | case B3::Store8: { |
| 2811 | Value* valueToStore = m_value->child(0); |
| 2812 | if (canBeInternal(valueToStore)) { |
| 2813 | bool matched = false; |
| 2814 | switch (valueToStore->opcode()) { |
| 2815 | case Add: |
| 2816 | matched = tryAppendStoreBinOp<Add8, Air::Oops, Commutative>( |
| 2817 | valueToStore->child(0), valueToStore->child(1)); |
| 2818 | break; |
| 2819 | default: |
| 2820 | break; |
| 2821 | } |
| 2822 | if (matched) { |
| 2823 | commitInternal(valueToStore); |
| 2824 | return; |
| 2825 | } |
| 2826 | } |
| 2827 | appendStore(m_value, addr(m_value)); |
| 2828 | return; |
| 2829 | } |
| 2830 | |
| 2831 | case B3::Store16: { |
| 2832 | Value* valueToStore = m_value->child(0); |
| 2833 | if (canBeInternal(valueToStore)) { |
| 2834 | bool matched = false; |
| 2835 | switch (valueToStore->opcode()) { |
| 2836 | case Add: |
| 2837 | matched = tryAppendStoreBinOp<Add16, Air::Oops, Commutative>( |
| 2838 | valueToStore->child(0), valueToStore->child(1)); |
| 2839 | break; |
| 2840 | default: |
| 2841 | break; |
| 2842 | } |
| 2843 | if (matched) { |
| 2844 | commitInternal(valueToStore); |
| 2845 | return; |
| 2846 | } |
| 2847 | } |
| 2848 | appendStore(m_value, addr(m_value)); |
| 2849 | return; |
| 2850 | } |
| 2851 | |
| 2852 | case WasmAddress: { |
| 2853 | WasmAddressValue* address = m_value->as<WasmAddressValue>(); |
| 2854 | |
| 2855 | append(Add64, Arg(address->pinnedGPR()), tmp(m_value->child(0)), tmp(address)); |
| 2856 | return; |
| 2857 | } |
| 2858 | |
| 2859 | case Fence: { |
| 2860 | FenceValue* fence = m_value->as<FenceValue>(); |
| 2861 | if (!fence->write && !fence->read) |
| 2862 | return; |
| 2863 | if (!fence->write) { |
| 2864 | // A fence that reads but does not write is for protecting motion of stores. |
| 2865 | append(StoreFence); |
| 2866 | return; |
| 2867 | } |
| 2868 | if (!fence->read) { |
| 2869 | // A fence that writes but does not read is for protecting motion of loads. |
| 2870 | append(LoadFence); |
| 2871 | return; |
| 2872 | } |
| 2873 | append(MemoryFence); |
| 2874 | return; |
| 2875 | } |
| 2876 | |
| 2877 | case Trunc: { |
| 2878 | ASSERT(tmp(m_value->child(0)) == tmp(m_value)); |
| 2879 | return; |
| 2880 | } |
| 2881 | |
| 2882 | case SExt8: { |
| 2883 | appendUnOp<SignExtend8To32, Air::Oops>(m_value->child(0)); |
| 2884 | return; |
| 2885 | } |
| 2886 | |
| 2887 | case SExt16: { |
| 2888 | appendUnOp<SignExtend16To32, Air::Oops>(m_value->child(0)); |
| 2889 | return; |
| 2890 | } |
| 2891 | |
| 2892 | case ZExt32: { |
| 2893 | appendUnOp<Move32, Air::Oops>(m_value->child(0)); |
| 2894 | return; |
| 2895 | } |
| 2896 | |
| 2897 | case SExt32: { |
| 2898 | // FIXME: We should have support for movsbq/movswq |
| 2899 | // https://bugs.webkit.org/show_bug.cgi?id=152232 |
| 2900 | |
| 2901 | appendUnOp<SignExtend32ToPtr, Air::Oops>(m_value->child(0)); |
| 2902 | return; |
| 2903 | } |
| 2904 | |
| 2905 | case FloatToDouble: { |
| 2906 | appendUnOp<Air::Oops, Air::Oops, Air::Oops, ConvertFloatToDouble>(m_value->child(0)); |
| 2907 | return; |
| 2908 | } |
| 2909 | |
| 2910 | case DoubleToFloat: { |
| 2911 | appendUnOp<Air::Oops, Air::Oops, ConvertDoubleToFloat>(m_value->child(0)); |
| 2912 | return; |
| 2913 | } |
| 2914 | |
| 2915 | case ArgumentReg: { |
| 2916 | m_prologue.append(Inst( |
| 2917 | moveForType(m_value->type()), m_value, |
| 2918 | Tmp(m_value->as<ArgumentRegValue>()->argumentReg()), |
