| 1 | /* |
| 2 | * Copyright (C) 2012 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "RenderMultiColumnSet.h" |
| 28 | |
| 29 | #include "FrameView.h" |
| 30 | #include "HitTestResult.h" |
| 31 | #include "PaintInfo.h" |
| 32 | #include "RenderBoxFragmentInfo.h" |
| 33 | #include "RenderLayer.h" |
| 34 | #include "RenderMultiColumnFlow.h" |
| 35 | #include "RenderMultiColumnSpannerPlaceholder.h" |
| 36 | #include "RenderView.h" |
| 37 | #include <wtf/IsoMallocInlines.h> |
| 38 | |
| 39 | namespace WebCore { |
| 40 | |
| 41 | WTF_MAKE_ISO_ALLOCATED_IMPL(RenderMultiColumnSet); |
| 42 | |
| 43 | RenderMultiColumnSet::RenderMultiColumnSet(RenderFragmentedFlow& fragmentedFlow, RenderStyle&& style) |
| 44 | : RenderFragmentContainerSet(fragmentedFlow.document(), WTFMove(style), fragmentedFlow) |
| 45 | , m_computedColumnCount(1) |
| 46 | , m_computedColumnWidth(0) |
| 47 | , m_computedColumnHeight(0) |
| 48 | , m_availableColumnHeight(0) |
| 49 | , m_columnHeightComputed(false) |
| 50 | , m_maxColumnHeight(RenderFragmentedFlow::maxLogicalHeight()) |
| 51 | , m_minSpaceShortage(RenderFragmentedFlow::maxLogicalHeight()) |
| 52 | , m_minimumColumnHeight(0) |
| 53 | { |
| 54 | } |
| 55 | |
| 56 | RenderMultiColumnSet* RenderMultiColumnSet::nextSiblingMultiColumnSet() const |
| 57 | { |
| 58 | for (RenderObject* sibling = nextSibling(); sibling; sibling = sibling->nextSibling()) { |
| 59 | if (is<RenderMultiColumnSet>(*sibling)) |
| 60 | return downcast<RenderMultiColumnSet>(sibling); |
| 61 | } |
| 62 | return nullptr; |
| 63 | } |
| 64 | |
| 65 | RenderMultiColumnSet* RenderMultiColumnSet::previousSiblingMultiColumnSet() const |
| 66 | { |
| 67 | for (RenderObject* sibling = previousSibling(); sibling; sibling = sibling->previousSibling()) { |
| 68 | if (is<RenderMultiColumnSet>(*sibling)) |
| 69 | return downcast<RenderMultiColumnSet>(sibling); |
| 70 | } |
| 71 | return nullptr; |
| 72 | } |
| 73 | |
| 74 | RenderObject* RenderMultiColumnSet::firstRendererInFragmentedFlow() const |
| 75 | { |
| 76 | if (RenderBox* sibling = RenderMultiColumnFlow::previousColumnSetOrSpannerSiblingOf(this)) { |
| 77 | // Adjacent sets should not occur. Currently we would have no way of figuring out what each |
| 78 | // of them contains then. |
| 79 | ASSERT(!sibling->isRenderMultiColumnSet()); |
| 80 | if (RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlow()->findColumnSpannerPlaceholder(sibling)) |
| 81 | return placeholder->nextInPreOrderAfterChildren(); |
| 82 | ASSERT_NOT_REACHED(); |
| 83 | } |
| 84 | return fragmentedFlow()->firstChild(); |
| 85 | } |
| 86 | |
| 87 | RenderObject* RenderMultiColumnSet::lastRendererInFragmentedFlow() const |
| 88 | { |
| 89 | if (RenderBox* sibling = RenderMultiColumnFlow::nextColumnSetOrSpannerSiblingOf(this)) { |
| 90 | // Adjacent sets should not occur. Currently we would have no way of figuring out what each |
| 91 | // of them contains then. |
| 92 | ASSERT(!sibling->isRenderMultiColumnSet()); |
| 93 | if (RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlow()->findColumnSpannerPlaceholder(sibling)) |
| 94 | return placeholder->previousInPreOrder(); |
| 95 | ASSERT_NOT_REACHED(); |
| 96 | } |
| 97 | return fragmentedFlow()->lastLeafChild(); |
| 98 | } |
| 99 | |
| 100 | static bool precedesRenderer(const RenderObject* renderer, const RenderObject* boundary) |
| 101 | { |
| 102 | for (; renderer; renderer = renderer->nextInPreOrder()) { |
| 103 | if (renderer == boundary) |
| 104 | return true; |
| 105 | } |
| 106 | return false; |
| 107 | } |
| 108 | |
| 109 | bool RenderMultiColumnSet::containsRendererInFragmentedFlow(const RenderObject& renderer) const |
| 110 | { |
| 111 | if (!previousSiblingMultiColumnSet() && !nextSiblingMultiColumnSet()) { |
| 112 | // There is only one set. This is easy, then. |
| 113 | return renderer.isDescendantOf(m_fragmentedFlow); |
| 114 | } |
| 115 | |
| 116 | RenderObject* firstRenderer = firstRendererInFragmentedFlow(); |
| 117 | RenderObject* lastRenderer = lastRendererInFragmentedFlow(); |
| 118 | ASSERT(firstRenderer); |
| 119 | ASSERT(lastRenderer); |
| 120 | |
| 121 | // This is SLOW! But luckily very uncommon. |
| 122 | return precedesRenderer(firstRenderer, &renderer) && precedesRenderer(&renderer, lastRenderer); |
| 123 | } |
| 124 | |
| 125 | void RenderMultiColumnSet::setLogicalTopInFragmentedFlow(LayoutUnit logicalTop) |
| 126 | { |
| 127 | LayoutRect rect = fragmentedFlowPortionRect(); |
| 128 | if (isHorizontalWritingMode()) |
| 129 | rect.setY(logicalTop); |
| 130 | else |
| 131 | rect.setX(logicalTop); |
| 132 | setFragmentedFlowPortionRect(rect); |
| 133 | } |
| 134 | |
| 135 | void RenderMultiColumnSet::setLogicalBottomInFragmentedFlow(LayoutUnit logicalBottom) |
| 136 | { |
| 137 | LayoutRect rect = fragmentedFlowPortionRect(); |
| 138 | if (isHorizontalWritingMode()) |
| 139 | rect.shiftMaxYEdgeTo(logicalBottom); |
| 140 | else |
| 141 | rect.shiftMaxXEdgeTo(logicalBottom); |
| 142 | setFragmentedFlowPortionRect(rect); |
| 143 | } |
| 144 | |
| 145 | LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const |
| 146 | { |
| 147 | RenderBlockFlow& multicolBlock = downcast<RenderBlockFlow>(*parent()); |
| 148 | LayoutUnit contentLogicalTop = logicalTop() - multicolBlock.borderAndPaddingBefore(); |
| 149 | |
| 150 | height -= contentLogicalTop; |
| 151 | return std::max(height, 1_lu); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created. |
| 152 | } |
| 153 | |
| 154 | LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const |
| 155 | { |
| 156 | unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns); |
| 157 | return logicalTopInFragmentedFlow() + columnIndex * computedColumnHeight(); |
| 158 | } |
| 159 | |
| 160 | void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight) |
| 161 | { |
| 162 | m_computedColumnHeight = newHeight; |
| 163 | if (m_computedColumnHeight > m_maxColumnHeight) |
