| 1 | /* |
| 2 | * Copyright (C) 2015-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #if ENABLE(B3_JIT) |
| 29 | |
| 30 | #include "AirTmp.h" |
| 31 | #include "B3Bank.h" |
| 32 | #include "B3Common.h" |
| 33 | #include "B3Type.h" |
| 34 | #include "B3Value.h" |
| 35 | #include "B3Width.h" |
| 36 | #include <wtf/Optional.h> |
| 37 | |
| 38 | #if ASSERT_DISABLED |
| 39 | IGNORE_RETURN_TYPE_WARNINGS_BEGIN |
| 40 | #endif |
| 41 | |
| 42 | namespace JSC { namespace B3 { |
| 43 | |
| 44 | class Value; |
| 45 | |
| 46 | namespace Air { |
| 47 | |
| 48 | class Special; |
| 49 | class StackSlot; |
| 50 | |
| 51 | // This class name is also intentionally terse because we will say it a lot. You'll see code like |
| 52 | // Inst(..., Arg::imm(5), Arg::addr(thing, blah), ...) |
| 53 | class Arg { |
| 54 | public: |
| 55 | // These enum members are intentionally terse because we have to mention them a lot. |
| 56 | enum Kind : int8_t { |
| 57 | Invalid, |
| 58 | |
| 59 | // This is either an unassigned temporary or a register. All unassigned temporaries |
| 60 | // eventually become registers. |
| 61 | Tmp, |
| 62 | |
| 63 | // This is an immediate that the instruction will materialize. Imm is the immediate that can be |
| 64 | // inlined into most instructions, while BigImm indicates a constant materialization and is |
| 65 | // usually only usable with Move. Specials may also admit it, for example for stackmaps used for |
| 66 | // OSR exit and tail calls. |
| 67 | // BitImm is an immediate for Bitwise operation (And, Xor, etc). |
| 68 | Imm, |
| 69 | BigImm, |
| 70 | BitImm, |
| 71 | BitImm64, |
| 72 | |
| 73 | // These are the addresses. Instructions may load from (Use), store to (Def), or evaluate |
| 74 | // (UseAddr) addresses. |
| 75 | SimpleAddr, |
| 76 | Addr, |
| 77 | ExtendedOffsetAddr, |
| 78 | Stack, |
| 79 | CallArg, |
| 80 | Index, |
| 81 | |
| 82 | // Immediate operands that customize the behavior of an operation. You can think of them as |
| 83 | // secondary opcodes. They are always "Use"'d. |
| 84 | RelCond, |
| 85 | ResCond, |
| 86 | DoubleCond, |
| 87 | StatusCond, |
| 88 | Special, |
| 89 | WidthArg |
| 90 | }; |
| 91 | |
| 92 | enum Temperature : int8_t { |
| 93 | Cold, |
| 94 | Warm |
| 95 | }; |
| 96 | |
| 97 | enum Phase : int8_t { |
| 98 | Early, |
| 99 | Late |
| 100 | }; |
| 101 | |
| 102 | enum Timing : int8_t { |
| 103 | OnlyEarly, |
| 104 | OnlyLate, |
| 105 | EarlyAndLate |
| 106 | }; |
| 107 | |
| 108 | enum Role : int8_t { |
| 109 | // Use means that the Inst will read from this value before doing anything else. |
| 110 | // |
| 111 | // For Tmp: The Inst will read this Tmp. |
| 112 | // For Arg::addr and friends: The Inst will load from this address. |
| 113 | // For Arg::imm and friends: The Inst will materialize and use this immediate. |
| 114 | // For RelCond/ResCond/Special: This is the only valid role for these kinds. |
| 115 | // |
| 116 | // Note that Use of an address does not mean escape. It only means that the instruction will |
| 117 | // load from the address before doing anything else. This is a bit tricky; for example |
| 118 | // Specials could theoretically squirrel away the address and effectively escape it. However, |
| 119 | // this is not legal. On the other hand, any address other than Stack is presumed to be |
| 120 | // always escaping, and Stack is presumed to be always escaping if it's Locked. |
| 121 | Use, |
| 122 | |
| 123 | // Exactly like Use, except that it also implies that the use is cold: that is, replacing the |
| 124 | // use with something on the stack is free. |
| 125 | ColdUse, |
| 126 | |
| 127 | // LateUse means that the Inst will read from this value after doing its Def's. Note that LateUse |
| 128 | // on an Addr or Index still means Use on the internal temporaries. Note that specifying the |
| 129 | // same Tmp once as Def and once as LateUse has undefined behavior: the use may happen before |
| 130 | // the def, or it may happen after it. |
| 131 | LateUse, |
| 132 | |
| 133 | // Combination of LateUse and ColdUse. |
| 134 | LateColdUse, |
| 135 | |
| 136 | // Def means that the Inst will write to this value after doing everything else. |
| 137 | // |
| 138 | // For Tmp: The Inst will write to this Tmp. |
| 139 | // For Arg::addr and friends: The Inst will store to this address. |
| 140 | // This isn't valid for any other kinds. |
| 141 | // |
| 142 | // Like Use of address, Def of address does not mean escape. |
| 143 | Def, |
| 144 | |
| 145 | // This is a special variant of Def that implies that the upper bits of the target register are |
| 146 | // zero-filled. Specifically, if the Width of a ZDef is less than the largest possible width of |
| 147 | // the argument (for example, we're on a 64-bit machine and we have a Width32 ZDef of a GPR) then |
| 148 | // this has different implications for the upper bits (i.e. the top 32 bits in our example) |
| 149 | // depending on the kind of the argument: |
| 150 | // |
| 151 | // For register: the upper bits are zero-filled. |
| 152 | // For anonymous stack slot: the upper bits are zero-filled. |
| 153 | // For address: the upper bits are not touched (i.e. we do a 32-bit store in our example). |
| 154 | // For tmp: either the upper bits are not touched or they are zero-filled, and we won't know |
| 155 | // which until we lower the tmp to either a StackSlot or a Reg. |
| 156 | // |
| 157 | // The behavior of ZDef is consistent with what happens when you perform 32-bit operations on a |