| 2919 | tmp(m_value))); |
| 2920 | return; |
| 2921 | } |
| 2922 | |
| 2923 | case Const32: |
| 2924 | case Const64: { |
| 2925 | if (imm(m_value)) |
| 2926 | append(Move, imm(m_value), tmp(m_value)); |
| 2927 | else |
| 2928 | append(Move, Arg::bigImm(m_value->asInt()), tmp(m_value)); |
| 2929 | return; |
| 2930 | } |
| 2931 | |
| 2932 | case ConstDouble: |
| 2933 | case ConstFloat: { |
| 2934 | // We expect that the moveConstants() phase has run, and any doubles referenced from |
| 2935 | // stackmaps get fused. |
| 2936 | RELEASE_ASSERT(m_value->opcode() == ConstFloat || isIdentical(m_value->asDouble(), 0.0)); |
| 2937 | RELEASE_ASSERT(m_value->opcode() == ConstDouble || isIdentical(m_value->asFloat(), 0.0f)); |
| 2938 | append(MoveZeroToDouble, tmp(m_value)); |
| 2939 | return; |
| 2940 | } |
| 2941 | |
| 2942 | case FramePointer: { |
| 2943 | ASSERT(tmp(m_value) == Tmp(GPRInfo::callFrameRegister)); |
| 2944 | return; |
| 2945 | } |
| 2946 | |
| 2947 | case SlotBase: { |
| 2948 | append( |
| 2949 | pointerType() == Int64 ? Lea64 : Lea32, |
| 2950 | Arg::stack(m_stackToStack.get(m_value->as<SlotBaseValue>()->slot())), |
| 2951 | tmp(m_value)); |
| 2952 | return; |
| 2953 | } |
| 2954 | |
| 2955 | case Equal: |
| 2956 | case NotEqual: { |
| 2957 | // FIXME: Teach this to match patterns that arise from subwidth CAS. The CAS's result has to |
| 2958 | // be either zero- or sign-extended, and the value it's compared to should also be zero- or |
| 2959 | // sign-extended in a matching way. It's not super clear that this is very profitable. |
| 2960 | // https://bugs.webkit.org/show_bug.cgi?id=169250 |
| 2961 | if (m_value->child(0)->opcode() == AtomicStrongCAS |
| 2962 | && m_value->child(0)->as<AtomicValue>()->isCanonicalWidth() |
| 2963 | && m_value->child(0)->child(0) == m_value->child(1) |
| 2964 | && canBeInternal(m_value->child(0))) { |
| 2965 | ASSERT(!m_locked.contains(m_value->child(0)->child(1))); |
| 2966 | ASSERT(!m_locked.contains(m_value->child(1))); |
| 2967 | |
| 2968 | commitInternal(m_value->child(0)); |
| 2969 | appendCAS(m_value->child(0), m_value->opcode() == NotEqual); |
| 2970 | return; |
| 2971 | } |
| 2972 | |
| 2973 | m_insts.last().append(createCompare(m_value)); |
| 2974 | return; |
| 2975 | } |
| 2976 | |
| 2977 | case LessThan: |
| 2978 | case GreaterThan: |
| 2979 | case LessEqual: |
| 2980 | case GreaterEqual: |
| 2981 | case Above: |
| 2982 | case Below: |
| 2983 | case AboveEqual: |
| 2984 | case BelowEqual: |
| 2985 | case EqualOrUnordered: { |
| 2986 | m_insts.last().append(createCompare(m_value)); |
| 2987 | return; |
| 2988 | } |
| 2989 | |
| 2990 | case Select: { |
| 2991 | MoveConditionallyConfig config; |
| 2992 | if (isInt(m_value->type())) { |
| 2993 | config.moveConditionally32 = MoveConditionally32; |
| 2994 | config.moveConditionally64 = MoveConditionally64; |
| 2995 | config.moveConditionallyTest32 = MoveConditionallyTest32; |
| 2996 | config.moveConditionallyTest64 = MoveConditionallyTest64; |
| 2997 | config.moveConditionallyDouble = MoveConditionallyDouble; |
| 2998 | config.moveConditionallyFloat = MoveConditionallyFloat; |
| 2999 | } else { |
| 3000 | // FIXME: it's not obvious that these are particularly efficient. |
| 3001 | // https://bugs.webkit.org/show_bug.cgi?id=169251 |
| 3002 | config.moveConditionally32 = MoveDoubleConditionally32; |
| 3003 | config.moveConditionally64 = MoveDoubleConditionally64; |