| 164 | m_computedColumnHeight = m_maxColumnHeight; |
| 165 | |
| 166 | // FIXME: The available column height is not the same as the constrained height specified |
| 167 | // by the pagination API. The column set in this case is allowed to be bigger than the |
| 168 | // height of a single column. We cache available column height in order to use it |
| 169 | // in computeLogicalHeight later. This is pretty gross, and maybe there's a better way |
| 170 | // to formalize the idea of clamped column heights without having a view dependency |
| 171 | // here. |
| 172 | m_availableColumnHeight = m_computedColumnHeight; |
| 173 | if (multiColumnFlow() && !multiColumnFlow()->progressionIsInline() && parent()->isRenderView()) { |
| 174 | int pageLength = view().frameView().pagination().pageLength; |
| 175 | if (pageLength) |
| 176 | m_computedColumnHeight = pageLength; |
| 177 | } |
| 178 | |
| 179 | m_columnHeightComputed = true; |
| 180 | |
| 181 | // FIXME: the height may also be affected by the enclosing pagination context, if any. |
| 182 | } |
| 183 | |
| 184 | unsigned RenderMultiColumnSet::findRunWithTallestColumns() const |
| 185 | { |
| 186 | unsigned indexWithLargestHeight = 0; |
| 187 | LayoutUnit largestHeight; |
| 188 | LayoutUnit previousOffset; |
| 189 | size_t runCount = m_contentRuns.size(); |
| 190 | ASSERT(runCount); |
| 191 | for (size_t i = 0; i < runCount; i++) { |
| 192 | const ContentRun& run = m_contentRuns[i]; |
| 193 | LayoutUnit height = run.columnLogicalHeight(previousOffset); |
| 194 | if (largestHeight < height) { |
| 195 | largestHeight = height; |
| 196 | indexWithLargestHeight = i; |
| 197 | } |
| 198 | previousOffset = run.breakOffset(); |
| 199 | } |
| 200 | return indexWithLargestHeight; |
| 201 | } |
| 202 | |
| 203 | void RenderMultiColumnSet::distributeImplicitBreaks() |
| 204 | { |
| 205 | #ifndef NDEBUG |
| 206 | // There should be no implicit breaks assumed at this point. |
| 207 | for (unsigned i = 0; i < forcedBreaksCount(); i++) |
| 208 | ASSERT(!m_contentRuns[i].assumedImplicitBreaks()); |
| 209 | #endif // NDEBUG |
| 210 | |
| 211 | // Insert a final content run to encompass all content. This will include overflow if this is |
| 212 | // the last set. |
| 213 | addForcedBreak(logicalBottomInFragmentedFlow()); |
| 214 | unsigned breakCount = forcedBreaksCount(); |
| 215 | |
| 216 | // If there is room for more breaks (to reach the used value of column-count), imagine that we |
| 217 | // insert implicit breaks at suitable locations. At any given time, the content run with the |
| 218 | // currently tallest columns will get another implicit break "inserted", which will increase its |
| 219 | // column count by one and shrink its columns' height. Repeat until we have the desired total |
| 220 | // number of breaks. The largest column height among the runs will then be the initial column |
| 221 | // height for the balancer to use. |
| 222 | while (breakCount < m_computedColumnCount) { |
| 223 | unsigned index = findRunWithTallestColumns(); |
| 224 | m_contentRuns[index].assumeAnotherImplicitBreak(); |
| 225 | breakCount++; |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | LayoutUnit RenderMultiColumnSet::calculateBalancedHeight(bool initial) const |
| 230 | { |
| 231 | if (initial) { |
| 232 | // Start with the lowest imaginable column height. |
| 233 | unsigned index = findRunWithTallestColumns(); |
| 234 | LayoutUnit startOffset = index > 0 ? m_contentRuns[index - 1].breakOffset() : logicalTopInFragmentedFlow(); |
| 235 | return std::max<LayoutUnit>(m_contentRuns[index].columnLogicalHeight(startOffset), m_minimumColumnHeight); |
| 236 | } |
| 237 | |
| 238 | if (columnCount() <= computedColumnCount()) { |
| 239 | // With the current column height, the content fits without creating overflowing columns. We're done. |
| 240 | return m_computedColumnHeight; |
| 241 | } |
| 242 | |
| 243 | if (forcedBreaksCount() >= computedColumnCount()) { |
| 244 | // Too many forced breaks to allow any implicit breaks. Initial balancing should already |
| 245 | // have set a good height. There's nothing more we should do. |
| 246 | return m_computedColumnHeight; |
| 247 | } |
| 248 | |
| 249 | // If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest |
| 250 | // amount of space shortage found during layout. |
| 251 | |
| 252 | ASSERT(m_minSpaceShortage > 0); // We should never _shrink_ the height! |
| 253 | // ASSERT(m_minSpaceShortage != RenderFragmentedFlow::maxLogicalHeight()); // If this happens, we probably have a bug. |
| 254 | if (m_minSpaceShortage == RenderFragmentedFlow::maxLogicalHeight()) |
| 255 | return m_computedColumnHeight; // So bail out rather than looping infinitely. |
| 256 | |
| 257 | return m_computedColumnHeight + m_minSpaceShortage; |
| 258 | } |
| 259 | |
| 260 | void RenderMultiColumnSet::clearForcedBreaks() |
| 261 | { |
| 262 | m_contentRuns.clear(); |
| 263 | } |
| 264 | |
| 265 | void RenderMultiColumnSet::addForcedBreak(LayoutUnit offsetFromFirstPage) |
| 266 | { |
| 267 | if (!requiresBalancing()) |
| 268 | return; |
| 269 | if (!m_contentRuns.isEmpty() && offsetFromFirstPage <= m_contentRuns.last().breakOffset()) |
| 270 | return; |
| 271 | // Append another item as long as we haven't exceeded used column count. What ends up in the |
| 272 | // overflow area shouldn't affect column balancing. |
| 273 | if (m_contentRuns.size() < m_computedColumnCount) |
| 274 | m_contentRuns.append(ContentRun(offsetFromFirstPage)); |
| 275 | } |
| 276 | |
| 277 | bool RenderMultiColumnSet::recalculateColumnHeight(bool initial) |
| 278 | { |
| 279 | LayoutUnit oldColumnHeight = m_computedColumnHeight; |
| 280 | if (requiresBalancing()) { |
| 281 | if (initial) |
| 282 | distributeImplicitBreaks(); |
| 283 | LayoutUnit newColumnHeight = calculateBalancedHeight(initial); |
| 284 | setAndConstrainColumnHeight(newColumnHeight); |
