1 | /* |
2 | * Copyright (C) 2011 Apple Inc. All rights reserved. |
3 | * Copyright (C) 2013-2017 Igalia S.L. |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * 2. Redistributions in binary form must reproduce the above copyright |
11 | * notice, this list of conditions and the following disclaimer in the |
12 | * documentation and/or other materials provided with the distribution. |
13 | * |
14 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
15 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
16 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
17 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
18 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | */ |
26 | |
27 | #include "config.h" |
28 | #include "RenderGrid.h" |
29 | |
30 | #include "GridArea.h" |
31 | #include "GridLayoutFunctions.h" |
32 | #include "GridPositionsResolver.h" |
33 | #include "GridTrackSizingAlgorithm.h" |
34 | #include "LayoutRepainter.h" |
35 | #include "RenderChildIterator.h" |
36 | #include "RenderLayer.h" |
37 | #include "RenderLayoutState.h" |
38 | #include "RenderTreeBuilder.h" |
39 | #include "RenderView.h" |
40 | #include <cstdlib> |
41 | #include <wtf/IsoMallocInlines.h> |
42 | |
43 | namespace WebCore { |
44 | |
45 | WTF_MAKE_ISO_ALLOCATED_IMPL(RenderGrid); |
46 | |
47 | enum TrackSizeRestriction { |
48 | AllowInfinity, |
49 | ForbidInfinity, |
50 | }; |
51 | |
52 | RenderGrid::RenderGrid(Element& element, RenderStyle&& style) |
53 | : RenderBlock(element, WTFMove(style), 0) |
54 | , m_grid(*this) |
55 | , m_trackSizingAlgorithm(this, m_grid) |
56 | { |
57 | // All of our children must be block level. |
58 | setChildrenInline(false); |
59 | } |
60 | |
61 | RenderGrid::~RenderGrid() = default; |
62 | |
63 | StyleSelfAlignmentData RenderGrid::selfAlignmentForChild(GridAxis axis, const RenderBox& child, const RenderStyle* gridStyle) const |
64 | { |
65 | return axis == GridRowAxis ? justifySelfForChild(child, gridStyle) : alignSelfForChild(child, gridStyle); |
66 | } |
67 | |
68 | bool RenderGrid::selfAlignmentChangedToStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const |
69 | { |
70 | return selfAlignmentForChild(axis, child, &oldStyle).position() != ItemPosition::Stretch |
71 | && selfAlignmentForChild(axis, child, &newStyle).position() == ItemPosition::Stretch; |
72 | } |
73 | |
74 | bool RenderGrid::selfAlignmentChangedFromStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const |
75 | { |
76 | return selfAlignmentForChild(axis, child, &oldStyle).position() == ItemPosition::Stretch |
77 | && selfAlignmentForChild(axis, child, &newStyle).position() != ItemPosition::Stretch; |
78 | } |
79 | |
80 | void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) |
81 | { |
82 | RenderBlock::styleDidChange(diff, oldStyle); |
83 | if (!oldStyle || diff != StyleDifference::Layout) |
84 | return; |
85 | |
86 | const RenderStyle& newStyle = this->style(); |
87 | if (oldStyle->resolvedAlignItems(selfAlignmentNormalBehavior(this)).position() == ItemPosition::Stretch) { |
88 | // Style changes on the grid container implying stretching (to-stretch) or |
89 | // shrinking (from-stretch) require the affected items to be laid out again. |
90 | // These logic only applies to 'stretch' since the rest of the alignment |
91 | // values don't change the size of the box. |
92 | // In any case, the items' overrideSize will be cleared and recomputed (if |
93 | // necessary) as part of the Grid layout logic, triggered by this style |
94 | // change. |
95 | for (auto& child : childrenOfType<RenderBox>(*this)) { |
96 | if (child.isOutOfFlowPositioned()) |
97 | continue; |
98 | if (selfAlignmentChangedToStretch(GridRowAxis, *oldStyle, newStyle, child) |
99 | || selfAlignmentChangedFromStretch(GridRowAxis, *oldStyle, newStyle, child) |
100 | || selfAlignmentChangedToStretch(GridColumnAxis, *oldStyle, newStyle, child) |
101 | || selfAlignmentChangedFromStretch(GridColumnAxis, *oldStyle, newStyle, child)) { |
102 | child.setNeedsLayout(); |
103 | } |
104 | } |
105 | } |
106 | |
107 | if (explicitGridDidResize(*oldStyle) || namedGridLinesDefinitionDidChange(*oldStyle) || oldStyle->gridAutoFlow() != style().gridAutoFlow() |
108 | || (style().gridAutoRepeatColumns().size() || style().gridAutoRepeatRows().size())) |
109 | dirtyGrid(); |
110 | } |
111 | |
112 | bool RenderGrid::explicitGridDidResize(const RenderStyle& oldStyle) const |
113 | { |
114 | return oldStyle.gridColumns().size() != style().gridColumns().size() |
115 | || oldStyle.gridRows().size() != style().gridRows().size() |
116 | || oldStyle.namedGridAreaColumnCount() != style().namedGridAreaColumnCount() |
117 | || oldStyle.namedGridAreaRowCount() != style().namedGridAreaRowCount() |
118 | || oldStyle.gridAutoRepeatColumns().size() != style().gridAutoRepeatColumns().size() |
119 | || oldStyle.gridAutoRepeatRows().size() != style().gridAutoRepeatRows().size(); |
120 | } |
121 | |
122 | bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle& oldStyle) const |
123 | { |
124 | return oldStyle.namedGridRowLines() != style().namedGridRowLines() |
125 | || oldStyle.namedGridColumnLines() != style().namedGridColumnLines(); |
126 | } |
127 | |
128 | // This method optimizes the gutters computation by skiping the available size |
129 | // call if gaps are fixed size (it's only needed for percentages). |
130 | Optional<LayoutUnit> RenderGrid::availableSpaceForGutters(GridTrackSizingDirection direction) const |
131 | { |
132 | bool isRowAxis = direction == ForColumns; |
133 | const GapLength& gapLength = isRowAxis ? style().columnGap() : style().rowGap(); |
134 | if (gapLength.isNormal() || !gapLength.length().isPercentOrCalculated()) |
135 | return WTF::nullopt; |
136 | |
137 | return isRowAxis ? availableLogicalWidth() : contentLogicalHeight(); |
138 | } |
139 | |
140 | void RenderGrid::computeTrackSizesForDefiniteSize(GridTrackSizingDirection direction, LayoutUnit availableSpace) |
141 | { |
142 | LayoutUnit = guttersSize(m_grid, direction, 0, m_grid.numTracks(direction), availableSpace); |
143 | LayoutUnit freeSpace = availableSpace - totalGuttersSize; |
144 | |
145 | m_trackSizingAlgorithm.setup(direction, numTracks(direction, m_grid), TrackSizing, availableSpace, freeSpace); |
146 | m_trackSizingAlgorithm.run(); |
147 | |
148 | ASSERT(m_trackSizingAlgorithm.tracksAreWiderThanMinTrackBreadth()); |
149 | } |
150 | |
151 | void RenderGrid::repeatTracksSizingIfNeeded(LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows) |
152 | { |
153 | // In orthogonal flow cases column track's size is determined by using the computed |
154 | // row track's size, which it was estimated during the first cycle of the sizing |
155 | // algorithm. Hence we need to repeat computeUsedBreadthOfGridTracks for both, |
156 | // columns and rows, to determine the final values. |
157 | // TODO (lajava): orthogonal flows is just one of the cases which may require |
158 | // a new cycle of the sizing algorithm; there may be more. In addition, not all the |
159 | // cases with orthogonal flows require this extra cycle; we need a more specific |
160 | // condition to detect whether child's min-content contribution has changed or not. |
161 | if (m_hasAnyOrthogonalItem || m_trackSizingAlgorithm.hasAnyPercentSizedRowsIndefiniteHeight()) { |
162 | computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); |
163 | computeContentPositionAndDistributionOffset(ForColumns, m_trackSizingAlgorithm.freeSpace(ForColumns).value(), nonCollapsedTracks(ForColumns)); |
164 | computeTrackSizesForDefiniteSize(ForRows, availableSpaceForRows); |
165 | computeContentPositionAndDistributionOffset(ForRows, m_trackSizingAlgorithm.freeSpace(ForRows).value(), nonCollapsedTracks(ForRows)); |
166 | } |
167 | } |
168 | |
169 | bool RenderGrid::canPerformSimplifiedLayout() const |
170 | { |
171 | // We cannot perform a simplified layout if we need to position the items and we have some |
172 | // positioned items to be laid out. |
173 | if (m_grid.needsItemsPlacement() && posChildNeedsLayout()) |
174 | return false; |
175 | |
176 | return RenderBlock::canPerformSimplifiedLayout(); |
177 | } |
178 | |
179 | void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit) |
180 | { |
181 | ASSERT(needsLayout()); |
182 | |
183 | if (!relayoutChildren && simplifiedLayout()) |
184 | return; |
185 | |
186 | LayoutRepainter repainter(*this, checkForRepaintDuringLayout()); |
187 | { |
188 | LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode()); |
189 | |
190 | preparePaginationBeforeBlockLayout(relayoutChildren); |
191 | beginUpdateScrollInfoAfterLayoutTransaction(); |
192 | |
193 | LayoutSize previousSize = size(); |
194 | // FIXME: We should use RenderBlock::hasDefiniteLogicalHeight() but it does not work for positioned stuff. |
195 | // FIXME: Consider caching the hasDefiniteLogicalHeight value throughout the layout. |
196 | bool hasDefiniteLogicalHeight = hasOverrideContentLogicalHeight() || computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), WTF::nullopt); |
197 | |
198 | m_hasAnyOrthogonalItem = false; |
199 | for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
200 | if (child->isOutOfFlowPositioned()) |
201 | continue; |
202 | // Grid's layout logic controls the grid item's override height, hence we need to |
203 | // clear any override height set previously, so it doesn't interfere in current layout |
204 | // execution. Grid never uses the override width, that's why we don't need to clear it. |
205 | child->clearOverrideContentLogicalHeight(); |
206 | |
207 | // We may need to repeat the track sizing in case of any grid item was orthogonal. |
208 | if (GridLayoutFunctions::isOrthogonalChild(*this, *child)) |
209 | m_hasAnyOrthogonalItem = true; |
210 | |
211 | // We keep a cache of items with baseline as alignment values so |
212 | // that we only compute the baseline shims for such items. This |
213 | // cache is needed for performance related reasons due to the |
214 | // cost of evaluating the item's participation in a baseline |
215 | // context during the track sizing algorithm. |
216 | if (isBaselineAlignmentForChild(*child, GridColumnAxis)) |
217 | m_trackSizingAlgorithm.cacheBaselineAlignedItem(*child, GridColumnAxis); |
218 | if (isBaselineAlignmentForChild(*child, GridRowAxis)) |
219 | m_trackSizingAlgorithm.cacheBaselineAlignedItem(*child, GridRowAxis); |
220 | } |
221 | m_baselineItemsCached = true; |
222 | setLogicalHeight(0); |
223 | updateLogicalWidth(); |
224 | |
225 | // Fieldsets need to find their legend and position it inside the border of the object. |
226 | // The legend then gets skipped during normal layout. The same is true for ruby text. |
227 | // It doesn't get included in the normal layout process but is instead skipped. |
228 | layoutExcludedChildren(relayoutChildren); |
229 | |
230 | LayoutUnit availableSpaceForColumns = availableLogicalWidth(); |
231 | placeItemsOnGrid(m_trackSizingAlgorithm, availableSpaceForColumns); |
232 | |
233 | performGridItemsPreLayout(m_trackSizingAlgorithm); |
234 | |
235 | // 1- First, the track sizing algorithm is used to resolve the sizes of the |
236 | // grid columns. |
237 | // At this point the logical width is always definite as the above call to |
238 | // updateLogicalWidth() properly resolves intrinsic sizes. We cannot do the |
239 | // same for heights though because many code paths inside |
240 | // updateLogicalHeight() require a previous call to setLogicalHeight() to |
241 | // resolve heights properly (like for positioned items for example). |