| 3004 | config.moveConditionallyTest32 = MoveDoubleConditionallyTest32; |
| 3005 | config.moveConditionallyTest64 = MoveDoubleConditionallyTest64; |
| 3006 | config.moveConditionallyDouble = MoveDoubleConditionallyDouble; |
| 3007 | config.moveConditionallyFloat = MoveDoubleConditionallyFloat; |
| 3008 | } |
| 3009 | |
| 3010 | m_insts.last().append(createSelect(config)); |
| 3011 | return; |
| 3012 | } |
| 3013 | |
| 3014 | case IToD: { |
| 3015 | appendUnOp<ConvertInt32ToDouble, ConvertInt64ToDouble>(m_value->child(0)); |
| 3016 | return; |
| 3017 | } |
| 3018 | |
| 3019 | case IToF: { |
| 3020 | appendUnOp<ConvertInt32ToFloat, ConvertInt64ToFloat>(m_value->child(0)); |
| 3021 | return; |
| 3022 | } |
| 3023 | |
| 3024 | case B3::CCall: { |
| 3025 | CCallValue* cCall = m_value->as<CCallValue>(); |
| 3026 | |
| 3027 | Inst inst(m_isRare ? Air::ColdCCall : Air::CCall, cCall); |
| 3028 | |
| 3029 | // We have a ton of flexibility regarding the callee argument, but currently, we don't |
| 3030 | // use it yet. It gets weird for reasons: |
| 3031 | // 1) We probably will never take advantage of this. We don't have C calls to locations |
| 3032 | // loaded from addresses. We have JS calls like that, but those use Patchpoints. |
| 3033 | // 2) On X86_64 we still don't support call with BaseIndex. |
| 3034 | // 3) On non-X86, we don't natively support any kind of loading from address. |
| 3035 | // 4) We don't have an isValidForm() for the CCallSpecial so we have no smart way to |
| 3036 | // decide. |
| 3037 | // FIXME: https://bugs.webkit.org/show_bug.cgi?id=151052 |
| 3038 | inst.args.append(tmp(cCall->child(0))); |
| 3039 | |
| 3040 | if (cCall->type() != Void) |
| 3041 | inst.args.append(tmp(cCall)); |
| 3042 | |
| 3043 | for (unsigned i = 1; i < cCall->numChildren(); ++i) |
| 3044 | inst.args.append(immOrTmp(cCall->child(i))); |
| 3045 | |
| 3046 | m_insts.last().append(WTFMove(inst)); |
| 3047 | return; |
| 3048 | } |
| 3049 | |
| 3050 | case Patchpoint: { |
| 3051 | PatchpointValue* patchpointValue = m_value->as<PatchpointValue>(); |
| 3052 | ensureSpecial(m_patchpointSpecial); |
| 3053 | |
| 3054 | Inst inst(Patch, patchpointValue, Arg::special(m_patchpointSpecial)); |
| 3055 | |
| 3056 | Vector<Inst> after; |
| 3057 | if (patchpointValue->type() != Void) { |
| 3058 | switch (patchpointValue->resultConstraint.kind()) { |
| 3059 | case ValueRep::WarmAny: |
| 3060 | case ValueRep::ColdAny: |
| 3061 | case ValueRep::LateColdAny: |
| 3062 | case ValueRep::SomeRegister: |
| 3063 | case ValueRep::SomeEarlyRegister: |
| 3064 | inst.args.append(tmp(patchpointValue)); |
| 3065 | break; |
| 3066 | case ValueRep::Register: { |
| 3067 | Tmp reg = Tmp(patchpointValue->resultConstraint.reg()); |
| 3068 | inst.args.append(reg); |
| 3069 | after.append(Inst( |
| 3070 | relaxedMoveForType(patchpointValue->type()), m_value, reg, tmp(patchpointValue))); |
| 3071 | break; |
| 3072 | } |
| 3073 | case ValueRep::StackArgument: { |
| 3074 | Arg arg = Arg::callArg(patchpointValue->resultConstraint.offsetFromSP()); |
| 3075 | inst.args.append(arg); |
| 3076 | after.append(Inst( |
| 3077 | moveForType(patchpointValue->type()), m_value, arg, tmp(patchpointValue))); |
| 3078 | break; |
| 3079 | } |
| 3080 | default: |
| 3081 | RELEASE_ASSERT_NOT_REACHED(); |
| 3082 | break; |
| 3083 | } |
| 3084 | } |
| 3085 | |
| 3086 | fillStackmap(inst, patchpointValue, 0); |
| 3087 | |
| 3088 | if (patchpointValue->resultConstraint.isReg()) |