| 285 | // After having calculated an initial column height, the multicol container typically needs at |
| 286 | // least one more layout pass with a new column height, but if a height was specified, we only |
| 287 | // need to do this if we think that we need less space than specified. Conversely, if we |
| 288 | // determined that the columns need to be as tall as the specified height of the container, we |
| 289 | // have already laid it out correctly, and there's no need for another pass. |
| 290 | } else { |
| 291 | // The position of the column set may have changed, in which case height available for |
| 292 | // columns may have changed as well. |
| 293 | setAndConstrainColumnHeight(m_computedColumnHeight); |
| 294 | } |
| 295 | if (m_computedColumnHeight == oldColumnHeight) |
| 296 | return false; // No change. We're done. |
| 297 | |
| 298 | m_minSpaceShortage = RenderFragmentedFlow::maxLogicalHeight(); |
| 299 | return true; // Need another pass. |
| 300 | } |
| 301 | |
| 302 | void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage) |
| 303 | { |
| 304 | if (spaceShortage >= m_minSpaceShortage) |
| 305 | return; |
| 306 | |
| 307 | // The space shortage is what we use as our stretch amount. We need a positive number here in |
| 308 | // order to get anywhere. Some lines actually have zero height. Ignore them. |
| 309 | if (spaceShortage > 0) |
| 310 | m_minSpaceShortage = spaceShortage; |
| 311 | } |
| 312 | |
| 313 | void RenderMultiColumnSet::updateLogicalWidth() |
| 314 | { |
| 315 | setComputedColumnWidthAndCount(multiColumnFlow()->columnWidth(), multiColumnFlow()->columnCount()); // FIXME: This will eventually vary if we are contained inside fragments. |
| 316 | |
| 317 | // FIXME: When we add fragments support, we'll start it off at the width of the multi-column |
| 318 | // block in that particular fragment. |
| 319 | setLogicalWidth(multiColumnBlockFlow()->contentLogicalWidth()); |
| 320 | } |
| 321 | |
| 322 | bool RenderMultiColumnSet::requiresBalancing() const |
| 323 | { |
| 324 | if (!multiColumnFlow()->progressionIsInline()) |
| 325 | return false; |
| 326 | |
| 327 | if (RenderBox* next = RenderMultiColumnFlow::nextColumnSetOrSpannerSiblingOf(this)) { |
| 328 | if (!next->isRenderMultiColumnSet() && !next->isLegend()) { |
| 329 | // If we're followed by a spanner, we need to balance. |
| 330 | ASSERT(multiColumnFlow()->findColumnSpannerPlaceholder(next)); |
| 331 | return true; |
| 332 | } |
| 333 | } |
| 334 | RenderBlockFlow* container = multiColumnBlockFlow(); |
| 335 | if (container->style().columnFill() == ColumnFill::Balance) |
| 336 | return true; |
| 337 | return !multiColumnFlow()->columnHeightAvailable(); |
| 338 | } |
| 339 | |
| 340 | void RenderMultiColumnSet::prepareForLayout(bool initial) |
| 341 | { |
| 342 | // Guess box logical top. This might eliminate the need for another layout pass. |
| 343 | if (RenderBox* previous = RenderMultiColumnFlow::previousColumnSetOrSpannerSiblingOf(this)) |
| 344 | setLogicalTop(previous->logicalBottom() + previous->marginAfter()); |
| 345 | else |
| 346 | setLogicalTop(multiColumnBlockFlow()->borderAndPaddingBefore()); |
| 347 | |
| 348 | if (initial) |
| 349 | m_maxColumnHeight = calculateMaxColumnHeight(); |
| 350 | if (requiresBalancing()) { |
| 351 | if (initial) { |
| 352 | m_computedColumnHeight = 0; |
| 353 | m_availableColumnHeight = 0; |
| 354 | m_columnHeightComputed = false; |
| 355 | } |
| 356 | } else |
| 357 | setAndConstrainColumnHeight(heightAdjustedForSetOffset(multiColumnFlow()->columnHeightAvailable())); |
| 358 | |
| 359 | // Set box width. |
| 360 | updateLogicalWidth(); |
| 361 | |
| 362 | // Any breaks will be re-inserted during layout, so get rid of what we already have. |
| 363 | clearForcedBreaks(); |
| 364 | |
| 365 | // Nuke previously stored minimum column height. Contents may have changed for all we know. |
| 366 | m_minimumColumnHeight = 0; |
| 367 | |
| 368 | // Start with "infinite" flow thread portion height until height is known. |
| 369 | setLogicalBottomInFragmentedFlow(RenderFragmentedFlow::maxLogicalHeight()); |
| 370 | |
| 371 | setNeedsLayout(MarkOnlyThis); |
| 372 | } |
| 373 | |
| 374 | void RenderMultiColumnSet::beginFlow(RenderBlock* container) |
| 375 | { |
| 376 | RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow(); |
| 377 | |
| 378 | // At this point layout is exactly at the beginning of this set. Store block offset from flow |
| 379 | // thread start. |
| 380 | LayoutUnit logicalTopInFragmentedFlow = fragmentedFlow->offsetFromLogicalTopOfFirstFragment(container) + container->logicalHeight(); |
| 381 | setLogicalTopInFragmentedFlow(logicalTopInFragmentedFlow); |
| 382 | } |
| 383 | |
| 384 | void RenderMultiColumnSet::endFlow(RenderBlock* container, LayoutUnit bottomInContainer) |
| 385 | { |
| 386 | RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow(); |
| 387 | |
| 388 | // At this point layout is exactly at the end of this set. Store block offset from flow thread |
| 389 | // start. Also note that a new column height may have affected the height used in the flow |
| 390 | // thread (because of struts), which may affect the number of columns. So we also need to update |
| 391 | // the flow thread portion height in order to be able to calculate actual column-count. |
| 392 | LayoutUnit logicalBottomInFragmentedFlow = fragmentedFlow->offsetFromLogicalTopOfFirstFragment(container) + bottomInContainer; |
| 393 | setLogicalBottomInFragmentedFlow(logicalBottomInFragmentedFlow); |
| 394 | container->setLogicalHeight(bottomInContainer); |
| 395 | } |
| 396 | |
| 397 | void RenderMultiColumnSet::layout() |
| 398 | { |
| 399 | RenderBlockFlow::layout(); |
| 400 | |
| 401 | // At this point the logical top and bottom of the column set are known. Update maximum column |
| 402 | // height (multicol height may be constrained). |
