1 | /* |
2 | * Copyright (C) 2003, 2006, 2009 Apple Inc. All rights reserved. |
3 | * Copyright (C) 2010 Google Inc. All rights reserved. |
4 | * Copyright (C) 2013 Xidorn Quan (quanxunzhen@gmail.com) |
5 | * |
6 | * Redistribution and use in source and binary forms, with or without |
7 | * modification, are permitted provided that the following conditions |
8 | * are met: |
9 | * |
10 | * 1. Redistributions of source code must retain the above copyright |
11 | * notice, this list of conditions and the following disclaimer. |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the |
14 | * documentation and/or other materials provided with the distribution. |
15 | * |
16 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
17 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
18 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
19 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
20 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
21 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
22 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
23 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
25 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | */ |
27 | |
28 | #include "config.h" |
29 | #include "RoundedRect.h" |
30 | |
31 | #include "FloatRoundedRect.h" |
32 | #include "GeometryUtilities.h" |
33 | #include "LayoutRect.h" |
34 | #include "LayoutUnit.h" |
35 | #include "Region.h" |
36 | #include <algorithm> |
37 | #include <wtf/MathExtras.h> |
38 | |
39 | namespace WebCore { |
40 | |
41 | bool RoundedRect::Radii::isZero() const |
42 | { |
43 | return m_topLeft.isZero() && m_topRight.isZero() && m_bottomLeft.isZero() && m_bottomRight.isZero(); |
44 | } |
45 | |
46 | void RoundedRect::Radii::scale(float factor) |
47 | { |
48 | if (factor == 1) |
49 | return; |
50 | |
51 | // If either radius on a corner becomes zero, reset both radii on that corner. |
52 | m_topLeft.scale(factor); |
53 | if (!m_topLeft.width() || !m_topLeft.height()) |
54 | m_topLeft = LayoutSize(); |
55 | m_topRight.scale(factor); |
56 | if (!m_topRight.width() || !m_topRight.height()) |
57 | m_topRight = LayoutSize(); |
58 | m_bottomLeft.scale(factor); |
59 | if (!m_bottomLeft.width() || !m_bottomLeft.height()) |
60 | m_bottomLeft = LayoutSize(); |
61 | m_bottomRight.scale(factor); |
62 | if (!m_bottomRight.width() || !m_bottomRight.height()) |
63 | m_bottomRight = LayoutSize(); |
64 | } |
65 | |
66 | void RoundedRect::Radii::expand(const LayoutUnit& topWidth, const LayoutUnit& bottomWidth, const LayoutUnit& leftWidth, const LayoutUnit& rightWidth) |
67 | { |
68 | if (m_topLeft.width() > 0 && m_topLeft.height() > 0) { |
69 | m_topLeft.setWidth(std::max<LayoutUnit>(0, m_topLeft.width() + leftWidth)); |
70 | m_topLeft.setHeight(std::max<LayoutUnit>(0, m_topLeft.height() + topWidth)); |
71 | } |
72 | if (m_topRight.width() > 0 && m_topRight.height() > 0) { |
73 | m_topRight.setWidth(std::max<LayoutUnit>(0, m_topRight.width() + rightWidth)); |
74 | m_topRight.setHeight(std::max<LayoutUnit>(0, m_topRight.height() + topWidth)); |
75 | } |
76 | if (m_bottomLeft.width() > 0 && m_bottomLeft.height() > 0) { |
77 | m_bottomLeft.setWidth(std::max<LayoutUnit>(0, m_bottomLeft.width() + leftWidth)); |
78 | m_bottomLeft.setHeight(std::max<LayoutUnit>(0, m_bottomLeft.height() + bottomWidth)); |
79 | } |
80 | if (m_bottomRight.width() > 0 && m_bottomRight.height() > 0) { |
81 | m_bottomRight.setWidth(std::max<LayoutUnit>(0, m_bottomRight.width() + rightWidth)); |
82 | m_bottomRight.setHeight(std::max<LayoutUnit>(0, m_bottomRight.height() + bottomWidth)); |
83 | } |
84 | } |
85 | |
86 | void RoundedRect::inflateWithRadii(const LayoutUnit& size) |
87 | { |
88 | LayoutRect old = m_rect; |
89 | |
90 | m_rect.inflate(size); |
91 | // Considering the inflation factor of shorter size to scale the radii seems appropriate here |
92 | float factor; |