| 3089 | patchpointValue->lateClobbered().clear(patchpointValue->resultConstraint.reg()); |
| 3090 | |
| 3091 | for (unsigned i = patchpointValue->numGPScratchRegisters; i--;) |
| 3092 | inst.args.append(m_code.newTmp(GP)); |
| 3093 | for (unsigned i = patchpointValue->numFPScratchRegisters; i--;) |
| 3094 | inst.args.append(m_code.newTmp(FP)); |
| 3095 | |
| 3096 | m_insts.last().append(WTFMove(inst)); |
| 3097 | m_insts.last().appendVector(after); |
| 3098 | return; |
| 3099 | } |
| 3100 | |
| 3101 | case CheckAdd: |
| 3102 | case CheckSub: |
| 3103 | case CheckMul: { |
| 3104 | CheckValue* checkValue = m_value->as<CheckValue>(); |
| 3105 | |
| 3106 | Value* left = checkValue->child(0); |
| 3107 | Value* right = checkValue->child(1); |
| 3108 | |
| 3109 | Tmp result = tmp(m_value); |
| 3110 | |
| 3111 | // Handle checked negation. |
| 3112 | if (checkValue->opcode() == CheckSub && left->isInt(0)) { |
| 3113 | append(Move, tmp(right), result); |
| 3114 | |
| 3115 | Air::Opcode opcode = |
| 3116 | opcodeForType(BranchNeg32, BranchNeg64, checkValue->type()); |
| 3117 | CheckSpecial* special = ensureCheckSpecial(opcode, 2); |
| 3118 | |
| 3119 | Inst inst(Patch, checkValue, Arg::special(special)); |
| 3120 | inst.args.append(Arg::resCond(MacroAssembler::Overflow)); |
| 3121 | inst.args.append(result); |
| 3122 | |
| 3123 | fillStackmap(inst, checkValue, 2); |
| 3124 | |
| 3125 | m_insts.last().append(WTFMove(inst)); |
| 3126 | return; |
| 3127 | } |
| 3128 | |
| 3129 | Air::Opcode opcode = Air::Oops; |
| 3130 | Commutativity commutativity = NotCommutative; |
| 3131 | StackmapSpecial::RoleMode stackmapRole = StackmapSpecial::SameAsRep; |
| 3132 | switch (m_value->opcode()) { |
| 3133 | case CheckAdd: |
| 3134 | opcode = opcodeForType(BranchAdd32, BranchAdd64, m_value->type()); |
| 3135 | stackmapRole = StackmapSpecial::ForceLateUseUnlessRecoverable; |
| 3136 | commutativity = Commutative; |
| 3137 | break; |
| 3138 | case CheckSub: |
| 3139 | opcode = opcodeForType(BranchSub32, BranchSub64, m_value->type()); |
| 3140 | break; |
| 3141 | case CheckMul: |
| 3142 | opcode = opcodeForType(BranchMul32, BranchMul64, checkValue->type()); |
| 3143 | stackmapRole = StackmapSpecial::ForceLateUse; |
| 3144 | break; |
| 3145 | default: |
| 3146 | RELEASE_ASSERT_NOT_REACHED(); |
| 3147 | break; |
| 3148 | } |
| 3149 | |
| 3150 | // FIXME: It would be great to fuse Loads into these. We currently don't do it because the |
| 3151 | // rule for stackmaps is that all addresses are just stack addresses. Maybe we could relax |
| 3152 | // this rule here. |
| 3153 | // https://bugs.webkit.org/show_bug.cgi?id=151228 |
| 3154 | |
| 3155 | Vector<Arg, 2> sources; |
| 3156 | if (imm(right) && isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Imm, Arg::Tmp)) { |
| 3157 | sources.append(tmp(left)); |
| 3158 | sources.append(imm(right)); |
| 3159 | } else if (imm(right) && isValidForm(opcode, Arg::ResCond, Arg::Imm, Arg::Tmp)) { |
| 3160 | sources.append(imm(right)); |
| 3161 | append(Move, tmp(left), result); |
| 3162 | } else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp, Arg::Tmp)) { |
| 3163 | sources.append(tmp(left)); |
| 3164 | sources.append(tmp(right)); |
| 3165 | } else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp)) { |
| 3166 | if (commutativity == Commutative && preferRightForResult(left, right)) { |
| 3167 | sources.append(tmp(left)); |