| 403 | m_maxColumnHeight = calculateMaxColumnHeight(); |
| 404 | |
| 405 | if (!nextSiblingMultiColumnSet()) { |
| 406 | // This is the last set, i.e. the last fragment. Seize the opportunity to validate them. |
| 407 | multiColumnFlow()->validateFragments(); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | RenderBox::LogicalExtentComputedValues RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop) const |
| 412 | { |
| 413 | return { m_availableColumnHeight, logicalTop, ComputedMarginValues() }; |
| 414 | } |
| 415 | |
| 416 | LayoutUnit RenderMultiColumnSet::calculateMaxColumnHeight() const |
| 417 | { |
| 418 | RenderBlockFlow* multicolBlock = multiColumnBlockFlow(); |
| 419 | const RenderStyle& multicolStyle = multicolBlock->style(); |
| 420 | LayoutUnit availableHeight = multiColumnFlow()->columnHeightAvailable(); |
| 421 | LayoutUnit maxColumnHeight = availableHeight ? availableHeight : RenderFragmentedFlow::maxLogicalHeight(); |
| 422 | if (!multicolStyle.logicalMaxHeight().isUndefined()) |
| 423 | maxColumnHeight = std::min(maxColumnHeight, multicolBlock->computeContentLogicalHeight(MaxSize, multicolStyle.logicalMaxHeight(), WTF::nullopt).valueOr(maxColumnHeight)); |
| 424 | return heightAdjustedForSetOffset(maxColumnHeight); |
| 425 | } |
| 426 | |
| 427 | LayoutUnit RenderMultiColumnSet::columnGap() const |
| 428 | { |
| 429 | // FIXME: Eventually we will cache the column gap when the widths of columns start varying, but for now we just |
| 430 | // go to the parent block to get the gap. |
| 431 | RenderBlockFlow& parentBlock = downcast<RenderBlockFlow>(*parent()); |
| 432 | if (parentBlock.style().columnGap().isNormal()) |
| 433 | return parentBlock.style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins. |
| 434 | return valueForLength(parentBlock.style().columnGap().length(), parentBlock.availableLogicalWidth()); |
| 435 | } |
| 436 | |
| 437 | unsigned RenderMultiColumnSet::columnCount() const |
| 438 | { |
| 439 | // We must always return a value of 1 or greater. Column count = 0 is a meaningless situation, |
| 440 | // and will confuse and cause problems in other parts of the code. |
| 441 | if (!computedColumnHeight()) |
| 442 | return 1; |
| 443 | |
| 444 | // Our portion rect determines our column count. We have as many columns as needed to fit all the content. |
| 445 | LayoutUnit logicalHeightInColumns = fragmentedFlow()->isHorizontalWritingMode() ? fragmentedFlowPortionRect().height() : fragmentedFlowPortionRect().width(); |
| 446 | if (!logicalHeightInColumns) |
| 447 | return 1; |
| 448 | |
| 449 | unsigned count = ceil(static_cast<float>(logicalHeightInColumns) / computedColumnHeight()); |
| 450 | ASSERT(count >= 1); |
| 451 | return count; |
| 452 | } |
| 453 | |
| 454 | LayoutUnit RenderMultiColumnSet::columnLogicalLeft(unsigned index) const |
| 455 | { |
| 456 | LayoutUnit colLogicalWidth = computedColumnWidth(); |
| 457 | LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft(); |
| 458 | LayoutUnit colGap = columnGap(); |
| 459 | |
| 460 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| 461 | bool progressionInline = multiColumnFlow()->progressionIsInline(); |
| 462 | |
| 463 | if (progressionInline) { |
| 464 | if (style().isLeftToRightDirection() ^ progressionReversed) |
| 465 | colLogicalLeft += index * (colLogicalWidth + colGap); |
| 466 | else |
| 467 | colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap); |
| 468 | } |
| 469 | |
| 470 | return colLogicalLeft; |
| 471 | } |
| 472 | |
| 473 | LayoutUnit RenderMultiColumnSet::columnLogicalTop(unsigned index) const |
| 474 | { |
| 475 | LayoutUnit colLogicalHeight = computedColumnHeight(); |
| 476 | LayoutUnit colLogicalTop = borderAndPaddingBefore(); |
| 477 | LayoutUnit colGap = columnGap(); |
| 478 | |
| 479 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| 480 | bool progressionInline = multiColumnFlow()->progressionIsInline(); |
| 481 | |
| 482 | if (!progressionInline) { |
| 483 | if (!progressionReversed) |
| 484 | colLogicalTop += index * (colLogicalHeight + colGap); |
| 485 | else |
| 486 | colLogicalTop += contentLogicalHeight() - colLogicalHeight - index * (colLogicalHeight + colGap); |
| 487 | } |
| 488 | |
| 489 | return colLogicalTop; |
| 490 | } |
| 491 | |
| 492 | LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const |
| 493 | { |
| 494 | LayoutUnit colLogicalWidth = computedColumnWidth(); |
| 495 | LayoutUnit colLogicalHeight = computedColumnHeight(); |
| 496 | |
| 497 | if (isHorizontalWritingMode()) |
| 498 | return LayoutRect(columnLogicalLeft(index), columnLogicalTop(index), colLogicalWidth, colLogicalHeight); |
| 499 | return LayoutRect(columnLogicalTop(index), columnLogicalLeft(index), colLogicalHeight, colLogicalWidth); |
| 500 | } |
| 501 | |
| 502 | unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const |
| 503 | { |
| 504 | LayoutRect portionRect(fragmentedFlowPortionRect()); |
| 505 | |
| 506 | // Handle the offset being out of range. |
| 507 | LayoutUnit fragmentedFlowLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x(); |
| 508 | if (offset < fragmentedFlowLogicalTop) |
| 509 | return 0; |
| 510 | // If we're laying out right now, we cannot constrain against some logical bottom, since it |
| 511 | // isn't known yet. Otherwise, just return the last column if we're past the logical bottom. |
| 512 | if (mode == ClampToExistingColumns) { |
| 513 | LayoutUnit fragmentedFlowLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX(); |
| 514 | if (offset >= fragmentedFlowLogicalBottom) |
| 515 | return columnCount() - 1; |
| 516 | } |
| 517 | |
| 518 | // Sometimes computedColumnHeight() is 0 here: see https://bugs.webkit.org/show_bug.cgi?id=132884 |
| 519 | if (!computedColumnHeight()) |
| 520 | return 0; |
| 521 | |
| 522 | // Just divide by the column height to determine the correct column. |
