1 | /* |
2 | * Copyright (C) 2012 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "RenderMultiColumnSet.h" |
28 | |
29 | #include "FrameView.h" |
30 | #include "HitTestResult.h" |
31 | #include "PaintInfo.h" |
32 | #include "RenderBoxFragmentInfo.h" |
33 | #include "RenderLayer.h" |
34 | #include "RenderMultiColumnFlow.h" |
35 | #include "RenderMultiColumnSpannerPlaceholder.h" |
36 | #include "RenderView.h" |
37 | #include <wtf/IsoMallocInlines.h> |
38 | |
39 | namespace WebCore { |
40 | |
41 | WTF_MAKE_ISO_ALLOCATED_IMPL(RenderMultiColumnSet); |
42 | |
43 | RenderMultiColumnSet::RenderMultiColumnSet(RenderFragmentedFlow& fragmentedFlow, RenderStyle&& style) |
44 | : RenderFragmentContainerSet(fragmentedFlow.document(), WTFMove(style), fragmentedFlow) |
45 | , m_computedColumnCount(1) |
46 | , m_computedColumnWidth(0) |
47 | , m_computedColumnHeight(0) |
48 | , m_availableColumnHeight(0) |
49 | , m_columnHeightComputed(false) |
50 | , m_maxColumnHeight(RenderFragmentedFlow::maxLogicalHeight()) |
51 | , m_minSpaceShortage(RenderFragmentedFlow::maxLogicalHeight()) |
52 | , m_minimumColumnHeight(0) |
53 | { |
54 | } |
55 | |
56 | RenderMultiColumnSet* RenderMultiColumnSet::nextSiblingMultiColumnSet() const |
57 | { |
58 | for (RenderObject* sibling = nextSibling(); sibling; sibling = sibling->nextSibling()) { |
59 | if (is<RenderMultiColumnSet>(*sibling)) |
60 | return downcast<RenderMultiColumnSet>(sibling); |
61 | } |
62 | return nullptr; |
63 | } |
64 | |
65 | RenderMultiColumnSet* RenderMultiColumnSet::previousSiblingMultiColumnSet() const |
66 | { |
67 | for (RenderObject* sibling = previousSibling(); sibling; sibling = sibling->previousSibling()) { |
68 | if (is<RenderMultiColumnSet>(*sibling)) |
69 | return downcast<RenderMultiColumnSet>(sibling); |
70 | } |
71 | return nullptr; |
72 | } |
73 | |
74 | RenderObject* RenderMultiColumnSet::firstRendererInFragmentedFlow() const |
75 | { |
76 | if (RenderBox* sibling = RenderMultiColumnFlow::previousColumnSetOrSpannerSiblingOf(this)) { |
77 | // Adjacent sets should not occur. Currently we would have no way of figuring out what each |
78 | // of them contains then. |
79 | ASSERT(!sibling->isRenderMultiColumnSet()); |
80 | if (RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlow()->findColumnSpannerPlaceholder(sibling)) |
81 | return placeholder->nextInPreOrderAfterChildren(); |
82 | ASSERT_NOT_REACHED(); |
83 | } |
84 | return fragmentedFlow()->firstChild(); |
85 | } |
86 | |
87 | RenderObject* RenderMultiColumnSet::lastRendererInFragmentedFlow() const |
88 | { |
89 | if (RenderBox* sibling = RenderMultiColumnFlow::nextColumnSetOrSpannerSiblingOf(this)) { |
90 | // Adjacent sets should not occur. Currently we would have no way of figuring out what each |
91 | // of them contains then. |
92 | ASSERT(!sibling->isRenderMultiColumnSet()); |
93 | if (RenderMultiColumnSpannerPlaceholder* placeholder = multiColumnFlow()->findColumnSpannerPlaceholder(sibling)) |
94 | return placeholder->previousInPreOrder(); |
95 | ASSERT_NOT_REACHED(); |
96 | } |
97 | return fragmentedFlow()->lastLeafChild(); |
98 | } |
99 | |
100 | static bool precedesRenderer(const RenderObject* renderer, const RenderObject* boundary) |
101 | { |
102 | for (; renderer; renderer = renderer->nextInPreOrder()) { |
103 | if (renderer == boundary) |
104 | return true; |
105 | } |
106 | return false; |
107 | } |
108 | |
109 | bool RenderMultiColumnSet::containsRendererInFragmentedFlow(const RenderObject& renderer) const |
110 | { |
111 | if (!previousSiblingMultiColumnSet() && !nextSiblingMultiColumnSet()) { |
112 | // There is only one set. This is easy, then. |
113 | return renderer.isDescendantOf(m_fragmentedFlow); |
114 | } |
115 | |
116 | RenderObject* firstRenderer = firstRendererInFragmentedFlow(); |
117 | RenderObject* lastRenderer = lastRendererInFragmentedFlow(); |
118 | ASSERT(firstRenderer); |
119 | ASSERT(lastRenderer); |
120 | |
121 | // This is SLOW! But luckily very uncommon. |
122 | return precedesRenderer(firstRenderer, &renderer) && precedesRenderer(&renderer, lastRenderer); |
123 | } |
124 | |
125 | void RenderMultiColumnSet::setLogicalTopInFragmentedFlow(LayoutUnit logicalTop) |
126 | { |
127 | LayoutRect rect = fragmentedFlowPortionRect(); |
128 | if (isHorizontalWritingMode()) |
129 | rect.setY(logicalTop); |
130 | else |
131 | rect.setX(logicalTop); |
132 | setFragmentedFlowPortionRect(rect); |
133 | } |
134 | |
135 | void RenderMultiColumnSet::setLogicalBottomInFragmentedFlow(LayoutUnit logicalBottom) |
136 | { |
137 | LayoutRect rect = fragmentedFlowPortionRect(); |
138 | if (isHorizontalWritingMode()) |
139 | rect.shiftMaxYEdgeTo(logicalBottom); |
140 | else |
141 | rect.shiftMaxXEdgeTo(logicalBottom); |
142 | setFragmentedFlowPortionRect(rect); |
143 | } |
144 | |
145 | LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const |
146 | { |
147 | RenderBlockFlow& multicolBlock = downcast<RenderBlockFlow>(*parent()); |
148 | LayoutUnit contentLogicalTop = logicalTop() - multicolBlock.borderAndPaddingBefore(); |
149 | |
150 | height -= contentLogicalTop; |
151 | return std::max(height, 1_lu); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created. |
152 | } |
153 | |
154 | LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const |
155 | { |
156 | unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns); |
157 | return logicalTopInFragmentedFlow() + columnIndex * computedColumnHeight(); |
158 | } |
159 | |
160 | void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight) |
161 | { |
162 | m_computedColumnHeight = newHeight; |
163 | if (m_computedColumnHeight > m_maxColumnHeight) |
