| 1 | /* |
| 2 | * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #if ENABLE(ASSEMBLER) |
| 29 | |
| 30 | #include "JSCJSValue.h" |
| 31 | |
| 32 | #if CPU(ARM_THUMB2) |
| 33 | #define TARGET_ASSEMBLER ARMv7Assembler |
| 34 | #define TARGET_MACROASSEMBLER MacroAssemblerARMv7 |
| 35 | #include "MacroAssemblerARMv7.h" |
| 36 | namespace JSC { typedef MacroAssemblerARMv7 MacroAssemblerBase; }; |
| 37 | |
| 38 | #elif CPU(ARM64E) |
| 39 | #define TARGET_ASSEMBLER ARM64EAssembler |
| 40 | #define TARGET_MACROASSEMBLER MacroAssemblerARM64E |
| 41 | #include "MacroAssemblerARM64E.h" |
| 42 | |
| 43 | #elif CPU(ARM64) |
| 44 | #define TARGET_ASSEMBLER ARM64Assembler |
| 45 | #define TARGET_MACROASSEMBLER MacroAssemblerARM64 |
| 46 | #include "MacroAssemblerARM64.h" |
| 47 | |
| 48 | #elif CPU(MIPS) |
| 49 | #define TARGET_ASSEMBLER MIPSAssembler |
| 50 | #define TARGET_MACROASSEMBLER MacroAssemblerMIPS |
| 51 | #include "MacroAssemblerMIPS.h" |
| 52 | |
| 53 | #elif CPU(X86) |
| 54 | #define TARGET_ASSEMBLER X86Assembler |
| 55 | #define TARGET_MACROASSEMBLER MacroAssemblerX86 |
| 56 | #include "MacroAssemblerX86.h" |
| 57 | |
| 58 | #elif CPU(X86_64) |
| 59 | #define TARGET_ASSEMBLER X86Assembler |
| 60 | #define TARGET_MACROASSEMBLER MacroAssemblerX86_64 |
| 61 | #include "MacroAssemblerX86_64.h" |
| 62 | |
| 63 | #else |
| 64 | #error "The MacroAssembler is not supported on this platform." |
| 65 | #endif |
| 66 | |
| 67 | #include "MacroAssemblerHelpers.h" |
| 68 | |
| 69 | namespace WTF { |
| 70 | |
| 71 | template<typename FunctionType> |
| 72 | class ScopedLambda; |
| 73 | |
| 74 | } // namespace WTF |
| 75 | |
| 76 | namespace JSC { |
| 77 | |
| 78 | #if ENABLE(MASM_PROBE) |
| 79 | namespace Probe { |
| 80 | |
| 81 | class Context; |
| 82 | typedef void (*Function)(Context&); |
| 83 | |
| 84 | } // namespace Probe |
| 85 | #endif // ENABLE(MASM_PROBE) |
| 86 | |
| 87 | namespace Printer { |
| 88 | |
| 89 | struct PrintRecord; |
| 90 | typedef Vector<PrintRecord> PrintRecordList; |
| 91 | |
| 92 | } // namespace Printer |
| 93 | |
| 94 | using MacroAssemblerBase = TARGET_MACROASSEMBLER; |
| 95 | |
| 96 | class MacroAssembler : public MacroAssemblerBase { |
| 97 | public: |
| 98 | |
| 99 | static constexpr RegisterID nextRegister(RegisterID reg) |
| 100 | { |
| 101 | return static_cast<RegisterID>(reg + 1); |
| 102 | } |
| 103 | |
| 104 | static constexpr FPRegisterID nextFPRegister(FPRegisterID reg) |
| 105 | { |
| 106 | return static_cast<FPRegisterID>(reg + 1); |
| 107 | } |
| 108 | |
| 109 | static constexpr unsigned registerIndex(RegisterID reg) |
| 110 | { |
| 111 | return reg - firstRegister(); |
| 112 | } |
| 113 | |
| 114 | static constexpr unsigned fpRegisterIndex(FPRegisterID reg) |
| 115 | { |
| 116 | return reg - firstFPRegister(); |
| 117 | } |
| 118 | |
| 119 | static constexpr unsigned registerIndex(FPRegisterID reg) |
| 120 | { |
| 121 | return fpRegisterIndex(reg) + numberOfRegisters(); |
| 122 | } |
| 123 | |
| 124 | static constexpr unsigned totalNumberOfRegisters() |
| 125 | { |
| 126 | return numberOfRegisters() + numberOfFPRegisters(); |
| 127 | } |
| 128 | |
| 129 | using MacroAssemblerBase::pop; |
| 130 | using MacroAssemblerBase::jump; |
| 131 | using MacroAssemblerBase::branch32; |
| 132 | using MacroAssemblerBase::compare32; |
| 133 | using MacroAssemblerBase::move; |
| 134 | using MacroAssemblerBase::moveDouble; |
| 135 | using MacroAssemblerBase::add32; |
| 136 | using MacroAssemblerBase::mul32; |
| 137 | using MacroAssemblerBase::and32; |
| 138 | using MacroAssemblerBase::branchAdd32; |
| 139 | using MacroAssemblerBase::branchMul32; |
| 140 | #if CPU(ARM64) || CPU(ARM_THUMB2) || CPU(X86_64) || CPU(MIPS) |
| 141 | using MacroAssemblerBase::branchPtr; |
| 142 | #endif |
| 143 | using MacroAssemblerBase::branchSub32; |
| 144 | using MacroAssemblerBase::lshift32; |
| 145 | using MacroAssemblerBase::or32; |
| 146 | using MacroAssemblerBase::rshift32; |
| 147 | using MacroAssemblerBase::store32; |
| 148 | using MacroAssemblerBase::sub32; |
| 149 | using MacroAssemblerBase::urshift32; |
| 150 | using MacroAssemblerBase::xor32; |
| 151 | |
| 152 | static bool isPtrAlignedAddressOffset(ptrdiff_t value) |
| 153 | { |
| 154 | return value == static_cast<int32_t>(value); |
| 155 | } |
| 156 | |
| 157 | static const double twoToThe32; // This is super useful for some double code. |
| 158 | |
| 159 | // Utilities used by the DFG JIT. |
| 160 | using AbstractMacroAssemblerBase::invert; |
| 161 | using MacroAssemblerBase::invert; |
| 162 | |
| 163 | static DoubleCondition invert(DoubleCondition cond) |
| 164 | { |
| 165 | switch (cond) { |
| 166 | case DoubleEqual: |
| 167 | return DoubleNotEqualOrUnordered; |
| 168 | case DoubleNotEqual: |
| 169 | return DoubleEqualOrUnordered; |
| 170 | case DoubleGreaterThan: |
| 171 | return DoubleLessThanOrEqualOrUnordered; |
| 172 | case DoubleGreaterThanOrEqual: |
| 173 | return DoubleLessThanOrUnordered; |
| 174 | case DoubleLessThan: |
| 175 | return DoubleGreaterThanOrEqualOrUnordered; |
| 176 | case DoubleLessThanOrEqual: |
| 177 | return DoubleGreaterThanOrUnordered; |
| 178 | case DoubleEqualOrUnordered: |
| 179 | return DoubleNotEqual; |
| 180 | case DoubleNotEqualOrUnordered: |
| 181 | return DoubleEqual; |
| 182 | case DoubleGreaterThanOrUnordered: |
| 183 | return DoubleLessThanOrEqual; |
| 184 | case DoubleGreaterThanOrEqualOrUnordered: |
| 185 | return DoubleLessThan; |
| 186 | case DoubleLessThanOrUnordered: |
| 187 | return DoubleGreaterThanOrEqual; |
| 188 | case DoubleLessThanOrEqualOrUnordered: |
| 189 | return DoubleGreaterThan; |
| 190 | } |
| 191 | RELEASE_ASSERT_NOT_REACHED(); |
| 192 | return DoubleEqual; // make compiler happy |
| 193 | } |
| 194 | |
| 195 | static bool isInvertible(ResultCondition cond) |
| 196 | { |
| 197 | switch (cond) { |
| 198 | case Zero: |
| 199 | case NonZero: |
| 200 | case Signed: |
| 201 | case PositiveOrZero: |
| 202 | return true; |
| 203 | default: |
| 204 | return false; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | static ResultCondition invert(ResultCondition cond) |
| 209 | { |
| 210 | switch (cond) { |
| 211 | case Zero: |
| 212 | return NonZero; |
| 213 | case NonZero: |
| 214 | return Zero; |
| 215 | case Signed: |
| 216 | return PositiveOrZero; |
| 217 | case PositiveOrZero: |
| 218 | return Signed; |
| 219 | default: |
| 220 | RELEASE_ASSERT_NOT_REACHED(); |
| 221 | return Zero; // Make compiler happy for release builds. |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | static RelationalCondition flip(RelationalCondition cond) |
| 226 | { |
| 227 | switch (cond) { |
| 228 | case Equal: |
| 229 | case NotEqual: |
| 230 | return cond; |
| 231 | case Above: |
| 232 | return Below; |
| 233 | case AboveOrEqual: |
| 234 | return BelowOrEqual; |
| 235 | case Below: |
| 236 | return Above; |
| 237 | case BelowOrEqual: |
| 238 | return AboveOrEqual; |
| 239 | case GreaterThan: |
| 240 | return LessThan; |
| 241 | case GreaterThanOrEqual: |
| 242 | return LessThanOrEqual; |
| 243 | case LessThan: |
| 244 | return GreaterThan; |
| 245 | case LessThanOrEqual: |
| 246 | return GreaterThanOrEqual; |
| 247 | } |
| 248 | |
| 249 | RELEASE_ASSERT_NOT_REACHED(); |
| 250 | return Equal; |
| 251 | } |
| 252 | |
| 253 | static bool isSigned(RelationalCondition cond) |
| 254 | { |
| 255 | return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond); |
| 256 | } |
| 257 | |
| 258 | static bool isUnsigned(RelationalCondition cond) |
| 259 | { |
| 260 | return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond); |
| 261 | } |
| 262 | |
| 263 | static bool isSigned(ResultCondition cond) |
| 264 | { |
| 265 | return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond); |
| 266 | } |
| 267 | |
| 268 | static bool isUnsigned(ResultCondition cond) |
| 269 | { |
| 270 | return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond); |
| 271 | } |
| 272 | |
| 273 | // Platform agnostic convenience functions, |
| 274 | // described in terms of other macro assembly methods. |
| 275 | void pop() |
| 276 | { |
| 277 | addPtr(TrustedImm32(sizeof(void*)), stackPointerRegister); |
| 278 | } |
| 279 | |
| 280 | void peek(RegisterID dest, int index = 0) |