| 523 | return static_cast<float>(offset - fragmentedFlowLogicalTop) / computedColumnHeight(); |
| 524 | } |
| 525 | |
| 526 | LayoutRect RenderMultiColumnSet::fragmentedFlowPortionRectAt(unsigned index) const |
| 527 | { |
| 528 | LayoutRect portionRect = fragmentedFlowPortionRect(); |
| 529 | if (isHorizontalWritingMode()) |
| 530 | portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight()); |
| 531 | else |
| 532 | portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height()); |
| 533 | return portionRect; |
| 534 | } |
| 535 | |
| 536 | LayoutRect RenderMultiColumnSet::fragmentedFlowPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap) |
| 537 | { |
| 538 | // This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are |
| 539 | // unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column |
| 540 | // gap along interior edges. |
| 541 | // |
| 542 | // In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of |
| 543 | // the last column. This applies only to the true first column and last column across all column sets. |
| 544 | // |
| 545 | // FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting |
| 546 | // mode that understands not to paint contents from a previous column in the overflow area of a following column. |
| 547 | // This problem applies to fragments and pages as well and is not unique to columns. |
| 548 | |
| 549 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| 550 | |
| 551 | bool isFirstColumn = !index; |
| 552 | bool isLastColumn = index == colCount - 1; |
| 553 | bool isLeftmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isFirstColumn : isLastColumn; |
| 554 | bool isRightmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isLastColumn : isFirstColumn; |
| 555 | |
| 556 | // Calculate the overflow rectangle, based on the flow thread's, clipped at column logical |
| 557 | // top/bottom unless it's the first/last column. |
| 558 | LayoutRect overflowRect = overflowRectForFragmentedFlowPortion(portionRect, isFirstColumn && isFirstFragment(), isLastColumn && isLastFragment(), VisualOverflow); |
| 559 | |
| 560 | // For RenderViews only (i.e., iBooks), avoid overflowing into neighboring columns, by clipping in the middle of adjacent column gaps. Also make sure that we avoid rounding errors. |
| 561 | if (&view() == parent()) { |
| 562 | if (isHorizontalWritingMode()) { |
| 563 | if (!isLeftmostColumn) |
| 564 | overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2); |
| 565 | if (!isRightmostColumn) |
| 566 | overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2); |
| 567 | } else { |
| 568 | if (!isLeftmostColumn) |
| 569 | overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2); |
| 570 | if (!isRightmostColumn) |
| 571 | overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2); |
| 572 | } |
| 573 | } |
| 574 | return overflowRect; |
| 575 | } |
| 576 | |
| 577 | void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset) |
| 578 | { |
| 579 | if (paintInfo.context().paintingDisabled()) |
| 580 | return; |
| 581 | |
| 582 | RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow(); |
| 583 | const RenderStyle& blockStyle = parent()->style(); |
| 584 | const Color& ruleColor = blockStyle.visitedDependentColorWithColorFilter(CSSPropertyColumnRuleColor); |
| 585 | bool ruleTransparent = blockStyle.columnRuleIsTransparent(); |
| 586 | BorderStyle ruleStyle = collapsedBorderStyle(blockStyle.columnRuleStyle()); |
| 587 | LayoutUnit ruleThickness = blockStyle.columnRuleWidth(); |
| 588 | LayoutUnit colGap = columnGap(); |
| 589 | bool renderRule = ruleStyle > BorderStyle::Hidden && !ruleTransparent; |
| 590 | if (!renderRule) |
| 591 | return; |
| 592 | |
| 593 | unsigned colCount = columnCount(); |
| 594 | if (colCount <= 1) |
| 595 | return; |
| 596 | |
| 597 | bool antialias = shouldAntialiasLines(paintInfo.context()); |
| 598 | |
| 599 | if (fragmentedFlow->progressionIsInline()) { |
| 600 | bool leftToRight = style().isLeftToRightDirection() ^ fragmentedFlow->progressionIsReversed(); |
| 601 | LayoutUnit currLogicalLeftOffset = leftToRight ? 0_lu : contentLogicalWidth(); |
| 602 | LayoutUnit ruleAdd = logicalLeftOffsetForContent(); |
| 603 | LayoutUnit ruleLogicalLeft = leftToRight ? 0_lu : contentLogicalWidth(); |
| 604 | LayoutUnit inlineDirectionSize = computedColumnWidth(); |
| 605 | BoxSide boxSide = isHorizontalWritingMode() |
| 606 | ? leftToRight ? BSLeft : BSRight |
| 607 | : leftToRight ? BSTop : BSBottom; |
| 608 | |
| 609 | for (unsigned i = 0; i < colCount; i++) { |
| 610 | // Move to the next position. |
| 611 | if (leftToRight) { |
| 612 | ruleLogicalLeft += inlineDirectionSize + colGap / 2; |
| 613 | currLogicalLeftOffset += inlineDirectionSize + colGap; |
| 614 | } else { |
| 615 | ruleLogicalLeft -= (inlineDirectionSize + colGap / 2); |
| 616 | currLogicalLeftOffset -= (inlineDirectionSize + colGap); |
| 617 | } |
| 618 | |
| 619 | // Now paint the column rule. |
| 620 | if (i < colCount - 1) { |
| 621 | LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft(); |
| 622 | LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth(); |
| 623 | LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd; |
| 624 | LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness; |
| 625 | IntRect pixelSnappedRuleRect = snappedIntRect(ruleLeft, ruleTop, ruleRight - ruleLeft, ruleBottom - ruleTop); |
| 626 | drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias); |
| 627 | } |
| 628 | |
| 629 | ruleLogicalLeft = currLogicalLeftOffset; |
| 630 | } |
| 631 | } else { |
| 632 | bool topToBottom = !style().isFlippedBlocksWritingMode() ^ fragmentedFlow->progressionIsReversed(); |
| 633 | LayoutUnit ruleLeft = isHorizontalWritingMode() ? 0_lu : colGap / 2 - colGap - ruleThickness / 2; |
| 634 | LayoutUnit ruleWidth = isHorizontalWritingMode() ? contentWidth() : ruleThickness; |