164 | m_computedColumnHeight = m_maxColumnHeight; |
165 | |
166 | // FIXME: The available column height is not the same as the constrained height specified |
167 | // by the pagination API. The column set in this case is allowed to be bigger than the |
168 | // height of a single column. We cache available column height in order to use it |
169 | // in computeLogicalHeight later. This is pretty gross, and maybe there's a better way |
170 | // to formalize the idea of clamped column heights without having a view dependency |
171 | // here. |
172 | m_availableColumnHeight = m_computedColumnHeight; |
173 | if (multiColumnFlow() && !multiColumnFlow()->progressionIsInline() && parent()->isRenderView()) { |
174 | int pageLength = view().frameView().pagination().pageLength; |
175 | if (pageLength) |
176 | m_computedColumnHeight = pageLength; |
177 | } |
178 | |
179 | m_columnHeightComputed = true; |
180 | |
181 | // FIXME: the height may also be affected by the enclosing pagination context, if any. |
182 | } |
183 | |
184 | unsigned RenderMultiColumnSet::findRunWithTallestColumns() const |
185 | { |
186 | unsigned indexWithLargestHeight = 0; |
187 | LayoutUnit largestHeight; |
188 | LayoutUnit previousOffset; |
189 | size_t runCount = m_contentRuns.size(); |
190 | ASSERT(runCount); |
191 | for (size_t i = 0; i < runCount; i++) { |
192 | const ContentRun& run = m_contentRuns[i]; |
193 | LayoutUnit height = run.columnLogicalHeight(previousOffset); |
194 | if (largestHeight < height) { |
195 | largestHeight = height; |
196 | indexWithLargestHeight = i; |
197 | } |
198 | previousOffset = run.breakOffset(); |
199 | } |
200 | return indexWithLargestHeight; |
201 | } |
202 | |
203 | void RenderMultiColumnSet::distributeImplicitBreaks() |
204 | { |
205 | #ifndef NDEBUG |
206 | // There should be no implicit breaks assumed at this point. |
207 | for (unsigned i = 0; i < forcedBreaksCount(); i++) |
208 | ASSERT(!m_contentRuns[i].assumedImplicitBreaks()); |
209 | #endif // NDEBUG |
210 | |
211 | // Insert a final content run to encompass all content. This will include overflow if this is |
212 | // the last set. |
213 | addForcedBreak(logicalBottomInFragmentedFlow()); |
214 | unsigned breakCount = forcedBreaksCount(); |
215 | |
216 | // If there is room for more breaks (to reach the used value of column-count), imagine that we |
217 | // insert implicit breaks at suitable locations. At any given time, the content run with the |
218 | // currently tallest columns will get another implicit break "inserted", which will increase its |
219 | // column count by one and shrink its columns' height. Repeat until we have the desired total |
220 | // number of breaks. The largest column height among the runs will then be the initial column |
221 | // height for the balancer to use. |
222 | while (breakCount < m_computedColumnCount) { |
223 | unsigned index = findRunWithTallestColumns(); |
224 | m_contentRuns[index].assumeAnotherImplicitBreak(); |
225 | breakCount++; |
226 | } |
227 | } |
228 | |
229 | LayoutUnit RenderMultiColumnSet::calculateBalancedHeight(bool initial) const |
230 | { |
231 | if (initial) { |
232 | // Start with the lowest imaginable column height. |
233 | unsigned index = findRunWithTallestColumns(); |
234 | LayoutUnit startOffset = index > 0 ? m_contentRuns[index - 1].breakOffset() : logicalTopInFragmentedFlow(); |
235 | return std::max<LayoutUnit>(m_contentRuns[index].columnLogicalHeight(startOffset), m_minimumColumnHeight); |
236 | } |
237 | |
238 | if (columnCount() <= computedColumnCount()) { |
239 | // With the current column height, the content fits without creating overflowing columns. We're done. |
240 | return m_computedColumnHeight; |
241 | } |
242 | |
243 | if (forcedBreaksCount() >= computedColumnCount()) { |
244 | // Too many forced breaks to allow any implicit breaks. Initial balancing should already |
245 | // have set a good height. There's nothing more we should do. |
246 | return m_computedColumnHeight; |
247 | } |
248 | |
249 | // If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest |
250 | // amount of space shortage found during layout. |
251 | |
252 | ASSERT(m_minSpaceShortage > 0); // We should never _shrink_ the height! |
253 | // ASSERT(m_minSpaceShortage != RenderFragmentedFlow::maxLogicalHeight()); // If this happens, we probably have a bug. |
254 | if (m_minSpaceShortage == RenderFragmentedFlow::maxLogicalHeight()) |
255 | return m_computedColumnHeight; // So bail out rather than looping infinitely. |
256 | |
257 | return m_computedColumnHeight + m_minSpaceShortage; |
258 | } |
259 | |
260 | void RenderMultiColumnSet::clearForcedBreaks() |
261 | { |
262 | m_contentRuns.clear(); |
263 | } |
264 | |
265 | void RenderMultiColumnSet::addForcedBreak(LayoutUnit offsetFromFirstPage) |
266 | { |
267 | if (!requiresBalancing()) |
268 | return; |
269 | if (!m_contentRuns.isEmpty() && offsetFromFirstPage <= m_contentRuns.last().breakOffset()) |
270 | return; |
271 | // Append another item as long as we haven't exceeded used column count. What ends up in the |
272 | // overflow area shouldn't affect column balancing. |
273 | if (m_contentRuns.size() < m_computedColumnCount) |
274 | m_contentRuns.append(ContentRun(offsetFromFirstPage)); |
275 | } |
276 | |
277 | bool RenderMultiColumnSet::recalculateColumnHeight(bool initial) |
278 | { |
279 | LayoutUnit oldColumnHeight = m_computedColumnHeight; |
280 | if (requiresBalancing()) { |
281 | if (initial) |
282 | distributeImplicitBreaks(); |
283 | LayoutUnit newColumnHeight = calculateBalancedHeight(initial); |
284 | setAndConstrainColumnHeight(newColumnHeight); |
285 | // After having calculated an initial column height, the multicol container typically needs at |