| 158 | // 64-bit GPR. It's not consistent with what happens with 8-bit or 16-bit Defs on x86 GPRs, or |
| 159 | // what happens with float Defs in ARM NEON or X86 SSE. Hence why we have both Def and ZDef. |
| 160 | ZDef, |
| 161 | |
| 162 | // This is a combined Use and Def. It means that both things happen. |
| 163 | UseDef, |
| 164 | |
| 165 | // This is a combined Use and ZDef. It means that both things happen. |
| 166 | UseZDef, |
| 167 | |
| 168 | // This is like Def, but implies that the assignment occurs before the start of the Inst's |
| 169 | // execution rather than after. Note that specifying the same Tmp once as EarlyDef and once |
| 170 | // as Use has undefined behavior: the use may happen before the def, or it may happen after |
| 171 | // it. |
| 172 | EarlyDef, |
| 173 | |
| 174 | EarlyZDef, |
| 175 | |
| 176 | // Some instructions need a scratch register. We model this by saying that the temporary is |
| 177 | // defined early and used late. This role implies that. |
| 178 | Scratch, |
| 179 | |
| 180 | // This is a special kind of use that is only valid for addresses. It means that the |
| 181 | // instruction will evaluate the address expression and consume the effective address, but it |
| 182 | // will neither load nor store. This is an escaping use, because now the address may be |
| 183 | // passed along to who-knows-where. Note that this isn't really a Use of the Arg, but it does |
| 184 | // imply that we're Use'ing any registers that the Arg contains. |
| 185 | UseAddr |
| 186 | }; |
| 187 | |
| 188 | enum Signedness : int8_t { |
| 189 | Signed, |
| 190 | Unsigned |
| 191 | }; |
| 192 | |
| 193 | // Returns true if the Role implies that the Inst will Use the Arg. It's deliberately false for |
| 194 | // UseAddr, since isAnyUse() for an Arg::addr means that we are loading from the address. |
| 195 | static bool isAnyUse(Role role) |
| 196 | { |
| 197 | switch (role) { |
| 198 | case Use: |
| 199 | case ColdUse: |
| 200 | case UseDef: |
| 201 | case UseZDef: |
| 202 | case LateUse: |
| 203 | case LateColdUse: |
| 204 | case Scratch: |
| 205 | return true; |
| 206 | case Def: |
| 207 | case ZDef: |
| 208 | case UseAddr: |
| 209 | case EarlyDef: |
| 210 | case EarlyZDef: |
| 211 | return false; |
| 212 | } |
| 213 | ASSERT_NOT_REACHED(); |
| 214 | } |
| 215 | |
| 216 | static bool isColdUse(Role role) |
| 217 | { |
| 218 | switch (role) { |
| 219 | case ColdUse: |
| 220 | case LateColdUse: |
| 221 | return true; |
| 222 | case Use: |
| 223 | case UseDef: |
| 224 | case UseZDef: |
| 225 | case LateUse: |
| 226 | case Def: |
| 227 | case ZDef: |
| 228 | case UseAddr: |
| 229 | case Scratch: |
| 230 | case EarlyDef: |
| 231 | case EarlyZDef: |
| 232 | return false; |
| 233 | } |
| 234 | ASSERT_NOT_REACHED(); |
| 235 | } |
| 236 | |
| 237 | static bool isWarmUse(Role role) |
| 238 | { |
| 239 | return isAnyUse(role) && !isColdUse(role); |
| 240 | } |
| 241 | |
| 242 | static Role cooled(Role role) |
| 243 | { |
| 244 | switch (role) { |
| 245 | case ColdUse: |
| 246 | case LateColdUse: |
| 247 | case UseDef: |
| 248 | case UseZDef: |
| 249 | case Def: |
| 250 | case ZDef: |
| 251 | case UseAddr: |
| 252 | case Scratch: |
| 253 | case EarlyDef: |
| 254 | case EarlyZDef: |
| 255 | return role; |
| 256 | case Use: |
| 257 | return ColdUse; |
| 258 | case LateUse: |
| 259 | return LateColdUse; |
| 260 | } |
| 261 | ASSERT_NOT_REACHED(); |
| 262 | } |
| 263 | |
| 264 | static Temperature temperature(Role role) |
| 265 | { |
| 266 | return isColdUse(role) ? Cold : Warm; |
| 267 | } |
| 268 | |
| 269 | static bool activeAt(Role role, Phase phase) |
| 270 | { |
| 271 | switch (role) { |
| 272 | case Use: |
| 273 | case ColdUse: |
| 274 | case EarlyDef: |
| 275 | case EarlyZDef: |
| 276 | case UseAddr: |
| 277 | return phase == Early; |
| 278 | case LateUse: |
| 279 | case LateColdUse: |
| 280 | case Def: |
| 281 | case ZDef: |
| 282 | return phase == Late; |
| 283 | case UseDef: |
| 284 | case UseZDef: |
| 285 | case Scratch: |
| 286 | return true; |
| 287 | } |
| 288 | ASSERT_NOT_REACHED(); |
| 289 | } |
| 290 | |
| 291 | static bool activeAt(Timing timing, Phase phase) |
| 292 | { |
| 293 | switch (timing) { |
| 294 | case OnlyEarly: |
| 295 | return phase == Early; |
| 296 | case OnlyLate: |
| 297 | return phase == Late; |
| 298 | case EarlyAndLate: |
| 299 | return true; |
| 300 | } |
| 301 | ASSERT_NOT_REACHED(); |
| 302 | } |
| 303 | |
| 304 | static Timing timing(Role role) |
| 305 | { |
| 306 | switch (role) { |
| 307 | case Use: |
| 308 | case ColdUse: |
| 309 | case EarlyDef: |
| 310 | case EarlyZDef: |
| 311 | case UseAddr: |
| 312 | return OnlyEarly; |
| 313 | case LateUse: |
| 314 | case LateColdUse: |
| 315 | case Def: |
| 316 | case ZDef: |
| 317 | return OnlyLate; |
| 318 | case UseDef: |
| 319 | case UseZDef: |
| 320 | case Scratch: |
| 321 | return EarlyAndLate; |
| 322 | } |
| 323 | ASSERT_NOT_REACHED(); |
| 324 | } |
| 325 | |
| 326 | template<typename Func> |
| 327 | static void forEachPhase(Timing timing, const Func& func) |
| 328 | { |
| 329 | if (activeAt(timing, Early)) |
| 330 | func(Early); |
| 331 | if (activeAt(timing, Late)) |
| 332 | func(Late); |
| 333 | } |
| 334 | |
| 335 | template<typename Func> |
| 336 | static void forEachPhase(Role role, const Func& func) |
| 337 | { |
| 338 | if (activeAt(role, Early)) |
| 339 | func(Early); |
| 340 | if (activeAt(role, Late)) |
| 341 | func(Late); |
| 342 | } |
| 343 | |
| 344 | // Returns true if the Role implies that the Inst will Use the Arg before doing anything else. |