242 | computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); |
243 | |
244 | // 1.5- Compute Content Distribution offsets for column tracks |
245 | computeContentPositionAndDistributionOffset(ForColumns, m_trackSizingAlgorithm.freeSpace(ForColumns).value(), nonCollapsedTracks(ForColumns)); |
246 | |
247 | // 2- Next, the track sizing algorithm resolves the sizes of the grid rows, |
248 | // using the grid column sizes calculated in the previous step. |
249 | if (!hasDefiniteLogicalHeight) |
250 | computeTrackSizesForIndefiniteSize(m_trackSizingAlgorithm, ForRows); |
251 | else |
252 | computeTrackSizesForDefiniteSize(ForRows, availableLogicalHeight(ExcludeMarginBorderPadding)); |
253 | LayoutUnit trackBasedLogicalHeight = m_trackSizingAlgorithm.computeTrackBasedSize() + borderAndPaddingLogicalHeight() + scrollbarLogicalHeight(); |
254 | setLogicalHeight(trackBasedLogicalHeight); |
255 | |
256 | LayoutUnit oldClientAfterEdge = clientLogicalBottom(); |
257 | updateLogicalHeight(); |
258 | |
259 | // Once grid's indefinite height is resolved, we can compute the |
260 | // available free space for Content Alignment. |
261 | if (!hasDefiniteLogicalHeight) |
262 | m_trackSizingAlgorithm.setFreeSpace(ForRows, logicalHeight() - trackBasedLogicalHeight); |
263 | |
264 | // 2.5- Compute Content Distribution offsets for rows tracks |
265 | computeContentPositionAndDistributionOffset(ForRows, m_trackSizingAlgorithm.freeSpace(ForRows).value(), nonCollapsedTracks(ForRows)); |
266 | |
267 | // 3- If the min-content contribution of any grid items have changed based on the row |
268 | // sizes calculated in step 2, steps 1 and 2 are repeated with the new min-content |
269 | // contribution (once only). |
270 | repeatTracksSizingIfNeeded(availableSpaceForColumns, contentLogicalHeight()); |
271 | |
272 | // Grid container should have the minimum height of a line if it's editable. That does not affect track sizing though. |
273 | if (hasLineIfEmpty()) { |
274 | LayoutUnit minHeightForEmptyLine = borderAndPaddingLogicalHeight() |
275 | + lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes) |
276 | + scrollbarLogicalHeight(); |
277 | setLogicalHeight(std::max(logicalHeight(), minHeightForEmptyLine)); |
278 | } |
279 | |
280 | layoutGridItems(); |
281 | m_trackSizingAlgorithm.reset(); |
282 | |
283 | endAndCommitUpdateScrollInfoAfterLayoutTransaction(); |
284 | |
285 | if (size() != previousSize) |
286 | relayoutChildren = true; |
287 | |
288 | m_outOfFlowItemColumn.clear(); |
289 | m_outOfFlowItemRow.clear(); |
290 | |
291 | layoutPositionedObjects(relayoutChildren || isDocumentElementRenderer()); |
292 | |
293 | computeOverflow(oldClientAfterEdge); |
294 | } |
295 | |
296 | updateLayerTransform(); |
297 | |
298 | // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if |
299 | // we overflow or not. |
300 | updateScrollInfoAfterLayout(); |
301 | |
302 | repainter.repaintAfterLayout(); |
303 | |
304 | clearNeedsLayout(); |
305 | |
306 | m_trackSizingAlgorithm.clearBaselineItemsCache(); |
307 | m_baselineItemsCached = false; |
308 | } |
309 | |
310 | LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction, Optional<LayoutUnit> availableSize) const |
311 | { |
312 | const GapLength& gapLength = direction == ForColumns? style().columnGap() : style().rowGap(); |
313 | if (gapLength.isNormal()) |
314 | return 0_lu; |
315 | |
316 | return valueForLength(gapLength.length(), availableSize.valueOr(0)); |
317 | } |
318 | |
319 | LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction) const |
320 | { |
321 | return gridGap(direction, availableSpaceForGutters(direction)); |
322 | } |
323 | |
324 | LayoutUnit RenderGrid::gridItemOffset(GridTrackSizingDirection direction) const |
325 | { |
326 | return direction == ForRows ? m_offsetBetweenRows.distributionOffset : m_offsetBetweenColumns.distributionOffset; |
327 | } |
328 | |
329 | LayoutUnit RenderGrid::(const Grid& grid, GridTrackSizingDirection direction, unsigned startLine, unsigned span, Optional<LayoutUnit> availableSize) const |
330 | { |
331 | if (span <= 1) |
332 | return { }; |
333 | |
334 | LayoutUnit gap = gridGap(direction, availableSize); |
335 | |
336 | // Fast path, no collapsing tracks. |
337 | if (!grid.hasAutoRepeatEmptyTracks(direction)) |
338 | return gap * (span - 1); |
339 | |
340 | // If there are collapsing tracks we need to be sure that gutters are properly collapsed. Apart |
341 | // from that, if we have a collapsed track in the edges of the span we're considering, we need |
342 | // to move forward (or backwards) in order to know whether the collapsed tracks reach the end of |
343 | // the grid (so the gap becomes 0) or there is a non empty track before that. |
344 | |
345 | LayoutUnit gapAccumulator; |
346 | unsigned endLine = startLine + span; |
347 | |
348 | for (unsigned line = startLine; line < endLine - 1; ++line) { |
349 | if (!grid.isEmptyAutoRepeatTrack(direction, line)) |
350 | gapAccumulator += gap; |
351 | } |
352 | |
353 | // The above loop adds one extra gap for trailing collapsed tracks. |
354 | if (gapAccumulator && grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { |
355 | ASSERT(gapAccumulator >= gap); |
356 | gapAccumulator -= gap; |
357 | } |
358 | |
359 | // If the startLine is the start line of a collapsed track we need to go backwards till we reach |
360 | // a non collapsed track. If we find a non collapsed track we need to add that gap. |
361 | size_t nonEmptyTracksBeforeStartLine = 0; |
362 | if (startLine && grid.isEmptyAutoRepeatTrack(direction, startLine)) { |
363 | nonEmptyTracksBeforeStartLine = startLine; |
364 | auto begin = grid.autoRepeatEmptyTracks(direction)->begin(); |
365 | for (auto it = begin; *it != startLine; ++it) { |
366 | ASSERT(nonEmptyTracksBeforeStartLine); |
367 | --nonEmptyTracksBeforeStartLine; |
368 | } |
369 | if (nonEmptyTracksBeforeStartLine) |
370 | gapAccumulator += gap; |
371 | } |
372 | |
373 | // If the endLine is the end line of a collapsed track we need to go forward till we reach a non |
374 | // collapsed track. If we find a non collapsed track we need to add that gap. |
375 | if (grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { |
376 | unsigned nonEmptyTracksAfterEndLine = grid.numTracks(direction) - endLine; |
377 | auto currentEmptyTrack = grid.autoRepeatEmptyTracks(direction)->find(endLine - 1); |
378 | auto endEmptyTrack = grid.autoRepeatEmptyTracks(direction)->end(); |
379 | // HashSet iterators do not implement operator- so we have to manually iterate to know the number of remaining empty tracks. |
380 | for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) { |
381 | ASSERT(nonEmptyTracksAfterEndLine >= 1); |
382 | --nonEmptyTracksAfterEndLine; |
383 | } |
384 | if (nonEmptyTracksAfterEndLine) { |
385 | // We shouldn't count the gap twice if the span starts and ends in a collapsed track bewtween two non-empty tracks. |
386 | if (!nonEmptyTracksBeforeStartLine) |
387 | gapAccumulator += gap; |
388 | } else if (nonEmptyTracksBeforeStartLine) { |
389 | // We shouldn't count the gap if the the span starts and ends in a collapsed but there isn't non-empty tracks afterwards (it's at the end of the grid). |
390 | gapAccumulator -= gap; |
391 | } |
392 | } |
393 | |
394 | return gapAccumulator; |
395 | } |
396 | |
397 | void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
398 | { |
399 | LayoutUnit childMinWidth; |
400 | LayoutUnit childMaxWidth; |
401 | bool hadExcludedChildren = computePreferredWidthsForExcludedChildren(childMinWidth, childMaxWidth); |
402 | |
403 | Grid grid(const_cast<RenderGrid&>(*this)); |
404 | GridTrackSizingAlgorithm algorithm(this, grid); |
405 | placeItemsOnGrid(algorithm, WTF::nullopt); |
406 | |
407 | performGridItemsPreLayout(algorithm); |
408 | |
409 | if (m_baselineItemsCached) |
410 | algorithm.copyBaselineItemsCache(m_trackSizingAlgorithm, GridRowAxis); |
411 | else { |
412 | for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
413 | if (child->isOutOfFlowPositioned()) |
414 | continue; |
415 | if (isBaselineAlignmentForChild(*child, GridRowAxis)) |
416 | algorithm.cacheBaselineAlignedItem(*child, GridRowAxis); |
417 | } |
418 | } |
419 | |
420 | computeTrackSizesForIndefiniteSize(algorithm, ForColumns, &minLogicalWidth, &maxLogicalWidth); |
421 | |
422 | if (hadExcludedChildren) { |
423 | minLogicalWidth = std::max(minLogicalWidth, childMinWidth); |
424 | maxLogicalWidth = std::max(maxLogicalWidth, childMaxWidth); |
425 | } |
426 | |
427 | LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth(); |
428 | minLogicalWidth += scrollbarWidth; |
429 | maxLogicalWidth += scrollbarWidth; |
430 | } |
431 | |
432 | void RenderGrid::computeTrackSizesForIndefiniteSize(GridTrackSizingAlgorithm& algorithm, GridTrackSizingDirection direction, LayoutUnit* minIntrinsicSize, LayoutUnit* maxIntrinsicSize) const |
433 | { |
434 | const Grid& grid = algorithm.grid(); |
435 | algorithm.setup(direction, numTracks(direction, grid), IntrinsicSizeComputation, WTF::nullopt, WTF::nullopt); |
436 | algorithm.run(); |
437 | |
438 | size_t numberOfTracks = algorithm.tracks(direction).size(); |
439 | LayoutUnit = guttersSize(grid, direction, 0, numberOfTracks, WTF::nullopt); |
440 | |
441 | if (minIntrinsicSize) |
442 | *minIntrinsicSize = algorithm.minContentSize() + totalGuttersSize; |
443 | if (maxIntrinsicSize) |
444 | *maxIntrinsicSize = algorithm.maxContentSize() + totalGuttersSize; |
445 | |
446 | ASSERT(algorithm.tracksAreWiderThanMinTrackBreadth()); |
447 | } |
448 | |
449 | unsigned RenderGrid::computeAutoRepeatTracksCount(GridTrackSizingDirection direction, Optional<LayoutUnit> availableSize) const |
450 | { |
451 | ASSERT(!availableSize || availableSize.value() != -1); |
452 | bool isRowAxis = direction == ForColumns; |
453 | const auto& autoRepeatTracks = isRowAxis ? style().gridAutoRepeatColumns() : style().gridAutoRepeatRows(); |
454 | unsigned autoRepeatTrackListLength = autoRepeatTracks.size(); |
455 | |
456 | if (!autoRepeatTrackListLength) |
457 | return 0; |
458 | |
459 | bool needsToFulfillMinimumSize = false; |
460 | if (!availableSize) { |
461 | const Length& maxSize = isRowAxis ? style().logicalMaxWidth() : style().logicalMaxHeight(); |
462 | Optional<LayoutUnit> containingBlockAvailableSize; |
463 | Optional<LayoutUnit> availableMaxSize; |
464 | if (maxSize.isSpecified()) { |
465 | if (maxSize.isPercentOrCalculated()) |
466 | containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); |
467 | LayoutUnit maxSizeValue = valueForLength(maxSize, containingBlockAvailableSize.valueOr(LayoutUnit())); |
468 | availableMaxSize = isRowAxis ? adjustContentBoxLogicalWidthForBoxSizing(maxSizeValue) : adjustContentBoxLogicalHeightForBoxSizing(maxSizeValue); |
469 | } |
470 | |
471 | const Length& minSize = isRowAxis ? style().logicalMinWidth() : style().logicalMinHeight(); |
472 | if (!availableMaxSize && !minSize.isSpecified()) |
473 | return autoRepeatTrackListLength; |
474 | |
475 | Optional<LayoutUnit> availableMinSize; |
476 | if (minSize.isSpecified()) { |
477 | if (!containingBlockAvailableSize && minSize.isPercentOrCalculated()) |
478 | containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); |
479 | LayoutUnit minSizeValue = valueForLength(minSize, containingBlockAvailableSize.valueOr(LayoutUnit())); |
480 | availableMinSize = isRowAxis ? adjustContentBoxLogicalWidthForBoxSizing(minSizeValue) : adjustContentBoxLogicalHeightForBoxSizing(minSizeValue); |
481 | if (!maxSize.isSpecified()) |
482 | needsToFulfillMinimumSize = true; |
483 | } |