286 | // least one more layout pass with a new column height, but if a height was specified, we only |
287 | // need to do this if we think that we need less space than specified. Conversely, if we |
288 | // determined that the columns need to be as tall as the specified height of the container, we |
289 | // have already laid it out correctly, and there's no need for another pass. |
290 | } else { |
291 | // The position of the column set may have changed, in which case height available for |
292 | // columns may have changed as well. |
293 | setAndConstrainColumnHeight(m_computedColumnHeight); |
294 | } |
295 | if (m_computedColumnHeight == oldColumnHeight) |
296 | return false; // No change. We're done. |
297 | |
298 | m_minSpaceShortage = RenderFragmentedFlow::maxLogicalHeight(); |
299 | return true; // Need another pass. |
300 | } |
301 | |
302 | void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage) |
303 | { |
304 | if (spaceShortage >= m_minSpaceShortage) |
305 | return; |
306 | |
307 | // The space shortage is what we use as our stretch amount. We need a positive number here in |
308 | // order to get anywhere. Some lines actually have zero height. Ignore them. |
309 | if (spaceShortage > 0) |
310 | m_minSpaceShortage = spaceShortage; |
311 | } |
312 | |
313 | void RenderMultiColumnSet::updateLogicalWidth() |
314 | { |
315 | setComputedColumnWidthAndCount(multiColumnFlow()->columnWidth(), multiColumnFlow()->columnCount()); // FIXME: This will eventually vary if we are contained inside fragments. |
316 | |
317 | // FIXME: When we add fragments support, we'll start it off at the width of the multi-column |
318 | // block in that particular fragment. |
319 | setLogicalWidth(multiColumnBlockFlow()->contentLogicalWidth()); |
320 | } |
321 | |
322 | bool RenderMultiColumnSet::requiresBalancing() const |
323 | { |
324 | if (!multiColumnFlow()->progressionIsInline()) |
325 | return false; |
326 | |
327 | if (RenderBox* next = RenderMultiColumnFlow::nextColumnSetOrSpannerSiblingOf(this)) { |
328 | if (!next->isRenderMultiColumnSet() && !next->isLegend()) { |
329 | // If we're followed by a spanner, we need to balance. |
330 | ASSERT(multiColumnFlow()->findColumnSpannerPlaceholder(next)); |
331 | return true; |
332 | } |
333 | } |
334 | RenderBlockFlow* container = multiColumnBlockFlow(); |
335 | if (container->style().columnFill() == ColumnFill::Balance) |
336 | return true; |
337 | return !multiColumnFlow()->columnHeightAvailable(); |
338 | } |
339 | |
340 | void RenderMultiColumnSet::prepareForLayout(bool initial) |
341 | { |
342 | // Guess box logical top. This might eliminate the need for another layout pass. |
343 | if (RenderBox* previous = RenderMultiColumnFlow::previousColumnSetOrSpannerSiblingOf(this)) |
344 | setLogicalTop(previous->logicalBottom() + previous->marginAfter()); |
345 | else |
346 | setLogicalTop(multiColumnBlockFlow()->borderAndPaddingBefore()); |
347 | |
348 | if (initial) |
349 | m_maxColumnHeight = calculateMaxColumnHeight(); |
350 | if (requiresBalancing()) { |
351 | if (initial) { |
352 | m_computedColumnHeight = 0; |
353 | m_availableColumnHeight = 0; |
354 | m_columnHeightComputed = false; |
355 | } |
356 | } else |
357 | setAndConstrainColumnHeight(heightAdjustedForSetOffset(multiColumnFlow()->columnHeightAvailable())); |
358 | |
359 | // Set box width. |
360 | updateLogicalWidth(); |
361 | |
362 | // Any breaks will be re-inserted during layout, so get rid of what we already have. |
363 | clearForcedBreaks(); |
364 | |
365 | // Nuke previously stored minimum column height. Contents may have changed for all we know. |
366 | m_minimumColumnHeight = 0; |
367 | |
368 | // Start with "infinite" flow thread portion height until height is known. |
369 | setLogicalBottomInFragmentedFlow(RenderFragmentedFlow::maxLogicalHeight()); |
370 | |
371 | setNeedsLayout(MarkOnlyThis); |
372 | } |
373 | |
374 | void RenderMultiColumnSet::beginFlow(RenderBlock* container) |
375 | { |
376 | RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow(); |
377 | |
378 | // At this point layout is exactly at the beginning of this set. Store block offset from flow |
379 | // thread start. |
380 | LayoutUnit logicalTopInFragmentedFlow = fragmentedFlow->offsetFromLogicalTopOfFirstFragment(container) + container->logicalHeight(); |
381 | setLogicalTopInFragmentedFlow(logicalTopInFragmentedFlow); |
382 | } |
383 | |
384 | void RenderMultiColumnSet::endFlow(RenderBlock* container, LayoutUnit bottomInContainer) |
385 | { |
386 | RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow(); |
387 | |
388 | // At this point layout is exactly at the end of this set. Store block offset from flow thread |
389 | // start. Also note that a new column height may have affected the height used in the flow |
390 | // thread (because of struts), which may affect the number of columns. So we also need to update |
391 | // the flow thread portion height in order to be able to calculate actual column-count. |
392 | LayoutUnit logicalBottomInFragmentedFlow = fragmentedFlow->offsetFromLogicalTopOfFirstFragment(container) + bottomInContainer; |
393 | setLogicalBottomInFragmentedFlow(logicalBottomInFragmentedFlow); |
394 | container->setLogicalHeight(bottomInContainer); |
395 | } |
396 | |
397 | void RenderMultiColumnSet::layout() |
398 | { |
399 | RenderBlockFlow::layout(); |
400 | |
401 | // At this point the logical top and bottom of the column set are known. Update maximum column |
402 | // height (multicol height may be constrained). |
403 | m_maxColumnHeight = calculateMaxColumnHeight(); |
404 | |
