1 | /* |
2 | * Copyright (C) 2017-2018 Apple Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * 1. Redistributions of source code must retain the above copyright |
8 | * notice, this list of conditions and the following disclaimer. |
9 | * 2. Redistributions in binary form must reproduce the above copyright |
10 | * notice, this list of conditions and the following disclaimer in the |
11 | * documentation and/or other materials provided with the distribution. |
12 | * |
13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
24 | */ |
25 | |
26 | #include "config.h" |
27 | #include "KeyframeEffect.h" |
28 | |
29 | #include "Animation.h" |
30 | #include "CSSAnimation.h" |
31 | #include "CSSComputedStyleDeclaration.h" |
32 | #include "CSSKeyframeRule.h" |
33 | #include "CSSPropertyAnimation.h" |
34 | #include "CSSPropertyNames.h" |
35 | #include "CSSStyleDeclaration.h" |
36 | #include "CSSTimingFunctionValue.h" |
37 | #include "CSSTransition.h" |
38 | #include "Element.h" |
39 | #include "FontCascade.h" |
40 | #include "FrameView.h" |
41 | #include "GeometryUtilities.h" |
42 | #include "JSCompositeOperation.h" |
43 | #include "JSCompositeOperationOrAuto.h" |
44 | #include "JSKeyframeEffect.h" |
45 | #include "RenderBox.h" |
46 | #include "RenderBoxModelObject.h" |
47 | #include "RenderElement.h" |
48 | #include "RenderStyle.h" |
49 | #include "StylePendingResources.h" |
50 | #include "StyleResolver.h" |
51 | #include "TimingFunction.h" |
52 | #include "TranslateTransformOperation.h" |
53 | #include "WillChangeData.h" |
54 | #include <JavaScriptCore/Exception.h> |
55 | #include <wtf/UUID.h> |
56 | |
57 | namespace WebCore { |
58 | using namespace JSC; |
59 | |
60 | static inline void invalidateElement(Element* element) |
61 | { |
62 | if (element) |
63 | element->invalidateStyle(); |
64 | } |
65 | |
66 | static inline String CSSPropertyIDToIDLAttributeName(CSSPropertyID cssPropertyId) |
67 | { |
68 | // https://drafts.csswg.org/web-animations-1/#animation-property-name-to-idl-attribute-name |
69 | // 1. If property follows the <custom-property-name> production, return property. |
70 | // FIXME: We don't handle custom properties yet. |
71 | |
72 | // 2. If property refers to the CSS float property, return the string "cssFloat". |
73 | if (cssPropertyId == CSSPropertyFloat) |
74 | return "cssFloat" ; |
75 | |
76 | // 3. If property refers to the CSS offset property, return the string "cssOffset". |
77 | // FIXME: we don't support the CSS "offset" property |
78 | |
79 | // 4. Otherwise, return the result of applying the CSS property to IDL attribute algorithm [CSSOM] to property. |
80 | return getJSPropertyName(cssPropertyId); |
81 | } |
82 | |
83 | static inline CSSPropertyID IDLAttributeNameToAnimationPropertyName(const String& idlAttributeName) |
84 | { |
85 | // https://drafts.csswg.org/web-animations-1/#idl-attribute-name-to-animation-property-name |
86 | // 1. If attribute conforms to the <custom-property-name> production, return attribute. |
87 | // FIXME: We don't handle custom properties yet. |
88 | |
89 | // 2. If attribute is the string "cssFloat", then return an animation property representing the CSS float property. |
90 | if (idlAttributeName == "cssFloat" ) |
91 | return CSSPropertyFloat; |
92 | |
93 | // 3. If attribute is the string "cssOffset", then return an animation property representing the CSS offset property. |
94 | // FIXME: We don't support the CSS "offset" property. |
95 | |
96 | // 4. Otherwise, return the result of applying the IDL attribute to CSS property algorithm [CSSOM] to attribute. |