| 345 | static bool isEarlyUse(Role role) |
| 346 | { |
| 347 | switch (role) { |
| 348 | case Use: |
| 349 | case ColdUse: |
| 350 | case UseDef: |
| 351 | case UseZDef: |
| 352 | return true; |
| 353 | case Def: |
| 354 | case ZDef: |
| 355 | case UseAddr: |
| 356 | case LateUse: |
| 357 | case LateColdUse: |
| 358 | case Scratch: |
| 359 | case EarlyDef: |
| 360 | case EarlyZDef: |
| 361 | return false; |
| 362 | } |
| 363 | ASSERT_NOT_REACHED(); |
| 364 | } |
| 365 | |
| 366 | // Returns true if the Role implies that the Inst will Use the Arg after doing everything else. |
| 367 | static bool isLateUse(Role role) |
| 368 | { |
| 369 | switch (role) { |
| 370 | case LateUse: |
| 371 | case LateColdUse: |
| 372 | case Scratch: |
| 373 | return true; |
| 374 | case ColdUse: |
| 375 | case Use: |
| 376 | case UseDef: |
| 377 | case UseZDef: |
| 378 | case Def: |
| 379 | case ZDef: |
| 380 | case UseAddr: |
| 381 | case EarlyDef: |
| 382 | case EarlyZDef: |
| 383 | return false; |
| 384 | } |
| 385 | ASSERT_NOT_REACHED(); |
| 386 | } |
| 387 | |
| 388 | // Returns true if the Role implies that the Inst will Def the Arg. |
| 389 | static bool isAnyDef(Role role) |
| 390 | { |
| 391 | switch (role) { |
| 392 | case Use: |
| 393 | case ColdUse: |
| 394 | case UseAddr: |
| 395 | case LateUse: |
| 396 | case LateColdUse: |
| 397 | return false; |
| 398 | case Def: |
| 399 | case UseDef: |
| 400 | case ZDef: |
| 401 | case UseZDef: |
| 402 | case EarlyDef: |
| 403 | case EarlyZDef: |
| 404 | case Scratch: |
| 405 | return true; |
| 406 | } |
| 407 | ASSERT_NOT_REACHED(); |
| 408 | } |
| 409 | |
| 410 | // Returns true if the Role implies that the Inst will Def the Arg before start of execution. |
| 411 | static bool isEarlyDef(Role role) |
| 412 | { |
| 413 | switch (role) { |
| 414 | case Use: |
| 415 | case ColdUse: |
| 416 | case UseAddr: |
| 417 | case LateUse: |
| 418 | case Def: |
| 419 | case UseDef: |
| 420 | case ZDef: |
| 421 | case UseZDef: |
| 422 | case LateColdUse: |
| 423 | return false; |
| 424 | case EarlyDef: |
| 425 | case EarlyZDef: |
| 426 | case Scratch: |
| 427 | return true; |
| 428 | } |
| 429 | ASSERT_NOT_REACHED(); |
| 430 | } |
| 431 | |
| 432 | // Returns true if the Role implies that the Inst will Def the Arg after the end of execution. |
| 433 | static bool isLateDef(Role role) |
| 434 | { |
| 435 | switch (role) { |
| 436 | case Use: |
| 437 | case ColdUse: |
| 438 | case UseAddr: |
| 439 | case LateUse: |
| 440 | case EarlyDef: |
| 441 | case EarlyZDef: |
| 442 | case Scratch: |
| 443 | case LateColdUse: |
| 444 | return false; |
| 445 | case Def: |
| 446 | case UseDef: |
| 447 | case ZDef: |
| 448 | case UseZDef: |
| 449 | return true; |
| 450 | } |
| 451 | ASSERT_NOT_REACHED(); |
| 452 | } |
| 453 | |
| 454 | // Returns true if the Role implies that the Inst will ZDef the Arg. |
| 455 | static bool isZDef(Role role) |
| 456 | { |
| 457 | switch (role) { |
| 458 | case Use: |
| 459 | case ColdUse: |
| 460 | case UseAddr: |
| 461 | case LateUse: |
| 462 | case Def: |
| 463 | case UseDef: |
| 464 | case EarlyDef: |
| 465 | case Scratch: |
| 466 | case LateColdUse: |
| 467 | return false; |
| 468 | case ZDef: |
| 469 | case UseZDef: |
| 470 | case EarlyZDef: |
| 471 | return true; |
| 472 | } |
| 473 | ASSERT_NOT_REACHED(); |
| 474 | } |
| 475 | |
| 476 | Arg() |
| 477 | : m_kind(Invalid) |
| 478 | { |
| 479 | } |
| 480 | |
| 481 | Arg(Air::Tmp tmp) |
| 482 | : m_kind(Tmp) |
| 483 | , m_base(tmp) |
| 484 | { |
| 485 | } |
| 486 | |
| 487 | Arg(Reg reg) |
| 488 | : Arg(Air::Tmp(reg)) |
| 489 | { |
| 490 | } |
| 491 | |
| 492 | static Arg imm(int64_t value) |
| 493 | { |
| 494 | Arg result; |
| 495 | result.m_kind = Imm; |
| 496 | result.m_offset = value; |
| 497 | return result; |
| 498 | } |
| 499 | |
| 500 | static Arg bigImm(int64_t value) |
| 501 | { |
| 502 | Arg result; |
| 503 | result.m_kind = BigImm; |
| 504 | result.m_offset = value; |
| 505 | return result; |
| 506 | } |
| 507 | |
| 508 | static Arg bitImm(int64_t value) |
| 509 | { |
| 510 | Arg result; |
| 511 | result.m_kind = BitImm; |
| 512 | result.m_offset = value; |
| 513 | return result; |
| 514 | } |
| 515 | |
| 516 | static Arg bitImm64(int64_t value) |
| 517 | { |
| 518 | Arg result; |
| 519 | result.m_kind = BitImm64; |
| 520 | result.m_offset = value; |
| 521 | return result; |
| 522 | } |
| 523 | |
| 524 | static Arg immPtr(const void* address) |
| 525 | { |
| 526 | return bigImm(bitwise_cast<intptr_t>(address)); |
| 527 | } |
| 528 | |
| 529 | static Arg simpleAddr(Air::Tmp ptr) |
| 530 | { |
| 531 | ASSERT(ptr.isGP()); |
| 532 | Arg result; |
| 533 | result.m_kind = SimpleAddr; |
| 534 | result.m_base = ptr; |
| 535 | return result; |
| 536 | } |
| 537 | |
| 538 | template<typename Int, typename = Value::IsLegalOffset<Int>> |
| 539 | static Arg addr(Air::Tmp base, Int offset) |
| 540 | { |
| 541 | ASSERT(base.isGP()); |
| 542 | Arg result; |
| 543 | result.m_kind = Addr; |
| 544 | result.m_base = base; |
| 545 | result.m_offset = offset; |
| 546 | return result; |
| 547 | } |
| 548 | |
| 549 | template<typename Int, typename = Value::IsLegalOffset<Int>> |
| 550 | static Arg extendedOffsetAddr(Int offsetFromFP) |
| 551 | { |
| 552 | Arg result; |
| 553 | result.m_kind = ExtendedOffsetAddr; |
| 554 | result.m_base = Air::Tmp(MacroAssembler::framePointerRegister); |
| 555 | result.m_offset = offsetFromFP; |
| 556 | return result; |
| 557 | } |
| 558 | |
| 559 | static Arg addr(Air::Tmp base) |
| 560 | { |