405 | if (!nextSiblingMultiColumnSet()) { |
406 | // This is the last set, i.e. the last fragment. Seize the opportunity to validate them. |
407 | multiColumnFlow()->validateFragments(); |
408 | } |
409 | } |
410 | |
411 | RenderBox::LogicalExtentComputedValues RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop) const |
412 | { |
413 | return { m_availableColumnHeight, logicalTop, ComputedMarginValues() }; |
414 | } |
415 | |
416 | LayoutUnit RenderMultiColumnSet::calculateMaxColumnHeight() const |
417 | { |
418 | RenderBlockFlow* multicolBlock = multiColumnBlockFlow(); |
419 | const RenderStyle& multicolStyle = multicolBlock->style(); |
420 | LayoutUnit availableHeight = multiColumnFlow()->columnHeightAvailable(); |
421 | LayoutUnit maxColumnHeight = availableHeight ? availableHeight : RenderFragmentedFlow::maxLogicalHeight(); |
422 | if (!multicolStyle.logicalMaxHeight().isUndefined()) |
423 | maxColumnHeight = std::min(maxColumnHeight, multicolBlock->computeContentLogicalHeight(MaxSize, multicolStyle.logicalMaxHeight(), WTF::nullopt).valueOr(maxColumnHeight)); |
424 | return heightAdjustedForSetOffset(maxColumnHeight); |
425 | } |
426 | |
427 | LayoutUnit RenderMultiColumnSet::columnGap() const |
428 | { |
429 | // FIXME: Eventually we will cache the column gap when the widths of columns start varying, but for now we just |
430 | // go to the parent block to get the gap. |
431 | RenderBlockFlow& parentBlock = downcast<RenderBlockFlow>(*parent()); |
432 | if (parentBlock.style().columnGap().isNormal()) |
433 | return parentBlock.style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins. |
434 | return valueForLength(parentBlock.style().columnGap().length(), parentBlock.availableLogicalWidth()); |
435 | } |
436 | |
437 | unsigned RenderMultiColumnSet::columnCount() const |
438 | { |
439 | // We must always return a value of 1 or greater. Column count = 0 is a meaningless situation, |
440 | // and will confuse and cause problems in other parts of the code. |
441 | if (!computedColumnHeight()) |
442 | return 1; |
443 | |
444 | // Our portion rect determines our column count. We have as many columns as needed to fit all the content. |
445 | LayoutUnit logicalHeightInColumns = fragmentedFlow()->isHorizontalWritingMode() ? fragmentedFlowPortionRect().height() : fragmentedFlowPortionRect().width(); |
446 | if (!logicalHeightInColumns) |
447 | return 1; |
448 | |
449 | unsigned count = ceil(static_cast<float>(logicalHeightInColumns) / computedColumnHeight()); |
450 | ASSERT(count >= 1); |
451 | return count; |
452 | } |
453 | |
454 | LayoutUnit RenderMultiColumnSet::columnLogicalLeft(unsigned index) const |
455 | { |
456 | LayoutUnit colLogicalWidth = computedColumnWidth(); |
457 | LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft(); |
458 | LayoutUnit colGap = columnGap(); |
459 | |
460 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
461 | bool progressionInline = multiColumnFlow()->progressionIsInline(); |
462 | |
463 | if (progressionInline) { |
464 | if (style().isLeftToRightDirection() ^ progressionReversed) |
465 | colLogicalLeft += index * (colLogicalWidth + colGap); |
466 | else |
467 | colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap); |
468 | } |
469 | |
470 | return colLogicalLeft; |
471 | } |
472 | |
473 | LayoutUnit RenderMultiColumnSet::columnLogicalTop(unsigned index) const |
474 | { |
475 | LayoutUnit colLogicalHeight = computedColumnHeight(); |
476 | LayoutUnit colLogicalTop = borderAndPaddingBefore(); |
477 | LayoutUnit colGap = columnGap(); |
478 | |
479 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
480 | bool progressionInline = multiColumnFlow()->progressionIsInline(); |
481 | |
482 | if (!progressionInline) { |
483 | if (!progressionReversed) |
484 | colLogicalTop += index * (colLogicalHeight + colGap); |
485 | else |
486 | colLogicalTop += contentLogicalHeight() - colLogicalHeight - index * (colLogicalHeight + colGap); |
487 | } |
488 | |
489 | return colLogicalTop; |
490 | } |
491 | |
492 | LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const |
493 | { |
494 | LayoutUnit colLogicalWidth = computedColumnWidth(); |
495 | LayoutUnit colLogicalHeight = computedColumnHeight(); |
496 | |
497 | if (isHorizontalWritingMode()) |
498 | return LayoutRect(columnLogicalLeft(index), columnLogicalTop(index), colLogicalWidth, colLogicalHeight); |
499 | return LayoutRect(columnLogicalTop(index), columnLogicalLeft(index), colLogicalHeight, colLogicalWidth); |
500 | } |
501 | |
502 | unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const |
503 | { |
504 | LayoutRect portionRect(fragmentedFlowPortionRect()); |
505 | |
506 | // Handle the offset being out of range. |
507 | LayoutUnit fragmentedFlowLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x(); |
508 | if (offset < fragmentedFlowLogicalTop) |
509 | return 0; |
510 | // If we're laying out right now, we cannot constrain against some logical bottom, since it |
511 | // isn't known yet. Otherwise, just return the last column if we're past the logical bottom. |
512 | if (mode == ClampToExistingColumns) { |
513 | LayoutUnit fragmentedFlowLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX(); |
514 | if (offset >= fragmentedFlowLogicalBottom) |
515 | return columnCount() - 1; |
516 | } |
517 | |
518 | // Sometimes computedColumnHeight() is 0 here: see https://bugs.webkit.org/show_bug.cgi?id=132884 |
519 | if (!computedColumnHeight()) |
520 | return 0; |
521 | |
522 | // Just divide by the column height to determine the correct column. |
523 | return static_cast<float>(offset - fragmentedFlowLogicalTop) / computedColumnHeight(); |
524 | } |
525 | |