| 635 | LayoutUnit ruleTop = isHorizontalWritingMode() ? colGap / 2 - colGap - ruleThickness / 2 : 0_lu; |
| 636 | LayoutUnit ruleHeight = isHorizontalWritingMode() ? ruleThickness : contentHeight(); |
| 637 | LayoutRect ruleRect(ruleLeft, ruleTop, ruleWidth, ruleHeight); |
| 638 | |
| 639 | if (!topToBottom) { |
| 640 | if (isHorizontalWritingMode()) |
| 641 | ruleRect.setY(height() - ruleRect.maxY()); |
| 642 | else |
| 643 | ruleRect.setX(width() - ruleRect.maxX()); |
| 644 | } |
| 645 | |
| 646 | ruleRect.moveBy(paintOffset); |
| 647 | |
| 648 | BoxSide boxSide = isHorizontalWritingMode() ? topToBottom ? BSTop : BSBottom : topToBottom ? BSLeft : BSRight; |
| 649 | |
| 650 | LayoutSize step(0_lu, topToBottom ? computedColumnHeight() + colGap : -(computedColumnHeight() + colGap)); |
| 651 | if (!isHorizontalWritingMode()) |
| 652 | step = step.transposedSize(); |
| 653 | |
| 654 | for (unsigned i = 1; i < colCount; i++) { |
| 655 | ruleRect.move(step); |
| 656 | IntRect pixelSnappedRuleRect = snappedIntRect(ruleRect); |
| 657 | drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias); |
| 658 | } |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | void RenderMultiColumnSet::repaintFragmentedFlowContent(const LayoutRect& repaintRect) |
| 663 | { |
| 664 | // Figure out the start and end columns and only check within that range so that we don't walk the |
| 665 | // entire column set. Put the repaint rect into flow thread coordinates by flipping it first. |
| 666 | LayoutRect fragmentedFlowRepaintRect(repaintRect); |
| 667 | fragmentedFlow()->flipForWritingMode(fragmentedFlowRepaintRect); |
| 668 | |
| 669 | // Now we can compare this rect with the flow thread portions owned by each column. First let's |
| 670 | // just see if the repaint rect intersects our flow thread portion at all. |
| 671 | LayoutRect clippedRect(fragmentedFlowRepaintRect); |
| 672 | clippedRect.intersect(RenderFragmentContainer::fragmentedFlowPortionOverflowRect()); |
| 673 | if (clippedRect.isEmpty()) |
| 674 | return; |
| 675 | |
| 676 | // Now we know we intersect at least one column. Let's figure out the logical top and logical |
| 677 | // bottom of the area we're repainting. |
| 678 | LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? fragmentedFlowRepaintRect.y() : fragmentedFlowRepaintRect.x(); |
| 679 | LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? fragmentedFlowRepaintRect.maxY() : fragmentedFlowRepaintRect.maxX()) - 1; |
| 680 | |
| 681 | unsigned startColumn = columnIndexAtOffset(repaintLogicalTop); |
| 682 | unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom); |
| 683 | |
| 684 | LayoutUnit colGap = columnGap(); |
| 685 | unsigned colCount = columnCount(); |
| 686 | for (unsigned i = startColumn; i <= endColumn; i++) { |
| 687 | LayoutRect colRect = columnRectAt(i); |
| 688 | |
| 689 | // Get the portion of the flow thread that corresponds to this column. |
| 690 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
| 691 | |
| 692 | // Now get the overflow rect that corresponds to the column. |
| 693 | LayoutRect fragmentedFlowOverflowPortion = fragmentedFlowPortionOverflowRect(fragmentedFlowPortion, i, colCount, colGap); |
| 694 | |
| 695 | // Do a repaint for this specific column. |
| 696 | flipForWritingMode(colRect); |
| 697 | repaintFragmentedFlowContentRectangle(repaintRect, fragmentedFlowPortion, colRect.location(), &fragmentedFlowOverflowPortion); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | LayoutUnit RenderMultiColumnSet::initialBlockOffsetForPainting() const |
| 702 | { |
| 703 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| 704 | bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
| 705 | |
| 706 | LayoutUnit result; |
| 707 | if (!progressionIsInline && progressionReversed) { |
| 708 | LayoutRect colRect = columnRectAt(0); |
| 709 | result = isHorizontalWritingMode() ? colRect.y() : colRect.x(); |
| 710 | } |
| 711 | return result; |
| 712 | } |
| 713 | |
| 714 | void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect) |
| 715 | { |
| 716 | // Let's start by introducing the different coordinate systems involved here. They are different |
| 717 | // in how they deal with writing modes and columns. RenderLayer rectangles tend to be more |
| 718 | // physical than the rectangles used in RenderObject & co. |
| 719 | // |
| 720 | // The two rectangles passed to this method are physical, except that we pretend that there's |
| 721 | // only one long column (that's the flow thread). They are relative to the top left corner of |
| 722 | // the flow thread. All rectangles being compared to the dirty rect also need to be in this |
| 723 | // coordinate system. |
| 724 | // |
| 725 | // Then there's the output from this method - the stuff we put into the list of fragments. The |
| 726 | // translationOffset point is the actual physical translation required to get from a location in |
| 727 | // the flow thread to a location in some column. The paginationClip rectangle is in the same |
| 728 | // coordinate system as the two rectangles passed to this method (i.e. physical, in flow thread |
| 729 | // coordinates, pretending that there's only one long column). |
| 730 | // |
| 731 | // All other rectangles in this method are slightly less physical, when it comes to how they are |
| 732 | // used with different writing modes, but they aren't really logical either. They are just like |
| 733 | // RenderBox::frameRect(). More precisely, the sizes are physical, and the inline direction |
| 734 | // coordinate is too, but the block direction coordinate is always "logical top". These |
| 735 | // rectangles also pretend that there's only one long column, i.e. they are for the flow thread. |
| 736 | // |
| 737 | // To sum up: input and output from this method are "physical" RenderLayer-style rectangles and |
| 738 | // points, while inside this method we mostly use the RenderObject-style rectangles (with the |