484 | |
485 | availableSize = std::max(availableMinSize.valueOr(LayoutUnit()), availableMaxSize.valueOr(LayoutUnit())); |
486 | } |
487 | |
488 | LayoutUnit autoRepeatTracksSize; |
489 | for (auto& autoTrackSize : autoRepeatTracks) { |
490 | ASSERT(autoTrackSize.minTrackBreadth().isLength()); |
491 | ASSERT(!autoTrackSize.minTrackBreadth().isFlex()); |
492 | bool hasDefiniteMaxTrackSizingFunction = autoTrackSize.maxTrackBreadth().isLength() && !autoTrackSize.maxTrackBreadth().isContentSized(); |
493 | auto trackLength = hasDefiniteMaxTrackSizingFunction ? autoTrackSize.maxTrackBreadth().length() : autoTrackSize.minTrackBreadth().length(); |
494 | autoRepeatTracksSize += valueForLength(trackLength, availableSize.value()); |
495 | } |
496 | // For the purpose of finding the number of auto-repeated tracks, the UA must floor the track size to a UA-specified |
497 | // value to avoid division by zero. It is suggested that this floor be 1px. |
498 | autoRepeatTracksSize = std::max<LayoutUnit>(1_lu, autoRepeatTracksSize); |
499 | |
500 | // There will be always at least 1 auto-repeat track, so take it already into account when computing the total track size. |
501 | LayoutUnit tracksSize = autoRepeatTracksSize; |
502 | auto& trackSizes = isRowAxis ? style().gridColumns() : style().gridRows(); |
503 | |
504 | for (const auto& track : trackSizes) { |
505 | bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() && !track.maxTrackBreadth().isContentSized(); |
506 | ASSERT(hasDefiniteMaxTrackBreadth || (track.minTrackBreadth().isLength() && !track.minTrackBreadth().isContentSized())); |
507 | tracksSize += valueForLength(hasDefiniteMaxTrackBreadth ? track.maxTrackBreadth().length() : track.minTrackBreadth().length(), availableSize.value()); |
508 | } |
509 | |
510 | // Add gutters as if there where only 1 auto repeat track. Gaps between auto repeat tracks will be added later when |
511 | // computing the repetitions. |
512 | LayoutUnit gapSize = gridGap(direction, availableSize); |
513 | tracksSize += gapSize * trackSizes.size(); |
514 | |
515 | LayoutUnit freeSpace = availableSize.value() - tracksSize; |
516 | if (freeSpace <= 0) |
517 | return autoRepeatTrackListLength; |
518 | |
519 | LayoutUnit autoRepeatSizeWithGap = autoRepeatTracksSize + gapSize; |
520 | unsigned repetitions = 1 + (freeSpace / autoRepeatSizeWithGap).toUnsigned(); |
521 | freeSpace -= autoRepeatSizeWithGap * (repetitions - 1); |
522 | ASSERT(freeSpace >= 0); |
523 | |
524 | // Provided the grid container does not have a definite size or max-size in the relevant axis, |
525 | // if the min size is definite then the number of repetitions is the largest possible positive |
526 | // integer that fulfills that minimum requirement. |
527 | if (needsToFulfillMinimumSize && freeSpace) |
528 | ++repetitions; |
529 | |
530 | return repetitions * autoRepeatTrackListLength; |
531 | } |
532 | |
533 | |
534 | std::unique_ptr<OrderedTrackIndexSet> RenderGrid::computeEmptyTracksForAutoRepeat(Grid& grid, GridTrackSizingDirection direction) const |
535 | { |
536 | bool isRowAxis = direction == ForColumns; |
537 | if ((isRowAxis && style().gridAutoRepeatColumnsType() != AutoRepeatType::Fit) |
538 | || (!isRowAxis && style().gridAutoRepeatRowsType() != AutoRepeatType::Fit)) |
539 | return nullptr; |
540 | |
541 | std::unique_ptr<OrderedTrackIndexSet> emptyTrackIndexes; |
542 | unsigned insertionPoint = isRowAxis ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); |
543 | unsigned firstAutoRepeatTrack = insertionPoint + std::abs(grid.smallestTrackStart(direction)); |
544 | unsigned lastAutoRepeatTrack = firstAutoRepeatTrack + grid.autoRepeatTracks(direction); |
545 | |
546 | if (!grid.hasGridItems()) { |
547 | emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>(); |
548 | for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) |
549 | emptyTrackIndexes->add(trackIndex); |
550 | } else { |
551 | for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) { |
552 | GridIterator iterator(grid, direction, trackIndex); |
553 | if (!iterator.nextGridItem()) { |
554 | if (!emptyTrackIndexes) |
555 | emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>(); |
556 | emptyTrackIndexes->add(trackIndex); |
557 | } |
558 | } |
559 | } |
560 | return emptyTrackIndexes; |
561 | } |
562 | |
563 | unsigned RenderGrid::clampAutoRepeatTracks(GridTrackSizingDirection direction, unsigned autoRepeatTracks) const |
564 | { |
565 | if (!autoRepeatTracks) |
566 | return 0; |
567 | |
568 | unsigned insertionPoint = direction == ForColumns ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); |
569 | unsigned maxTracks = static_cast<unsigned>(GridPosition::max()); |
570 | |
571 | if (!insertionPoint) |
572 | return std::min(autoRepeatTracks, maxTracks); |
573 | |
574 | if (insertionPoint >= maxTracks) |
575 | return 0; |
576 | |
577 | return std::min(autoRepeatTracks, maxTracks - insertionPoint); |
578 | } |
579 | |
580 | // FIXME: We shouldn't have to pass the available logical width as argument. The problem is that |
581 | // availableLogicalWidth() does always return a value even if we cannot resolve it like when |
582 | // computing the intrinsic size (preferred widths). That's why we pass the responsibility to the |
583 | // caller who does know whether the available logical width is indefinite or not. |
584 | void RenderGrid::placeItemsOnGrid(GridTrackSizingAlgorithm& algorithm, Optional<LayoutUnit> availableLogicalWidth) const |
585 | { |
586 | Grid& grid = algorithm.mutableGrid(); |
587 | unsigned autoRepeatColumns = computeAutoRepeatTracksCount(ForColumns, availableLogicalWidth); |
588 | unsigned autoRepeatRows = computeAutoRepeatTracksCount(ForRows, availableLogicalHeightForPercentageComputation()); |
589 | |
590 | autoRepeatRows = clampAutoRepeatTracks(ForRows, autoRepeatRows); |
591 | autoRepeatColumns = clampAutoRepeatTracks(ForColumns, autoRepeatColumns); |
592 | |
593 | if (autoRepeatColumns != grid.autoRepeatTracks(ForColumns) || autoRepeatRows != grid.autoRepeatTracks(ForRows)) { |
594 | grid.setNeedsItemsPlacement(true); |
595 | grid.setAutoRepeatTracks(autoRepeatRows, autoRepeatColumns); |
596 | } |
597 | |
598 | if (!grid.needsItemsPlacement()) |
599 | return; |
600 | |
601 | ASSERT(!grid.hasGridItems()); |
602 | populateExplicitGridAndOrderIterator(grid); |
603 | |
604 | Vector<RenderBox*> autoMajorAxisAutoGridItems; |
605 | Vector<RenderBox*> specifiedMajorAxisAutoGridItems; |
606 | for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { |
607 | if (grid.orderIterator().shouldSkipChild(*child)) |
608 | continue; |
609 | |
610 | // Grid items should use the grid area sizes instead of the containing block (grid container) |
611 | // sizes, we initialize the overrides here if needed to ensure it. |
612 | if (!child->hasOverrideContainingBlockContentLogicalWidth()) |
613 | child->setOverrideContainingBlockContentLogicalWidth(LayoutUnit()); |
614 | if (!child->hasOverrideContainingBlockContentLogicalHeight()) |
615 | child->setOverrideContainingBlockContentLogicalHeight(LayoutUnit(-1)); |
616 | |
617 | GridArea area = grid.gridItemArea(*child); |
618 | if (!area.rows.isIndefinite()) |
619 | area.rows.translate(std::abs(grid.smallestTrackStart(ForRows))); |
620 | if (!area.columns.isIndefinite()) |
621 | area.columns.translate(std::abs(grid.smallestTrackStart(ForColumns))); |
622 | |
623 | if (area.rows.isIndefinite() || area.columns.isIndefinite()) { |
624 | grid.setGridItemArea(*child, area); |
625 | bool majorAxisDirectionIsForColumns = autoPlacementMajorAxisDirection() == ForColumns; |
626 | if ((majorAxisDirectionIsForColumns && area.columns.isIndefinite()) |
627 | || (!majorAxisDirectionIsForColumns && area.rows.isIndefinite())) |
628 | autoMajorAxisAutoGridItems.append(child); |
629 | else |
630 | specifiedMajorAxisAutoGridItems.append(child); |
631 | continue; |
632 | } |
633 | grid.insert(*child, { area.rows, area.columns }); |
634 | } |
635 | |
636 | #if !ASSERT_DISABLED |
637 | if (grid.hasGridItems()) { |
638 | ASSERT(grid.numTracks(ForRows) >= GridPositionsResolver::explicitGridRowCount(style(), grid.autoRepeatTracks(ForRows))); |
639 | ASSERT(grid.numTracks(ForColumns) >= GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns))); |
640 | } |
641 | #endif |
642 | |
643 | placeSpecifiedMajorAxisItemsOnGrid(grid, specifiedMajorAxisAutoGridItems); |
644 | placeAutoMajorAxisItemsOnGrid(grid, autoMajorAxisAutoGridItems); |
645 | |
646 | // Compute collapsible tracks for auto-fit. |
647 | grid.setAutoRepeatEmptyColumns(computeEmptyTracksForAutoRepeat(grid, ForColumns)); |
648 | grid.setAutoRepeatEmptyRows(computeEmptyTracksForAutoRepeat(grid, ForRows)); |
649 | |
650 | grid.setNeedsItemsPlacement(false); |
651 | |
652 | #if !ASSERT_DISABLED |
653 | for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { |
654 | if (grid.orderIterator().shouldSkipChild(*child)) |
655 | continue; |
656 | |
657 | GridArea area = grid.gridItemArea(*child); |
658 | ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite()); |
659 | } |
660 | #endif |
661 | } |
662 | |
663 | void RenderGrid::performGridItemsPreLayout(const GridTrackSizingAlgorithm& algorithm) const |
664 | { |
665 | ASSERT(!algorithm.grid().needsItemsPlacement()); |
666 | // FIXME: We need a way when we are calling this during intrinsic size compuation before performing |
667 | // the layout. Maybe using the PreLayout phase ? |
668 | for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
669 | if (child->isOutOfFlowPositioned()) |
670 | continue; |
671 | // Orthogonal items should be laid out in order to properly compute content-sized tracks that may depend on item's intrinsic size. |
672 | // We also need to properly estimate its grid area size, since it may affect to the baseline shims if such item particiaptes in baseline alignment. |
673 | if (GridLayoutFunctions::isOrthogonalChild(*this, *child)) { |
674 | updateGridAreaLogicalSize(*child, algorithm.estimatedGridAreaBreadthForChild(*child)); |
675 | child->layoutIfNeeded(); |
676 | continue; |
677 | } |
678 | // We need to layout the item to know whether it must synthesize its |
679 | // baseline or not, which may imply a cyclic sizing dependency. |
680 | // FIXME: Can we avoid it ? |
681 | if (isBaselineAlignmentForChild(*child)) { |
682 | updateGridAreaLogicalSize(*child, algorithm.estimatedGridAreaBreadthForChild(*child)); |
683 | child->layoutIfNeeded(); |
684 | } |
685 | } |
686 | } |
687 | |
688 | void RenderGrid::populateExplicitGridAndOrderIterator(Grid& grid) const |
689 | { |
690 | OrderIteratorPopulator populator(grid.orderIterator()); |
691 | int smallestRowStart = 0; |
692 | int smallestColumnStart = 0; |
693 | unsigned autoRepeatRows = grid.autoRepeatTracks(ForRows); |
694 | unsigned autoRepeatColumns = grid.autoRepeatTracks(ForColumns); |
695 | unsigned maximumRowIndex = GridPositionsResolver::explicitGridRowCount(style(), autoRepeatRows); |
696 | unsigned maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(style(), autoRepeatColumns); |
697 | |
698 | for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
699 | if (!populator.collectChild(*child)) |
700 | continue; |
701 | |
702 | GridSpan rowPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForRows, autoRepeatRows); |
703 | if (!rowPositions.isIndefinite()) { |
704 | smallestRowStart = std::min(smallestRowStart, rowPositions.untranslatedStartLine()); |
705 | maximumRowIndex = std::max<int>(maximumRowIndex, rowPositions.untranslatedEndLine()); |
706 | } else { |