93 | if (m_rect.width() < m_rect.height()) |
94 | factor = old.width() ? (float)m_rect.width() / old.width() : int(0); |
95 | else |
96 | factor = old.height() ? (float)m_rect.height() / old.height() : int(0); |
97 | |
98 | m_radii.scale(factor); |
99 | } |
100 | |
101 | void RoundedRect::Radii::includeLogicalEdges(const RoundedRect::Radii& edges, bool isHorizontal, bool includeLogicalLeftEdge, bool includeLogicalRightEdge) |
102 | { |
103 | if (includeLogicalLeftEdge) { |
104 | if (isHorizontal) |
105 | m_bottomLeft = edges.bottomLeft(); |
106 | else |
107 | m_topRight = edges.topRight(); |
108 | m_topLeft = edges.topLeft(); |
109 | } |
110 | |
111 | if (includeLogicalRightEdge) { |
112 | if (isHorizontal) |
113 | m_topRight = edges.topRight(); |
114 | else |
115 | m_bottomLeft = edges.bottomLeft(); |
116 | m_bottomRight = edges.bottomRight(); |
117 | } |
118 | } |
119 | |
120 | void RoundedRect::Radii::excludeLogicalEdges(bool isHorizontal, bool excludeLogicalLeftEdge, bool excludeLogicalRightEdge) |
121 | { |
122 | if (excludeLogicalLeftEdge) { |
123 | if (isHorizontal) |
124 | m_bottomLeft = IntSize(); |
125 | else |
126 | m_topRight = IntSize(); |
127 | m_topLeft = IntSize(); |
128 | } |
129 | |
130 | if (excludeLogicalRightEdge) { |
131 | if (isHorizontal) |
132 | m_topRight = IntSize(); |
133 | else |
134 | m_bottomLeft = IntSize(); |
135 | m_bottomRight = IntSize(); |
136 | } |
137 | } |
138 | |
139 | RoundedRect::RoundedRect(const LayoutUnit& x, const LayoutUnit& y, const LayoutUnit& width, const LayoutUnit& height) |
140 | : m_rect(x, y, width, height) |
141 | { |
142 | } |
143 | |
144 | RoundedRect::RoundedRect(const LayoutRect& rect, const Radii& radii) |
145 | : m_rect(rect) |
146 | , m_radii(radii) |
147 | { |
148 | } |
149 | |
150 | RoundedRect::RoundedRect(const LayoutRect& rect, const LayoutSize& topLeft, const LayoutSize& topRight, const LayoutSize& bottomLeft, const LayoutSize& bottomRight) |
151 | : m_rect(rect) |
152 | , m_radii(topLeft, topRight, bottomLeft, bottomRight) |
153 | { |
154 | } |
155 | |
156 | void RoundedRect::includeLogicalEdges(const Radii& edges, bool isHorizontal, bool includeLogicalLeftEdge, bool includeLogicalRightEdge) |
157 | { |
158 | m_radii.includeLogicalEdges(edges, isHorizontal, includeLogicalLeftEdge, includeLogicalRightEdge); |
159 | } |
160 | |
161 | void RoundedRect::excludeLogicalEdges(bool isHorizontal, bool excludeLogicalLeftEdge, bool excludeLogicalRightEdge) |
162 | { |
163 | m_radii.excludeLogicalEdges(isHorizontal, excludeLogicalLeftEdge, excludeLogicalRightEdge); |
164 | } |
165 | |
166 | bool RoundedRect::isRenderable() const |
167 | { |
168 | return m_radii.topLeft().width() + m_radii.topRight().width() <= m_rect.width() |
169 | && m_radii.bottomLeft().width() + m_radii.bottomRight().width() <= m_rect.width() |
170 | && m_radii.topLeft().height() + m_radii.bottomLeft().height() <= m_rect.height() |
171 | && m_radii.topRight().height() + m_radii.bottomRight().height() <= m_rect.height(); |
172 | } |
173 | |
174 | void RoundedRect::adjustRadii() |
175 | { |
176 | int maxRadiusWidth = std::max(m_radii.topLeft().width() + m_radii.topRight().width(), m_radii.bottomLeft().width() + m_radii.bottomRight().width()); |
177 | int maxRadiusHeight = std::max(m_radii.topLeft().height() + m_radii.bottomLeft().height(), m_radii.topRight().height() + m_radii.bottomRight().height()); |
178 | |
179 | if (maxRadiusWidth <= 0 || maxRadiusHeight <= 0) { |
180 | m_radii.scale(0.0f); |
181 | return; |
182 | } |
183 | float widthRatio = static_cast<float>(m_rect.width()) / maxRadiusWidth; |
184 | float heightRatio = static_cast<float>(m_rect.height()) / maxRadiusHeight; |
185 | m_radii.scale(widthRatio < heightRatio ? widthRatio : heightRatio); |
186 | } |
187 | |
188 | bool RoundedRect::intersectsQuad(const FloatQuad& quad) const |
189 | { |
190 | FloatRect rect(m_rect); |
191 | if (!quad.intersectsRect(rect)) |