| 561 | return addr(base, 0); |
| 562 | } |
| 563 | |
| 564 | template<typename Int, typename = Value::IsLegalOffset<Int>> |
| 565 | static Arg stack(StackSlot* value, Int offset) |
| 566 | { |
| 567 | Arg result; |
| 568 | result.m_kind = Stack; |
| 569 | result.m_offset = bitwise_cast<intptr_t>(value); |
| 570 | result.m_scale = offset; // I know, yuck. |
| 571 | return result; |
| 572 | } |
| 573 | |
| 574 | static Arg stack(StackSlot* value) |
| 575 | { |
| 576 | return stack(value, 0); |
| 577 | } |
| 578 | |
| 579 | template<typename Int, typename = Value::IsLegalOffset<Int>> |
| 580 | static Arg callArg(Int offset) |
| 581 | { |
| 582 | Arg result; |
| 583 | result.m_kind = CallArg; |
| 584 | result.m_offset = offset; |
| 585 | return result; |
| 586 | } |
| 587 | |
| 588 | // If you don't pass a Width, this optimistically assumes that you're using the right width. |
| 589 | static bool isValidScale(unsigned scale, Optional<Width> width = WTF::nullopt) |
| 590 | { |
| 591 | switch (scale) { |
| 592 | case 1: |
| 593 | if (isX86() || isARM64()) |
| 594 | return true; |
| 595 | return false; |
| 596 | case 2: |
| 597 | case 4: |
| 598 | case 8: |
| 599 | if (isX86()) |
| 600 | return true; |
| 601 | if (isARM64()) { |
| 602 | if (!width) |
| 603 | return true; |
| 604 | return scale == 1 || scale == bytes(*width); |
| 605 | } |
| 606 | return false; |
| 607 | default: |
| 608 | return false; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | static unsigned logScale(unsigned scale) |
| 613 | { |
| 614 | switch (scale) { |
| 615 | case 1: |
| 616 | return 0; |
| 617 | case 2: |
| 618 | return 1; |
| 619 | case 4: |
| 620 | return 2; |
| 621 | case 8: |
| 622 | return 3; |
| 623 | default: |
| 624 | ASSERT_NOT_REACHED(); |
| 625 | return 0; |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | template<typename Int, typename = Value::IsLegalOffset<Int>> |
| 630 | static Arg index(Air::Tmp base, Air::Tmp index, unsigned scale, Int offset) |
| 631 | { |
| 632 | ASSERT(base.isGP()); |
| 633 | ASSERT(index.isGP()); |
| 634 | ASSERT(isValidScale(scale)); |
| 635 | Arg result; |
| 636 | result.m_kind = Index; |
| 637 | result.m_base = base; |
| 638 | result.m_index = index; |
| 639 | result.m_scale = static_cast<int32_t>(scale); |
| 640 | result.m_offset = offset; |
| 641 | return result; |
| 642 | } |
| 643 | |
| 644 | static Arg index(Air::Tmp base, Air::Tmp index, unsigned scale = 1) |
| 645 | { |
| 646 | return Arg::index(base, index, scale, 0); |
| 647 | } |
| 648 | |
| 649 | static Arg relCond(MacroAssembler::RelationalCondition condition) |
| 650 | { |
| 651 | Arg result; |
| 652 | result.m_kind = RelCond; |
| 653 | result.m_offset = condition; |
| 654 | return result; |
| 655 | } |
| 656 | |
| 657 | static Arg resCond(MacroAssembler::ResultCondition condition) |
| 658 | { |
| 659 | Arg result; |
| 660 | result.m_kind = ResCond; |
| 661 | result.m_offset = condition; |
| 662 | return result; |
| 663 | } |
| 664 | |
| 665 | static Arg doubleCond(MacroAssembler::DoubleCondition condition) |
| 666 | { |
| 667 | Arg result; |
| 668 | result.m_kind = DoubleCond; |
| 669 | result.m_offset = condition; |
| 670 | return result; |
| 671 | } |
| 672 | |
| 673 | static Arg statusCond(MacroAssembler::StatusCondition condition) |
| 674 | { |
| 675 | Arg result; |
| 676 | result.m_kind = StatusCond; |
| 677 | result.m_offset = condition; |
| 678 | return result; |
| 679 | } |
| 680 | |
| 681 | static Arg special(Air::Special* special) |
| 682 | { |
| 683 | Arg result; |
| 684 | result.m_kind = Special; |
| 685 | result.m_offset = bitwise_cast<intptr_t>(special); |
| 686 | return result; |
| 687 | } |
| 688 | |
| 689 | static Arg widthArg(Width width) |
| 690 | { |
| 691 | Arg result; |
| 692 | result.m_kind = WidthArg; |
| 693 | result.m_offset = width; |
| 694 | return result; |
| 695 | } |
| 696 | |
| 697 | bool operator==(const Arg& other) const |
| 698 | { |
| 699 | return m_offset == other.m_offset |
| 700 | && m_kind == other.m_kind |
| 701 | && m_base == other.m_base |
| 702 | && m_index == other.m_index |
| 703 | && m_scale == other.m_scale; |
| 704 | } |
| 705 | |
| 706 | bool operator!=(const Arg& other) const |
| 707 | { |
| 708 | return !(*this == other); |
| 709 | } |
| 710 | |
| 711 | explicit operator bool() const { return *this != Arg(); } |
| 712 | |
| 713 | Kind kind() const |
| 714 | { |
| 715 | return m_kind; |
| 716 | } |
| 717 | |
| 718 | bool isTmp() const |
| 719 | { |
| 720 | return kind() == Tmp; |
| 721 | } |
| 722 | |
| 723 | bool isImm() const |
| 724 | { |
| 725 | return kind() == Imm; |
| 726 | } |
| 727 | |
| 728 | bool isBigImm() const |
| 729 | { |
| 730 | return kind() == BigImm; |
| 731 | } |
| 732 | |
| 733 | bool isBitImm() const |
| 734 | { |
| 735 | return kind() == BitImm; |
| 736 | } |
| 737 | |
| 738 | bool isBitImm64() const |
| 739 | { |
| 740 | return kind() == BitImm64; |
| 741 | } |
| 742 | |
| 743 | bool isSomeImm() const |
| 744 | { |
| 745 | switch (kind()) { |
| 746 | case Imm: |
| 747 | case BigImm: |
| 748 | case BitImm: |
| 749 | case BitImm64: |
| 750 | return true; |
| 751 | default: |
| 752 | return false; |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | bool isSimpleAddr() const |
| 757 | { |
| 758 | return kind() == SimpleAddr; |
| 759 | } |
| 760 | |
| 761 | bool isAddr() const |
| 762 | { |
| 763 | return kind() == Addr; |
| 764 | } |
| 765 | |
| 766 | bool isExtendedOffsetAddr() const |
| 767 | { |
| 768 | return kind() == ExtendedOffsetAddr; |
| 769 | } |