707 | // Grow the grid for items with a definite row span, getting the largest such span. |
708 | unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*child, ForRows); |
709 | maximumRowIndex = std::max(maximumRowIndex, spanSize); |
710 | } |
711 | |
712 | GridSpan columnPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForColumns, autoRepeatColumns); |
713 | if (!columnPositions.isIndefinite()) { |
714 | smallestColumnStart = std::min(smallestColumnStart, columnPositions.untranslatedStartLine()); |
715 | maximumColumnIndex = std::max<int>(maximumColumnIndex, columnPositions.untranslatedEndLine()); |
716 | } else { |
717 | // Grow the grid for items with a definite column span, getting the largest such span. |
718 | unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*child, ForColumns); |
719 | maximumColumnIndex = std::max(maximumColumnIndex, spanSize); |
720 | } |
721 | |
722 | grid.setGridItemArea(*child, { rowPositions, columnPositions }); |
723 | } |
724 | |
725 | grid.setSmallestTracksStart(smallestRowStart, smallestColumnStart); |
726 | grid.ensureGridSize(maximumRowIndex + std::abs(smallestRowStart), maximumColumnIndex + std::abs(smallestColumnStart)); |
727 | } |
728 | |
729 | std::unique_ptr<GridArea> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(Grid& grid, const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const |
730 | { |
731 | GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns; |
732 | const unsigned endOfCrossDirection = grid.numTracks(crossDirection); |
733 | unsigned crossDirectionSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(gridItem, crossDirection); |
734 | GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize); |
735 | return std::make_unique<GridArea>(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions); |
736 | } |
737 | |
738 | void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const |
739 | { |
740 | bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns; |
741 | bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); |
742 | |
743 | // Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on |
744 | // that track. This is needed to implement "sparse" packing for items locked to a given track. |
745 | // See http://dev.w3.org/csswg/css-grid/#auto-placement-algorithm |
746 | HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors; |
747 | |
748 | for (auto& autoGridItem : autoGridItems) { |
749 | GridSpan majorAxisPositions = grid.gridItemSpan(*autoGridItem, autoPlacementMajorAxisDirection()); |
750 | ASSERT(majorAxisPositions.isTranslatedDefinite()); |
751 | ASSERT(grid.gridItemSpan(*autoGridItem, autoPlacementMinorAxisDirection()).isIndefinite()); |
752 | unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*autoGridItem, autoPlacementMinorAxisDirection()); |
753 | unsigned majorAxisInitialPosition = majorAxisPositions.startLine(); |
754 | |
755 | GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition)); |
756 | std::unique_ptr<GridArea> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisSpanSize); |
757 | if (!emptyGridArea) |
758 | emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, *autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions); |
759 | |
760 | grid.insert(*autoGridItem, *emptyGridArea); |
761 | |
762 | if (!isGridAutoFlowDense) |
763 | minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.startLine() : emptyGridArea->columns.startLine()); |
764 | } |
765 | } |
766 | |
767 | void RenderGrid::placeAutoMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const |
768 | { |
769 | AutoPlacementCursor autoPlacementCursor = {0, 0}; |
770 | bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); |
771 | |
772 | for (auto& autoGridItem : autoGridItems) { |
773 | placeAutoMajorAxisItemOnGrid(grid, *autoGridItem, autoPlacementCursor); |
774 | |
775 | if (isGridAutoFlowDense) { |
776 | autoPlacementCursor.first = 0; |
777 | autoPlacementCursor.second = 0; |
778 | } |
779 | } |
780 | } |
781 | |
782 | void RenderGrid::placeAutoMajorAxisItemOnGrid(Grid& grid, RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor) const |
783 | { |
784 | ASSERT(grid.gridItemSpan(gridItem, autoPlacementMajorAxisDirection()).isIndefinite()); |
785 | unsigned majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(gridItem, autoPlacementMajorAxisDirection()); |
786 | |
787 | const unsigned endOfMajorAxis = grid.numTracks(autoPlacementMajorAxisDirection()); |
788 | unsigned majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first; |
789 | unsigned minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second; |
790 | |
791 | std::unique_ptr<GridArea> emptyGridArea; |
792 | GridSpan minorAxisPositions = grid.gridItemSpan(gridItem, autoPlacementMinorAxisDirection()); |
793 | if (minorAxisPositions.isTranslatedDefinite()) { |
794 | // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor. |
795 | if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor) |
796 | majorAxisAutoPlacementCursor++; |
797 | |
798 | if (majorAxisAutoPlacementCursor < endOfMajorAxis) { |
799 | GridIterator iterator(grid, autoPlacementMinorAxisDirection(), minorAxisPositions.startLine(), majorAxisAutoPlacementCursor); |
800 | emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisSpanSize); |
801 | } |
802 | |
803 | if (!emptyGridArea) |
804 | emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions); |
805 | } else { |
806 | unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(gridItem, autoPlacementMinorAxisDirection()); |
807 | |
808 | for (unsigned majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) { |
809 | GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor); |
810 | emptyGridArea = iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize); |
811 | |
812 | if (emptyGridArea) { |
813 | // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()). |
814 | unsigned minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.endLine() : emptyGridArea->rows.endLine(); |
815 | const unsigned endOfMinorAxis = grid.numTracks(autoPlacementMinorAxisDirection()); |
816 | if (minorAxisFinalPositionIndex <= endOfMinorAxis) |
817 | break; |
818 | |
819 | // Discard empty grid area as it does not fit in the minor axis direction. |
820 | // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration. |
821 | emptyGridArea = nullptr; |
822 | } |
823 | |
824 | // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis. |
825 | minorAxisAutoPlacementCursor = 0; |
826 | } |
827 | |
828 | if (!emptyGridArea) |
829 | emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize)); |
830 | } |
831 | |
832 | grid.insert(gridItem, *emptyGridArea); |
833 | autoPlacementCursor.first = emptyGridArea->rows.startLine(); |
834 | autoPlacementCursor.second = emptyGridArea->columns.startLine(); |
835 | } |
836 | |
837 | GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const |
838 | { |
839 | return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows; |
840 | } |
841 | |
842 | GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const |
843 | { |
844 | return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns; |
845 | } |
846 | |
847 | void RenderGrid::dirtyGrid() |
848 | { |
849 | if (m_grid.needsItemsPlacement()) |
850 | return; |
851 | |
852 | m_grid.setNeedsItemsPlacement(true); |
853 | } |
854 | |
855 | Vector<LayoutUnit> RenderGrid::trackSizesForComputedStyle(GridTrackSizingDirection direction) const |
856 | { |
857 | bool isRowAxis = direction == ForColumns; |
858 | auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
859 | size_t numPositions = positions.size(); |
860 | LayoutUnit offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns.distributionOffset : m_offsetBetweenRows.distributionOffset; |
861 | |
862 | Vector<LayoutUnit> tracks; |
863 | if (numPositions < 2) |
864 | return tracks; |
865 | |
866 | ASSERT(!m_grid.needsItemsPlacement()); |
867 | bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); |
868 | LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : 0_lu; |
869 | tracks.reserveCapacity(numPositions - 1); |
870 | for (size_t i = 0; i < numPositions - 2; ++i) |
871 | tracks.append(positions[i + 1] - positions[i] - offsetBetweenTracks - gap); |
872 | tracks.append(positions[numPositions - 1] - positions[numPositions - 2]); |
873 | |
874 | if (!hasCollapsedTracks) |
875 | return tracks; |
876 | |
877 | size_t remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size(); |
878 | size_t lastLine = tracks.size(); |
879 | gap = gridGap(direction); |
880 | for (size_t i = 1; i < lastLine; ++i) { |
881 | if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) |
882 | --remainingEmptyTracks; |
883 | else { |
884 | // Remove the gap between consecutive non empty tracks. Remove it also just once for an |
885 | // arbitrary number of empty tracks between two non empty ones. |
886 | bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); |
887 | if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) |
888 | tracks[i - 1] -= gap; |
889 | } |
890 | } |
891 | |
892 | return tracks; |
893 | } |
894 | |
895 | static const StyleContentAlignmentData& contentAlignmentNormalBehaviorGrid() |
896 | { |
897 | static const StyleContentAlignmentData normalBehavior = {ContentPosition::Normal, ContentDistribution::Stretch}; |
898 | return normalBehavior; |
899 | } |
900 | |
901 | static bool overrideSizeChanged(const RenderBox& child, GridTrackSizingDirection direction, LayoutSize size) |
902 | { |
903 | if (direction == ForColumns) |
904 | return !child.hasOverrideContainingBlockContentLogicalWidth() || child.overrideContainingBlockContentLogicalWidth() != size.width(); |
905 | return !child.hasOverrideContainingBlockContentLogicalHeight() || child.overrideContainingBlockContentLogicalHeight() != size.height(); |
906 | } |
907 | |
908 | static bool hasRelativeBlockAxisSize(const RenderGrid& grid, const RenderBox& child) |
909 | { |
910 | return GridLayoutFunctions::isOrthogonalChild(grid, child) ? child.hasRelativeLogicalWidth() || child.style().logicalWidth().isAuto() : child.hasRelativeLogicalHeight(); |
911 | } |
912 | |
913 | void RenderGrid::updateGridAreaLogicalSize(RenderBox& child, LayoutSize gridAreaLogicalSize) const |
914 | { |
915 | // Because the grid area cannot be styled, we don't need to adjust |
916 | // the grid breadth to account for 'box-sizing'. |
917 | bool gridAreaWidthChanged = overrideSizeChanged(child, ForColumns, gridAreaLogicalSize); |
918 | bool gridAreaHeightChanged = overrideSizeChanged(child, ForRows, gridAreaLogicalSize); |
919 | if (gridAreaWidthChanged || (gridAreaHeightChanged && hasRelativeBlockAxisSize(*this, child))) |
920 | child.setNeedsLayout(MarkOnlyThis); |
921 | |
922 | child.setOverrideContainingBlockContentLogicalWidth(gridAreaLogicalSize.width()); |
923 | child.setOverrideContainingBlockContentLogicalHeight(gridAreaLogicalSize.height()); |
924 | } |
925 | |
926 | void RenderGrid::layoutGridItems() |
927 | { |
928 | populateGridPositionsForDirection(ForColumns); |
929 | populateGridPositionsForDirection(ForRows); |
930 | |
931 | for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
932 | |
933 | if (m_grid.orderIterator().shouldSkipChild(*child)) { |
934 | if (child->isOutOfFlowPositioned()) |
935 | prepareChildForPositionedLayout(*child); |
936 | continue; |
937 | } |
938 | |
939 | // Setting the definite grid area's sizes. It may imply that the |
940 | // item must perform a layout if its area differs from the one |
941 | // used during the track sizing algorithm. |