192 | return false; |
193 | |
194 | const LayoutSize& topLeft = m_radii.topLeft(); |
195 | if (!topLeft.isEmpty()) { |
196 | FloatRect rect(m_rect.x(), m_rect.y(), topLeft.width(), topLeft.height()); |
197 | if (quad.intersectsRect(rect)) { |
198 | FloatPoint center(m_rect.x() + topLeft.width(), m_rect.y() + topLeft.height()); |
199 | FloatSize size(topLeft.width(), topLeft.height()); |
200 | if (!quad.intersectsEllipse(center, size)) |
201 | return false; |
202 | } |
203 | } |
204 | |
205 | const LayoutSize& topRight = m_radii.topRight(); |
206 | if (!topRight.isEmpty()) { |
207 | FloatRect rect(m_rect.maxX() - topRight.width(), m_rect.y(), topRight.width(), topRight.height()); |
208 | if (quad.intersectsRect(rect)) { |
209 | FloatPoint center(m_rect.maxX() - topRight.width(), m_rect.y() + topRight.height()); |
210 | FloatSize size(topRight.width(), topRight.height()); |
211 | if (!quad.intersectsEllipse(center, size)) |
212 | return false; |
213 | } |
214 | } |
215 | |
216 | const LayoutSize& bottomLeft = m_radii.bottomLeft(); |
217 | if (!bottomLeft.isEmpty()) { |
218 | FloatRect rect(m_rect.x(), m_rect.maxY() - bottomLeft.height(), bottomLeft.width(), bottomLeft.height()); |
219 | if (quad.intersectsRect(rect)) { |
220 | FloatPoint center(m_rect.x() + bottomLeft.width(), m_rect.maxY() - bottomLeft.height()); |
221 | FloatSize size(bottomLeft.width(), bottomLeft.height()); |
222 | if (!quad.intersectsEllipse(center, size)) |
223 | return false; |
224 | } |
225 | } |
226 | |
227 | const LayoutSize& bottomRight = m_radii.bottomRight(); |
228 | if (!bottomRight.isEmpty()) { |
229 | FloatRect rect(m_rect.maxX() - bottomRight.width(), m_rect.maxY() - bottomRight.height(), bottomRight.width(), bottomRight.height()); |
230 | if (quad.intersectsRect(rect)) { |
231 | FloatPoint center(m_rect.maxX() - bottomRight.width(), m_rect.maxY() - bottomRight.height()); |
232 | FloatSize size(bottomRight.width(), bottomRight.height()); |
233 | if (!quad.intersectsEllipse(center, size)) |
234 | return false; |
235 | } |
236 | } |
237 | |
238 | return true; |
239 | } |
240 | |
241 | bool RoundedRect::contains(const LayoutRect& otherRect) const |
242 | { |
243 | if (!rect().contains(otherRect) || !isRenderable()) |
244 | return false; |
245 | |
246 | const LayoutSize& topLeft = m_radii.topLeft(); |
247 | if (!topLeft.isEmpty()) { |
248 | FloatPoint center = { m_rect.x() + topLeft.width(), m_rect.y() + topLeft.height() }; |
249 | if (otherRect.x() <= center.x() && otherRect.y() <= center.y()) { |
250 | if (!ellipseContainsPoint(center, topLeft, otherRect.minXMinYCorner())) |
251 | return false; |
252 | } |
253 | } |
254 | |
255 | const LayoutSize& topRight = m_radii.topRight(); |
256 | if (!topRight.isEmpty()) { |
257 | FloatPoint center = { m_rect.maxX() - topRight.width(), m_rect.y() + topRight.height() }; |
258 | if (otherRect.maxX() >= center.x() && otherRect.y() <= center.y()) { |
259 | if (!ellipseContainsPoint(center, topRight, otherRect.maxXMinYCorner())) |
260 | return false; |
261 | } |
262 | } |
263 | |
264 | const LayoutSize& bottomLeft = m_radii.bottomLeft(); |
265 | if (!bottomLeft.isEmpty()) { |
266 | FloatPoint center = { m_rect.x() + bottomLeft.width(), m_rect.maxY() - bottomLeft.height() }; |
267 | if (otherRect.x() <= center.x() && otherRect.maxY() >= center.y()) { |
268 | if (!ellipseContainsPoint(center, bottomLeft, otherRect.minXMaxYCorner())) |
269 | return false; |
270 | } |
271 | } |
272 | |
273 | const LayoutSize& bottomRight = m_radii.bottomRight(); |
274 | if (!bottomRight.isEmpty()) { |
275 | FloatPoint center = { m_rect.maxX() - bottomRight.width(), m_rect.maxY() - bottomRight.height() }; |
276 | if (otherRect.maxX() >= center.x() && otherRect.maxY() >= center.y()) { |
277 | if (!ellipseContainsPoint(center, bottomRight, otherRect.maxXMaxYCorner())) |
278 | return false; |
279 | } |
280 | } |
281 | |
282 | return true; |