| 281 | { |
| 282 | loadPtr(Address(stackPointerRegister, (index * sizeof(void*))), dest); |
| 283 | } |
| 284 | |
| 285 | Address addressForPoke(int index) |
| 286 | { |
| 287 | return Address(stackPointerRegister, (index * sizeof(void*))); |
| 288 | } |
| 289 | |
| 290 | void poke(RegisterID src, int index = 0) |
| 291 | { |
| 292 | storePtr(src, addressForPoke(index)); |
| 293 | } |
| 294 | |
| 295 | void poke(TrustedImm32 value, int index = 0) |
| 296 | { |
| 297 | store32(value, addressForPoke(index)); |
| 298 | } |
| 299 | |
| 300 | void poke(TrustedImmPtr imm, int index = 0) |
| 301 | { |
| 302 | storePtr(imm, addressForPoke(index)); |
| 303 | } |
| 304 | |
| 305 | void poke(FPRegisterID src, int index = 0) |
| 306 | { |
| 307 | storeDouble(src, addressForPoke(index)); |
| 308 | } |
| 309 | |
| 310 | #if !CPU(ARM64) |
| 311 | void pushToSave(RegisterID src) |
| 312 | { |
| 313 | push(src); |
| 314 | } |
| 315 | void pushToSaveImmediateWithoutTouchingRegisters(TrustedImm32 imm) |
| 316 | { |
| 317 | push(imm); |
| 318 | } |
| 319 | void popToRestore(RegisterID dest) |
| 320 | { |
| 321 | pop(dest); |
| 322 | } |
| 323 | void pushToSave(FPRegisterID src) |
| 324 | { |
| 325 | subPtr(TrustedImm32(sizeof(double)), stackPointerRegister); |
| 326 | storeDouble(src, stackPointerRegister); |
| 327 | } |
| 328 | void popToRestore(FPRegisterID dest) |
| 329 | { |
| 330 | loadDouble(stackPointerRegister, dest); |
| 331 | addPtr(TrustedImm32(sizeof(double)), stackPointerRegister); |
| 332 | } |
| 333 | |
| 334 | static ptrdiff_t pushToSaveByteOffset() { return sizeof(void*); } |
| 335 | #endif // !CPU(ARM64) |
| 336 | |
| 337 | #if CPU(X86_64) || CPU(ARM64) |
| 338 | void peek64(RegisterID dest, int index = 0) |
| 339 | { |
| 340 | load64(Address(stackPointerRegister, (index * sizeof(void*))), dest); |
| 341 | } |
| 342 | |
| 343 | void poke(TrustedImm64 value, int index = 0) |
| 344 | { |
| 345 | store64(value, addressForPoke(index)); |
| 346 | } |
| 347 | |
| 348 | void poke64(RegisterID src, int index = 0) |
| 349 | { |
| 350 | store64(src, addressForPoke(index)); |
| 351 | } |
| 352 | #endif |
| 353 | |
| 354 | // Immediate shifts only have 5 controllable bits |
| 355 | // so we'll consider them safe for now. |
| 356 | TrustedImm32 trustedImm32ForShift(Imm32 imm) |
| 357 | { |
| 358 | return TrustedImm32(imm.asTrustedImm32().m_value & 31); |
| 359 | } |
| 360 | |
| 361 | // Backwards banches, these are currently all implemented using existing forwards branch mechanisms. |
| 362 | void branchPtr(RelationalCondition cond, RegisterID op1, TrustedImmPtr imm, Label target) |
| 363 | { |
| 364 | branchPtr(cond, op1, imm).linkTo(target, this); |
| 365 | } |
| 366 | void branchPtr(RelationalCondition cond, RegisterID op1, ImmPtr imm, Label target) |
| 367 | { |
| 368 | branchPtr(cond, op1, imm).linkTo(target, this); |
| 369 | } |
| 370 | |
| 371 | Jump branch32(RelationalCondition cond, RegisterID left, AbsoluteAddress right) |
| 372 | { |
| 373 | return branch32(flip(cond), right, left); |
| 374 | } |
| 375 | |
| 376 | void branch32(RelationalCondition cond, RegisterID op1, RegisterID op2, Label target) |
| 377 | { |
| 378 | branch32(cond, op1, op2).linkTo(target, this); |
| 379 | } |
| 380 | |
| 381 | void branch32(RelationalCondition cond, RegisterID op1, TrustedImm32 imm, Label target) |
| 382 | { |
| 383 | branch32(cond, op1, imm).linkTo(target, this); |
| 384 | } |
| 385 | |
| 386 | void branch32(RelationalCondition cond, RegisterID op1, Imm32 imm, Label target) |
| 387 | { |
| 388 | branch32(cond, op1, imm).linkTo(target, this); |
| 389 | } |
| 390 | |
| 391 | void branch32(RelationalCondition cond, RegisterID left, Address right, Label target) |
| 392 | { |
| 393 | branch32(cond, left, right).linkTo(target, this); |
| 394 | } |
| 395 | |
| 396 | Jump branch32(RelationalCondition cond, TrustedImm32 left, RegisterID right) |
| 397 | { |
| 398 | return branch32(commute(cond), right, left); |
| 399 | } |
| 400 | |
| 401 | Jump branch32(RelationalCondition cond, Imm32 left, RegisterID right) |
| 402 | { |
| 403 | return branch32(commute(cond), right, left); |
| 404 | } |
| 405 | |
| 406 | void compare32(RelationalCondition cond, Imm32 left, RegisterID right, RegisterID dest) |
| 407 | { |
| 408 | compare32(commute(cond), right, left, dest); |
| 409 | } |
| 410 | |
| 411 | void branchTestPtr(ResultCondition cond, RegisterID reg, Label target) |
| 412 | { |
| 413 | branchTestPtr(cond, reg).linkTo(target, this); |
| 414 | } |
| 415 | |
| 416 | #if !CPU(ARM_THUMB2) && !CPU(ARM64) |
| 417 | PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right = TrustedImmPtr(nullptr)) |
| 418 | { |
| 419 | return PatchableJump(branchPtr(cond, left, right)); |
| 420 | } |
| 421 | |
| 422 | PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr)) |
| 423 | { |
| 424 | return PatchableJump(branchPtrWithPatch(cond, left, dataLabel, initialRightValue)); |
| 425 | } |
| 426 | |
| 427 | PatchableJump patchableBranch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0)) |
| 428 | { |
| 429 | return PatchableJump(branch32WithPatch(cond, left, dataLabel, initialRightValue)); |
| 430 | } |
| 431 | |
| 432 | PatchableJump patchableJump() |
| 433 | { |
| 434 | return PatchableJump(jump()); |
| 435 | } |
| 436 | |
| 437 | PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| 438 | { |
| 439 | return PatchableJump(branchTest32(cond, reg, mask)); |
| 440 | } |
| 441 | |
| 442 | PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm) |
| 443 | { |
| 444 | return PatchableJump(branch32(cond, reg, imm)); |
| 445 | } |
| 446 | |
| 447 | PatchableJump patchableBranch8(RelationalCondition cond, Address address, TrustedImm32 imm) |
| 448 | { |
| 449 | return PatchableJump(branch8(cond, address, imm)); |
| 450 | } |
| 451 | |
| 452 | PatchableJump patchableBranch32(RelationalCondition cond, Address address, TrustedImm32 imm) |
| 453 | { |
| 454 | return PatchableJump(branch32(cond, address, imm)); |
| 455 | } |
| 456 | #endif |
| 457 | |
| 458 | void jump(Label target) |
| 459 | { |
| 460 | jump().linkTo(target, this); |
| 461 | } |
| 462 | |
| 463 | // Commute a relational condition, returns a new condition that will produce |
| 464 | // the same results given the same inputs but with their positions exchanged. |
| 465 | static RelationalCondition commute(RelationalCondition condition) |
| 466 | { |
| 467 | switch (condition) { |
| 468 | case Above: |
| 469 | return Below; |
| 470 | case AboveOrEqual: |
| 471 | return BelowOrEqual; |
| 472 | case Below: |
| 473 | return Above; |
| 474 | case BelowOrEqual: |
| 475 | return AboveOrEqual; |
| 476 | case GreaterThan: |
| 477 | return LessThan; |
| 478 | case GreaterThanOrEqual: |
| 479 | return LessThanOrEqual; |
| 480 | case LessThan: |
| 481 | return GreaterThan; |
| 482 | case LessThanOrEqual: |
| 483 | return GreaterThanOrEqual; |
| 484 | default: |
| 485 | break; |
| 486 | } |
| 487 | |
| 488 | ASSERT(condition == Equal || condition == NotEqual); |
| 489 | return condition; |
| 490 | } |
| 491 | |
| 492 | void oops() |
| 493 | { |
| 494 | abortWithReason(B3Oops); |
| 495 | } |
| 496 | |
| 497 | // B3 has additional pseudo-opcodes for returning, when it wants to signal that the return |
| 498 | // consumes some register in some way. |
| 499 | void retVoid() { ret(); } |
| 500 | void ret32(RegisterID) { ret(); } |
| 501 | void ret64(RegisterID) { ret(); } |
| 502 | void retFloat(FPRegisterID) { ret(); } |
| 503 | void retDouble(FPRegisterID) { ret(); } |
| 504 | |
| 505 | static const unsigned BlindingModulus = 64; |
| 506 | bool shouldConsiderBlinding() |
| 507 | { |
| 508 | return !(random() & (BlindingModulus - 1)); |
| 509 | } |
| 510 | |
| 511 | void move(Address src, Address dest, RegisterID scratch) |
| 512 | { |
| 513 | loadPtr(src, scratch); |
| 514 | storePtr(scratch, dest); |
| 515 | } |
| 516 | |
| 517 | void move32(Address src, Address dest, RegisterID scratch) |
| 518 | { |
| 519 | load32(src, scratch); |
| 520 | store32(scratch, dest); |
| 521 | } |
| 522 | |
| 523 | void moveFloat(Address src, Address dest, FPRegisterID scratch) |
| 524 | { |
| 525 | loadFloat(src, scratch); |
| 526 | storeFloat(scratch, dest); |