| 3168 | append(Move, tmp(right), result); |
| 3169 | } else { |
| 3170 | sources.append(tmp(right)); |
| 3171 | append(Move, tmp(left), result); |
| 3172 | } |
| 3173 | } else if (isValidForm(opcode, Arg::ResCond, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp, Arg::Tmp)) { |
| 3174 | sources.append(tmp(left)); |
| 3175 | sources.append(tmp(right)); |
| 3176 | sources.append(m_code.newTmp(m_value->resultBank())); |
| 3177 | sources.append(m_code.newTmp(m_value->resultBank())); |
| 3178 | } |
| 3179 | |
| 3180 | // There is a really hilarious case that arises when we do BranchAdd32(%x, %x). We won't emit |
| 3181 | // such code, but the coalescing in our register allocator also does copy propagation, so |
| 3182 | // although we emit: |
| 3183 | // |
| 3184 | // Move %tmp1, %tmp2 |
| 3185 | // BranchAdd32 %tmp1, %tmp2 |
| 3186 | // |
| 3187 | // The register allocator may turn this into: |
| 3188 | // |
| 3189 | // BranchAdd32 %rax, %rax |
| 3190 | // |
| 3191 | // Currently we handle this by ensuring that even this kind of addition can be undone. We can |
| 3192 | // undo it by using the carry flag. It's tempting to get rid of that code and just "fix" this |
| 3193 | // here by forcing LateUse on the stackmap. If we did that unconditionally, we'd lose a lot of |
| 3194 | // performance. So it's tempting to do it only if left == right. But that creates an awkward |
| 3195 | // constraint on Air: it means that Air would not be allowed to do any copy propagation. |
| 3196 | // Notice that the %rax,%rax situation happened after Air copy-propagated the Move we are |
| 3197 | // emitting. We know that copy-propagating over that Move causes add-to-self. But what if we |
| 3198 | // emit something like a Move - or even do other kinds of copy-propagation on tmp's - |
| 3199 | // somewhere else in this code. The add-to-self situation may only emerge after some other Air |
| 3200 | // optimizations remove other Move's or identity-like operations. That's why we don't use |
| 3201 | // LateUse here to take care of add-to-self. |
| 3202 | |
| 3203 | CheckSpecial* special = ensureCheckSpecial(opcode, 2 + sources.size(), stackmapRole); |
| 3204 | |
| 3205 | Inst inst(Patch, checkValue, Arg::special(special)); |
| 3206 | |
| 3207 | inst.args.append(Arg::resCond(MacroAssembler::Overflow)); |
| 3208 | |
| 3209 | inst.args.appendVector(sources); |
| 3210 | inst.args.append(result); |
| 3211 | |
| 3212 | fillStackmap(inst, checkValue, 2); |
| 3213 | |
| 3214 | m_insts.last().append(WTFMove(inst)); |
| 3215 | return; |
| 3216 | } |
| 3217 | |
| 3218 | case Check: { |
| 3219 | Inst branch = createBranch(m_value->child(0)); |
| 3220 | |
| 3221 | CheckSpecial* special = ensureCheckSpecial(branch); |
| 3222 | |
| 3223 | CheckValue* checkValue = m_value->as<CheckValue>(); |
| 3224 | |
| 3225 | Inst inst(Patch, checkValue, Arg::special(special)); |
| 3226 | inst.args.appendVector(branch.args); |
| 3227 | |
| 3228 | fillStackmap(inst, checkValue, 1); |
| 3229 | |
| 3230 | m_insts.last().append(WTFMove(inst)); |
| 3231 | return; |
| 3232 | } |
| 3233 | |
| 3234 | case B3::WasmBoundsCheck: { |
| 3235 | WasmBoundsCheckValue* value = m_value->as<WasmBoundsCheckValue>(); |
| 3236 | |
| 3237 | Value* ptr = value->child(0); |
| 3238 | Tmp pointer = tmp(ptr); |
| 3239 | |
| 3240 | Arg ptrPlusImm = m_code.newTmp(GP); |
| 3241 | append(Inst(Move32, value, pointer, ptrPlusImm)); |