942 | updateGridAreaLogicalSize(*child, LayoutSize(gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns), gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows))); |
943 | |
944 | LayoutRect oldChildRect = child->frameRect(); |
945 | |
946 | // Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded |
947 | // call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly |
948 | // determine the available space before stretching, are not set yet. |
949 | applyStretchAlignmentToChildIfNeeded(*child); |
950 | |
951 | child->layoutIfNeeded(); |
952 | |
953 | // We need pending layouts to be done in order to compute auto-margins properly. |
954 | updateAutoMarginsInColumnAxisIfNeeded(*child); |
955 | updateAutoMarginsInRowAxisIfNeeded(*child); |
956 | |
957 | setLogicalPositionForChild(*child); |
958 | |
959 | // If the child moved, we have to repaint it as well as any floating/positioned |
960 | // descendants. An exception is if we need a layout. In this case, we know we're going to |
961 | // repaint ourselves (and the child) anyway. |
962 | if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) |
963 | child->repaintDuringLayoutIfMoved(oldChildRect); |
964 | } |
965 | } |
966 | |
967 | void RenderGrid::prepareChildForPositionedLayout(RenderBox& child) |
968 | { |
969 | ASSERT(child.isOutOfFlowPositioned()); |
970 | child.containingBlock()->insertPositionedObject(child); |
971 | |
972 | RenderLayer* childLayer = child.layer(); |
973 | // Static position of a positioned child should use the content-box (https://drafts.csswg.org/css-grid/#static-position). |
974 | childLayer->setStaticInlinePosition(borderAndPaddingStart()); |
975 | childLayer->setStaticBlockPosition(borderAndPaddingBefore()); |
976 | } |
977 | |
978 | bool RenderGrid::hasStaticPositionForChild(const RenderBox& child, GridTrackSizingDirection direction) const |
979 | { |
980 | return direction == ForColumns ? child.style().hasStaticInlinePosition(isHorizontalWritingMode()) : child.style().hasStaticBlockPosition(isHorizontalWritingMode()); |
981 | } |
982 | |
983 | void RenderGrid::layoutPositionedObject(RenderBox& child, bool relayoutChildren, bool fixedPositionObjectsOnly) |
984 | { |
985 | LayoutUnit columnBreadth = gridAreaBreadthForOutOfFlowChild(child, ForColumns); |
986 | LayoutUnit rowBreadth = gridAreaBreadthForOutOfFlowChild(child, ForRows); |
987 | |
988 | child.setOverrideContainingBlockContentLogicalWidth(columnBreadth); |
989 | child.setOverrideContainingBlockContentLogicalHeight(rowBreadth); |
990 | |
991 | // Mark for layout as we're resetting the position before and we relay in generic layout logic |
992 | // for positioned items in order to get the offsets properly resolved. |
993 | child.setChildNeedsLayout(MarkOnlyThis); |
994 | |
995 | RenderBlock::layoutPositionedObject(child, relayoutChildren, fixedPositionObjectsOnly); |
996 | |
997 | setLogicalOffsetForChild(child, ForColumns); |
998 | setLogicalOffsetForChild(child, ForRows); |
999 | } |
1000 | |
1001 | LayoutUnit RenderGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(const RenderBox& child, GridTrackSizingDirection direction) const |
1002 | { |
1003 | // We need the cached value when available because Content Distribution alignment properties |
1004 | // may have some influence in the final grid area breadth. |
1005 | const auto& tracks = m_trackSizingAlgorithm.tracks(direction); |
1006 | const auto& span = m_grid.gridItemSpan(child, direction); |
1007 | const auto& linePositions = (direction == ForColumns) ? m_columnPositions : m_rowPositions; |
1008 | |
1009 | LayoutUnit initialTrackPosition = linePositions[span.startLine()]; |
1010 | LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1]; |
1011 | |
1012 | // Track Positions vector stores the 'start' grid line of each track, so we have to add last track's baseSize. |
1013 | return finalTrackPosition - initialTrackPosition + tracks[span.endLine() - 1].baseSize(); |
1014 | } |
1015 | |
1016 | void RenderGrid::populateGridPositionsForDirection(GridTrackSizingDirection direction) |
1017 | { |
1018 | // Since we add alignment offsets and track gutters, grid lines are not always adjacent. Hence we will have to |
1019 | // assume from now on that we just store positions of the initial grid lines of each track, |
1020 | // except the last one, which is the only one considered as a final grid line of a track. |
1021 | |
1022 | // The grid container's frame elements (border, padding and <content-position> offset) are sensible to the |
1023 | // inline-axis flow direction. However, column lines positions are 'direction' unaware. This simplification |
1024 | // allows us to use the same indexes to identify the columns independently on the inline-axis direction. |
1025 | bool isRowAxis = direction == ForColumns; |
1026 | auto& tracks = m_trackSizingAlgorithm.tracks(direction); |
1027 | unsigned numberOfTracks = tracks.size(); |
1028 | unsigned numberOfLines = numberOfTracks + 1; |
1029 | unsigned lastLine = numberOfLines - 1; |
1030 | bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); |
1031 | size_t numberOfCollapsedTracks = hasCollapsedTracks ? m_grid.autoRepeatEmptyTracks(direction)->size() : 0; |
1032 | const auto& offset = direction == ForColumns ? m_offsetBetweenColumns : m_offsetBetweenRows; |
1033 | auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
1034 | positions.resize(numberOfLines); |
1035 | |
1036 | auto borderAndPadding = isRowAxis ? borderAndPaddingLogicalLeft() : borderAndPaddingBefore(); |
1037 | #if !PLATFORM(IOS_FAMILY) |
1038 | // FIXME: Ideally scrollbarLogicalWidth() should return zero in iOS so we don't need this |
1039 | // (see bug https://webkit.org/b/191857). |
1040 | // If we are in horizontal writing mode and RTL direction the scrollbar is painted on the left, |
1041 | // so we need to take into account when computing the position of the columns. |
1042 | if (isRowAxis && style().isHorizontalWritingMode() && !style().isLeftToRightDirection()) |
1043 | borderAndPadding += scrollbarLogicalWidth(); |
1044 | #endif |
1045 | |
1046 | positions[0] = borderAndPadding + offset.positionOffset; |
1047 | if (numberOfLines > 1) { |
1048 | // If we have collapsed tracks we just ignore gaps here and add them later as we might not |
1049 | // compute the gap between two consecutive tracks without examining the surrounding ones. |
1050 | LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : 0_lu; |
1051 | unsigned nextToLastLine = numberOfLines - 2; |
1052 | for (unsigned i = 0; i < nextToLastLine; ++i) |
1053 | positions[i + 1] = positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap; |
1054 | positions[lastLine] = positions[nextToLastLine] + tracks[nextToLastLine].baseSize(); |
1055 | |
1056 | // Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to collapse (they |
1057 | // coincide exactly) except on the edges of the grid where they become 0. |
1058 | if (hasCollapsedTracks) { |
1059 | gap = gridGap(direction); |
1060 | unsigned remainingEmptyTracks = numberOfCollapsedTracks; |
1061 | LayoutUnit offsetAccumulator; |
1062 | LayoutUnit gapAccumulator; |
1063 | for (unsigned i = 1; i < lastLine; ++i) { |
1064 | if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) { |
1065 | --remainingEmptyTracks; |
1066 | offsetAccumulator += offset.distributionOffset; |
1067 | } else { |
1068 | // Add gap between consecutive non empty tracks. Add it also just once for an |
1069 | // arbitrary number of empty tracks between two non empty ones. |
1070 | bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); |
1071 | if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) |
1072 | gapAccumulator += gap; |
1073 | } |
1074 | positions[i] += gapAccumulator - offsetAccumulator; |
1075 | } |
1076 | positions[lastLine] += gapAccumulator - offsetAccumulator; |
1077 | } |
1078 | } |
1079 | } |
1080 | |
1081 | static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackSize, LayoutUnit childSize) |
1082 | { |
1083 | LayoutUnit offset = trackSize - childSize; |
1084 | switch (overflow) { |
1085 | case OverflowAlignment::Safe: |
1086 | // If overflow is 'safe', we have to make sure we don't overflow the 'start' |
1087 | // edge (potentially cause some data loss as the overflow is unreachable). |
1088 | return std::max<LayoutUnit>(0, offset); |
1089 | case OverflowAlignment::Unsafe: |
1090 | case OverflowAlignment::Default: |
1091 | // If we overflow our alignment container and overflow is 'true' (default), we |
1092 | // ignore the overflow and just return the value regardless (which may cause data |
1093 | // loss as we overflow the 'start' edge). |
1094 | return offset; |
1095 | } |
1096 | |
1097 | ASSERT_NOT_REACHED(); |
1098 | return 0; |
1099 | } |
1100 | |
1101 | LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const |
1102 | { |
1103 | // Because we want to avoid multiple layouts, stretching logic might be performed before |
1104 | // children are laid out, so we can't use the child cached values. Hence, we need to |
1105 | // compute margins in order to determine the available height before stretching. |
1106 | GridTrackSizingDirection childBlockFlowDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows); |
1107 | return gridAreaBreadthForChild - GridLayoutFunctions::marginLogicalSizeForChild(*this, childBlockFlowDirection, child); |
1108 | } |
1109 | |
1110 | StyleSelfAlignmentData RenderGrid::alignSelfForChild(const RenderBox& child, const RenderStyle* gridStyle) const |
1111 | { |
1112 | if (!gridStyle) |
1113 | gridStyle = &style(); |
1114 | return child.style().resolvedAlignSelf(gridStyle, selfAlignmentNormalBehavior(&child)); |
1115 | } |
1116 | |
1117 | StyleSelfAlignmentData RenderGrid::justifySelfForChild(const RenderBox& child, const RenderStyle* gridStyle) const |
1118 | { |
1119 | if (!gridStyle) |
1120 | gridStyle = &style(); |
1121 | return child.style().resolvedJustifySelf(gridStyle, selfAlignmentNormalBehavior(&child)); |
1122 | } |
1123 | |
1124 | // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
1125 | void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child) |
1126 | { |
1127 | ASSERT(child.overrideContainingBlockContentLogicalHeight()); |
1128 | |
1129 | // We clear height override values because we will decide now whether it's allowed or |
1130 | // not, evaluating the conditions which might have changed since the old values were set. |
1131 | child.clearOverrideContentLogicalHeight(); |
1132 | |
1133 | GridTrackSizingDirection childBlockDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows); |
1134 | bool blockFlowIsColumnAxis = childBlockDirection == ForRows; |
1135 | bool allowedToStretchChildBlockSize = blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child) : allowedToStretchChildAlongRowAxis(child); |
1136 | if (allowedToStretchChildBlockSize) { |
1137 | LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(GridLayoutFunctions::overrideContainingBlockContentSizeForChild(child, childBlockDirection).value(), child); |
1138 | LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, -1_lu); |
1139 | child.setOverrideContentLogicalHeight(desiredLogicalHeight - child.borderAndPaddingLogicalHeight()); |
1140 | if (desiredLogicalHeight != child.logicalHeight()) { |
1141 | // FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905. |
1142 | child.setLogicalHeight(0_lu); |
1143 | child.setNeedsLayout(); |
1144 | } |
1145 | } |
1146 | } |
1147 | |
1148 | // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
1149 | bool RenderGrid::hasAutoMarginsInColumnAxis(const RenderBox& child) const |
1150 | { |
1151 | if (isHorizontalWritingMode()) |