| 770 | |
| 771 | bool isStack() const |
| 772 | { |
| 773 | return kind() == Stack; |
| 774 | } |
| 775 | |
| 776 | bool isCallArg() const |
| 777 | { |
| 778 | return kind() == CallArg; |
| 779 | } |
| 780 | |
| 781 | bool isIndex() const |
| 782 | { |
| 783 | return kind() == Index; |
| 784 | } |
| 785 | |
| 786 | bool isMemory() const |
| 787 | { |
| 788 | switch (kind()) { |
| 789 | case SimpleAddr: |
| 790 | case Addr: |
| 791 | case ExtendedOffsetAddr: |
| 792 | case Stack: |
| 793 | case CallArg: |
| 794 | case Index: |
| 795 | return true; |
| 796 | default: |
| 797 | return false; |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | // Returns true if this is an idiomatic stack reference. It may return false for some kinds of |
| 802 | // stack references. The following idioms are recognized: |
| 803 | // - the Stack kind |
| 804 | // - the CallArg kind |
| 805 | // - the ExtendedOffsetAddr kind |
| 806 | // - the Addr kind with the base being either SP or FP |
| 807 | // Callers of this function are allowed to expect that if it returns true, then it must be one of |
| 808 | // these easy-to-recognize kinds. So, making this function recognize more kinds could break things. |
| 809 | bool isStackMemory() const; |
| 810 | |
| 811 | bool isRelCond() const |
| 812 | { |
| 813 | return kind() == RelCond; |
| 814 | } |
| 815 | |
| 816 | bool isResCond() const |
| 817 | { |
| 818 | return kind() == ResCond; |
| 819 | } |
| 820 | |
| 821 | bool isDoubleCond() const |
| 822 | { |
| 823 | return kind() == DoubleCond; |
| 824 | } |
| 825 | |
| 826 | bool isStatusCond() const |
| 827 | { |
| 828 | return kind() == StatusCond; |
| 829 | } |
| 830 | |
| 831 | bool isCondition() const |
| 832 | { |
| 833 | switch (kind()) { |
| 834 | case RelCond: |
| 835 | case ResCond: |
| 836 | case DoubleCond: |
| 837 | case StatusCond: |
| 838 | return true; |
| 839 | default: |
| 840 | return false; |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | bool isSpecial() const |
| 845 | { |
| 846 | return kind() == Special; |
| 847 | } |
| 848 | |
| 849 | bool isWidthArg() const |
| 850 | { |
| 851 | return kind() == WidthArg; |
| 852 | } |
| 853 | |
| 854 | bool isAlive() const |
| 855 | { |
| 856 | return isTmp() || isStack(); |
| 857 | } |
| 858 | |
| 859 | Air::Tmp tmp() const |
| 860 | { |
| 861 | ASSERT(kind() == Tmp); |
| 862 | return m_base; |
| 863 | } |
| 864 | |
| 865 | int64_t value() const |
| 866 | { |
| 867 | ASSERT(isSomeImm()); |
| 868 | return m_offset; |
| 869 | } |
| 870 | |
| 871 | template<typename T> |
| 872 | bool isRepresentableAs() const |
| 873 | { |
| 874 | return B3::isRepresentableAs<T>(value()); |
| 875 | } |
| 876 | |
| 877 | static bool isRepresentableAs(Width width, Signedness signedness, int64_t value) |
| 878 | { |
| 879 | switch (signedness) { |
| 880 | case Signed: |
| 881 | switch (width) { |
| 882 | case Width8: |
| 883 | return B3::isRepresentableAs<int8_t>(value); |
| 884 | case Width16: |
| 885 | return B3::isRepresentableAs<int16_t>(value); |
| 886 | case Width32: |
| 887 | return B3::isRepresentableAs<int32_t>(value); |
| 888 | case Width64: |
| 889 | return B3::isRepresentableAs<int64_t>(value); |
| 890 | } |
| 891 | RELEASE_ASSERT_NOT_REACHED(); |
| 892 | case Unsigned: |
| 893 | switch (width) { |
| 894 | case Width8: |
| 895 | return B3::isRepresentableAs<uint8_t>(value); |
| 896 | case Width16: |
| 897 | return B3::isRepresentableAs<uint16_t>(value); |
| 898 | case Width32: |
| 899 | return B3::isRepresentableAs<uint32_t>(value); |
| 900 | case Width64: |
| 901 | return B3::isRepresentableAs<uint64_t>(value); |
| 902 | } |
| 903 | } |
| 904 | RELEASE_ASSERT_NOT_REACHED(); |
| 905 | } |
| 906 | |
| 907 | bool isRepresentableAs(Width, Signedness) const; |
| 908 | |
| 909 | static int64_t castToType(Width width, Signedness signedness, int64_t value) |
| 910 | { |
| 911 | switch (signedness) { |
| 912 | case Signed: |
| 913 | switch (width) { |
| 914 | case Width8: |
| 915 | return static_cast<int8_t>(value); |
| 916 | case Width16: |
| 917 | return static_cast<int16_t>(value); |
| 918 | case Width32: |
| 919 | return static_cast<int32_t>(value); |
| 920 | case Width64: |
| 921 | return static_cast<int64_t>(value); |
| 922 | } |
| 923 | RELEASE_ASSERT_NOT_REACHED(); |
| 924 | case Unsigned: |
| 925 | switch (width) { |
| 926 | case Width8: |
| 927 | return static_cast<uint8_t>(value); |
| 928 | case Width16: |
| 929 | return static_cast<uint16_t>(value); |
| 930 | case Width32: |
| 931 | return static_cast<uint32_t>(value); |
| 932 | case Width64: |
| 933 | return static_cast<uint64_t>(value); |
| 934 | } |
| 935 | } |
| 936 | RELEASE_ASSERT_NOT_REACHED(); |
| 937 | } |
| 938 | |
| 939 | template<typename T> |
| 940 | T asNumber() const |
| 941 | { |
| 942 | return static_cast<T>(value()); |
| 943 | } |
| 944 | |
| 945 | void* pointerValue() const |
| 946 | { |
| 947 | ASSERT(kind() == BigImm); |
| 948 | return bitwise_cast<void*>(static_cast<intptr_t>(m_offset)); |
| 949 | } |
| 950 | |
| 951 | Air::Tmp ptr() const |
| 952 | { |
| 953 | ASSERT(kind() == SimpleAddr); |
| 954 | return m_base; |
| 955 | } |
| 956 | |
| 957 | Air::Tmp base() const |
| 958 | { |
| 959 | ASSERT(kind() == SimpleAddr || kind() == Addr || kind() == ExtendedOffsetAddr || kind() == Index); |
| 960 | return m_base; |
| 961 | } |
| 962 | |
| 963 | bool hasOffset() const { return isMemory(); } |
| 964 | |
| 965 | Value::OffsetType offset() const |
| 966 | { |
| 967 | if (kind() == Stack) |
| 968 | return static_cast<Value::OffsetType>(m_scale); |