97 | auto cssPropertyId = CSSStyleDeclaration::getCSSPropertyIDFromJavaScriptPropertyName(idlAttributeName); |
98 | |
99 | // We need to check that converting the property back to IDL form yields the same result such that a property passed |
100 | // in non-IDL form is rejected, for instance "font-size". |
101 | if (idlAttributeName != CSSPropertyIDToIDLAttributeName(cssPropertyId)) |
102 | return CSSPropertyInvalid; |
103 | |
104 | return cssPropertyId; |
105 | } |
106 | |
107 | static inline void computeMissingKeyframeOffsets(Vector<KeyframeEffect::ParsedKeyframe>& keyframes) |
108 | { |
109 | // https://drafts.csswg.org/web-animations-1/#compute-missing-keyframe-offsets |
110 | |
111 | if (keyframes.isEmpty()) |
112 | return; |
113 | |
114 | // 1. For each keyframe, in keyframes, let the computed keyframe offset of the keyframe be equal to its keyframe offset value. |
115 | // In our implementation, we only set non-null values to avoid making computedOffset Optional<double>. Instead, we'll know |
116 | // that a keyframe hasn't had a computed offset by checking if it has a null offset and a 0 computedOffset, since the first |
117 | // keyframe will already have a 0 computedOffset. |
118 | for (auto& keyframe : keyframes) { |
119 | auto computedOffset = keyframe.offset; |
120 | keyframe.computedOffset = computedOffset ? *computedOffset : 0; |
121 | } |
122 | |
123 | // 2. If keyframes contains more than one keyframe and the computed keyframe offset of the first keyframe in keyframes is null, |
124 | // set the computed keyframe offset of the first keyframe to 0. |
125 | if (keyframes.size() > 1 && !keyframes[0].offset) |
126 | keyframes[0].computedOffset = 0; |
127 | |
128 | // 3. If the computed keyframe offset of the last keyframe in keyframes is null, set its computed keyframe offset to 1. |
129 | if (!keyframes.last().offset) |
130 | keyframes.last().computedOffset = 1; |
131 | |
132 | // 4. For each pair of keyframes A and B where: |
133 | // - A appears before B in keyframes, and |
134 | // - A and B have a computed keyframe offset that is not null, and |
135 | // - all keyframes between A and B have a null computed keyframe offset, |
136 | // calculate the computed keyframe offset of each keyframe between A and B as follows: |
137 | // 1. Let offsetk be the computed keyframe offset of a keyframe k. |
138 | // 2. Let n be the number of keyframes between and including A and B minus 1. |
139 | // 3. Let index refer to the position of keyframe in the sequence of keyframes between A and B such that the first keyframe after A has an index of 1. |
140 | // 4. Set the computed keyframe offset of keyframe to offsetA + (offsetB − offsetA) × index / n. |
141 | size_t indexOfLastKeyframeWithNonNullOffset = 0; |
142 | for (size_t i = 1; i < keyframes.size(); ++i) { |
143 | auto& keyframe = keyframes[i]; |
144 | // Keyframes with a null offset that don't yet have a non-zero computed offset are keyframes |
145 | // with an offset that needs to be computed. |
146 | if (!keyframe.offset && !keyframe.computedOffset) |
147 | continue; |
148 | if (indexOfLastKeyframeWithNonNullOffset != i - 1) { |
149 | double lastNonNullOffset = keyframes[indexOfLastKeyframeWithNonNullOffset].computedOffset; |
150 | double offsetDelta = keyframe.computedOffset - lastNonNullOffset; |
151 | double offsetIncrement = offsetDelta / (i - indexOfLastKeyframeWithNonNullOffset); |
152 | size_t indexOfFirstKeyframeWithNullOffset = indexOfLastKeyframeWithNonNullOffset + 1; |
153 | for (size_t j = indexOfFirstKeyframeWithNullOffset; j < i; ++j) |
154 | keyframes[j].computedOffset = lastNonNullOffset + (j - indexOfLastKeyframeWithNonNullOffset) * offsetIncrement; |