| 527 | } |
| 528 | |
| 529 | // Overload mostly for use in templates. |
| 530 | void move(FPRegisterID src, FPRegisterID dest) |
| 531 | { |
| 532 | moveDouble(src, dest); |
| 533 | } |
| 534 | |
| 535 | void moveDouble(Address src, Address dest, FPRegisterID scratch) |
| 536 | { |
| 537 | loadDouble(src, scratch); |
| 538 | storeDouble(scratch, dest); |
| 539 | } |
| 540 | |
| 541 | // Ptr methods |
| 542 | // On 32-bit platforms (i.e. x86), these methods directly map onto their 32-bit equivalents. |
| 543 | // FIXME: should this use a test for 32-bitness instead of this specific exception? |
| 544 | #if !CPU(X86_64) && !CPU(ARM64) |
| 545 | void addPtr(Address src, RegisterID dest) |
| 546 | { |
| 547 | add32(src, dest); |
| 548 | } |
| 549 | |
| 550 | void addPtr(AbsoluteAddress src, RegisterID dest) |
| 551 | { |
| 552 | add32(src, dest); |
| 553 | } |
| 554 | |
| 555 | void addPtr(RegisterID src, RegisterID dest) |
| 556 | { |
| 557 | add32(src, dest); |
| 558 | } |
| 559 | |
| 560 | void addPtr(RegisterID left, RegisterID right, RegisterID dest) |
| 561 | { |
| 562 | add32(left, right, dest); |
| 563 | } |
| 564 | |
| 565 | void addPtr(TrustedImm32 imm, RegisterID srcDest) |
| 566 | { |
| 567 | add32(imm, srcDest); |
| 568 | } |
| 569 | |
| 570 | void addPtr(TrustedImmPtr imm, RegisterID dest) |
| 571 | { |
| 572 | add32(TrustedImm32(imm), dest); |
| 573 | } |
| 574 | |
| 575 | void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| 576 | { |
| 577 | add32(imm, src, dest); |
| 578 | } |
| 579 | |
| 580 | void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
| 581 | { |
| 582 | add32(imm, address); |
| 583 | } |
| 584 | |
| 585 | void andPtr(RegisterID src, RegisterID dest) |
| 586 | { |
| 587 | and32(src, dest); |
| 588 | } |
| 589 | |
| 590 | void andPtr(TrustedImm32 imm, RegisterID srcDest) |
| 591 | { |
| 592 | and32(imm, srcDest); |
| 593 | } |
| 594 | |
| 595 | void andPtr(TrustedImmPtr imm, RegisterID srcDest) |
| 596 | { |
| 597 | and32(TrustedImm32(imm), srcDest); |
| 598 | } |
| 599 | |
| 600 | void lshiftPtr(Imm32 imm, RegisterID srcDest) |
| 601 | { |
| 602 | lshift32(trustedImm32ForShift(imm), srcDest); |
| 603 | } |
| 604 | |
| 605 | void lshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
| 606 | { |
| 607 | lshift32(imm, srcDest); |
| 608 | } |
| 609 | |
| 610 | void rshiftPtr(Imm32 imm, RegisterID srcDest) |
| 611 | { |
| 612 | rshift32(trustedImm32ForShift(imm), srcDest); |
| 613 | } |
| 614 | |
| 615 | void rshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
| 616 | { |
| 617 | rshift32(imm, srcDest); |
| 618 | } |
| 619 | |
| 620 | void urshiftPtr(Imm32 imm, RegisterID srcDest) |
| 621 | { |
| 622 | urshift32(trustedImm32ForShift(imm), srcDest); |
| 623 | } |
| 624 | |
| 625 | void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest) |
| 626 | { |
| 627 | urshift32(shiftAmmount, srcDest); |
| 628 | } |
| 629 | |
| 630 | void negPtr(RegisterID dest) |
| 631 | { |
| 632 | neg32(dest); |
| 633 | } |
| 634 | |
| 635 | void negPtr(RegisterID src, RegisterID dest) |
| 636 | { |
| 637 | neg32(src, dest); |
| 638 | } |
| 639 | |
| 640 | void orPtr(RegisterID src, RegisterID dest) |
| 641 | { |
| 642 | or32(src, dest); |
| 643 | } |
| 644 | |
| 645 | void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
| 646 | { |
| 647 | or32(op1, op2, dest); |
| 648 | } |
| 649 | |
| 650 | void orPtr(TrustedImmPtr imm, RegisterID dest) |
| 651 | { |
| 652 | or32(TrustedImm32(imm), dest); |
| 653 | } |
| 654 | |
| 655 | void orPtr(TrustedImm32 imm, RegisterID dest) |
| 656 | { |
| 657 | or32(imm, dest); |
| 658 | } |
| 659 | |
| 660 | void subPtr(RegisterID src, RegisterID dest) |
| 661 | { |
| 662 | sub32(src, dest); |
| 663 | } |
| 664 | |
| 665 | void subPtr(TrustedImm32 imm, RegisterID dest) |
| 666 | { |
| 667 | sub32(imm, dest); |
| 668 | } |
| 669 | |
| 670 | void subPtr(TrustedImmPtr imm, RegisterID dest) |
| 671 | { |
| 672 | sub32(TrustedImm32(imm), dest); |
| 673 | } |
| 674 | |
| 675 | void xorPtr(RegisterID src, RegisterID dest) |
| 676 | { |
| 677 | xor32(src, dest); |
| 678 | } |
| 679 | |
| 680 | void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
| 681 | { |
| 682 | xor32(imm, srcDest); |
| 683 | } |
| 684 | |
| 685 | void xorPtr(TrustedImmPtr imm, RegisterID srcDest) |
| 686 | { |
| 687 | xor32(TrustedImm32(imm), srcDest); |
| 688 | } |
| 689 | |
| 690 | void xorPtr(Address src, RegisterID dest) |
| 691 | { |
| 692 | xor32(src, dest); |
| 693 | } |
| 694 | |
| 695 | void loadPtr(ImplicitAddress address, RegisterID dest) |
| 696 | { |
| 697 | load32(address, dest); |
| 698 | } |
| 699 | |
| 700 | void loadPtr(BaseIndex address, RegisterID dest) |
| 701 | { |
| 702 | load32(address, dest); |
| 703 | } |
| 704 | |
| 705 | void loadPtr(const void* address, RegisterID dest) |
| 706 | { |
| 707 | load32(address, dest); |
| 708 | } |
| 709 | |
| 710 | #if ENABLE(FAST_TLS_JIT) |
| 711 | void loadFromTLSPtr(uint32_t offset, RegisterID dst) |
| 712 | { |
| 713 | loadFromTLS32(offset, dst); |
| 714 | } |
| 715 | |
| 716 | void storeToTLSPtr(RegisterID src, uint32_t offset) |
| 717 | { |
| 718 | storeToTLS32(src, offset); |
| 719 | } |
| 720 | #endif |
| 721 | |
| 722 | DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
| 723 | { |
| 724 | return load32WithAddressOffsetPatch(address, dest); |
| 725 | } |
| 726 | |
| 727 | DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
| 728 | { |
| 729 | return load32WithCompactAddressOffsetPatch(address, dest); |
| 730 | } |
| 731 | |
| 732 | void move(ImmPtr imm, RegisterID dest) |
| 733 | { |
| 734 | move(Imm32(imm.asTrustedImmPtr()), dest); |
| 735 | } |
| 736 | |
| 737 | void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
| 738 | { |
| 739 | compare32(cond, left, right, dest); |
| 740 | } |
| 741 | |
| 742 | void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
| 743 | { |
| 744 | compare32(cond, left, right, dest); |
| 745 | } |
| 746 | |
| 747 | void storePtr(RegisterID src, ImplicitAddress address) |
| 748 | { |
| 749 | store32(src, address); |
| 750 | } |
| 751 | |
| 752 | void storePtr(RegisterID src, BaseIndex address) |
| 753 | { |
| 754 | store32(src, address); |
| 755 | } |
| 756 | |
| 757 | void storePtr(RegisterID src, void* address) |
| 758 | { |
| 759 | store32(src, address); |
| 760 | } |
| 761 | |
| 762 | void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
| 763 | { |
| 764 | store32(TrustedImm32(imm), address); |
| 765 | } |
| 766 | |
| 767 | void storePtr(ImmPtr imm, Address address) |
| 768 | { |
| 769 | store32(Imm32(imm.asTrustedImmPtr()), address); |
| 770 | } |
| 771 | |
| 772 | void storePtr(TrustedImmPtr imm, void* address) |
| 773 | { |
| 774 | store32(TrustedImm32(imm), address); |
| 775 | } |
| 776 | |
| 777 | void storePtr(TrustedImm32 imm, ImplicitAddress address) |
| 778 | { |
| 779 | store32(imm, address); |
| 780 | } |
| 781 | |
| 782 | void storePtr(TrustedImmPtr imm, BaseIndex address) |
| 783 | { |
| 784 | store32(TrustedImm32(imm), address); |
| 785 | } |
| 786 | |
| 787 | DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
| 788 | { |
| 789 | return store32WithAddressOffsetPatch(src, address); |
| 790 | } |
| 791 | |
| 792 | Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
| 793 | { |
| 794 | return branch32(cond, left, right); |
| 795 | } |
| 796 | |
| 797 | Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
| 798 | { |
| 799 | return branch32(cond, left, TrustedImm32(right)); |
| 800 | } |
| 801 | |
| 802 | Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
| 803 | { |
| 804 | return branch32(cond, left, Imm32(right.asTrustedImmPtr())); |
| 805 | } |
| 806 | |
| 807 | Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
| 808 | { |
| 809 | return branch32(cond, left, right); |
| 810 | } |
| 811 | |
| 812 | Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
| 813 | { |
| 814 | return branch32(cond, left, right); |
| 815 | } |
| 816 | |
| 817 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
| 818 | { |
| 819 | return branch32(cond, left, right); |
| 820 | } |
| 821 | |
| 822 | Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
| 823 | { |