526 | LayoutRect RenderMultiColumnSet::fragmentedFlowPortionRectAt(unsigned index) const |
527 | { |
528 | LayoutRect portionRect = fragmentedFlowPortionRect(); |
529 | if (isHorizontalWritingMode()) |
530 | portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight()); |
531 | else |
532 | portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height()); |
533 | return portionRect; |
534 | } |
535 | |
536 | LayoutRect RenderMultiColumnSet::fragmentedFlowPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap) |
537 | { |
538 | // This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are |
539 | // unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column |
540 | // gap along interior edges. |
541 | // |
542 | // In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of |
543 | // the last column. This applies only to the true first column and last column across all column sets. |
544 | // |
545 | // FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting |
546 | // mode that understands not to paint contents from a previous column in the overflow area of a following column. |
547 | // This problem applies to fragments and pages as well and is not unique to columns. |
548 | |
549 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
550 | |
551 | bool isFirstColumn = !index; |
552 | bool isLastColumn = index == colCount - 1; |
553 | bool isLeftmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isFirstColumn : isLastColumn; |
554 | bool isRightmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isLastColumn : isFirstColumn; |
555 | |
556 | // Calculate the overflow rectangle, based on the flow thread's, clipped at column logical |
557 | // top/bottom unless it's the first/last column. |
558 | LayoutRect overflowRect = overflowRectForFragmentedFlowPortion(portionRect, isFirstColumn && isFirstFragment(), isLastColumn && isLastFragment(), VisualOverflow); |
559 | |
560 | // For RenderViews only (i.e., iBooks), avoid overflowing into neighboring columns, by clipping in the middle of adjacent column gaps. Also make sure that we avoid rounding errors. |
561 | if (&view() == parent()) { |
562 | if (isHorizontalWritingMode()) { |
563 | if (!isLeftmostColumn) |
564 | overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2); |
565 | if (!isRightmostColumn) |
566 | overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2); |
567 | } else { |
568 | if (!isLeftmostColumn) |
569 | overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2); |
570 | if (!isRightmostColumn) |
571 | overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2); |
572 | } |
573 | } |
574 | return overflowRect; |
575 | } |
576 | |
577 | void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset) |
578 | { |
579 | if (paintInfo.context().paintingDisabled()) |
580 | return; |
581 | |
582 | RenderMultiColumnFlow* fragmentedFlow = multiColumnFlow(); |
583 | const RenderStyle& blockStyle = parent()->style(); |
584 | const Color& ruleColor = blockStyle.visitedDependentColorWithColorFilter(CSSPropertyColumnRuleColor); |
585 | bool ruleTransparent = blockStyle.columnRuleIsTransparent(); |
586 | BorderStyle ruleStyle = collapsedBorderStyle(blockStyle.columnRuleStyle()); |
587 | LayoutUnit ruleThickness = blockStyle.columnRuleWidth(); |
588 | LayoutUnit colGap = columnGap(); |
589 | bool renderRule = ruleStyle > BorderStyle::Hidden && !ruleTransparent; |
590 | if (!renderRule) |
591 | return; |
592 | |
593 | unsigned colCount = columnCount(); |
594 | if (colCount <= 1) |
595 | return; |
596 | |
597 | bool antialias = shouldAntialiasLines(paintInfo.context()); |
598 | |
599 | if (fragmentedFlow->progressionIsInline()) { |
600 | bool leftToRight = style().isLeftToRightDirection() ^ fragmentedFlow->progressionIsReversed(); |
601 | LayoutUnit currLogicalLeftOffset = leftToRight ? 0_lu : contentLogicalWidth(); |
602 | LayoutUnit ruleAdd = logicalLeftOffsetForContent(); |
603 | LayoutUnit ruleLogicalLeft = leftToRight ? 0_lu : contentLogicalWidth(); |
604 | LayoutUnit inlineDirectionSize = computedColumnWidth(); |
605 | BoxSide boxSide = isHorizontalWritingMode() |
606 | ? leftToRight ? BSLeft : BSRight |
607 | : leftToRight ? BSTop : BSBottom; |
608 | |
609 | for (unsigned i = 0; i < colCount; i++) { |
610 | // Move to the next position. |
611 | if (leftToRight) { |
612 | ruleLogicalLeft += inlineDirectionSize + colGap / 2; |
613 | currLogicalLeftOffset += inlineDirectionSize + colGap; |
614 | } else { |
615 | ruleLogicalLeft -= (inlineDirectionSize + colGap / 2); |
616 | currLogicalLeftOffset -= (inlineDirectionSize + colGap); |
617 | } |
618 | |
619 | // Now paint the column rule. |
620 | if (i < colCount - 1) { |
621 | LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft(); |
622 | LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth(); |
623 | LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd; |
624 | LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness; |
625 | IntRect pixelSnappedRuleRect = snappedIntRect(ruleLeft, ruleTop, ruleRight - ruleLeft, ruleBottom - ruleTop); |
626 | drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias); |
627 | } |
628 | |
629 | ruleLogicalLeft = currLogicalLeftOffset; |
630 | } |
631 | } else { |
632 | bool topToBottom = !style().isFlippedBlocksWritingMode() ^ fragmentedFlow->progressionIsReversed(); |
633 | LayoutUnit ruleLeft = isHorizontalWritingMode() ? 0_lu : colGap / 2 - colGap - ruleThickness / 2; |
634 | LayoutUnit ruleWidth = isHorizontalWritingMode() ? contentWidth() : ruleThickness; |
635 | LayoutUnit ruleTop = isHorizontalWritingMode() ? colGap / 2 - colGap - ruleThickness / 2 : 0_lu; |