| 969 | ASSERT(kind() == Addr || kind() == ExtendedOffsetAddr || kind() == CallArg || kind() == Index); |
| 970 | return static_cast<Value::OffsetType>(m_offset); |
| 971 | } |
| 972 | |
| 973 | StackSlot* stackSlot() const |
| 974 | { |
| 975 | ASSERT(kind() == Stack); |
| 976 | return bitwise_cast<StackSlot*>(static_cast<uintptr_t>(m_offset)); |
| 977 | } |
| 978 | |
| 979 | Air::Tmp index() const |
| 980 | { |
| 981 | ASSERT(kind() == Index); |
| 982 | return m_index; |
| 983 | } |
| 984 | |
| 985 | unsigned scale() const |
| 986 | { |
| 987 | ASSERT(kind() == Index); |
| 988 | return m_scale; |
| 989 | } |
| 990 | |
| 991 | unsigned logScale() const |
| 992 | { |
| 993 | return logScale(scale()); |
| 994 | } |
| 995 | |
| 996 | Air::Special* special() const |
| 997 | { |
| 998 | ASSERT(kind() == Special); |
| 999 | return bitwise_cast<Air::Special*>(static_cast<uintptr_t>(m_offset)); |
| 1000 | } |
| 1001 | |
| 1002 | Width width() const |
| 1003 | { |
| 1004 | ASSERT(kind() == WidthArg); |
| 1005 | return static_cast<Width>(m_offset); |
| 1006 | } |
| 1007 | |
| 1008 | bool isGPTmp() const |
| 1009 | { |
| 1010 | return isTmp() && tmp().isGP(); |
| 1011 | } |
| 1012 | |
| 1013 | bool isFPTmp() const |
| 1014 | { |
| 1015 | return isTmp() && tmp().isFP(); |
| 1016 | } |
| 1017 | |
| 1018 | // Tells us if this Arg can be used in a position that requires a GP value. |
| 1019 | bool isGP() const |
| 1020 | { |
| 1021 | switch (kind()) { |
| 1022 | case Imm: |
| 1023 | case BigImm: |
| 1024 | case BitImm: |
| 1025 | case BitImm64: |
| 1026 | case SimpleAddr: |
| 1027 | case Addr: |
| 1028 | case ExtendedOffsetAddr: |
| 1029 | case Index: |
| 1030 | case Stack: |
| 1031 | case CallArg: |
| 1032 | case RelCond: |
| 1033 | case ResCond: |
| 1034 | case DoubleCond: |
| 1035 | case StatusCond: |
| 1036 | case Special: |
| 1037 | case WidthArg: |
| 1038 | return true; |
| 1039 | case Tmp: |
| 1040 | return isGPTmp(); |
| 1041 | case Invalid: |
| 1042 | return false; |
| 1043 | } |
| 1044 | ASSERT_NOT_REACHED(); |
| 1045 | } |
| 1046 | |
| 1047 | // Tells us if this Arg can be used in a position that requires a FP value. |
| 1048 | bool isFP() const |
| 1049 | { |
| 1050 | switch (kind()) { |
| 1051 | case Imm: |
| 1052 | case BitImm: |
| 1053 | case BitImm64: |
| 1054 | case RelCond: |
| 1055 | case ResCond: |
| 1056 | case DoubleCond: |
| 1057 | case StatusCond: |
| 1058 | case Special: |
| 1059 | case WidthArg: |
| 1060 | case Invalid: |
| 1061 | return false; |
| 1062 | case SimpleAddr: |
| 1063 | case Addr: |
| 1064 | case ExtendedOffsetAddr: |
| 1065 | case Index: |
| 1066 | case Stack: |
| 1067 | case CallArg: |
| 1068 | case BigImm: // Yes, we allow BigImm as a double immediate. We use this for implementing stackmaps. |
| 1069 | return true; |
| 1070 | case Tmp: |
| 1071 | return isFPTmp(); |
| 1072 | } |
| 1073 | ASSERT_NOT_REACHED(); |
| 1074 | } |
| 1075 | |
| 1076 | bool hasBank() const |
| 1077 | { |
| 1078 | switch (kind()) { |
| 1079 | case Imm: |
| 1080 | case BitImm: |
| 1081 | case BitImm64: |
| 1082 | case Special: |
| 1083 | case Tmp: |
| 1084 | return true; |
| 1085 | default: |
| 1086 | return false; |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | // The type is ambiguous for some arg kinds. Call with care. |
| 1091 | Bank bank() const |
| 1092 | { |
| 1093 | return isGP() ? GP : FP; |
| 1094 | } |
| 1095 | |
| 1096 | bool isBank(Bank bank) const |
| 1097 | { |
| 1098 | switch (bank) { |
| 1099 | case GP: |
| 1100 | return isGP(); |
| 1101 | case FP: |
| 1102 | return isFP(); |
| 1103 | } |
| 1104 | ASSERT_NOT_REACHED(); |
| 1105 | } |
| 1106 | |
| 1107 | bool canRepresent(Value* value) const; |
| 1108 | |
| 1109 | bool isCompatibleBank(const Arg& other) const; |
| 1110 | |
| 1111 | bool isGPR() const |
| 1112 | { |
| 1113 | return isTmp() && tmp().isGPR(); |
| 1114 | } |
| 1115 | |
| 1116 | GPRReg gpr() const |
| 1117 | { |
| 1118 | return tmp().gpr(); |
| 1119 | } |
| 1120 | |
| 1121 | bool isFPR() const |
| 1122 | { |
| 1123 | return isTmp() && tmp().isFPR(); |
| 1124 | } |
| 1125 | |
| 1126 | FPRReg fpr() const |
| 1127 | { |
| 1128 | return tmp().fpr(); |
| 1129 | } |
| 1130 | |
| 1131 | bool isReg() const |
| 1132 | { |
| 1133 | return isTmp() && tmp().isReg(); |
| 1134 | } |
| 1135 | |
| 1136 | Reg reg() const |
| 1137 | { |
| 1138 | return tmp().reg(); |
| 1139 | } |
| 1140 | |
| 1141 | unsigned gpTmpIndex() const |
| 1142 | { |
| 1143 | return tmp().gpTmpIndex(); |
| 1144 | } |
| 1145 | |
| 1146 | unsigned fpTmpIndex() const |
| 1147 | { |
| 1148 | return tmp().fpTmpIndex(); |
| 1149 | } |
| 1150 | |
| 1151 | unsigned tmpIndex() const |
| 1152 | { |
| 1153 | return tmp().tmpIndex(); |
| 1154 | } |
| 1155 | |
| 1156 | static bool isValidImmForm(int64_t value) |
| 1157 | { |
| 1158 | if (isX86()) |
| 1159 | return B3::isRepresentableAs<int32_t>(value); |
| 1160 | if (isARM64()) |
| 1161 | return isUInt12(value); |
| 1162 | return false; |
| 1163 | } |
| 1164 | |
| 1165 | static bool isValidBitImmForm(int64_t value) |
| 1166 | { |
| 1167 | if (isX86()) |
| 1168 | return B3::isRepresentableAs<int32_t>(value); |
| 1169 | if (isARM64()) |
| 1170 | return ARM64LogicalImmediate::create32(value).isValid(); |
| 1171 | return false; |
| 1172 | } |
| 1173 | |
| 1174 | static bool isValidBitImm64Form(int64_t value) |
| 1175 | { |
| 1176 | if (isX86()) |
| 1177 | return B3::isRepresentableAs<int32_t>(value); |
| 1178 | if (isARM64()) |
| 1179 | return ARM64LogicalImmediate::create64(value).isValid(); |