| 739 | // block direction coordinate always being logical top). |
| 740 | |
| 741 | // Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in |
| 742 | // a renderer, most rectangles are represented this way. |
| 743 | LayoutRect layerBoundsInFragmentedFlow(layerBoundingBox); |
| 744 | fragmentedFlow()->flipForWritingMode(layerBoundsInFragmentedFlow); |
| 745 | |
| 746 | // Now we can compare with the flow thread portions owned by each column. First let's |
| 747 | // see if the rect intersects our flow thread portion at all. |
| 748 | LayoutRect clippedRect(layerBoundsInFragmentedFlow); |
| 749 | clippedRect.intersect(RenderFragmentContainer::fragmentedFlowPortionOverflowRect()); |
| 750 | if (clippedRect.isEmpty()) |
| 751 | return; |
| 752 | |
| 753 | // Now we know we intersect at least one column. Let's figure out the logical top and logical |
| 754 | // bottom of the area we're checking. |
| 755 | LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFragmentedFlow.y() : layerBoundsInFragmentedFlow.x(); |
| 756 | LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFragmentedFlow.maxY() : layerBoundsInFragmentedFlow.maxX()) - 1; |
| 757 | |
| 758 | // Figure out the start and end columns and only check within that range so that we don't walk the |
| 759 | // entire column set. |
| 760 | unsigned startColumn = columnIndexAtOffset(layerLogicalTop); |
| 761 | unsigned endColumn = columnIndexAtOffset(layerLogicalBottom); |
| 762 | |
| 763 | LayoutUnit colLogicalWidth = computedColumnWidth(); |
| 764 | LayoutUnit colGap = columnGap(); |
| 765 | unsigned colCount = columnCount(); |
| 766 | |
| 767 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| 768 | bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
| 769 | |
| 770 | LayoutUnit initialBlockOffset = initialBlockOffsetForPainting(); |
| 771 | |
| 772 | for (unsigned i = startColumn; i <= endColumn; i++) { |
| 773 | // Get the portion of the flow thread that corresponds to this column. |
| 774 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
| 775 | |
| 776 | // Now get the overflow rect that corresponds to the column. |
| 777 | LayoutRect fragmentedFlowOverflowPortion = fragmentedFlowPortionOverflowRect(fragmentedFlowPortion, i, colCount, colGap); |
| 778 | |
| 779 | // In order to create a fragment we must intersect the portion painted by this column. |
| 780 | LayoutRect clippedRect(layerBoundsInFragmentedFlow); |
| 781 | clippedRect.intersect(fragmentedFlowOverflowPortion); |
| 782 | if (clippedRect.isEmpty()) |
| 783 | continue; |
| 784 | |
| 785 | // We also need to intersect the dirty rect. We have to apply a translation and shift based off |
| 786 | // our column index. |
| 787 | LayoutSize translationOffset; |
| 788 | LayoutUnit inlineOffset = progressionIsInline ? i * (colLogicalWidth + colGap) : 0_lu; |
| 789 | |
| 790 | bool leftToRight = style().isLeftToRightDirection() ^ progressionReversed; |
| 791 | if (!leftToRight) { |
| 792 | inlineOffset = -inlineOffset; |
| 793 | if (progressionReversed) |
| 794 | inlineOffset += contentLogicalWidth() - colLogicalWidth; |
| 795 | } |
| 796 | translationOffset.setWidth(inlineOffset); |
| 797 | |
| 798 | LayoutUnit blockOffset = initialBlockOffset + logicalTop() - fragmentedFlow()->logicalTop() + (isHorizontalWritingMode() ? -fragmentedFlowPortion.y() : -fragmentedFlowPortion.x()); |
| 799 | if (!progressionIsInline) { |
| 800 | if (!progressionReversed) |
| 801 | blockOffset = i * colGap; |
| 802 | else |
| 803 | blockOffset -= i * (computedColumnHeight() + colGap); |
| 804 | } |
| 805 | if (isFlippedWritingMode(style().writingMode())) |
| 806 | blockOffset = -blockOffset; |
| 807 | translationOffset.setHeight(blockOffset); |
| 808 | if (!isHorizontalWritingMode()) |
| 809 | translationOffset = translationOffset.transposedSize(); |
| 810 | |
| 811 | // Shift the dirty rect to be in flow thread coordinates with this translation applied. |
| 812 | LayoutRect translatedDirtyRect(dirtyRect); |
| 813 | translatedDirtyRect.move(-translationOffset); |
| 814 | |
| 815 | // See if we intersect the dirty rect. |
| 816 | clippedRect = layerBoundingBox; |
| 817 | clippedRect.intersect(translatedDirtyRect); |
| 818 | if (clippedRect.isEmpty()) |
| 819 | continue; |
| 820 | |
| 821 | // Something does need to paint in this column. Make a fragment now and supply the physical translation |
| 822 | // offset and the clip rect for the column with that offset applied. |
| 823 | LayerFragment fragment; |
| 824 | fragment.paginationOffset = translationOffset; |
| 825 | |
| 826 | LayoutRect flippedFragmentedFlowOverflowPortion(fragmentedFlowOverflowPortion); |
| 827 | // Flip it into more a physical (RenderLayer-style) rectangle. |
| 828 | fragmentedFlow()->flipForWritingMode(flippedFragmentedFlowOverflowPortion); |
| 829 | fragment.paginationClip = flippedFragmentedFlowOverflowPortion; |
| 830 | fragments.append(fragment); |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | LayoutPoint RenderMultiColumnSet::columnTranslationForOffset(const LayoutUnit& offset) const |
| 835 | { |
| 836 | unsigned startColumn = columnIndexAtOffset(offset); |
| 837 | |
| 838 | LayoutUnit colGap = columnGap(); |
| 839 | |
| 840 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(startColumn); |
| 841 | LayoutPoint translationOffset; |
| 842 | |
| 843 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
| 844 | bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
| 845 | |
| 846 | LayoutUnit initialBlockOffset = initialBlockOffsetForPainting(); |
| 847 | |
| 848 | translationOffset.setX(columnLogicalLeft(startColumn)); |
| 849 | |
| 850 | LayoutUnit blockOffset = initialBlockOffset - (isHorizontalWritingMode() ? fragmentedFlowPortion.y() : fragmentedFlowPortion.x()); |
| 851 | if (!progressionIsInline) { |
| 852 | if (!progressionReversed) |