| 824 | return branch32(cond, left, TrustedImm32(right)); |
| 825 | } |
| 826 | |
| 827 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, TrustedImmPtr right) |
| 828 | { |
| 829 | return branch32(cond, left, TrustedImm32(right)); |
| 830 | } |
| 831 | |
| 832 | Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| 833 | { |
| 834 | return branchSub32(cond, src, dest); |
| 835 | } |
| 836 | |
| 837 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
| 838 | { |
| 839 | return branchTest32(cond, reg, mask); |
| 840 | } |
| 841 | |
| 842 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| 843 | { |
| 844 | return branchTest32(cond, reg, mask); |
| 845 | } |
| 846 | |
| 847 | Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
| 848 | { |
| 849 | return branchTest32(cond, address, mask); |
| 850 | } |
| 851 | |
| 852 | Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
| 853 | { |
| 854 | return branchTest32(cond, address, mask); |
| 855 | } |
| 856 | |
| 857 | Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| 858 | { |
| 859 | return branchAdd32(cond, src, dest); |
| 860 | } |
| 861 | |
| 862 | Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| 863 | { |
| 864 | return branchSub32(cond, imm, dest); |
| 865 | } |
| 866 | using MacroAssemblerBase::branchTest8; |
| 867 | Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
| 868 | { |
| 869 | return MacroAssemblerBase::branchTest8(cond, Address(address.base, address.offset), mask); |
| 870 | } |
| 871 | |
| 872 | #else // !CPU(X86_64) && !CPU(ARM64) |
| 873 | |
| 874 | void addPtr(RegisterID src, RegisterID dest) |
| 875 | { |
| 876 | add64(src, dest); |
| 877 | } |
| 878 | |
| 879 | void addPtr(RegisterID left, RegisterID right, RegisterID dest) |
| 880 | { |
| 881 | add64(left, right, dest); |
| 882 | } |
| 883 | |
| 884 | void addPtr(Address src, RegisterID dest) |
| 885 | { |
| 886 | add64(src, dest); |
| 887 | } |
| 888 | |
| 889 | void addPtr(TrustedImm32 imm, RegisterID srcDest) |
| 890 | { |
| 891 | add64(imm, srcDest); |
| 892 | } |
| 893 | |
| 894 | void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| 895 | { |
| 896 | add64(imm, src, dest); |
| 897 | } |
| 898 | |
| 899 | void addPtr(TrustedImm32 imm, Address address) |
| 900 | { |
| 901 | add64(imm, address); |
| 902 | } |
| 903 | |
| 904 | void addPtr(AbsoluteAddress src, RegisterID dest) |
| 905 | { |
| 906 | add64(src, dest); |
| 907 | } |
| 908 | |
| 909 | void addPtr(TrustedImmPtr imm, RegisterID dest) |
| 910 | { |
| 911 | add64(TrustedImm64(imm), dest); |
| 912 | } |
| 913 | |
| 914 | void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
| 915 | { |
| 916 | add64(imm, address); |
| 917 | } |
| 918 | |
| 919 | void andPtr(RegisterID src, RegisterID dest) |
| 920 | { |
| 921 | and64(src, dest); |
| 922 | } |
| 923 | |
| 924 | void andPtr(TrustedImm32 imm, RegisterID srcDest) |
| 925 | { |
| 926 | and64(imm, srcDest); |
| 927 | } |
| 928 | |
| 929 | void andPtr(TrustedImmPtr imm, RegisterID srcDest) |
| 930 | { |
| 931 | and64(imm, srcDest); |
| 932 | } |
| 933 | |
| 934 | void lshiftPtr(Imm32 imm, RegisterID srcDest) |
| 935 | { |
| 936 | lshift64(trustedImm32ForShift(imm), srcDest); |
| 937 | } |
| 938 | |
| 939 | void lshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
| 940 | { |
| 941 | lshift64(imm, srcDest); |
| 942 | } |
| 943 | |
| 944 | void rshiftPtr(Imm32 imm, RegisterID srcDest) |
| 945 | { |
| 946 | rshift64(trustedImm32ForShift(imm), srcDest); |
| 947 | } |
| 948 | |
| 949 | void rshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
| 950 | { |
| 951 | rshift64(imm, srcDest); |
| 952 | } |
| 953 | |
| 954 | void urshiftPtr(Imm32 imm, RegisterID srcDest) |
| 955 | { |
| 956 | urshift64(trustedImm32ForShift(imm), srcDest); |
| 957 | } |
| 958 | |
| 959 | void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest) |
| 960 | { |
| 961 | urshift64(shiftAmmount, srcDest); |
| 962 | } |
| 963 | |
| 964 | void negPtr(RegisterID dest) |
| 965 | { |
| 966 | neg64(dest); |
| 967 | } |
| 968 | |
| 969 | void negPtr(RegisterID src, RegisterID dest) |
| 970 | { |
| 971 | neg64(src, dest); |
| 972 | } |
| 973 | |
| 974 | void orPtr(RegisterID src, RegisterID dest) |
| 975 | { |
| 976 | or64(src, dest); |
| 977 | } |
| 978 | |
| 979 | void orPtr(TrustedImm32 imm, RegisterID dest) |
| 980 | { |
| 981 | or64(imm, dest); |
| 982 | } |
| 983 | |
| 984 | void orPtr(TrustedImmPtr imm, RegisterID dest) |
| 985 | { |
| 986 | or64(TrustedImm64(imm), dest); |
| 987 | } |
| 988 | |
| 989 | void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
| 990 | { |
| 991 | or64(op1, op2, dest); |
| 992 | } |
| 993 | |
| 994 | void orPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| 995 | { |
| 996 | or64(imm, src, dest); |
| 997 | } |
| 998 | |
| 999 | void rotateRightPtr(TrustedImm32 imm, RegisterID srcDst) |
| 1000 | { |
| 1001 | rotateRight64(imm, srcDst); |
| 1002 | } |
| 1003 | |
| 1004 | void subPtr(RegisterID src, RegisterID dest) |
| 1005 | { |
| 1006 | sub64(src, dest); |
| 1007 | } |
| 1008 | |
| 1009 | void subPtr(TrustedImm32 imm, RegisterID dest) |
| 1010 | { |
| 1011 | sub64(imm, dest); |
| 1012 | } |
| 1013 | |
| 1014 | void subPtr(TrustedImmPtr imm, RegisterID dest) |
| 1015 | { |
| 1016 | sub64(TrustedImm64(imm), dest); |
| 1017 | } |
| 1018 | |
| 1019 | void xorPtr(RegisterID src, RegisterID dest) |
| 1020 | { |
| 1021 | xor64(src, dest); |
| 1022 | } |
| 1023 | |
| 1024 | void xorPtr(Address src, RegisterID dest) |
| 1025 | { |
| 1026 | xor64(src, dest); |
| 1027 | } |
| 1028 | |
| 1029 | void xorPtr(RegisterID src, Address dest) |
| 1030 | { |
| 1031 | xor64(src, dest); |
| 1032 | } |
| 1033 | |
| 1034 | void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
| 1035 | { |
| 1036 | xor64(imm, srcDest); |
| 1037 | } |
| 1038 | |
| 1039 | // FIXME: Look into making the need for a scratch register explicit, or providing the option to specify a scratch register. |
| 1040 | void xorPtr(TrustedImmPtr imm, RegisterID srcDest) |
| 1041 | { |
| 1042 | xor64(TrustedImm64(imm), srcDest); |
| 1043 | } |
| 1044 | |
| 1045 | void loadPtr(ImplicitAddress address, RegisterID dest) |
| 1046 | { |
| 1047 | load64(address, dest); |
| 1048 | } |
| 1049 | |
| 1050 | void loadPtr(BaseIndex address, RegisterID dest) |
| 1051 | { |
| 1052 | load64(address, dest); |
| 1053 | } |
| 1054 | |
| 1055 | void loadPtr(const void* address, RegisterID dest) |
| 1056 | { |
| 1057 | load64(address, dest); |
| 1058 | } |
| 1059 | |
| 1060 | #if ENABLE(FAST_TLS_JIT) |
| 1061 | void loadFromTLSPtr(uint32_t offset, RegisterID dst) |
| 1062 | { |
| 1063 | loadFromTLS64(offset, dst); |
| 1064 | } |
| 1065 | void storeToTLSPtr(RegisterID src, uint32_t offset) |
| 1066 | { |
| 1067 | storeToTLS64(src, offset); |
| 1068 | } |
| 1069 | #endif |
| 1070 | |
| 1071 | DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
| 1072 | { |
| 1073 | return load64WithAddressOffsetPatch(address, dest); |
| 1074 | } |
| 1075 | |
| 1076 | DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
| 1077 | { |
| 1078 | return load64WithCompactAddressOffsetPatch(address, dest); |
| 1079 | } |
| 1080 | |
| 1081 | void storePtr(RegisterID src, ImplicitAddress address) |
| 1082 | { |
| 1083 | store64(src, address); |
| 1084 | } |
| 1085 | |
| 1086 | void storePtr(RegisterID src, BaseIndex address) |
| 1087 | { |
| 1088 | store64(src, address); |
| 1089 | } |
| 1090 | |
| 1091 | void storePtr(RegisterID src, void* address) |
| 1092 | { |
| 1093 | store64(src, address); |
| 1094 | } |
| 1095 | |
| 1096 | void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
| 1097 | { |
| 1098 | store64(TrustedImm64(imm), address); |
| 1099 | } |
| 1100 | |
| 1101 | void storePtr(TrustedImm32 imm, ImplicitAddress address) |
| 1102 | { |
| 1103 | store64(imm, address); |
| 1104 | } |
| 1105 | |
| 1106 | void storePtr(TrustedImmPtr imm, BaseIndex address) |
| 1107 | { |
| 1108 | store64(TrustedImm64(imm), address); |
| 1109 | } |
| 1110 | |
| 1111 | DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
| 1112 | { |
| 1113 | return store64WithAddressOffsetPatch(src, address); |
| 1114 | } |
| 1115 | |
| 1116 | void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
| 1117 | { |