1152 | return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); |
1153 | return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); |
1154 | } |
1155 | |
1156 | // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
1157 | bool RenderGrid::hasAutoMarginsInRowAxis(const RenderBox& child) const |
1158 | { |
1159 | if (isHorizontalWritingMode()) |
1160 | return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); |
1161 | return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); |
1162 | } |
1163 | |
1164 | // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
1165 | void RenderGrid::updateAutoMarginsInRowAxisIfNeeded(RenderBox& child) |
1166 | { |
1167 | ASSERT(!child.isOutOfFlowPositioned()); |
1168 | |
1169 | LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalWidth().value() - child.logicalWidth() - child.marginLogicalWidth(); |
1170 | if (availableAlignmentSpace <= 0) |
1171 | return; |
1172 | |
1173 | const RenderStyle& parentStyle = style(); |
1174 | Length marginStart = child.style().marginStartUsing(&parentStyle); |
1175 | Length marginEnd = child.style().marginEndUsing(&parentStyle); |
1176 | if (marginStart.isAuto() && marginEnd.isAuto()) { |
1177 | child.setMarginStart(availableAlignmentSpace / 2, &parentStyle); |
1178 | child.setMarginEnd(availableAlignmentSpace / 2, &parentStyle); |
1179 | } else if (marginStart.isAuto()) { |
1180 | child.setMarginStart(availableAlignmentSpace, &parentStyle); |
1181 | } else if (marginEnd.isAuto()) { |
1182 | child.setMarginEnd(availableAlignmentSpace, &parentStyle); |
1183 | } |
1184 | } |
1185 | |
1186 | // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
1187 | void RenderGrid::updateAutoMarginsInColumnAxisIfNeeded(RenderBox& child) |
1188 | { |
1189 | ASSERT(!child.isOutOfFlowPositioned()); |
1190 | |
1191 | LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalHeight().value() - child.logicalHeight() - child.marginLogicalHeight(); |
1192 | if (availableAlignmentSpace <= 0) |
1193 | return; |
1194 | |
1195 | const RenderStyle& parentStyle = style(); |
1196 | Length marginBefore = child.style().marginBeforeUsing(&parentStyle); |
1197 | Length marginAfter = child.style().marginAfterUsing(&parentStyle); |
1198 | if (marginBefore.isAuto() && marginAfter.isAuto()) { |
1199 | child.setMarginBefore(availableAlignmentSpace / 2, &parentStyle); |
1200 | child.setMarginAfter(availableAlignmentSpace / 2, &parentStyle); |
1201 | } else if (marginBefore.isAuto()) { |
1202 | child.setMarginBefore(availableAlignmentSpace, &parentStyle); |
1203 | } else if (marginAfter.isAuto()) { |
1204 | child.setMarginAfter(availableAlignmentSpace, &parentStyle); |
1205 | } |
1206 | } |
1207 | |
1208 | // FIXME: This logic could be refactored somehow and defined in RenderBox. |
1209 | static int synthesizedBaselineFromBorderBox(const RenderBox& box, LineDirectionMode direction) |
1210 | { |
1211 | return (direction == HorizontalLine ? box.size().height() : box.size().width()).toInt(); |
1212 | } |
1213 | |
1214 | bool RenderGrid::isBaselineAlignmentForChild(const RenderBox& child) const |
1215 | { |
1216 | return isBaselineAlignmentForChild(child, GridRowAxis) || isBaselineAlignmentForChild(child, GridColumnAxis); |
1217 | } |
1218 | |
1219 | bool RenderGrid::isBaselineAlignmentForChild(const RenderBox& child, GridAxis baselineAxis) const |
1220 | { |
1221 | if (child.isOutOfFlowPositioned()) |
1222 | return false; |
1223 | ItemPosition align = selfAlignmentForChild(baselineAxis, child).position(); |
1224 | bool hasAutoMargins = baselineAxis == GridColumnAxis ? hasAutoMarginsInColumnAxis(child) : hasAutoMarginsInRowAxis(child); |
1225 | return isBaselinePosition(align) && !hasAutoMargins; |
1226 | } |
1227 | |
1228 | // FIXME: This logic is shared by RenderFlexibleBox, so it might be refactored somehow. |
1229 | int RenderGrid::baselinePosition(FontBaseline, bool, LineDirectionMode direction, LinePositionMode mode) const |
1230 | { |
1231 | #if !ASSERT_DISABLED |
1232 | ASSERT(mode == PositionOnContainingLine); |
1233 | #else |
1234 | UNUSED_PARAM(mode); |
1235 | #endif |
1236 | auto baseline = firstLineBaseline(); |
1237 | if (!baseline) |
1238 | return synthesizedBaselineFromBorderBox(*this, direction) + marginLogicalHeight(); |
1239 | |
1240 | return baseline.value() + (direction == HorizontalLine ? marginTop() : marginRight()).toInt(); |
1241 | } |
1242 | |
1243 | Optional<int> RenderGrid::firstLineBaseline() const |
1244 | { |
1245 | if (isWritingModeRoot() || !m_grid.hasGridItems()) |
1246 | return WTF::nullopt; |
1247 | |
1248 | const RenderBox* baselineChild = nullptr; |
1249 | // Finding the first grid item in grid order. |
1250 | unsigned numColumns = m_grid.numTracks(ForColumns); |
1251 | for (size_t column = 0; column < numColumns; column++) { |
1252 | for (auto& child : m_grid.cell(0, column)) { |
1253 | ASSERT(child.get()); |
1254 | // If an item participates in baseline alignment, we select such item. |
1255 | if (isBaselineAlignmentForChild(*child)) { |
1256 | // FIXME: self-baseline and content-baseline alignment not implemented yet. |
1257 | baselineChild = child.get(); |
1258 | break; |
1259 | } |
1260 | if (!baselineChild) |
1261 | baselineChild = child.get(); |
1262 | } |
1263 | } |
1264 | |
1265 | if (!baselineChild) |
1266 | return WTF::nullopt; |
1267 | |
1268 | auto baseline = GridLayoutFunctions::isOrthogonalChild(*this, *baselineChild) ? WTF::nullopt : baselineChild->firstLineBaseline(); |
1269 | // We take border-box's bottom if no valid baseline. |
1270 | if (!baseline) { |
1271 | // FIXME: We should pass |direction| into firstLineBaseline and stop bailing out if we're a writing |
1272 | // mode root. This would also fix some cases where the grid is orthogonal to its container. |
1273 | LineDirectionMode direction = isHorizontalWritingMode() ? HorizontalLine : VerticalLine; |
1274 | return synthesizedBaselineFromBorderBox(*baselineChild, direction) + logicalTopForChild(*baselineChild).toInt(); |
1275 | } |
1276 | return baseline.value() + baselineChild->logicalTop().toInt(); |
1277 | } |
1278 | |
1279 | Optional<int> RenderGrid::inlineBlockBaseline(LineDirectionMode) const |
1280 | { |
1281 | return firstLineBaseline(); |
1282 | } |
1283 | |
1284 | LayoutUnit RenderGrid::columnAxisBaselineOffsetForChild(const RenderBox& child) const |
1285 | { |
1286 | return m_trackSizingAlgorithm.baselineOffsetForChild(child, GridColumnAxis); |
1287 | } |
1288 | |
1289 | LayoutUnit RenderGrid::rowAxisBaselineOffsetForChild(const RenderBox& child) const |
1290 | { |
1291 | return m_trackSizingAlgorithm.baselineOffsetForChild(child, GridRowAxis); |
1292 | } |
1293 | |
1294 | GridAxisPosition RenderGrid::columnAxisPositionForChild(const RenderBox& child) const |
1295 | { |
1296 | bool hasSameWritingMode = child.style().writingMode() == style().writingMode(); |
1297 | bool childIsLTR = child.style().isLeftToRightDirection(); |
1298 | if (child.isOutOfFlowPositioned() && !hasStaticPositionForChild(child, ForRows)) |
1299 | return GridAxisStart; |
1300 | |
1301 | switch (alignSelfForChild(child).position()) { |
1302 | case ItemPosition::SelfStart: |
1303 | // FIXME: Should we implement this logic in a generic utility function ? |
1304 | // Aligns the alignment subject to be flush with the edge of the alignment container |
1305 | // corresponding to the alignment subject's 'start' side in the column axis. |
1306 | if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
1307 | // If orthogonal writing-modes, self-start will be based on the child's inline-axis |
1308 | // direction (inline-start), because it's the one parallel to the column axis. |
1309 | if (style().isFlippedBlocksWritingMode()) |
1310 | return childIsLTR ? GridAxisEnd : GridAxisStart; |
1311 | return childIsLTR ? GridAxisStart : GridAxisEnd; |
1312 | } |
1313 | // self-start is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. |
1314 | return hasSameWritingMode ? GridAxisStart : GridAxisEnd; |
1315 | case ItemPosition::SelfEnd: |
1316 | // FIXME: Should we implement this logic in a generic utility function ? |
1317 | // Aligns the alignment subject to be flush with the edge of the alignment container |
1318 | // corresponding to the alignment subject's 'end' side in the column axis. |
1319 | if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
1320 | // If orthogonal writing-modes, self-end will be based on the child's inline-axis |
1321 | // direction, (inline-end) because it's the one parallel to the column axis. |
1322 | if (style().isFlippedBlocksWritingMode()) |
1323 | return childIsLTR ? GridAxisStart : GridAxisEnd; |
1324 | return childIsLTR ? GridAxisEnd : GridAxisStart; |
1325 | } |
1326 | // self-end is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. |
1327 | return hasSameWritingMode ? GridAxisEnd : GridAxisStart; |
1328 | case ItemPosition::Left: |
1329 | // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. |
1330 | // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. |
1331 | return GridAxisStart; |
1332 | case ItemPosition::Right: |
1333 | // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. |
1334 | // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. |
1335 | return GridAxisStart; |
1336 | case ItemPosition::Center: |
1337 | return GridAxisCenter; |
1338 | case ItemPosition::FlexStart: // Only used in flex layout, otherwise equivalent to 'start'. |
1339 | // Aligns the alignment subject to be flush with the alignment container's 'start' edge (block-start) in the column axis. |
1340 | case ItemPosition::Start: |
1341 | return GridAxisStart; |
1342 | case ItemPosition::FlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. |
1343 | // Aligns the alignment subject to be flush with the alignment container's 'end' edge (block-end) in the column axis. |
1344 | case ItemPosition::End: |
1345 | return GridAxisEnd; |
1346 | case ItemPosition::Stretch: |
1347 | return GridAxisStart; |
1348 | case ItemPosition::Baseline: |
1349 | case ItemPosition::LastBaseline: |
1350 | // FIXME: Implement the previous values. For now, we always 'start' align the child. |
1351 | return GridAxisStart; |
1352 | case ItemPosition::Legacy: |
1353 | case ItemPosition::Auto: |
1354 | case ItemPosition::Normal: |
1355 | break; |
1356 | } |
1357 | |
1358 | ASSERT_NOT_REACHED(); |
1359 | return GridAxisStart; |
1360 | } |
1361 | |
1362 | GridAxisPosition RenderGrid::rowAxisPositionForChild(const RenderBox& child) const |
1363 | { |
1364 | bool hasSameDirection = child.style().direction() == style().direction(); |
1365 | bool gridIsLTR = style().isLeftToRightDirection(); |
1366 | if (child.isOutOfFlowPositioned() && !hasStaticPositionForChild(child, ForColumns)) |
1367 | return GridAxisStart; |
1368 | |
1369 | switch (justifySelfForChild(child).position()) { |
1370 | case ItemPosition::SelfStart: |
1371 | // FIXME: Should we implement this logic in a generic utility function ? |
1372 | // Aligns the alignment subject to be flush with the edge of the alignment container |
1373 | // corresponding to the alignment subject's 'start' side in the row axis. |
1374 | if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
1375 | // If orthogonal writing-modes, self-start will be based on the child's block-axis |
1376 | // direction, because it's the one parallel to the row axis. |
1377 | if (child.style().isFlippedBlocksWritingMode()) |
1378 | return gridIsLTR ? GridAxisEnd : GridAxisStart; |
1379 | return gridIsLTR ? GridAxisStart : GridAxisEnd; |
1380 | } |