| 1180 | return false; |
| 1181 | } |
| 1182 | |
| 1183 | template<typename Int, typename = Value::IsLegalOffset<Int>> |
| 1184 | static bool isValidAddrForm(Int offset, Optional<Width> width = WTF::nullopt) |
| 1185 | { |
| 1186 | if (isX86()) |
| 1187 | return true; |
| 1188 | if (isARM64()) { |
| 1189 | if (!width) |
| 1190 | return true; |
| 1191 | |
| 1192 | if (isValidSignedImm9(offset)) |
| 1193 | return true; |
| 1194 | |
| 1195 | switch (*width) { |
| 1196 | case Width8: |
| 1197 | return isValidScaledUImm12<8>(offset); |
| 1198 | case Width16: |
| 1199 | return isValidScaledUImm12<16>(offset); |
| 1200 | case Width32: |
| 1201 | return isValidScaledUImm12<32>(offset); |
| 1202 | case Width64: |
| 1203 | return isValidScaledUImm12<64>(offset); |
| 1204 | } |
| 1205 | } |
| 1206 | return false; |
| 1207 | } |
| 1208 | |
| 1209 | template<typename Int, typename = Value::IsLegalOffset<Int>> |
| 1210 | static bool isValidIndexForm(unsigned scale, Int offset, Optional<Width> width = WTF::nullopt) |
| 1211 | { |
| 1212 | if (!isValidScale(scale, width)) |
| 1213 | return false; |
| 1214 | if (isX86()) |
| 1215 | return true; |
| 1216 | if (isARM64()) |
| 1217 | return !offset; |
| 1218 | return false; |
| 1219 | } |
| 1220 | |
| 1221 | // If you don't pass a width then this optimistically assumes that you're using the right width. But |
| 1222 | // the width is relevant to validity, so passing a null width is only useful for assertions. Don't |
| 1223 | // pass null widths when cascading through Args in the instruction selector! |
| 1224 | bool isValidForm(Optional<Width> width = WTF::nullopt) const |
| 1225 | { |
| 1226 | switch (kind()) { |
| 1227 | case Invalid: |
| 1228 | return false; |
| 1229 | case Tmp: |
| 1230 | return true; |
| 1231 | case Imm: |
| 1232 | return isValidImmForm(value()); |
| 1233 | case BigImm: |
| 1234 | return true; |
| 1235 | case BitImm: |
| 1236 | return isValidBitImmForm(value()); |
| 1237 | case BitImm64: |
| 1238 | return isValidBitImm64Form(value()); |
| 1239 | case SimpleAddr: |
| 1240 | case ExtendedOffsetAddr: |
| 1241 | return true; |
| 1242 | case Addr: |
| 1243 | case Stack: |
| 1244 | case CallArg: |
| 1245 | return isValidAddrForm(offset(), width); |
| 1246 | case Index: |
| 1247 | return isValidIndexForm(scale(), offset(), width); |
| 1248 | case RelCond: |
| 1249 | case ResCond: |
| 1250 | case DoubleCond: |
| 1251 | case StatusCond: |
| 1252 | case Special: |
| 1253 | case WidthArg: |
| 1254 | return true; |
| 1255 | } |
| 1256 | ASSERT_NOT_REACHED(); |
| 1257 | } |
| 1258 | |
| 1259 | template<typename Functor> |
| 1260 | void forEachTmpFast(const Functor& functor) |
| 1261 | { |
| 1262 | switch (m_kind) { |
| 1263 | case Tmp: |
| 1264 | case SimpleAddr: |
| 1265 | case Addr: |
| 1266 | case ExtendedOffsetAddr: |
| 1267 | functor(m_base); |
| 1268 | break; |
| 1269 | case Index: |
| 1270 | functor(m_base); |
| 1271 | functor(m_index); |
| 1272 | break; |
| 1273 | default: |
| 1274 | break; |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | bool usesTmp(Air::Tmp tmp) const; |
| 1279 | |
| 1280 | template<typename Thing> |
| 1281 | bool is() const; |
| 1282 | |
| 1283 | template<typename Thing> |
| 1284 | Thing as() const; |
| 1285 | |
| 1286 | template<typename Thing, typename Functor> |
| 1287 | void forEachFast(const Functor&); |
| 1288 | |
| 1289 | template<typename Thing, typename Functor> |
| 1290 | void forEach(Role, Bank, Width, const Functor&); |
| 1291 | |
| 1292 | // This is smart enough to know that an address arg in a Def or UseDef rule will use its |
| 1293 | // tmps and never def them. For example, this: |
| 1294 | // |
| 1295 | // mov %rax, (%rcx) |
| 1296 | // |
| 1297 | // This defs (%rcx) but uses %rcx. |
| 1298 | template<typename Functor> |
| 1299 | void forEachTmp(Role argRole, Bank argBank, Width argWidth, const Functor& functor) |
| 1300 | { |
| 1301 | switch (m_kind) { |
| 1302 | case Tmp: |
| 1303 | ASSERT(isAnyUse(argRole) || isAnyDef(argRole)); |
| 1304 | functor(m_base, argRole, argBank, argWidth); |
| 1305 | break; |
| 1306 | case SimpleAddr: |
| 1307 | case Addr: |
| 1308 | case ExtendedOffsetAddr: |
| 1309 | functor(m_base, Use, GP, argRole == UseAddr ? argWidth : pointerWidth()); |
| 1310 | break; |
| 1311 | case Index: |
| 1312 | functor(m_base, Use, GP, argRole == UseAddr ? argWidth : pointerWidth()); |
| 1313 | functor(m_index, Use, GP, argRole == UseAddr ? argWidth : pointerWidth()); |
| 1314 | break; |
| 1315 | default: |
| 1316 | break; |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | MacroAssembler::TrustedImm32 asTrustedImm32() const |
| 1321 | { |
| 1322 | ASSERT(isImm() || isBitImm()); |
| 1323 | return MacroAssembler::TrustedImm32(static_cast<Value::OffsetType>(m_offset)); |
| 1324 | } |
| 1325 | |
| 1326 | #if USE(JSVALUE64) |
| 1327 | MacroAssembler::TrustedImm64 asTrustedImm64() const |
| 1328 | { |
| 1329 | ASSERT(isBigImm() || isBitImm64()); |
| 1330 | return MacroAssembler::TrustedImm64(value()); |
| 1331 | } |
| 1332 | #endif |
| 1333 | |
| 1334 | MacroAssembler::TrustedImmPtr asTrustedImmPtr() const |
| 1335 | { |
| 1336 | if (is64Bit()) |
| 1337 | ASSERT(isBigImm()); |
| 1338 | else |
| 1339 | ASSERT(isImm()); |
| 1340 | return MacroAssembler::TrustedImmPtr(pointerValue()); |
| 1341 | } |
| 1342 | |
| 1343 | MacroAssembler::Address asAddress() const |
| 1344 | { |
| 1345 | if (isSimpleAddr()) |
| 1346 | return MacroAssembler::Address(m_base.gpr()); |
| 1347 | ASSERT(isAddr() || isExtendedOffsetAddr()); |