| 1118 | compare64(cond, left, right, dest); |
| 1119 | } |
| 1120 | |
| 1121 | void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
| 1122 | { |
| 1123 | compare64(cond, left, right, dest); |
| 1124 | } |
| 1125 | |
| 1126 | void testPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) |
| 1127 | { |
| 1128 | test64(cond, reg, mask, dest); |
| 1129 | } |
| 1130 | |
| 1131 | void testPtr(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest) |
| 1132 | { |
| 1133 | test64(cond, reg, mask, dest); |
| 1134 | } |
| 1135 | |
| 1136 | Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
| 1137 | { |
| 1138 | return branch64(cond, left, right); |
| 1139 | } |
| 1140 | |
| 1141 | Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
| 1142 | { |
| 1143 | return branch64(cond, left, TrustedImm64(right)); |
| 1144 | } |
| 1145 | |
| 1146 | Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
| 1147 | { |
| 1148 | return branch64(cond, left, right); |
| 1149 | } |
| 1150 | |
| 1151 | Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
| 1152 | { |
| 1153 | return branch64(cond, left, right); |
| 1154 | } |
| 1155 | |
| 1156 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
| 1157 | { |
| 1158 | return branch64(cond, left, right); |
| 1159 | } |
| 1160 | |
| 1161 | Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
| 1162 | { |
| 1163 | return branch64(cond, left, TrustedImm64(right)); |
| 1164 | } |
| 1165 | |
| 1166 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
| 1167 | { |
| 1168 | return branchTest64(cond, reg, mask); |
| 1169 | } |
| 1170 | |
| 1171 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| 1172 | { |
| 1173 | return branchTest64(cond, reg, mask); |
| 1174 | } |
| 1175 | |
| 1176 | Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
| 1177 | { |
| 1178 | return branchTest64(cond, address, mask); |
| 1179 | } |
| 1180 | |
| 1181 | Jump branchTestPtr(ResultCondition cond, Address address, RegisterID reg) |
| 1182 | { |
| 1183 | return branchTest64(cond, address, reg); |
| 1184 | } |
| 1185 | |
| 1186 | Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
| 1187 | { |
| 1188 | return branchTest64(cond, address, mask); |
| 1189 | } |
| 1190 | |
| 1191 | Jump branchTestPtr(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
| 1192 | { |
| 1193 | return branchTest64(cond, address, mask); |
| 1194 | } |
| 1195 | |
| 1196 | Jump branchAddPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| 1197 | { |
| 1198 | return branchAdd64(cond, imm, dest); |
| 1199 | } |
| 1200 | |
| 1201 | Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| 1202 | { |
| 1203 | return branchAdd64(cond, src, dest); |
| 1204 | } |
| 1205 | |
| 1206 | Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| 1207 | { |
| 1208 | return branchSub64(cond, imm, dest); |
| 1209 | } |
| 1210 | |
| 1211 | Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| 1212 | { |
| 1213 | return branchSub64(cond, src, dest); |
| 1214 | } |
| 1215 | |
| 1216 | Jump branchSubPtr(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest) |
| 1217 | { |
| 1218 | return branchSub64(cond, src1, src2, dest); |
| 1219 | } |
| 1220 | |
| 1221 | using MacroAssemblerBase::and64; |
| 1222 | using MacroAssemblerBase::convertInt32ToDouble; |
| 1223 | using MacroAssemblerBase::store64; |
| 1224 | bool shouldBlindDouble(double value) |
| 1225 | { |
| 1226 | // Don't trust NaN or +/-Infinity |
| 1227 | if (!std::isfinite(value)) |
| 1228 | return shouldConsiderBlinding(); |
| 1229 | |
| 1230 | // Try to force normalisation, and check that there's no change |
| 1231 | // in the bit pattern |
| 1232 | if (bitwise_cast<uint64_t>(value * 1.0) != bitwise_cast<uint64_t>(value)) |
| 1233 | return shouldConsiderBlinding(); |
| 1234 | |
| 1235 | value = fabs(value); |
| 1236 | // Only allow a limited set of fractional components |
| 1237 | double scaledValue = value * 8; |
| 1238 | if (scaledValue / 8 != value) |
| 1239 | return shouldConsiderBlinding(); |
| 1240 | double frac = scaledValue - floor(scaledValue); |
| 1241 | if (frac != 0.0) |
| 1242 | return shouldConsiderBlinding(); |
| 1243 | |
| 1244 | return value > 0xff; |
| 1245 | } |
| 1246 | |
| 1247 | bool shouldBlindPointerForSpecificArch(uintptr_t value) |
| 1248 | { |
| 1249 | if (sizeof(void*) == 4) |
| 1250 | return shouldBlindForSpecificArch(static_cast<uint32_t>(value)); |
| 1251 | return shouldBlindForSpecificArch(static_cast<uint64_t>(value)); |
| 1252 | } |
| 1253 | |
| 1254 | bool shouldBlind(ImmPtr imm) |
| 1255 | { |
| 1256 | if (!canBlind()) |
| 1257 | return false; |
| 1258 | |
| 1259 | #if ENABLE(FORCED_JIT_BLINDING) |
| 1260 | UNUSED_PARAM(imm); |
| 1261 | // Debug always blind all constants, if only so we know |
| 1262 | // if we've broken blinding during patch development. |
| 1263 | return true; |
| 1264 | #endif |
| 1265 | |
| 1266 | // First off we'll special case common, "safe" values to avoid hurting |
| 1267 | // performance too much |
| 1268 | uint64_t value = imm.asTrustedImmPtr().asIntptr(); |
| 1269 | switch (value) { |
| 1270 | case 0xffff: |
| 1271 | case 0xffffff: |
| 1272 | case 0xffffffffL: |
| 1273 | case 0xffffffffffL: |
| 1274 | case 0xffffffffffffL: |
| 1275 | case 0xffffffffffffffL: |
| 1276 | case 0xffffffffffffffffL: |
| 1277 | return false; |
| 1278 | default: { |
| 1279 | if (value <= 0xff) |
| 1280 | return false; |
| 1281 | if (~value <= 0xff) |
| 1282 | return false; |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | if (!shouldConsiderBlinding()) |
| 1287 | return false; |
| 1288 | |
| 1289 | return shouldBlindPointerForSpecificArch(static_cast<uintptr_t>(value)); |
| 1290 | } |
| 1291 | |
| 1292 | uint8_t generateRotationSeed(size_t widthInBits) |
| 1293 | { |
| 1294 | // Generate the seed in [1, widthInBits - 1]. We should not generate widthInBits or 0 |
| 1295 | // since it leads to `<< widthInBits` or `>> widthInBits`, which cause undefined behaviors. |
| 1296 | return (random() % (widthInBits - 1)) + 1; |
| 1297 | } |
| 1298 | |
| 1299 | struct RotatedImmPtr { |
| 1300 | RotatedImmPtr(uintptr_t v1, uint8_t v2) |
| 1301 | : value(v1) |
| 1302 | , rotation(v2) |
| 1303 | { |
| 1304 | } |
| 1305 | TrustedImmPtr value; |
| 1306 | TrustedImm32 rotation; |
| 1307 | }; |
| 1308 | |
| 1309 | RotatedImmPtr rotationBlindConstant(ImmPtr imm) |
| 1310 | { |
| 1311 | uint8_t rotation = generateRotationSeed(sizeof(void*) * 8); |
| 1312 | uintptr_t value = imm.asTrustedImmPtr().asIntptr(); |
| 1313 | value = (value << rotation) | (value >> (sizeof(void*) * 8 - rotation)); |
| 1314 | return RotatedImmPtr(value, rotation); |
| 1315 | } |
| 1316 | |
| 1317 | void loadRotationBlindedConstant(RotatedImmPtr constant, RegisterID dest) |
| 1318 | { |
| 1319 | move(constant.value, dest); |
| 1320 | rotateRightPtr(constant.rotation, dest); |
| 1321 | } |
| 1322 | |
| 1323 | bool shouldBlind(Imm64 imm) |
| 1324 | { |
| 1325 | #if ENABLE(FORCED_JIT_BLINDING) |
| 1326 | UNUSED_PARAM(imm); |
| 1327 | // Debug always blind all constants, if only so we know |
| 1328 | // if we've broken blinding during patch development. |
| 1329 | return true; |
| 1330 | #endif |
| 1331 | |
| 1332 | // First off we'll special case common, "safe" values to avoid hurting |
| 1333 | // performance too much |
| 1334 | uint64_t value = imm.asTrustedImm64().m_value; |
| 1335 | switch (value) { |
| 1336 | case 0xffff: |
| 1337 | case 0xffffff: |
| 1338 | case 0xffffffffL: |
| 1339 | case 0xffffffffffL: |
| 1340 | case 0xffffffffffffL: |
| 1341 | case 0xffffffffffffffL: |
| 1342 | case 0xffffffffffffffffL: |
| 1343 | return false; |
| 1344 | default: { |
| 1345 | if (value <= 0xff) |
| 1346 | return false; |
| 1347 | if (~value <= 0xff) |
| 1348 | return false; |
| 1349 | |
| 1350 | JSValue jsValue = JSValue::decode(value); |
| 1351 | if (jsValue.isInt32()) |
| 1352 | return shouldBlind(Imm32(jsValue.asInt32())); |
| 1353 | if (jsValue.isDouble() && !shouldBlindDouble(jsValue.asDouble())) |
| 1354 | return false; |
| 1355 | |
| 1356 | if (!shouldBlindDouble(bitwise_cast<double>(value))) |
| 1357 | return false; |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | if (!shouldConsiderBlinding()) |
| 1362 | return false; |
| 1363 | |