636 | LayoutUnit ruleHeight = isHorizontalWritingMode() ? ruleThickness : contentHeight(); |
637 | LayoutRect ruleRect(ruleLeft, ruleTop, ruleWidth, ruleHeight); |
638 | |
639 | if (!topToBottom) { |
640 | if (isHorizontalWritingMode()) |
641 | ruleRect.setY(height() - ruleRect.maxY()); |
642 | else |
643 | ruleRect.setX(width() - ruleRect.maxX()); |
644 | } |
645 | |
646 | ruleRect.moveBy(paintOffset); |
647 | |
648 | BoxSide boxSide = isHorizontalWritingMode() ? topToBottom ? BSTop : BSBottom : topToBottom ? BSLeft : BSRight; |
649 | |
650 | LayoutSize step(0_lu, topToBottom ? computedColumnHeight() + colGap : -(computedColumnHeight() + colGap)); |
651 | if (!isHorizontalWritingMode()) |
652 | step = step.transposedSize(); |
653 | |
654 | for (unsigned i = 1; i < colCount; i++) { |
655 | ruleRect.move(step); |
656 | IntRect pixelSnappedRuleRect = snappedIntRect(ruleRect); |
657 | drawLineForBoxSide(paintInfo.context(), pixelSnappedRuleRect, boxSide, ruleColor, ruleStyle, 0, 0, antialias); |
658 | } |
659 | } |
660 | } |
661 | |
662 | void RenderMultiColumnSet::repaintFragmentedFlowContent(const LayoutRect& repaintRect) |
663 | { |
664 | // Figure out the start and end columns and only check within that range so that we don't walk the |
665 | // entire column set. Put the repaint rect into flow thread coordinates by flipping it first. |
666 | LayoutRect fragmentedFlowRepaintRect(repaintRect); |
667 | fragmentedFlow()->flipForWritingMode(fragmentedFlowRepaintRect); |
668 | |
669 | // Now we can compare this rect with the flow thread portions owned by each column. First let's |
670 | // just see if the repaint rect intersects our flow thread portion at all. |
671 | LayoutRect clippedRect(fragmentedFlowRepaintRect); |
672 | clippedRect.intersect(RenderFragmentContainer::fragmentedFlowPortionOverflowRect()); |
673 | if (clippedRect.isEmpty()) |
674 | return; |
675 | |
676 | // Now we know we intersect at least one column. Let's figure out the logical top and logical |
677 | // bottom of the area we're repainting. |
678 | LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? fragmentedFlowRepaintRect.y() : fragmentedFlowRepaintRect.x(); |
679 | LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? fragmentedFlowRepaintRect.maxY() : fragmentedFlowRepaintRect.maxX()) - 1; |
680 | |
681 | unsigned startColumn = columnIndexAtOffset(repaintLogicalTop); |
682 | unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom); |
683 | |
684 | LayoutUnit colGap = columnGap(); |
685 | unsigned colCount = columnCount(); |
686 | for (unsigned i = startColumn; i <= endColumn; i++) { |
687 | LayoutRect colRect = columnRectAt(i); |
688 | |
689 | // Get the portion of the flow thread that corresponds to this column. |
690 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
691 | |
692 | // Now get the overflow rect that corresponds to the column. |
693 | LayoutRect fragmentedFlowOverflowPortion = fragmentedFlowPortionOverflowRect(fragmentedFlowPortion, i, colCount, colGap); |
694 | |
695 | // Do a repaint for this specific column. |
696 | flipForWritingMode(colRect); |
697 | repaintFragmentedFlowContentRectangle(repaintRect, fragmentedFlowPortion, colRect.location(), &fragmentedFlowOverflowPortion); |
698 | } |
699 | } |
700 | |
701 | LayoutUnit RenderMultiColumnSet::initialBlockOffsetForPainting() const |
702 | { |
703 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
704 | bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
705 | |
706 | LayoutUnit result; |
707 | if (!progressionIsInline && progressionReversed) { |
708 | LayoutRect colRect = columnRectAt(0); |
709 | result = isHorizontalWritingMode() ? colRect.y() : colRect.x(); |
710 | } |
711 | return result; |
712 | } |
713 | |
714 | void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect) |
715 | { |
716 | // Let's start by introducing the different coordinate systems involved here. They are different |
717 | // in how they deal with writing modes and columns. RenderLayer rectangles tend to be more |
718 | // physical than the rectangles used in RenderObject & co. |
719 | // |
720 | // The two rectangles passed to this method are physical, except that we pretend that there's |
721 | // only one long column (that's the flow thread). They are relative to the top left corner of |
722 | // the flow thread. All rectangles being compared to the dirty rect also need to be in this |
723 | // coordinate system. |
724 | // |
725 | // Then there's the output from this method - the stuff we put into the list of fragments. The |
726 | // translationOffset point is the actual physical translation required to get from a location in |
727 | // the flow thread to a location in some column. The paginationClip rectangle is in the same |
728 | // coordinate system as the two rectangles passed to this method (i.e. physical, in flow thread |
729 | // coordinates, pretending that there's only one long column). |
730 | // |
731 | // All other rectangles in this method are slightly less physical, when it comes to how they are |
732 | // used with different writing modes, but they aren't really logical either. They are just like |
733 | // RenderBox::frameRect(). More precisely, the sizes are physical, and the inline direction |
734 | // coordinate is too, but the block direction coordinate is always "logical top". These |
735 | // rectangles also pretend that there's only one long column, i.e. they are for the flow thread. |
736 | // |
737 | // To sum up: input and output from this method are "physical" RenderLayer-style rectangles and |
738 | // points, while inside this method we mostly use the RenderObject-style rectangles (with the |