| 3242 | if (value->offset()) { |
| 3243 | if (imm(value->offset())) |
| 3244 | append(Add64, imm(value->offset()), ptrPlusImm); |
| 3245 | else { |
| 3246 | Arg bigImm = m_code.newTmp(GP); |
| 3247 | append(Move, Arg::bigImm(value->offset()), bigImm); |
| 3248 | append(Add64, bigImm, ptrPlusImm); |
| 3249 | } |
| 3250 | } |
| 3251 | |
| 3252 | Arg limit; |
| 3253 | switch (value->boundsType()) { |
| 3254 | case WasmBoundsCheckValue::Type::Pinned: |
| 3255 | limit = Arg(value->bounds().pinnedSize); |
| 3256 | break; |
| 3257 | |
| 3258 | case WasmBoundsCheckValue::Type::Maximum: |
| 3259 | limit = m_code.newTmp(GP); |
| 3260 | if (imm(value->bounds().maximum)) |
| 3261 | append(Move, imm(value->bounds().maximum), limit); |
| 3262 | else |
| 3263 | append(Move, Arg::bigImm(value->bounds().maximum), limit); |
| 3264 | break; |
| 3265 | } |
| 3266 | |
| 3267 | append(Inst(Air::WasmBoundsCheck, value, ptrPlusImm, limit)); |
| 3268 | return; |
| 3269 | } |
| 3270 | |
| 3271 | case Upsilon: { |
| 3272 | Value* value = m_value->child(0); |
| 3273 | append( |
| 3274 | relaxedMoveForType(value->type()), immOrTmp(value), |
| 3275 | m_phiToTmp[m_value->as<UpsilonValue>()->phi()]); |
| 3276 | return; |
| 3277 | } |
| 3278 | |
| 3279 | case Phi: { |
| 3280 | // Snapshot the value of the Phi. It may change under us because you could do: |
| 3281 | // a = Phi() |
| 3282 | // Upsilon(@x, ^a) |
| 3283 | // @a => this should get the value of the Phi before the Upsilon, i.e. not @x. |
| 3284 | |
| 3285 | append(relaxedMoveForType(m_value->type()), m_phiToTmp[m_value], tmp(m_value)); |
| 3286 | return; |
| 3287 | } |
| 3288 | |
| 3289 | case Set: { |
| 3290 | Value* value = m_value->child(0); |
| 3291 | append( |
| 3292 | relaxedMoveForType(value->type()), immOrTmp(value), |
| 3293 | m_variableToTmp.get(m_value->as<VariableValue>()->variable())); |
| 3294 | return; |
| 3295 | } |
| 3296 | |
| 3297 | case Get: { |
| 3298 | append( |
| 3299 | relaxedMoveForType(m_value->type()), |
| 3300 | m_variableToTmp.get(m_value->as<VariableValue>()->variable()), tmp(m_value)); |
| 3301 | return; |
| 3302 | } |
| 3303 | |
| 3304 | case Branch: { |
| 3305 | if (canBeInternal(m_value->child(0))) { |
| 3306 | Value* branchChild = m_value->child(0); |
| 3307 | switch (branchChild->opcode()) { |
| 3308 | case AtomicWeakCAS: |
| 3309 | commitInternal(branchChild); |
| 3310 | appendCAS(branchChild, false); |
| 3311 | return; |
| 3312 | |
| 3313 | case AtomicStrongCAS: |
| 3314 | // A branch is a comparison to zero. |
| 3315 | // FIXME: Teach this to match patterns that arise from subwidth CAS. |
| 3316 | // https://bugs.webkit.org/show_bug.cgi?id=169250 |
| 3317 | if (branchChild->child(0)->isInt(0) |
| 3318 | && branchChild->as<AtomicValue>()->isCanonicalWidth()) { |
| 3319 | commitInternal(branchChild); |
| 3320 | appendCAS(branchChild, true); |
| 3321 | return; |
| 3322 | } |
| 3323 | break; |
| 3324 | |
| 3325 | case Equal: |
| 3326 | case NotEqual: |
| 3327 | // FIXME: Teach this to match patterns that arise from subwidth CAS. |
| 3328 | // https://bugs.webkit.org/show_bug.cgi?id=169250 |
| 3329 | if (branchChild->child(0)->opcode() == AtomicStrongCAS |
| 3330 | && branchChild->child(0)->as<AtomicValue>()->isCanonicalWidth() |
| 3331 | && canBeInternal(branchChild->child(0)) |
| 3332 | && branchChild->child(0)->child(0) == branchChild->child(1)) { |
| 3333 | commitInternal(branchChild); |