| 1364 | return shouldBlindForSpecificArch(value); |
| 1365 | } |
| 1366 | |
| 1367 | struct RotatedImm64 { |
| 1368 | RotatedImm64(uint64_t v1, uint8_t v2) |
| 1369 | : value(v1) |
| 1370 | , rotation(v2) |
| 1371 | { |
| 1372 | } |
| 1373 | TrustedImm64 value; |
| 1374 | TrustedImm32 rotation; |
| 1375 | }; |
| 1376 | |
| 1377 | RotatedImm64 rotationBlindConstant(Imm64 imm) |
| 1378 | { |
| 1379 | uint8_t rotation = generateRotationSeed(sizeof(int64_t) * 8); |
| 1380 | uint64_t value = imm.asTrustedImm64().m_value; |
| 1381 | value = (value << rotation) | (value >> (sizeof(int64_t) * 8 - rotation)); |
| 1382 | return RotatedImm64(value, rotation); |
| 1383 | } |
| 1384 | |
| 1385 | void loadRotationBlindedConstant(RotatedImm64 constant, RegisterID dest) |
| 1386 | { |
| 1387 | move(constant.value, dest); |
| 1388 | rotateRight64(constant.rotation, dest); |
| 1389 | } |
| 1390 | |
| 1391 | void convertInt32ToDouble(Imm32 imm, FPRegisterID dest) |
| 1392 | { |
| 1393 | if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
| 1394 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
| 1395 | loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister); |
| 1396 | convertInt32ToDouble(scratchRegister, dest); |
| 1397 | } else |
| 1398 | convertInt32ToDouble(imm.asTrustedImm32(), dest); |
| 1399 | } |
| 1400 | |
| 1401 | void move(ImmPtr imm, RegisterID dest) |
| 1402 | { |
| 1403 | if (shouldBlind(imm)) |
| 1404 | loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
| 1405 | else |
| 1406 | move(imm.asTrustedImmPtr(), dest); |
| 1407 | } |
| 1408 | |
| 1409 | void move(Imm64 imm, RegisterID dest) |
| 1410 | { |
| 1411 | if (shouldBlind(imm)) |
| 1412 | loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
| 1413 | else |
| 1414 | move(imm.asTrustedImm64(), dest); |
| 1415 | } |
| 1416 | |
| 1417 | #if CPU(X86_64) || CPU(ARM64) |
| 1418 | void moveDouble(Imm64 imm, FPRegisterID dest) |
| 1419 | { |
| 1420 | move(imm, scratchRegister()); |
| 1421 | move64ToDouble(scratchRegister(), dest); |
| 1422 | } |
| 1423 | #endif |
| 1424 | |
| 1425 | void and64(Imm32 imm, RegisterID dest) |
| 1426 | { |
| 1427 | if (shouldBlind(imm)) { |
| 1428 | BlindedImm32 key = andBlindedConstant(imm); |
| 1429 | and64(key.value1, dest); |
| 1430 | and64(key.value2, dest); |
| 1431 | } else |
| 1432 | and64(imm.asTrustedImm32(), dest); |
| 1433 | } |
| 1434 | |
| 1435 | Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
| 1436 | { |
| 1437 | if (shouldBlind(right) && haveScratchRegisterForBlinding()) { |
| 1438 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
| 1439 | loadRotationBlindedConstant(rotationBlindConstant(right), scratchRegister); |
| 1440 | return branchPtr(cond, left, scratchRegister); |
| 1441 | } |
| 1442 | return branchPtr(cond, left, right.asTrustedImmPtr()); |
| 1443 | } |
| 1444 | |
| 1445 | void storePtr(ImmPtr imm, Address dest) |
| 1446 | { |
| 1447 | if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
| 1448 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
| 1449 | loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
| 1450 | storePtr(scratchRegister, dest); |
| 1451 | } else |
| 1452 | storePtr(imm.asTrustedImmPtr(), dest); |
| 1453 | } |
| 1454 | |
| 1455 | void store64(Imm64 imm, Address dest) |
| 1456 | { |
| 1457 | if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
| 1458 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
| 1459 | loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
| 1460 | store64(scratchRegister, dest); |
| 1461 | } else |
| 1462 | store64(imm.asTrustedImm64(), dest); |
| 1463 | } |
| 1464 | |
| 1465 | #endif // !CPU(X86_64) |
| 1466 | |
| 1467 | #if !CPU(X86) && !CPU(X86_64) && !CPU(ARM64) |
| 1468 | // We should implement this the right way eventually, but for now, it's fine because it arises so |
| 1469 | // infrequently. |
| 1470 | void compareDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest) |
| 1471 | { |
| 1472 | move(TrustedImm32(0), dest); |
| 1473 | Jump falseCase = branchDouble(invert(cond), left, right); |
| 1474 | move(TrustedImm32(1), dest); |
| 1475 | falseCase.link(this); |
| 1476 | } |
| 1477 | #endif |
| 1478 | |
| 1479 | void lea32(Address address, RegisterID dest) |
| 1480 | { |
| 1481 | add32(TrustedImm32(address.offset), address.base, dest); |
| 1482 | } |
| 1483 | |
| 1484 | #if CPU(X86_64) || CPU(ARM64) |
| 1485 | void lea64(Address address, RegisterID dest) |
| 1486 | { |
| 1487 | add64(TrustedImm32(address.offset), address.base, dest); |
| 1488 | } |
| 1489 | #endif // CPU(X86_64) || CPU(ARM64) |
| 1490 | |
| 1491 | bool shouldBlind(Imm32 imm) |
| 1492 | { |
| 1493 | #if ENABLE(FORCED_JIT_BLINDING) |
| 1494 | UNUSED_PARAM(imm); |
| 1495 | // Debug always blind all constants, if only so we know |
| 1496 | // if we've broken blinding during patch development. |
| 1497 | return true; |
| 1498 | #else // ENABLE(FORCED_JIT_BLINDING) |
| 1499 | |
| 1500 | // First off we'll special case common, "safe" values to avoid hurting |
| 1501 | // performance too much |
| 1502 | uint32_t value = imm.asTrustedImm32().m_value; |
| 1503 | switch (value) { |
| 1504 | case 0xffff: |
| 1505 | case 0xffffff: |
| 1506 | case 0xffffffff: |
| 1507 | return false; |
| 1508 | default: |
| 1509 | if (value <= 0xff) |
| 1510 | return false; |
| 1511 | if (~value <= 0xff) |
| 1512 | return false; |
| 1513 | } |
| 1514 | |
| 1515 | if (!shouldConsiderBlinding()) |
| 1516 | return false; |
| 1517 | |
| 1518 | return shouldBlindForSpecificArch(value); |
| 1519 | #endif // ENABLE(FORCED_JIT_BLINDING) |
| 1520 | } |
| 1521 | |
| 1522 | struct BlindedImm32 { |
| 1523 | BlindedImm32(int32_t v1, int32_t v2) |
| 1524 | : value1(v1) |
| 1525 | , value2(v2) |
| 1526 | { |
| 1527 | } |
| 1528 | TrustedImm32 value1; |
| 1529 | TrustedImm32 value2; |
| 1530 | }; |
| 1531 | |
| 1532 | uint32_t keyForConstant(uint32_t value, uint32_t& mask) |
| 1533 | { |
| 1534 | uint32_t key = random(); |
| 1535 | if (value <= 0xff) |
| 1536 | mask = 0xff; |
| 1537 | else if (value <= 0xffff) |
| 1538 | mask = 0xffff; |
| 1539 | else if (value <= 0xffffff) |
| 1540 | mask = 0xffffff; |
| 1541 | else |
| 1542 | mask = 0xffffffff; |
| 1543 | return key & mask; |
| 1544 | } |
| 1545 | |
| 1546 | uint32_t keyForConstant(uint32_t value) |
| 1547 | { |
| 1548 | uint32_t mask = 0; |
| 1549 | return keyForConstant(value, mask); |
| 1550 | } |
| 1551 | |
| 1552 | BlindedImm32 xorBlindConstant(Imm32 imm) |
| 1553 | { |
| 1554 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
| 1555 | uint32_t key = keyForConstant(baseValue); |
| 1556 | return BlindedImm32(baseValue ^ key, key); |
| 1557 | } |
| 1558 | |
| 1559 | BlindedImm32 additionBlindedConstant(Imm32 imm) |
| 1560 | { |
| 1561 | // The addition immediate may be used as a pointer offset. Keep aligned based on "imm". |
| 1562 | static const uint32_t maskTable[4] = { 0xfffffffc, 0xffffffff, 0xfffffffe, 0xffffffff }; |
| 1563 | |
| 1564 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
| 1565 | uint32_t key = keyForConstant(baseValue) & maskTable[baseValue & 3]; |
| 1566 | if (key > baseValue) |
| 1567 | key = key - baseValue; |
| 1568 | return BlindedImm32(baseValue - key, key); |
| 1569 | } |
| 1570 | |
| 1571 | BlindedImm32 andBlindedConstant(Imm32 imm) |
| 1572 | { |
| 1573 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
| 1574 | uint32_t mask = 0; |
| 1575 | uint32_t key = keyForConstant(baseValue, mask); |
| 1576 | ASSERT((baseValue & mask) == baseValue); |
| 1577 | return BlindedImm32(((baseValue & key) | ~key) & mask, ((baseValue & ~key) | key) & mask); |
| 1578 | } |
| 1579 | |
| 1580 | BlindedImm32 orBlindedConstant(Imm32 imm) |
| 1581 | { |
| 1582 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
| 1583 | uint32_t mask = 0; |
| 1584 | uint32_t key = keyForConstant(baseValue, mask); |
| 1585 | ASSERT((baseValue & mask) == baseValue); |
| 1586 | return BlindedImm32((baseValue & key) & mask, (baseValue & ~key) & mask); |
| 1587 | } |
| 1588 | |
| 1589 | void loadXorBlindedConstant(BlindedImm32 constant, RegisterID dest) |
| 1590 | { |
| 1591 | move(constant.value1, dest); |
| 1592 | xor32(constant.value2, dest); |
| 1593 | } |
| 1594 | |