1381 | // self-start is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. |
1382 | return hasSameDirection ? GridAxisStart : GridAxisEnd; |
1383 | case ItemPosition::SelfEnd: |
1384 | // FIXME: Should we implement this logic in a generic utility function ? |
1385 | // Aligns the alignment subject to be flush with the edge of the alignment container |
1386 | // corresponding to the alignment subject's 'end' side in the row axis. |
1387 | if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
1388 | // If orthogonal writing-modes, self-end will be based on the child's block-axis |
1389 | // direction, because it's the one parallel to the row axis. |
1390 | if (child.style().isFlippedBlocksWritingMode()) |
1391 | return gridIsLTR ? GridAxisStart : GridAxisEnd; |
1392 | return gridIsLTR ? GridAxisEnd : GridAxisStart; |
1393 | } |
1394 | // self-end is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. |
1395 | return hasSameDirection ? GridAxisEnd : GridAxisStart; |
1396 | case ItemPosition::Left: |
1397 | // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. |
1398 | // We want the physical 'left' side, so we have to take account, container's inline-flow direction. |
1399 | return gridIsLTR ? GridAxisStart : GridAxisEnd; |
1400 | case ItemPosition::Right: |
1401 | // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. |
1402 | // We want the physical 'right' side, so we have to take account, container's inline-flow direction. |
1403 | return gridIsLTR ? GridAxisEnd : GridAxisStart; |
1404 | case ItemPosition::Center: |
1405 | return GridAxisCenter; |
1406 | case ItemPosition::FlexStart: // Only used in flex layout, otherwise equivalent to 'start'. |
1407 | // Aligns the alignment subject to be flush with the alignment container's 'start' edge (inline-start) in the row axis. |
1408 | case ItemPosition::Start: |
1409 | return GridAxisStart; |
1410 | case ItemPosition::FlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. |
1411 | // Aligns the alignment subject to be flush with the alignment container's 'end' edge (inline-end) in the row axis. |
1412 | case ItemPosition::End: |
1413 | return GridAxisEnd; |
1414 | case ItemPosition::Stretch: |
1415 | return GridAxisStart; |
1416 | case ItemPosition::Baseline: |
1417 | case ItemPosition::LastBaseline: |
1418 | // FIXME: Implement the previous values. For now, we always 'start' align the child. |
1419 | return GridAxisStart; |
1420 | case ItemPosition::Legacy: |
1421 | case ItemPosition::Auto: |
1422 | case ItemPosition::Normal: |
1423 | break; |
1424 | } |
1425 | |
1426 | ASSERT_NOT_REACHED(); |
1427 | return GridAxisStart; |
1428 | } |
1429 | |
1430 | LayoutUnit RenderGrid::columnAxisOffsetForChild(const RenderBox& child) const |
1431 | { |
1432 | LayoutUnit startOfRow; |
1433 | LayoutUnit endOfRow; |
1434 | gridAreaPositionForChild(child, ForRows, startOfRow, endOfRow); |
1435 | LayoutUnit startPosition = startOfRow + marginBeforeForChild(child); |
1436 | if (hasAutoMarginsInColumnAxis(child)) |
1437 | return startPosition; |
1438 | GridAxisPosition axisPosition = columnAxisPositionForChild(child); |
1439 | switch (axisPosition) { |
1440 | case GridAxisStart: |
1441 | return startPosition + columnAxisBaselineOffsetForChild(child); |
1442 | case GridAxisEnd: |
1443 | case GridAxisCenter: { |
1444 | LayoutUnit columnAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); |
1445 | auto overflow = alignSelfForChild(child).overflow(); |
1446 | LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfRow - startOfRow, columnAxisChildSize); |
1447 | return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); |
1448 | } |
1449 | } |
1450 | |
1451 | ASSERT_NOT_REACHED(); |
1452 | return 0; |
1453 | } |
1454 | |
1455 | LayoutUnit RenderGrid::rowAxisOffsetForChild(const RenderBox& child) const |
1456 | { |
1457 | LayoutUnit startOfColumn; |
1458 | LayoutUnit endOfColumn; |
1459 | gridAreaPositionForChild(child, ForColumns, startOfColumn, endOfColumn); |
1460 | LayoutUnit startPosition = startOfColumn + marginStartForChild(child); |
1461 | if (hasAutoMarginsInRowAxis(child)) |
1462 | return startPosition; |
1463 | GridAxisPosition axisPosition = rowAxisPositionForChild(child); |
1464 | switch (axisPosition) { |
1465 | case GridAxisStart: |
1466 | return startPosition + rowAxisBaselineOffsetForChild(child); |
1467 | case GridAxisEnd: |
1468 | case GridAxisCenter: { |
1469 | LayoutUnit rowAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalHeight() + child.marginLogicalHeight() : child.logicalWidth() + child.marginLogicalWidth(); |
1470 | auto overflow = justifySelfForChild(child).overflow(); |
1471 | LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfColumn - startOfColumn, rowAxisChildSize); |
1472 | return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); |
1473 | } |
1474 | } |
1475 | |
1476 | ASSERT_NOT_REACHED(); |
1477 | return 0; |
1478 | } |
1479 | |
1480 | LayoutUnit RenderGrid::resolveAutoStartGridPosition(GridTrackSizingDirection direction) const |
1481 | { |
1482 | if (direction == ForRows || style().isLeftToRightDirection()) |
1483 | return 0_lu; |
1484 | |
1485 | int lastLine = numTracks(ForColumns, m_grid); |
1486 | ContentPosition position = style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid()); |
1487 | if (position == ContentPosition::End) |
1488 | return m_columnPositions[lastLine] - clientLogicalWidth(); |
1489 | if (position == ContentPosition::Start || style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) == ContentDistribution::Stretch) |
1490 | return m_columnPositions[0] - borderAndPaddingLogicalLeft(); |
1491 | return 0_lu; |
1492 | } |
1493 | |
1494 | LayoutUnit RenderGrid::resolveAutoEndGridPosition(GridTrackSizingDirection direction) const |
1495 | { |
1496 | if (direction == ForRows) |
1497 | return clientLogicalHeight(); |
1498 | if (style().isLeftToRightDirection()) |
1499 | return clientLogicalWidth(); |
1500 | |
1501 | int lastLine = numTracks(ForColumns, m_grid); |
1502 | ContentPosition position = style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid()); |
1503 | if (position == ContentPosition::End) |
1504 | return m_columnPositions[lastLine]; |
1505 | if (position == ContentPosition::Start || style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) == ContentDistribution::Stretch) |
1506 | return m_columnPositions[0] - borderAndPaddingLogicalLeft() + clientLogicalWidth(); |
1507 | return clientLogicalWidth(); |
1508 | } |
1509 | |
1510 | LayoutUnit RenderGrid::gridAreaBreadthForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction) |
1511 | { |
1512 | ASSERT(child.isOutOfFlowPositioned()); |
1513 | bool isRowAxis = direction == ForColumns; |
1514 | GridSpan span = GridPositionsResolver::resolveGridPositionsFromStyle(style(), child, direction, autoRepeatCountForDirection(direction)); |
1515 | if (span.isIndefinite()) |
1516 | return isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); |
1517 | |
1518 | int smallestStart = abs(m_grid.smallestTrackStart(direction)); |
1519 | int startLine = span.untranslatedStartLine() + smallestStart; |
1520 | int endLine = span.untranslatedEndLine() + smallestStart; |
1521 | int lastLine = numTracks(direction, m_grid); |
1522 | GridPosition startPosition = direction == ForColumns ? child.style().gridItemColumnStart() : child.style().gridItemRowStart(); |
1523 | GridPosition endPosition = direction == ForColumns ? child.style().gridItemColumnEnd() : child.style().gridItemRowEnd(); |
1524 | |
1525 | bool startIsAuto = startPosition.isAuto() || startLine < 0 || startLine > lastLine; |
1526 | bool endIsAuto = endPosition.isAuto() || endLine < 0 || endLine > lastLine; |
1527 | |
1528 | if (startIsAuto && endIsAuto) |
1529 | return isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); |
1530 | |
1531 | LayoutUnit start; |
1532 | LayoutUnit end; |
1533 | auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
1534 | auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow; |
1535 | LayoutUnit borderEdge = isRowAxis ? borderLogicalLeft() : borderBefore(); |
1536 | if (startIsAuto) |
1537 | start = resolveAutoStartGridPosition(direction) + borderEdge; |
1538 | else { |
1539 | outOfFlowItemLine.set(&child, startLine); |
1540 | start = positions[startLine]; |
1541 | } |
1542 | if (endIsAuto) |
1543 | end = resolveAutoEndGridPosition(direction) + borderEdge; |
1544 | else { |
1545 | end = positions[endLine]; |
1546 | // These vectors store line positions including gaps, but we shouldn't consider them for the edges of the grid. |
1547 | Optional<LayoutUnit> availableSizeForGutters = availableSpaceForGutters(direction); |
1548 | if (endLine > 0 && endLine < lastLine) { |
1549 | ASSERT(!m_grid.needsItemsPlacement()); |
1550 | end -= guttersSize(m_grid, direction, endLine - 1, 2, availableSizeForGutters); |
1551 | end -= isRowAxis ? m_offsetBetweenColumns.distributionOffset : m_offsetBetweenRows.distributionOffset; |
1552 | } |
1553 | } |
1554 | return std::max(end - start, 0_lu); |
1555 | } |
1556 | |
1557 | LayoutUnit RenderGrid::logicalOffsetForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit trackBreadth) const |
1558 | { |
1559 | ASSERT(child.isOutOfFlowPositioned()); |
1560 | if (hasStaticPositionForChild(child, direction)) |
1561 | return 0_lu; |
1562 | |
1563 | bool isRowAxis = direction == ForColumns; |
1564 | bool isFlowAwareRowAxis = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, direction) == ForColumns; |
1565 | LayoutUnit childPosition = isFlowAwareRowAxis ? child.logicalLeft() : child.logicalTop(); |
1566 | LayoutUnit gridBorder = isRowAxis ? borderLogicalLeft() : borderBefore(); |
1567 | LayoutUnit childMargin = isFlowAwareRowAxis ? child.marginLogicalLeft() : child.marginBefore(); |
1568 | LayoutUnit offset = childPosition - gridBorder - childMargin; |
1569 | if (!isRowAxis || style().isLeftToRightDirection()) |
1570 | return offset; |
1571 | |
1572 | LayoutUnit childBreadth = isFlowAwareRowAxis ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); |
1573 | return trackBreadth - offset - childBreadth; |
1574 | } |
1575 | |
1576 | void RenderGrid::gridAreaPositionForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const |
1577 | { |
1578 | ASSERT(child.isOutOfFlowPositioned()); |
1579 | ASSERT(GridLayoutFunctions::hasOverrideContainingBlockContentSizeForChild(child, direction)); |
1580 | LayoutUnit trackBreadth = GridLayoutFunctions::overrideContainingBlockContentSizeForChild(child, direction).value(); |
1581 | bool isRowAxis = direction == ForColumns; |
1582 | auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow; |
1583 | start = isRowAxis ? borderLogicalLeft() : borderBefore(); |
1584 | if (auto line = outOfFlowItemLine.get(&child)) { |
1585 | auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
1586 | start = positions[line.value()]; |
1587 | } |
1588 | start += logicalOffsetForOutOfFlowChild(child, direction, trackBreadth); |
1589 | end = start + trackBreadth; |
1590 | } |
1591 | |
1592 | void RenderGrid::gridAreaPositionForInFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const |
1593 | { |
1594 | ASSERT(!child.isOutOfFlowPositioned()); |
1595 | const GridSpan& span = m_grid.gridItemSpan(child, direction); |
1596 | // FIXME (lajava): This is a common pattern, why not defining a function like |
1597 | // positions(direction) ? |
1598 | auto& positions = direction == ForColumns ? m_columnPositions : m_rowPositions; |
1599 | start = positions[span.startLine()]; |
1600 | end = positions[span.endLine()]; |
1601 | // The 'positions' vector includes distribution offset (because of content |