739 | // block direction coordinate always being logical top). |
740 | |
741 | // Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in |
742 | // a renderer, most rectangles are represented this way. |
743 | LayoutRect layerBoundsInFragmentedFlow(layerBoundingBox); |
744 | fragmentedFlow()->flipForWritingMode(layerBoundsInFragmentedFlow); |
745 | |
746 | // Now we can compare with the flow thread portions owned by each column. First let's |
747 | // see if the rect intersects our flow thread portion at all. |
748 | LayoutRect clippedRect(layerBoundsInFragmentedFlow); |
749 | clippedRect.intersect(RenderFragmentContainer::fragmentedFlowPortionOverflowRect()); |
750 | if (clippedRect.isEmpty()) |
751 | return; |
752 | |
753 | // Now we know we intersect at least one column. Let's figure out the logical top and logical |
754 | // bottom of the area we're checking. |
755 | LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFragmentedFlow.y() : layerBoundsInFragmentedFlow.x(); |
756 | LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFragmentedFlow.maxY() : layerBoundsInFragmentedFlow.maxX()) - 1; |
757 | |
758 | // Figure out the start and end columns and only check within that range so that we don't walk the |
759 | // entire column set. |
760 | unsigned startColumn = columnIndexAtOffset(layerLogicalTop); |
761 | unsigned endColumn = columnIndexAtOffset(layerLogicalBottom); |
762 | |
763 | LayoutUnit colLogicalWidth = computedColumnWidth(); |
764 | LayoutUnit colGap = columnGap(); |
765 | unsigned colCount = columnCount(); |
766 | |
767 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
768 | bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
769 | |
770 | LayoutUnit initialBlockOffset = initialBlockOffsetForPainting(); |
771 | |
772 | for (unsigned i = startColumn; i <= endColumn; i++) { |
773 | // Get the portion of the flow thread that corresponds to this column. |
774 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
775 | |
776 | // Now get the overflow rect that corresponds to the column. |
777 | LayoutRect fragmentedFlowOverflowPortion = fragmentedFlowPortionOverflowRect(fragmentedFlowPortion, i, colCount, colGap); |
778 | |
779 | // In order to create a fragment we must intersect the portion painted by this column. |
780 | LayoutRect clippedRect(layerBoundsInFragmentedFlow); |
781 | clippedRect.intersect(fragmentedFlowOverflowPortion); |
782 | if (clippedRect.isEmpty()) |
783 | continue; |
784 | |
785 | // We also need to intersect the dirty rect. We have to apply a translation and shift based off |
786 | // our column index. |
787 | LayoutSize translationOffset; |
788 | LayoutUnit inlineOffset = progressionIsInline ? i * (colLogicalWidth + colGap) : 0_lu; |
789 | |
790 | bool leftToRight = style().isLeftToRightDirection() ^ progressionReversed; |
791 | if (!leftToRight) { |
792 | inlineOffset = -inlineOffset; |
793 | if (progressionReversed) |
794 | inlineOffset += contentLogicalWidth() - colLogicalWidth; |
795 | } |
796 | translationOffset.setWidth(inlineOffset); |
797 | |
798 | LayoutUnit blockOffset = initialBlockOffset + logicalTop() - fragmentedFlow()->logicalTop() + (isHorizontalWritingMode() ? -fragmentedFlowPortion.y() : -fragmentedFlowPortion.x()); |
799 | if (!progressionIsInline) { |
800 | if (!progressionReversed) |
801 | blockOffset = i * colGap; |
802 | else |
803 | blockOffset -= i * (computedColumnHeight() + colGap); |
804 | } |
805 | if (isFlippedWritingMode(style().writingMode())) |
806 | blockOffset = -blockOffset; |
807 | translationOffset.setHeight(blockOffset); |
808 | if (!isHorizontalWritingMode()) |
809 | translationOffset = translationOffset.transposedSize(); |
810 | |
811 | // Shift the dirty rect to be in flow thread coordinates with this translation applied. |
812 | LayoutRect translatedDirtyRect(dirtyRect); |
813 | translatedDirtyRect.move(-translationOffset); |
814 | |
815 | // See if we intersect the dirty rect. |
816 | clippedRect = layerBoundingBox; |
817 | clippedRect.intersect(translatedDirtyRect); |
818 | if (clippedRect.isEmpty()) |
819 | continue; |
820 | |
821 | // Something does need to paint in this column. Make a fragment now and supply the physical translation |
822 | // offset and the clip rect for the column with that offset applied. |
823 | LayerFragment fragment; |
824 | fragment.paginationOffset = translationOffset; |
825 | |
826 | LayoutRect flippedFragmentedFlowOverflowPortion(fragmentedFlowOverflowPortion); |
827 | // Flip it into more a physical (RenderLayer-style) rectangle. |
828 | fragmentedFlow()->flipForWritingMode(flippedFragmentedFlowOverflowPortion); |
829 | fragment.paginationClip = flippedFragmentedFlowOverflowPortion; |
830 | fragments.append(fragment); |
831 | } |
832 | } |
833 | |
834 | LayoutPoint RenderMultiColumnSet::columnTranslationForOffset(const LayoutUnit& offset) const |
835 | { |
836 | unsigned startColumn = columnIndexAtOffset(offset); |
837 | |
838 | LayoutUnit colGap = columnGap(); |
839 | |
840 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(startColumn); |
841 | LayoutPoint translationOffset; |
842 | |
843 | bool progressionReversed = multiColumnFlow()->progressionIsReversed(); |
844 | bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
845 | |
846 | LayoutUnit initialBlockOffset = initialBlockOffsetForPainting(); |
847 | |
848 | translationOffset.setX(columnLogicalLeft(startColumn)); |
849 | |
850 | LayoutUnit blockOffset = initialBlockOffset - (isHorizontalWritingMode() ? fragmentedFlowPortion.y() : fragmentedFlowPortion.x()); |
851 | if (!progressionIsInline) { |
852 | if (!progressionReversed) |
853 | blockOffset = startColumn * colGap; |
854 | else |