283 | } |
284 | |
285 | FloatRoundedRect RoundedRect::pixelSnappedRoundedRectForPainting(float deviceScaleFactor) const |
286 | { |
287 | LayoutRect originalRect = rect(); |
288 | if (originalRect.isEmpty()) |
289 | return FloatRoundedRect(originalRect, radii()); |
290 | |
291 | FloatRect pixelSnappedRect = snapRectToDevicePixels(originalRect, deviceScaleFactor); |
292 | |
293 | if (!isRenderable()) |
294 | return FloatRoundedRect(pixelSnappedRect, radii()); |
295 | |
296 | // Snapping usually does not alter size, but when it does, we need to make sure that the final rect is still renderable by distributing the size delta proportionally. |
297 | FloatRoundedRect::Radii adjustedRadii = radii(); |
298 | adjustedRadii.scale(pixelSnappedRect.width() / originalRect.width().toFloat(), pixelSnappedRect.height() / originalRect.height().toFloat()); |
299 | FloatRoundedRect snappedRoundedRect = FloatRoundedRect(pixelSnappedRect, adjustedRadii); |
300 | if (!snappedRoundedRect.isRenderable()) { |
301 | // Floating point mantissa overflow can produce a non-renderable rounded rect. |
302 | adjustedRadii.shrink(1 / deviceScaleFactor); |
303 | snappedRoundedRect.setRadii(adjustedRadii); |
304 | } |
305 | ASSERT(snappedRoundedRect.isRenderable()); |
306 | return snappedRoundedRect; |
307 | } |
308 | |
309 | Region approximateAsRegion(const RoundedRect& roundedRect, unsigned stepLength) |
310 | { |
311 | Region region; |
312 | |
313 | auto& rect = roundedRect.rect(); |
314 | region.unite(enclosingIntRect(rect)); |
315 | |
316 | if (!roundedRect.isRounded()) |
317 | return region; |
318 | |
319 | auto& radii = roundedRect.radii(); |
320 | |
321 | auto makeIntRect = [] (LayoutPoint a, LayoutPoint b) { |
322 | return enclosingIntRect(LayoutRect { |
323 | LayoutPoint { std::min(a.x(), b.x()), std::min(a.y(), b.y()) }, |
324 | LayoutPoint { std::max(a.x(), b.x()), std::max(a.y(), b.y()) } |
325 | }); |
326 | }; |
327 | |
328 | auto subtractCornerRects = [&] (LayoutPoint corner, LayoutPoint ellipsisCenter, LayoutSize axes, double fromAngle) { |
329 | double toAngle = fromAngle + piDouble / 2; |
330 | |
331 | // Substract more rects for longer, more rounded arcs. |
332 | auto arcLengthFactor = roundToInt(std::min(axes.width(), axes.height())); |
333 | auto count = (arcLengthFactor + (stepLength / 2)) / stepLength; |
334 | |
335 | for (auto i = 0u; i < count; ++i) { |
336 | auto angle = fromAngle + (i + 1) * (toAngle - fromAngle) / (count + 1); |
337 | auto ellipsisPoint = LayoutPoint { axes.width() * cos(angle), axes.height() * sin(angle) }; |
338 | auto cornerRect = makeIntRect(corner, ellipsisCenter + ellipsisPoint); |
339 | region.subtract(cornerRect); |
340 | } |
341 | }; |
342 | |
343 | { |
344 | auto corner = rect.maxXMaxYCorner(); |
345 | auto axes = radii.bottomRight(); |
346 | auto ellipsisCenter = LayoutPoint(corner.x() - axes.width(), corner.y() - axes.height()); |
347 | subtractCornerRects(corner, ellipsisCenter, axes, 0); |
348 | } |
349 | |
350 | { |
351 | auto corner = rect.minXMaxYCorner(); |
352 | auto axes = radii.bottomLeft(); |
353 | auto ellipsisCenter = LayoutPoint(corner.x() + axes.width(), corner.y() - axes.height()); |
354 | subtractCornerRects(corner, ellipsisCenter, axes, piDouble / 2); |
355 | } |
356 | |
357 | { |
358 | auto corner = rect.minXMinYCorner(); |
359 | auto axes = radii.topLeft(); |
360 | auto ellipsisCenter = LayoutPoint(corner.x() + axes.width(), corner.y() + axes.height()); |
361 | subtractCornerRects(corner, ellipsisCenter, axes, piDouble); |
362 | } |
363 | |
364 | { |
365 | auto corner = rect.maxXMinYCorner(); |
366 | auto axes = radii.topRight(); |
367 | auto ellipsisCenter = LayoutPoint(corner.x() - axes.width(), corner.y() + axes.height()); |
368 | subtractCornerRects(corner, ellipsisCenter, axes, piDouble * 3 / 2); |
369 | } |
370 | |
371 | return region; |
372 | } |
373 | |
374 | } // namespace WebCore |
375 | |