| 1595 | void add32(Imm32 imm, RegisterID dest) |
| 1596 | { |
| 1597 | if (shouldBlind(imm)) { |
| 1598 | BlindedImm32 key = additionBlindedConstant(imm); |
| 1599 | add32(key.value1, dest); |
| 1600 | add32(key.value2, dest); |
| 1601 | } else |
| 1602 | add32(imm.asTrustedImm32(), dest); |
| 1603 | } |
| 1604 | |
| 1605 | void add32(Imm32 imm, RegisterID src, RegisterID dest) |
| 1606 | { |
| 1607 | if (shouldBlind(imm)) { |
| 1608 | BlindedImm32 key = additionBlindedConstant(imm); |
| 1609 | add32(key.value1, src, dest); |
| 1610 | add32(key.value2, dest); |
| 1611 | } else |
| 1612 | add32(imm.asTrustedImm32(), src, dest); |
| 1613 | } |
| 1614 | |
| 1615 | void addPtr(Imm32 imm, RegisterID dest) |
| 1616 | { |
| 1617 | if (shouldBlind(imm)) { |
| 1618 | BlindedImm32 key = additionBlindedConstant(imm); |
| 1619 | addPtr(key.value1, dest); |
| 1620 | addPtr(key.value2, dest); |
| 1621 | } else |
| 1622 | addPtr(imm.asTrustedImm32(), dest); |
| 1623 | } |
| 1624 | |
| 1625 | void mul32(Imm32 imm, RegisterID src, RegisterID dest) |
| 1626 | { |
| 1627 | if (shouldBlind(imm)) { |
| 1628 | if (src != dest || haveScratchRegisterForBlinding()) { |
| 1629 | if (src == dest) { |
| 1630 | move(src, scratchRegisterForBlinding()); |
| 1631 | src = scratchRegisterForBlinding(); |
| 1632 | } |
| 1633 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1634 | mul32(src, dest); |
| 1635 | return; |
| 1636 | } |
| 1637 | // If we don't have a scratch register available for use, we'll just |
| 1638 | // place a random number of nops. |
| 1639 | uint32_t nopCount = random() & 3; |
| 1640 | while (nopCount--) |
| 1641 | nop(); |
| 1642 | } |
| 1643 | mul32(imm.asTrustedImm32(), src, dest); |
| 1644 | } |
| 1645 | |
| 1646 | void and32(Imm32 imm, RegisterID dest) |
| 1647 | { |
| 1648 | if (shouldBlind(imm)) { |
| 1649 | BlindedImm32 key = andBlindedConstant(imm); |
| 1650 | and32(key.value1, dest); |
| 1651 | and32(key.value2, dest); |
| 1652 | } else |
| 1653 | and32(imm.asTrustedImm32(), dest); |
| 1654 | } |
| 1655 | |
| 1656 | void andPtr(Imm32 imm, RegisterID dest) |
| 1657 | { |
| 1658 | if (shouldBlind(imm)) { |
| 1659 | BlindedImm32 key = andBlindedConstant(imm); |
| 1660 | andPtr(key.value1, dest); |
| 1661 | andPtr(key.value2, dest); |
| 1662 | } else |
| 1663 | andPtr(imm.asTrustedImm32(), dest); |
| 1664 | } |
| 1665 | |
| 1666 | void and32(Imm32 imm, RegisterID src, RegisterID dest) |
| 1667 | { |
| 1668 | if (shouldBlind(imm)) { |
| 1669 | if (src == dest) |
| 1670 | return and32(imm.asTrustedImm32(), dest); |
| 1671 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1672 | and32(src, dest); |
| 1673 | } else |
| 1674 | and32(imm.asTrustedImm32(), src, dest); |
| 1675 | } |
| 1676 | |
| 1677 | void move(Imm32 imm, RegisterID dest) |
| 1678 | { |
| 1679 | if (shouldBlind(imm)) |
| 1680 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1681 | else |
| 1682 | move(imm.asTrustedImm32(), dest); |
| 1683 | } |
| 1684 | |
| 1685 | void or32(Imm32 imm, RegisterID src, RegisterID dest) |
| 1686 | { |
| 1687 | if (shouldBlind(imm)) { |
| 1688 | if (src == dest) |
| 1689 | return or32(imm, dest); |
| 1690 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1691 | or32(src, dest); |
| 1692 | } else |
| 1693 | or32(imm.asTrustedImm32(), src, dest); |
| 1694 | } |
| 1695 | |
| 1696 | void or32(Imm32 imm, RegisterID dest) |
| 1697 | { |
| 1698 | if (shouldBlind(imm)) { |
| 1699 | BlindedImm32 key = orBlindedConstant(imm); |
| 1700 | or32(key.value1, dest); |
| 1701 | or32(key.value2, dest); |
| 1702 | } else |
| 1703 | or32(imm.asTrustedImm32(), dest); |
| 1704 | } |
| 1705 | |
| 1706 | void poke(Imm32 value, int index = 0) |
| 1707 | { |
| 1708 | store32(value, addressForPoke(index)); |
| 1709 | } |
| 1710 | |
| 1711 | void poke(ImmPtr value, int index = 0) |
| 1712 | { |
| 1713 | storePtr(value, addressForPoke(index)); |
| 1714 | } |
| 1715 | |
| 1716 | #if CPU(X86_64) || CPU(ARM64) |
| 1717 | void poke(Imm64 value, int index = 0) |
| 1718 | { |
| 1719 | store64(value, addressForPoke(index)); |
| 1720 | } |
| 1721 | #endif // CPU(X86_64) |
| 1722 | |
| 1723 | void store32(Imm32 imm, Address dest) |
| 1724 | { |
| 1725 | if (shouldBlind(imm)) { |
| 1726 | #if CPU(X86) || CPU(X86_64) |
| 1727 | BlindedImm32 blind = xorBlindConstant(imm); |
| 1728 | store32(blind.value1, dest); |
| 1729 | xor32(blind.value2, dest); |
| 1730 | #else // CPU(X86) || CPU(X86_64) |
| 1731 | if (haveScratchRegisterForBlinding()) { |
| 1732 | loadXorBlindedConstant(xorBlindConstant(imm), scratchRegisterForBlinding()); |
| 1733 | store32(scratchRegisterForBlinding(), dest); |
| 1734 | } else { |
| 1735 | // If we don't have a scratch register available for use, we'll just |
| 1736 | // place a random number of nops. |
| 1737 | uint32_t nopCount = random() & 3; |
| 1738 | while (nopCount--) |
| 1739 | nop(); |
| 1740 | store32(imm.asTrustedImm32(), dest); |
| 1741 | } |
| 1742 | #endif // CPU(X86) || CPU(X86_64) |
| 1743 | } else |
| 1744 | store32(imm.asTrustedImm32(), dest); |
| 1745 | } |
| 1746 | |
| 1747 | void sub32(Imm32 imm, RegisterID dest) |
| 1748 | { |
| 1749 | if (shouldBlind(imm)) { |
| 1750 | BlindedImm32 key = additionBlindedConstant(imm); |
| 1751 | sub32(key.value1, dest); |
| 1752 | sub32(key.value2, dest); |
| 1753 | } else |
| 1754 | sub32(imm.asTrustedImm32(), dest); |
| 1755 | } |
| 1756 | |
| 1757 | void subPtr(Imm32 imm, RegisterID dest) |
| 1758 | { |
| 1759 | if (shouldBlind(imm)) { |
| 1760 | BlindedImm32 key = additionBlindedConstant(imm); |
| 1761 | subPtr(key.value1, dest); |
| 1762 | subPtr(key.value2, dest); |
| 1763 | } else |
| 1764 | subPtr(imm.asTrustedImm32(), dest); |
| 1765 | } |
| 1766 | |
| 1767 | void xor32(Imm32 imm, RegisterID src, RegisterID dest) |
| 1768 | { |
| 1769 | if (shouldBlind(imm)) { |
| 1770 | BlindedImm32 blind = xorBlindConstant(imm); |
| 1771 | xor32(blind.value1, src, dest); |
| 1772 | xor32(blind.value2, dest); |
| 1773 | } else |
| 1774 | xor32(imm.asTrustedImm32(), src, dest); |
| 1775 | } |
| 1776 | |
| 1777 | void xor32(Imm32 imm, RegisterID dest) |
| 1778 | { |
| 1779 | if (shouldBlind(imm)) { |
| 1780 | BlindedImm32 blind = xorBlindConstant(imm); |
| 1781 | xor32(blind.value1, dest); |
| 1782 | xor32(blind.value2, dest); |
| 1783 | } else |
| 1784 | xor32(imm.asTrustedImm32(), dest); |
| 1785 | } |
| 1786 | |
| 1787 | Jump branch32(RelationalCondition cond, RegisterID left, Imm32 right) |
| 1788 | { |
| 1789 | if (shouldBlind(right)) { |
| 1790 | if (haveScratchRegisterForBlinding()) { |
| 1791 | loadXorBlindedConstant(xorBlindConstant(right), scratchRegisterForBlinding()); |
| 1792 | return branch32(cond, left, scratchRegisterForBlinding()); |
| 1793 | } |
| 1794 | // If we don't have a scratch register available for use, we'll just |
| 1795 | // place a random number of nops. |
| 1796 | uint32_t nopCount = random() & 3; |
| 1797 | while (nopCount--) |
| 1798 | nop(); |
| 1799 | return branch32(cond, left, right.asTrustedImm32()); |
| 1800 | } |
| 1801 | |
| 1802 | return branch32(cond, left, right.asTrustedImm32()); |
| 1803 | } |
| 1804 | |
| 1805 | void compare32(RelationalCondition cond, RegisterID left, Imm32 right, RegisterID dest) |
| 1806 | { |
| 1807 | if (shouldBlind(right)) { |
| 1808 | if (left != dest || haveScratchRegisterForBlinding()) { |
| 1809 | RegisterID blindedConstantReg = dest; |
| 1810 | if (left == dest) |
| 1811 | blindedConstantReg = scratchRegisterForBlinding(); |
| 1812 | loadXorBlindedConstant(xorBlindConstant(right), blindedConstantReg); |
| 1813 | compare32(cond, left, blindedConstantReg, dest); |
| 1814 | return; |
| 1815 | } |
| 1816 | // If we don't have a scratch register available for use, we'll just |
| 1817 | // place a random number of nops. |
| 1818 | uint32_t nopCount = random() & 3; |
| 1819 | while (nopCount--) |
| 1820 | nop(); |
| 1821 | compare32(cond, left, right.asTrustedImm32(), dest); |
| 1822 | return; |
| 1823 | } |
| 1824 | |
| 1825 | compare32(cond, left, right.asTrustedImm32(), dest); |
| 1826 | } |
| 1827 | |
| 1828 | Jump branchAdd32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest) |
| 1829 | { |
| 1830 | if (shouldBlind(imm)) { |
| 1831 | if (src != dest || haveScratchRegisterForBlinding()) { |