855 | blockOffset -= startColumn * (computedColumnHeight() + colGap); |
856 | } |
857 | if (isFlippedWritingMode(style().writingMode())) |
858 | blockOffset = -blockOffset; |
859 | translationOffset.setY(blockOffset); |
860 | |
861 | if (!isHorizontalWritingMode()) |
862 | translationOffset = translationOffset.transposedPoint(); |
863 | |
864 | return translationOffset; |
865 | } |
866 | |
867 | void RenderMultiColumnSet::adjustFragmentBoundsFromFragmentedFlowPortionRect(LayoutRect&) const |
868 | { |
869 | // This only fires for named flow thread compositing code, so let's make sure to ASSERT if this ever gets invoked. |
870 | ASSERT_NOT_REACHED(); |
871 | } |
872 | |
873 | void RenderMultiColumnSet::addOverflowFromChildren() |
874 | { |
875 | // FIXME: Need to do much better here. |
876 | unsigned colCount = columnCount(); |
877 | if (!colCount) |
878 | return; |
879 | |
880 | LayoutRect lastRect = columnRectAt(colCount - 1); |
881 | addLayoutOverflow(lastRect); |
882 | if (!hasOverflowClip()) |
883 | addVisualOverflow(lastRect); |
884 | } |
885 | |
886 | VisiblePosition RenderMultiColumnSet::positionForPoint(const LayoutPoint& logicalPoint, const RenderFragmentContainer*) |
887 | { |
888 | return multiColumnFlow()->positionForPoint(translateFragmentPointToFragmentedFlow(logicalPoint, ClampHitTestTranslationToColumns), this); |
889 | } |
890 | |
891 | LayoutPoint RenderMultiColumnSet::translateFragmentPointToFragmentedFlow(const LayoutPoint & logicalPoint, ColumnHitTestTranslationMode clampMode) const |
892 | { |
893 | // Determine which columns we intersect. |
894 | LayoutUnit colGap = columnGap(); |
895 | LayoutUnit halfColGap = colGap / 2; |
896 | |
897 | bool progressionIsInline = multiColumnFlow()->progressionIsInline(); |
898 | |
899 | LayoutPoint point = logicalPoint; |
900 | |
901 | for (unsigned i = 0; i < columnCount(); i++) { |
902 | // Add in half the column gap to the left and right of the rect. |
903 | LayoutRect colRect = columnRectAt(i); |
904 | if (isHorizontalWritingMode() == progressionIsInline) { |
905 | LayoutRect gapAndColumnRect(colRect.x() - halfColGap, colRect.y(), colRect.width() + colGap, colRect.height()); |
906 | if (point.x() >= gapAndColumnRect.x() && point.x() < gapAndColumnRect.maxX()) { |
907 | if (clampMode == ClampHitTestTranslationToColumns) { |
908 | if (progressionIsInline) { |
909 | // FIXME: The clamping that follows is not completely right for right-to-left |
910 | // content. |
911 | // Clamp everything above the column to its top left. |
912 | if (point.y() < gapAndColumnRect.y()) |
913 | point = gapAndColumnRect.location(); |
914 | // Clamp everything below the column to the next column's top left. If there is |
915 | // no next column, this still maps to just after this column. |
916 | else if (point.y() >= gapAndColumnRect.maxY()) { |
917 | point = gapAndColumnRect.location(); |
918 | point.move(0_lu, gapAndColumnRect.height()); |
919 | } |
920 | } else { |
921 | if (point.x() < colRect.x()) |
922 | point.setX(colRect.x()); |
923 | else if (point.x() >= colRect.maxX()) |
924 | point.setX(colRect.maxX() - 1); |
925 | } |
926 | } |
927 | |
928 | LayoutSize offsetInColumn = point - colRect.location(); |
929 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
930 | |
931 | return fragmentedFlowPortion.location() + offsetInColumn; |
932 | } |
933 | } else { |
934 | LayoutRect gapAndColumnRect(colRect.x(), colRect.y() - halfColGap, colRect.width(), colRect.height() + colGap); |
935 | if (point.y() >= gapAndColumnRect.y() && point.y() < gapAndColumnRect.maxY()) { |
936 | if (clampMode == ClampHitTestTranslationToColumns) { |
937 | if (progressionIsInline) { |
938 | // FIXME: The clamping that follows is not completely right for right-to-left |
939 | // content. |
940 | // Clamp everything above the column to its top left. |
941 | if (point.x() < gapAndColumnRect.x()) |
942 | point = gapAndColumnRect.location(); |
943 | // Clamp everything below the column to the next column's top left. If there is |
944 | // no next column, this still maps to just after this column. |
945 | else if (point.x() >= gapAndColumnRect.maxX()) { |
946 | point = gapAndColumnRect.location(); |
947 | point.move(gapAndColumnRect.width(), 0_lu); |
948 | } |
949 | } else { |
950 | if (point.y() < colRect.y()) |
951 | point.setY(colRect.y()); |
952 | else if (point.y() >= colRect.maxY()) |
953 | point.setY(colRect.maxY() - 1); |
954 | } |
955 | } |
956 | |
957 | LayoutSize offsetInColumn = point - colRect.location(); |
958 | LayoutRect fragmentedFlowPortion = fragmentedFlowPortionRectAt(i); |
959 | return fragmentedFlowPortion.location() + offsetInColumn; |
960 | } |
961 | } |
962 | } |
963 | |
964 | return logicalPoint; |
965 | } |
966 | |
967 | void RenderMultiColumnSet::updateHitTestResult(HitTestResult& result, const LayoutPoint& point) |
968 | { |
969 | if (result.innerNode() || !parent()->isRenderView()) |
970 | return; |
971 | |
972 | // Note this does not work with column spans, but once we implement RenderPageSet, we can move this code |
973 | // over there instead (and spans of course won't be allowed on pages). |
974 | Node* node = document().documentElement(); |
975 | if (node) { |
976 | result.setInnerNode(node); |
977 | if (!result.innerNonSharedNode()) |
978 | result.setInnerNonSharedNode(node); |
979 | LayoutPoint adjustedPoint = translateFragmentPointToFragmentedFlow(point); |
980 | view().offsetForContents(adjustedPoint); |
981 | result.setLocalPoint(adjustedPoint); |
982 | } |
983 | } |
984 | |
985 | const char* RenderMultiColumnSet::renderName() const |
986 | { |
987 | return "RenderMultiColumnSet" ; |
988 | } |
989 | |
990 | } |
991 | |