| 1348 | return MacroAssembler::Address(m_base.gpr(), static_cast<Value::OffsetType>(m_offset)); |
| 1349 | } |
| 1350 | |
| 1351 | MacroAssembler::BaseIndex asBaseIndex() const |
| 1352 | { |
| 1353 | ASSERT(isIndex()); |
| 1354 | return MacroAssembler::BaseIndex( |
| 1355 | m_base.gpr(), m_index.gpr(), static_cast<MacroAssembler::Scale>(logScale()), |
| 1356 | static_cast<Value::OffsetType>(m_offset)); |
| 1357 | } |
| 1358 | |
| 1359 | MacroAssembler::RelationalCondition asRelationalCondition() const |
| 1360 | { |
| 1361 | ASSERT(isRelCond()); |
| 1362 | return static_cast<MacroAssembler::RelationalCondition>(m_offset); |
| 1363 | } |
| 1364 | |
| 1365 | MacroAssembler::ResultCondition asResultCondition() const |
| 1366 | { |
| 1367 | ASSERT(isResCond()); |
| 1368 | return static_cast<MacroAssembler::ResultCondition>(m_offset); |
| 1369 | } |
| 1370 | |
| 1371 | MacroAssembler::DoubleCondition asDoubleCondition() const |
| 1372 | { |
| 1373 | ASSERT(isDoubleCond()); |
| 1374 | return static_cast<MacroAssembler::DoubleCondition>(m_offset); |
| 1375 | } |
| 1376 | |
| 1377 | MacroAssembler::StatusCondition asStatusCondition() const |
| 1378 | { |
| 1379 | ASSERT(isStatusCond()); |
| 1380 | return static_cast<MacroAssembler::StatusCondition>(m_offset); |
| 1381 | } |
| 1382 | |
| 1383 | // Tells you if the Arg is invertible. Only condition arguments are invertible, and even for those, there |
| 1384 | // are a few exceptions - notably Overflow and Signed. |
| 1385 | bool isInvertible() const |
| 1386 | { |
| 1387 | switch (kind()) { |
| 1388 | case RelCond: |
| 1389 | case DoubleCond: |
| 1390 | case StatusCond: |
| 1391 | return true; |
| 1392 | case ResCond: |
| 1393 | return MacroAssembler::isInvertible(asResultCondition()); |
| 1394 | default: |
| 1395 | return false; |
| 1396 | } |
| 1397 | } |
| 1398 | |
| 1399 | // This is valid for condition arguments. It will invert them. |
| 1400 | Arg inverted(bool inverted = true) const |
| 1401 | { |
| 1402 | if (!inverted) |
| 1403 | return *this; |
| 1404 | switch (kind()) { |
| 1405 | case RelCond: |
| 1406 | return relCond(MacroAssembler::invert(asRelationalCondition())); |
| 1407 | case ResCond: |
| 1408 | return resCond(MacroAssembler::invert(asResultCondition())); |
| 1409 | case DoubleCond: |
| 1410 | return doubleCond(MacroAssembler::invert(asDoubleCondition())); |
| 1411 | case StatusCond: |
| 1412 | return statusCond(MacroAssembler::invert(asStatusCondition())); |
| 1413 | default: |
| 1414 | RELEASE_ASSERT_NOT_REACHED(); |
| 1415 | return Arg(); |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | Arg flipped(bool flipped = true) const |
| 1420 | { |
| 1421 | if (!flipped) |
| 1422 | return Arg(); |
| 1423 | return relCond(MacroAssembler::flip(asRelationalCondition())); |
| 1424 | } |
| 1425 | |
| 1426 | bool isSignedCond() const |
| 1427 | { |
| 1428 | return isRelCond() && MacroAssembler::isSigned(asRelationalCondition()); |
| 1429 | } |
| 1430 | |
| 1431 | bool isUnsignedCond() const |
| 1432 | { |
| 1433 | return isRelCond() && MacroAssembler::isUnsigned(asRelationalCondition()); |
| 1434 | } |
| 1435 | |
| 1436 | // This computes a hash for comparing this to JSAir's Arg. |
| 1437 | unsigned jsHash() const; |
| 1438 | |
| 1439 | void dump(PrintStream&) const; |
| 1440 | |
| 1441 | Arg(WTF::HashTableDeletedValueType) |
| 1442 | : m_base(WTF::HashTableDeletedValue) |
| 1443 | { |
| 1444 | } |
| 1445 | |
| 1446 | bool isHashTableDeletedValue() const |
| 1447 | { |
| 1448 | return *this == Arg(WTF::HashTableDeletedValue); |
| 1449 | } |
| 1450 | |
| 1451 | unsigned hash() const |
| 1452 | { |
| 1453 | // This really doesn't have to be that great. |
| 1454 | return WTF::IntHash<int64_t>::hash(m_offset) + m_kind + m_scale + m_base.hash() + |
| 1455 | m_index.hash(); |
| 1456 | } |
| 1457 | |
| 1458 | private: |
| 1459 | int64_t m_offset { 0 }; |
| 1460 | Kind m_kind { Invalid }; |
| 1461 | int32_t m_scale { 1 }; |
| 1462 | Air::Tmp m_base; |
| 1463 | Air::Tmp m_index; |
| 1464 | }; |
| 1465 | |
| 1466 | struct ArgHash { |
| 1467 | static unsigned hash(const Arg& key) { return key.hash(); } |
| 1468 | static bool equal(const Arg& a, const Arg& b) { return a == b; } |
| 1469 | static const bool safeToCompareToEmptyOrDeleted = true; |
| 1470 | }; |
| 1471 | |
| 1472 | } } } // namespace JSC::B3::Air |
| 1473 | |
| 1474 | namespace WTF { |
| 1475 | |
| 1476 | JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Kind); |
| 1477 | JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Temperature); |
| 1478 | JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Phase); |
| 1479 | JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Timing); |
| 1480 | JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Role); |
| 1481 | JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Signedness); |
| 1482 | |
| 1483 | template<typename T> struct DefaultHash; |
| 1484 | template<> struct DefaultHash<JSC::B3::Air::Arg> { |
| 1485 | typedef JSC::B3::Air::ArgHash Hash; |
| 1486 | }; |
| 1487 | |
| 1488 | template<typename T> struct HashTraits; |
| 1489 | template<> struct HashTraits<JSC::B3::Air::Arg> : SimpleClassHashTraits<JSC::B3::Air::Arg> { |
| 1490 | // Because m_scale is 1 in the empty value. |
| 1491 | static const bool emptyValueIsZero = false; |
| 1492 | }; |
| 1493 | |
| 1494 | } // namespace WTF |
| 1495 | |
| 1496 | #if ASSERT_DISABLED |
| 1497 | IGNORE_RETURN_TYPE_WARNINGS_END |
| 1498 | #endif |
| 1499 | |
| 1500 | #endif // ENABLE(B3_JIT) |
| 1501 | |