1602 | // alignment) and gutters so we need to subtract them to get the actual |
1603 | // end position for a given track (this does not have to be done for the |
1604 | // last track as there are no more positions's elements after it, nor for |
1605 | // collapsed tracks). |
1606 | if (span.endLine() < positions.size() - 1 |
1607 | && !(m_grid.hasAutoRepeatEmptyTracks(direction) |
1608 | && m_grid.isEmptyAutoRepeatTrack(direction, span.endLine()))) { |
1609 | end -= gridGap(direction) + gridItemOffset(direction); |
1610 | } |
1611 | } |
1612 | |
1613 | void RenderGrid::gridAreaPositionForChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const |
1614 | { |
1615 | if (child.isOutOfFlowPositioned()) |
1616 | gridAreaPositionForOutOfFlowChild(child, direction, start, end); |
1617 | else |
1618 | gridAreaPositionForInFlowChild(child, direction, start, end); |
1619 | } |
1620 | |
1621 | ContentPosition static resolveContentDistributionFallback(ContentDistribution distribution) |
1622 | { |
1623 | switch (distribution) { |
1624 | case ContentDistribution::SpaceBetween: |
1625 | return ContentPosition::Start; |
1626 | case ContentDistribution::SpaceAround: |
1627 | return ContentPosition::Center; |
1628 | case ContentDistribution::SpaceEvenly: |
1629 | return ContentPosition::Center; |
1630 | case ContentDistribution::Stretch: |
1631 | return ContentPosition::Start; |
1632 | case ContentDistribution::Default: |
1633 | return ContentPosition::Normal; |
1634 | } |
1635 | |
1636 | ASSERT_NOT_REACHED(); |
1637 | return ContentPosition::Normal; |
1638 | } |
1639 | |
1640 | static void contentDistributionOffset(ContentAlignmentData& offset, const LayoutUnit& availableFreeSpace, ContentPosition& fallbackPosition, ContentDistribution distribution, unsigned numberOfGridTracks) |
1641 | { |
1642 | if (distribution != ContentDistribution::Default && fallbackPosition == ContentPosition::Normal) |
1643 | fallbackPosition = resolveContentDistributionFallback(distribution); |
1644 | |
1645 | // Initialize to an invalid offset. |
1646 | offset.positionOffset = -1_lu; |
1647 | offset.distributionOffset = -1_lu; |
1648 | if (availableFreeSpace <= 0) |
1649 | return; |
1650 | |
1651 | LayoutUnit positionOffset; |
1652 | LayoutUnit distributionOffset; |
1653 | switch (distribution) { |
1654 | case ContentDistribution::SpaceBetween: |
1655 | if (numberOfGridTracks < 2) |
1656 | return; |
1657 | distributionOffset = availableFreeSpace / (numberOfGridTracks - 1); |
1658 | positionOffset = 0_lu; |
1659 | break; |
1660 | case ContentDistribution::SpaceAround: |
1661 | if (numberOfGridTracks < 1) |
1662 | return; |
1663 | distributionOffset = availableFreeSpace / numberOfGridTracks; |
1664 | positionOffset = distributionOffset / 2; |
1665 | break; |
1666 | case ContentDistribution::SpaceEvenly: |
1667 | distributionOffset = availableFreeSpace / (numberOfGridTracks + 1); |
1668 | positionOffset = distributionOffset; |
1669 | break; |
1670 | case ContentDistribution::Stretch: |
1671 | case ContentDistribution::Default: |
1672 | return; |
1673 | default: |
1674 | ASSERT_NOT_REACHED(); |
1675 | return; |
1676 | } |
1677 | |
1678 | offset.positionOffset = positionOffset; |
1679 | offset.distributionOffset = distributionOffset; |
1680 | } |
1681 | |
1682 | StyleContentAlignmentData RenderGrid::contentAlignment(GridTrackSizingDirection direction) const |
1683 | { |
1684 | return direction == ForColumns ? style().resolvedJustifyContent(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContent(contentAlignmentNormalBehaviorGrid()); |
1685 | } |
1686 | |
1687 | void RenderGrid::computeContentPositionAndDistributionOffset(GridTrackSizingDirection direction, const LayoutUnit& availableFreeSpace, unsigned numberOfGridTracks) |
1688 | { |
1689 | bool isRowAxis = direction == ForColumns; |
1690 | auto& offset = |
1691 | isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; |
1692 | auto contentAlignmentData = contentAlignment(direction); |
1693 | auto position = contentAlignmentData.position(); |
1694 | // If <content-distribution> value can't be applied, 'position' will become the associated |
1695 | // <content-position> fallback value. |
1696 | contentDistributionOffset(offset, availableFreeSpace, position, contentAlignmentData.distribution(), numberOfGridTracks); |
1697 | if (offset.isValid()) |
1698 | return; |
1699 | |
1700 | if (availableFreeSpace <= 0 && contentAlignmentData.overflow() == OverflowAlignment::Safe) { |
1701 | offset.positionOffset = 0_lu; |
1702 | offset.distributionOffset = 0_lu; |
1703 | return; |
1704 | } |
1705 | |
1706 | LayoutUnit positionOffset; |
1707 | switch (position) { |
1708 | case ContentPosition::Left: |
1709 | ASSERT(isRowAxis); |
1710 | break; |
1711 | case ContentPosition::Right: |
1712 | ASSERT(isRowAxis); |
1713 | positionOffset = availableFreeSpace; |
1714 | break; |
1715 | case ContentPosition::Center: |
1716 | positionOffset = availableFreeSpace / 2; |
1717 | break; |
1718 | case ContentPosition::FlexEnd: // Only used in flex layout, for other layout, it's equivalent to 'end'. |
1719 | case ContentPosition::End: |
1720 | if (isRowAxis) |
1721 | positionOffset = style().isLeftToRightDirection() ? availableFreeSpace : 0_lu; |
1722 | else |
1723 | positionOffset = availableFreeSpace; |
1724 | break; |
1725 | case ContentPosition::FlexStart: // Only used in flex layout, for other layout, it's equivalent to 'start'. |
1726 | case ContentPosition::Start: |
1727 | if (isRowAxis) |
1728 | positionOffset = style().isLeftToRightDirection() ? 0_lu : availableFreeSpace; |
1729 | break; |
1730 | case ContentPosition::Baseline: |
1731 | case ContentPosition::LastBaseline: |
1732 | // FIXME: Implement the previous values. For now, we always 'start' align. |
1733 | // http://webkit.org/b/145566 |
1734 | if (isRowAxis) |
1735 | positionOffset = style().isLeftToRightDirection() ? 0_lu : availableFreeSpace; |
1736 | break; |
1737 | case ContentPosition::Normal: |
1738 | default: |
1739 | ASSERT_NOT_REACHED(); |
1740 | return; |
1741 | } |
1742 | |
1743 | offset.positionOffset = positionOffset; |
1744 | offset.distributionOffset = 0_lu; |
1745 | } |
1746 | |
1747 | LayoutUnit RenderGrid::translateOutOfFlowRTLCoordinate(const RenderBox& child, LayoutUnit coordinate) const |
1748 | { |
1749 | ASSERT(child.isOutOfFlowPositioned()); |
1750 | ASSERT(!style().isLeftToRightDirection()); |
1751 | |
1752 | if (m_outOfFlowItemColumn.get(&child)) |
1753 | return translateRTLCoordinate(coordinate); |
1754 | |
1755 | return borderLogicalLeft() + borderLogicalRight() + clientLogicalWidth() - coordinate; |
1756 | } |
1757 | |
1758 | LayoutUnit RenderGrid::translateRTLCoordinate(LayoutUnit coordinate) const |
1759 | { |
1760 | ASSERT(!style().isLeftToRightDirection()); |
1761 | |
1762 | LayoutUnit alignmentOffset = m_columnPositions[0]; |
1763 | LayoutUnit rightGridEdgePosition = m_columnPositions[m_columnPositions.size() - 1]; |
1764 | return rightGridEdgePosition + alignmentOffset - coordinate; |
1765 | } |
1766 | |
1767 | // FIXME: SetLogicalPositionForChild has only one caller, consider its refactoring in the future. |
1768 | void RenderGrid::setLogicalPositionForChild(RenderBox& child) const |
1769 | { |
1770 | // "In the positioning phase [...] calculations are performed according to the writing mode of the containing block of the box establishing the |
1771 | // orthogonal flow." However, 'setLogicalLocation' will only take into account the child's writing-mode, so the position may need to be transposed. |
1772 | LayoutPoint childLocation(logicalOffsetForChild(child, ForColumns), logicalOffsetForChild(child, ForRows)); |
1773 | child.setLogicalLocation(GridLayoutFunctions::isOrthogonalChild(*this, child) ? childLocation.transposedPoint() : childLocation); |
1774 | } |
1775 | |
1776 | void RenderGrid::setLogicalOffsetForChild(RenderBox& child, GridTrackSizingDirection direction) const |
1777 | { |
1778 | if (!child.isGridItem() && hasStaticPositionForChild(child, direction)) |
1779 | return; |
1780 | // 'setLogicalLeft' and 'setLogicalTop' only take into account the child's writing-mode, that's why 'flowAwareDirectionForChild' is needed. |
1781 | if (GridLayoutFunctions::flowAwareDirectionForChild(*this, child, direction) == ForColumns) |
1782 | child.setLogicalLeft(logicalOffsetForChild(child, direction)); |
1783 | else |
1784 | child.setLogicalTop(logicalOffsetForChild(child, direction)); |
1785 | } |
1786 | |
1787 | LayoutUnit RenderGrid::logicalOffsetForChild(const RenderBox& child, GridTrackSizingDirection direction) const |
1788 | { |
1789 | if (direction == ForRows) |
1790 | return columnAxisOffsetForChild(child); |
1791 | LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child); |
1792 | // We stored m_columnPositions's data ignoring the direction, hence we might need now |
1793 | // to translate positions from RTL to LTR, as it's more convenient for painting. |
1794 | if (!style().isLeftToRightDirection()) |
1795 | rowAxisOffset = (child.isOutOfFlowPositioned() ? translateOutOfFlowRTLCoordinate(child, rowAxisOffset) : translateRTLCoordinate(rowAxisOffset)) - (GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalHeight() : child.logicalWidth()); |
1796 | return rowAxisOffset; |
1797 | } |
1798 | |
1799 | unsigned RenderGrid::nonCollapsedTracks(GridTrackSizingDirection direction) const |
1800 | { |
1801 | auto& tracks = m_trackSizingAlgorithm.tracks(direction); |
1802 | size_t numberOfTracks = tracks.size(); |
1803 | bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); |
1804 | size_t numberOfCollapsedTracks = hasCollapsedTracks ? m_grid.autoRepeatEmptyTracks(direction)->size() : 0; |
1805 | return numberOfTracks - numberOfCollapsedTracks; |
1806 | } |
1807 | |
1808 | unsigned RenderGrid::numTracks(GridTrackSizingDirection direction, const Grid& grid) const |
1809 | { |
1810 | // Due to limitations in our internal representation, we cannot know the number of columns from |
1811 | // m_grid *if* there is no row (because m_grid would be empty). That's why in that case we need |
1812 | // to get it from the style. Note that we know for sure that there are't any implicit tracks, |
1813 | // because not having rows implies that there are no "normal" children (out-of-flow children are |
1814 | // not stored in m_grid). |
1815 | ASSERT(!grid.needsItemsPlacement()); |
1816 | if (direction == ForRows) |
1817 | return grid.numTracks(ForRows); |
1818 | |
1819 | // FIXME: This still requires knowledge about m_grid internals. |
1820 | return grid.numTracks(ForRows) ? grid.numTracks(ForColumns) : GridPositionsResolver::explicitGridColumnCount(style(), grid.autoRepeatTracks(ForColumns)); |
1821 | } |
1822 | |
1823 | void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect) |
1824 | { |
1825 | ASSERT(!m_grid.needsItemsPlacement()); |
1826 | for (RenderBox* child = m_grid.orderIterator().first(); child; child = m_grid.orderIterator().next()) |
1827 | paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect, PaintAsInlineBlock); |
1828 | } |
1829 | |
1830 | const char* RenderGrid::renderName() const |
1831 | { |
1832 | if (isFloating()) |
1833 | return "RenderGrid (floating)" ; |
1834 | if (isOutOfFlowPositioned()) |
1835 | return "RenderGrid (positioned)" ; |
1836 | if (isAnonymous()) |
1837 | return "RenderGrid (generated)" ; |
1838 | if (isRelativelyPositioned()) |
1839 | return "RenderGrid (relative positioned)" ; |
1840 | return "RenderGrid" ; |
1841 | } |
1842 | |
1843 | } // namespace WebCore |
1844 | |