| 3334 | commitInternal(branchChild->child(0)); |
| 3335 | appendCAS(branchChild->child(0), branchChild->opcode() == NotEqual); |
| 3336 | return; |
| 3337 | } |
| 3338 | break; |
| 3339 | |
| 3340 | default: |
| 3341 | break; |
| 3342 | } |
| 3343 | } |
| 3344 | |
| 3345 | m_insts.last().append(createBranch(m_value->child(0))); |
| 3346 | return; |
| 3347 | } |
| 3348 | |
| 3349 | case B3::Jump: { |
| 3350 | append(Air::Jump); |
| 3351 | return; |
| 3352 | } |
| 3353 | |
| 3354 | case Identity: |
| 3355 | case Opaque: { |
| 3356 | ASSERT(tmp(m_value->child(0)) == tmp(m_value)); |
| 3357 | return; |
| 3358 | } |
| 3359 | |
| 3360 | case Return: { |
| 3361 | if (!m_value->numChildren()) { |
| 3362 | append(RetVoid); |
| 3363 | return; |
| 3364 | } |
| 3365 | Value* value = m_value->child(0); |
| 3366 | Tmp returnValueGPR = Tmp(GPRInfo::returnValueGPR); |
| 3367 | Tmp returnValueFPR = Tmp(FPRInfo::returnValueFPR); |
| 3368 | switch (value->type()) { |
| 3369 | case Void: |
| 3370 | // It's impossible for a void value to be used as a child. We use RetVoid |
| 3371 | // for void returns. |
| 3372 | RELEASE_ASSERT_NOT_REACHED(); |
| 3373 | break; |
| 3374 | case Int32: |
| 3375 | append(Move, immOrTmp(value), returnValueGPR); |
| 3376 | append(Ret32, returnValueGPR); |
| 3377 | break; |
| 3378 | case Int64: |
| 3379 | append(Move, immOrTmp(value), returnValueGPR); |
| 3380 | append(Ret64, returnValueGPR); |
| 3381 | break; |
| 3382 | case Float: |
| 3383 | append(MoveFloat, tmp(value), returnValueFPR); |
| 3384 | append(RetFloat, returnValueFPR); |
| 3385 | break; |
| 3386 | case Double: |
| 3387 | append(MoveDouble, tmp(value), returnValueFPR); |
| 3388 | append(RetDouble, returnValueFPR); |
| 3389 | break; |
| 3390 | } |
| 3391 | return; |
| 3392 | } |
| 3393 | |
| 3394 | case B3::Oops: { |
| 3395 | append(Air::Oops); |
| 3396 | return; |
| 3397 | } |
| 3398 | |
| 3399 | case B3::EntrySwitch: { |
| 3400 | append(Air::EntrySwitch); |
| 3401 | return; |
| 3402 | } |
| 3403 | |
| 3404 | case AtomicWeakCAS: |
| 3405 | case AtomicStrongCAS: { |
| 3406 | appendCAS(m_value, false); |
| 3407 | return; |
| 3408 | } |
| 3409 | |
| 3410 | case AtomicXchgAdd: { |
| 3411 | AtomicValue* atomic = m_value->as<AtomicValue>(); |
| 3412 | if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicAdd, atomic->accessWidth()))) |
| 3413 | return; |
| 3414 | |
| 3415 | Arg address = addr(atomic); |
| 3416 | Air::Opcode opcode = OPCODE_FOR_WIDTH(AtomicXchgAdd, atomic->accessWidth()); |
| 3417 | if (isValidForm(opcode, Arg::Tmp, address.kind())) { |
| 3418 | append(relaxedMoveForType(atomic->type()), tmp(atomic->child(0)), tmp(atomic)); |
| 3419 | append(opcode, tmp(atomic), address); |
| 3420 | return; |
| 3421 | } |
| 3422 | |
| 3423 | appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(Add, atomic->accessWidth()), Commutative); |
| 3424 | return; |
| 3425 | } |
| 3426 | |
| 3427 | case AtomicXchgSub: { |
| 3428 | AtomicValue* atomic = m_value->as<AtomicValue>(); |
| 3429 | if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicSub, atomic->accessWidth()))) |
| 3430 | return; |
| 3431 | |
| 3432 | appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(Sub, atomic->accessWidth())); |
| 3433 | return; |
| 3434 | } |
| 3435 | |
| 3436 | case AtomicXchgAnd: { |
| 3437 | AtomicValue* atomic = m_value->as<AtomicValue>(); |
| 3438 | if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicAnd, atomic->accessWidth()))) |