| 1832 | if (src == dest) { |
| 1833 | move(src, scratchRegisterForBlinding()); |
| 1834 | src = scratchRegisterForBlinding(); |
| 1835 | } |
| 1836 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1837 | return branchAdd32(cond, src, dest); |
| 1838 | } |
| 1839 | // If we don't have a scratch register available for use, we'll just |
| 1840 | // place a random number of nops. |
| 1841 | uint32_t nopCount = random() & 3; |
| 1842 | while (nopCount--) |
| 1843 | nop(); |
| 1844 | } |
| 1845 | return branchAdd32(cond, src, imm.asTrustedImm32(), dest); |
| 1846 | } |
| 1847 | |
| 1848 | Jump branchMul32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest) |
| 1849 | { |
| 1850 | if (src == dest) |
| 1851 | ASSERT(haveScratchRegisterForBlinding()); |
| 1852 | |
| 1853 | if (shouldBlind(imm)) { |
| 1854 | if (src == dest) { |
| 1855 | move(src, scratchRegisterForBlinding()); |
| 1856 | src = scratchRegisterForBlinding(); |
| 1857 | } |
| 1858 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1859 | return branchMul32(cond, src, dest); |
| 1860 | } |
| 1861 | return branchMul32(cond, src, imm.asTrustedImm32(), dest); |
| 1862 | } |
| 1863 | |
| 1864 | // branchSub32 takes a scratch register as 32 bit platforms make use of this, |
| 1865 | // with src == dst, and on x86-32 we don't have a platform scratch register. |
| 1866 | Jump branchSub32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest, RegisterID scratch) |
| 1867 | { |
| 1868 | if (shouldBlind(imm)) { |
| 1869 | ASSERT(scratch != dest); |
| 1870 | ASSERT(scratch != src); |
| 1871 | loadXorBlindedConstant(xorBlindConstant(imm), scratch); |
| 1872 | return branchSub32(cond, src, scratch, dest); |
| 1873 | } |
| 1874 | return branchSub32(cond, src, imm.asTrustedImm32(), dest); |
| 1875 | } |
| 1876 | |
| 1877 | void lshift32(Imm32 imm, RegisterID dest) |
| 1878 | { |
| 1879 | lshift32(trustedImm32ForShift(imm), dest); |
| 1880 | } |
| 1881 | |
| 1882 | void lshift32(RegisterID src, Imm32 amount, RegisterID dest) |
| 1883 | { |
| 1884 | lshift32(src, trustedImm32ForShift(amount), dest); |
| 1885 | } |
| 1886 | |
| 1887 | void rshift32(Imm32 imm, RegisterID dest) |
| 1888 | { |
| 1889 | rshift32(trustedImm32ForShift(imm), dest); |
| 1890 | } |
| 1891 | |
| 1892 | void rshift32(RegisterID src, Imm32 amount, RegisterID dest) |
| 1893 | { |
| 1894 | rshift32(src, trustedImm32ForShift(amount), dest); |
| 1895 | } |
| 1896 | |
| 1897 | void urshift32(Imm32 imm, RegisterID dest) |
| 1898 | { |
| 1899 | urshift32(trustedImm32ForShift(imm), dest); |
| 1900 | } |
| 1901 | |
| 1902 | void urshift32(RegisterID src, Imm32 amount, RegisterID dest) |
| 1903 | { |
| 1904 | urshift32(src, trustedImm32ForShift(amount), dest); |
| 1905 | } |
| 1906 | |
| 1907 | void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| 1908 | { |
| 1909 | if (hasOneBitSet(imm.m_value)) { |
| 1910 | lshift32(src, TrustedImm32(getLSBSet(imm.m_value)), dest); |
| 1911 | return; |
| 1912 | } |
| 1913 | MacroAssemblerBase::mul32(imm, src, dest); |
| 1914 | } |
| 1915 | |
| 1916 | // If the result jump is taken that means the assert passed. |
| 1917 | void jitAssert(const WTF::ScopedLambda<Jump(void)>&); |
| 1918 | |
| 1919 | #if ENABLE(MASM_PROBE) |
| 1920 | // This function emits code to preserve the CPUState (e.g. registers), |
| 1921 | // call a user supplied probe function, and restore the CPUState before |
| 1922 | // continuing with other JIT generated code. |
| 1923 | // |
| 1924 | // The user supplied probe function will be called with a single pointer to |
| 1925 | // a Probe::State struct (defined below) which contains, among other things, |
| 1926 | // the preserved CPUState. This allows the user probe function to inspect |
| 1927 | // the CPUState at that point in the JIT generated code. |
| 1928 | // |
| 1929 | // If the user probe function alters the register values in the Probe::State, |
| 1930 | // the altered values will be loaded into the CPU registers when the probe |
| 1931 | // returns. |
| 1932 | // |
| 1933 | // The Probe::State is stack allocated and is only valid for the duration |
| 1934 | // of the call to the user probe function. |
| 1935 | // |
| 1936 | // The probe function may choose to move the stack pointer (in any direction). |
| 1937 | // To do this, the probe function needs to set the new sp value in the CPUState. |
| 1938 | // |
| 1939 | // The probe function may also choose to fill stack space with some values. |
| 1940 | // To do this, the probe function must first: |
| 1941 | // 1. Set the new sp value in the Probe::State's CPUState. |
| 1942 | // 2. Set the Probe::State's initializeStackFunction to a Probe::Function callback |
| 1943 | // which will do the work of filling in the stack values after the probe |
| 1944 | // trampoline has adjusted the machine stack pointer. |
| 1945 | // 3. Set the Probe::State's initializeStackArgs to any value that the client wants |
| 1946 | // to pass to the initializeStackFunction callback. |
| 1947 | // 4. Return from the probe function. |
| 1948 | // |
| 1949 | // Upon returning from the probe function, the probe trampoline will adjust the |
| 1950 | // the stack pointer based on the sp value in CPUState. If initializeStackFunction |
| 1951 | // is not set, the probe trampoline will restore registers and return to its caller. |
| 1952 | // |
| 1953 | // If initializeStackFunction is set, the trampoline will move the Probe::State |
| 1954 | // beyond the range of the stack pointer i.e. it will place the new Probe::State at |
| 1955 | // an address lower than where CPUState.sp() points. This ensures that the |
| 1956 | // Probe::State will not be trashed by the initializeStackFunction when it writes to |
| 1957 | // the stack. Then, the trampoline will call back to the initializeStackFunction |
| 1958 | // Probe::Function to let it fill in the stack values as desired. The |
| 1959 | // initializeStackFunction Probe::Function will be passed the moved Probe::State at |
| 1960 | // the new location. |
| 1961 | // |
| 1962 | // initializeStackFunction may now write to the stack at addresses greater or |
| 1963 | // equal to CPUState.sp(), but not below that. initializeStackFunction is also |
| 1964 | // not allowed to change CPUState.sp(). If the initializeStackFunction does not |
| 1965 | // abide by these rules, then behavior is undefined, and bad things may happen. |
| 1966 | // |
| 1967 | // Note: this version of probe() should be implemented by the target specific |
| 1968 | // MacroAssembler. |
| 1969 | void probe(Probe::Function, void* arg); |
| 1970 | |
| 1971 | JS_EXPORT_PRIVATE void probe(Function<void(Probe::Context&)>); |
| 1972 | |
| 1973 | // Let's you print from your JIT generated code. |
| 1974 | // See comments in MacroAssemblerPrinter.h for examples of how to use this. |
| 1975 | template<typename... Arguments> |
| 1976 | void print(Arguments&&... args); |
| 1977 | |
| 1978 | void print(Printer::PrintRecordList*); |
| 1979 | #endif // ENABLE(MASM_PROBE) |
| 1980 | }; |
| 1981 | |
| 1982 | } // namespace JSC |
| 1983 | |
| 1984 | namespace WTF { |
| 1985 | |
| 1986 | class PrintStream; |
| 1987 | |
| 1988 | void printInternal(PrintStream&, JSC::MacroAssembler::RelationalCondition); |
| 1989 | void printInternal(PrintStream&, JSC::MacroAssembler::ResultCondition); |
| 1990 | void printInternal(PrintStream&, JSC::MacroAssembler::DoubleCondition); |
| 1991 | |
| 1992 | } // namespace WTF |
| 1993 | |
| 1994 | #else // ENABLE(ASSEMBLER) |
| 1995 | |
| 1996 | namespace JSC { |
| 1997 | |
| 1998 | // If there is no assembler for this platform, at least allow code to make references to |
| 1999 | // some of the things it would otherwise define, albeit without giving that code any way |
| 2000 | // of doing anything useful. |
| 2001 | class MacroAssembler { |
| 2002 | private: |
| 2003 | MacroAssembler() { } |
| 2004 | |
| 2005 | public: |
| 2006 | |
| 2007 | enum RegisterID : int8_t { NoRegister, InvalidGPRReg = -1 }; |
| 2008 | enum FPRegisterID : int8_t { NoFPRegister, InvalidFPRReg = -1 }; |
| 2009 | }; |
| 2010 | |
| 2011 | } // namespace JSC |
| 2012 | |
| 2013 | #endif // ENABLE(ASSEMBLER) |
| 2014 | |