| 853 | blockOffset = startColumn * colGap; |
| 854 | else |
| 855 | blockOffset -= startColumn * (computedColumnHeight() + colGap); |
| 856 | } |
| 857 | if (isFlippedWritingMode(style().writingMode())) |
| 858 | blockOffset = -blockOffset; |
| 859 | translationOffset.setY(blockOffset); |
| 860 | |
| 861 | if (!isHorizontalWritingMode()) |
| 862 | translationOffset = translationOffset.transposedPoint(); |
| 863 | |
| 864 | return translationOffset; |
| 865 | } |
| 866 | |
| 867 | void RenderMultiColumnSet::adjustFragmentBoundsFromFragmentedFlowPortionRect(LayoutRect&) const |
| 868 | { |
| 869 | // This only fires for named flow thread compositing code, so let's make sure to ASSERT if this ever gets invoked. |
| 870 | ASSERT_NOT_REACHED(); |
| 871 | } |
| 872 | |
| 873 | void RenderMultiColumnSet::addOverflowFromChildren() |
| 874 | { |
| 875 | // FIXME: Need to do much better here. |
| 876 | unsigned colCount = columnCount(); |
| 877 | if (!colCount) |
| 878 | return; |
| 879 | |
| 880 | LayoutRect lastRect = columnRectAt(colCount - 1); |
| 881 | addLayoutOverflow(lastRect); |
| 882 | if (!hasOverflowClip()) |
| 883 | addVisualOverflow(lastRect); |
| 884 | } |
| 885 | |
| 886 | VisiblePosition RenderMultiColumnSet::positionForPoint(const LayoutPoint& logicalPoint, const RenderFragmentContainer*) |
| 887 | { |
| 888 | return multiColumnFlow()->positionForPoint(translateFragmentPointToFragmentedFlow(logicalPoint, ClampHitTestTranslationToColumns), this); |
| 889 | } |
| 890 | |
| 891 | LayoutPoint RenderMultiColumnSet::translateFragmentPointToFragmentedFlow(const LayoutPoint & logicalPoint, ColumnHitTestTranslationMode clampMode) const |
| 892 | { |
| 893 | // Determine which columns we intersect. |
| 894 | LayoutUnit colGap = columnGap(); |
| 895 | LayoutUnit halfColGap = colGap / 2; |
| 896 | |
| 897 | bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
| 898 | |
| 899 | LayoutPoint point = logicalPoint; |
| 900 | |
| 901 | for (unsigned i = 0; i < columnCount(); i++) { |
| 902 | // Add in half the column gap to the left and right of the rect. |
| 903 | LayoutRect colRect = columnRectAt(i); |
| 904 | if (isHorizontalWritingMode() == progressionIsInline) { |
| 905 | LayoutRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height()); |
| 906 | if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) { |
| 907 | if (clampMode == ClampHitTestTranslationToColumns) { |
| 908 | if (progressionIsInline) { |
| 909 | // FIXME: The clamping that follows is not completely right for right-to-left |
| 910 | // content. |
| 911 | // Clamp everything above the column to its top left. |
| 912 | if (point.y() < gapAndColumnRect.y()) |
| 913 | point = gapAndColumnRect.location(); |
| 914 | // Clamp everything below the column to the next column's top left. If there is |
| 915 | // no next column, this still maps to just after this column. |
| 916 | else if (point.y() >= gapAndColumnRect.maxY()) { |
| 917 | point = gapAndColumnRect.location(); |
| 918 | point.move(0_lu, gapAndColumnRect.height()); |
| 919 | } |
| 920 | } else { |
| 921 | if (point.x() < colRect.x()) |
| 922 | point.setX(colRect.x()); |
| 923 | else if (point.x() >= colRect.maxX()) |
| 924 | point.setX(colRect.maxX() - 1); |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | LayoutSize offsetInColumn = point - colRect.location(); |
| 929 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
| 930 | |
| 931 | return fragmentedFlowPortion.location() + offsetInColumn; |
| 932 | } |
| 933 | } else { |
| 934 | LayoutRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap); |
| 935 | if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) { |
| 936 | if (clampMode == ClampHitTestTranslationToColumns) { |
| 937 | if (progressionIsInline) { |
| 938 | // FIXME: The clamping that follows is not completely right for right-to-left |
| 939 | // content. |
| 940 | // Clamp everything above the column to its top left. |
| 941 | if (point.x() < gapAndColumnRect.x()) |
| 942 | point = gapAndColumnRect.location(); |
| 943 | // Clamp everything below the column to the next column's top left. If there is |
| 944 | // no next column, this still maps to just after this column. |
| 945 | else if (point.x() >= gapAndColumnRect.maxX()) { |
| 946 | point = gapAndColumnRect.location(); |
| 947 | point.move(gapAndColumnRect.width(), 0_lu); |
| 948 | } |
| 949 | } else { |
| 950 | if (point.y() < colRect.y()) |
| 951 | point.setY(colRect.y()); |
| 952 | else if (point.y() >= colRect.maxY()) |
| 953 | point.setY(colRect.maxY() - 1); |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | LayoutSize offsetInColumn = point - colRect.location(); |
| 958 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
| 959 | return fragmentedFlowPortion.location() + offsetInColumn; |
| 960 | } |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | return logicalPoint; |
| 965 | } |
| 966 | |
| 967 | void RenderMultiColumnSet::updateHitTestResult(HitTestResult& result, const LayoutPoint& point) |
| 968 | { |
| 969 | if (result.innerNode() || !parent()->isRenderView()) |
| 970 | return; |
| 971 | |
| 972 | // Note this does not work with column spans, but once we implement RenderPageSet, we can move this code |
| 973 | // over there instead (and spans of course won't be allowed on pages). |
| 974 | Node* node = document().documentElement(); |
| 975 | if (node) { |
| 976 | result.setInnerNode(node); |
| 977 | if (!result.innerNonSharedNode()) |
| 978 | result.setInnerNonSharedNode(node); |
| 979 | LayoutPoint adjustedPoint = translateFragmentPointToFragmentedFlow(point); |
| 980 | view().offsetForContents(adjustedPoint); |
| 981 | result.setLocalPoint(adjustedPoint); |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | const char* RenderMultiColumnSet::renderName() const |
| 986 | { |
| 987 | return "RenderMultiColumnSet" ; |
| 988 | } |
| 989 | |
| 990 | } |
| 991 | |