| 3439 | return; |
| 3440 | |
| 3441 | appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(And, atomic->accessWidth()), Commutative); |
| 3442 | return; |
| 3443 | } |
| 3444 | |
| 3445 | case AtomicXchgOr: { |
| 3446 | AtomicValue* atomic = m_value->as<AtomicValue>(); |
| 3447 | if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicOr, atomic->accessWidth()))) |
| 3448 | return; |
| 3449 | |
| 3450 | appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(Or, atomic->accessWidth()), Commutative); |
| 3451 | return; |
| 3452 | } |
| 3453 | |
| 3454 | case AtomicXchgXor: { |
| 3455 | AtomicValue* atomic = m_value->as<AtomicValue>(); |
| 3456 | if (appendVoidAtomic(OPCODE_FOR_WIDTH(AtomicXor, atomic->accessWidth()))) |
| 3457 | return; |
| 3458 | |
| 3459 | appendGeneralAtomic(OPCODE_FOR_CANONICAL_WIDTH(Xor, atomic->accessWidth()), Commutative); |
| 3460 | return; |
| 3461 | } |
| 3462 | |
| 3463 | case AtomicXchg: { |
| 3464 | AtomicValue* atomic = m_value->as<AtomicValue>(); |
| 3465 | |
| 3466 | Arg address = addr(atomic); |
| 3467 | Air::Opcode opcode = OPCODE_FOR_WIDTH(AtomicXchg, atomic->accessWidth()); |
| 3468 | if (isValidForm(opcode, Arg::Tmp, address.kind())) { |
| 3469 | append(relaxedMoveForType(atomic->type()), tmp(atomic->child(0)), tmp(atomic)); |
| 3470 | append(opcode, tmp(atomic), address); |
| 3471 | return; |
| 3472 | } |
| 3473 | |
| 3474 | appendGeneralAtomic(Air::Nop); |
| 3475 | return; |
| 3476 | } |
| 3477 | |
| 3478 | default: |
| 3479 | break; |
| 3480 | } |
| 3481 | |
| 3482 | dataLog("FATAL: could not lower " , deepDump(m_procedure, m_value), "\n" ); |
| 3483 | RELEASE_ASSERT_NOT_REACHED(); |
| 3484 | } |
| 3485 | |
| 3486 | IndexSet<Value*> m_locked; // These are values that will have no Tmp in Air. |
| 3487 | IndexMap<Value*, Tmp> m_valueToTmp; // These are values that must have a Tmp in Air. We say that a Value* with a non-null Tmp is "pinned". |
| 3488 | IndexMap<Value*, Tmp> m_phiToTmp; // Each Phi gets its own Tmp. |
| 3489 | IndexMap<B3::BasicBlock*, Air::BasicBlock*> m_blockToBlock; |
| 3490 | HashMap<B3::StackSlot*, Air::StackSlot*> m_stackToStack; |
| 3491 | HashMap<Variable*, Tmp> m_variableToTmp; |
| 3492 | |
| 3493 | UseCounts m_useCounts; |
| 3494 | PhiChildren m_phiChildren; |
| 3495 | BlockWorklist m_fastWorklist; |
| 3496 | Dominators& m_dominators; |
| 3497 | |
| 3498 | Vector<Vector<Inst, 4>> m_insts; |
| 3499 | Vector<Inst> m_prologue; |
| 3500 | |
| 3501 | B3::BasicBlock* m_block; |
| 3502 | bool m_isRare; |
| 3503 | unsigned m_index; |
| 3504 | Value* m_value; |
| 3505 | |
| 3506 | PatchpointSpecial* m_patchpointSpecial { nullptr }; |
| 3507 | HashMap<CheckSpecial::Key, CheckSpecial*> m_checkSpecials; |
| 3508 | |
| 3509 | Procedure& m_procedure; |
| 3510 | Code& m_code; |
| 3511 | |
| 3512 | Air::BlockInsertionSet m_blockInsertionSet; |
| 3513 | |
| 3514 | Tmp m_eax; |
| 3515 | Tmp m_ecx; |
| 3516 | Tmp m_edx; |
| 3517 | }; |
| 3518 | |
| 3519 | } // anonymous namespace |
| 3520 | |
| 3521 | void lowerToAir(Procedure& procedure) |
| 3522 | { |
| 3523 | PhaseScope phaseScope(procedure, "lowerToAir" ); |
| 3524 | LowerToAir lowerToAir(procedure); |
| 3525 | lowerToAir.run(); |
| 3526 | } |
| 3527 | |
| 3528 | } } // namespace JSC::B3 |
| 3529 | |
| 3530 | #if ASSERT_DISABLED |
| 3531 | IGNORE_RETURN_TYPE_WARNINGS_END |
| 3532 | #endif |
| 3533 | |
| 3534 | #endif // ENABLE(B3_JIT) |
| 3535 | |