155 | } |
156 | indexOfLastKeyframeWithNonNullOffset = i; |
157 | } |
158 | } |
159 | |
160 | static inline ExceptionOr<KeyframeEffect::KeyframeLikeObject> processKeyframeLikeObject(ExecState& state, Strong<JSObject>&& keyframesInput, bool allowLists) |
161 | { |
162 | // https://drafts.csswg.org/web-animations-1/#process-a-keyframe-like-object |
163 | |
164 | VM& vm = state.vm(); |
165 | auto scope = DECLARE_THROW_SCOPE(vm); |
166 | |
167 | // 1. Run the procedure to convert an ECMAScript value to a dictionary type [WEBIDL] with keyframe input as the ECMAScript value as follows: |
168 | // |
169 | // If allow lists is true, use the following dictionary type: |
170 | // |
171 | // dictionary BasePropertyIndexedKeyframe { |
172 | // (double? or sequence<double?>) offset = []; |
173 | // (DOMString or sequence<DOMString>) easing = []; |
174 | // (CompositeOperationOrAuto or sequence<CompositeOperationOrAuto>) composite = []; |
175 | // }; |
176 | // |
177 | // Otherwise, use the following dictionary type: |
178 | // |
179 | // dictionary BaseKeyframe { |
180 | // double? offset = null; |
181 | // DOMString easing = "linear"; |
182 | // CompositeOperationOrAuto composite = "auto"; |
183 | // }; |
184 | // |
185 | // Store the result of this procedure as keyframe output. |
186 | KeyframeEffect::BasePropertyIndexedKeyframe baseProperties; |
187 | if (allowLists) |
188 | baseProperties = convert<IDLDictionary<KeyframeEffect::BasePropertyIndexedKeyframe>>(state, keyframesInput.get()); |
189 | else { |
190 | auto baseKeyframe = convert<IDLDictionary<KeyframeEffect::BaseKeyframe>>(state, keyframesInput.get()); |
191 | if (baseKeyframe.offset) |
192 | baseProperties.offset = baseKeyframe.offset.value(); |
193 | else |
194 | baseProperties.offset = nullptr; |
195 | baseProperties.easing = baseKeyframe.easing; |
196 | baseProperties.composite = baseKeyframe.composite; |
197 | } |
198 | RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
199 | |
200 | KeyframeEffect::KeyframeLikeObject keyframeOuput; |
201 | keyframeOuput.baseProperties = baseProperties; |
202 | |
203 | // 2. Build up a list of animatable properties as follows: |
204 | // |
205 | // 1. Let animatable properties be a list of property names (including shorthand properties that have longhand sub-properties |
206 | // that are animatable) that can be animated by the implementation. |
207 | // 2. Convert each property name in animatable properties to the equivalent IDL attribute by applying the animation property |
208 | // name to IDL attribute name algorithm. |
209 | |
210 | // 3. Let input properties be the result of calling the EnumerableOwnNames operation with keyframe input as the object. |
211 | PropertyNameArray inputProperties(&vm, PropertyNameMode::Strings, PrivateSymbolMode::Exclude); |
212 | JSObject::getOwnPropertyNames(keyframesInput.get(), &state, inputProperties, EnumerationMode()); |
213 | |
214 | // 4. Make up a new list animation properties that consists of all of the properties that are in both input properties and animatable |
215 | // properties, or which are in input properties and conform to the <custom-property-name> production. |
216 | Vector<JSC::Identifier> animationProperties; |
217 | size_t numberOfProperties = inputProperties.size(); |
218 | for (size_t i = 0; i < numberOfProperties; ++i) { |
219 | if (CSSPropertyAnimation::isPropertyAnimatable(IDLAttributeNameToAnimationPropertyName(inputProperties[i].string()))) |
220 | animationProperties.append(inputProperties[i]); |
221 | } |
222 | |
223 | // 5. Sort animation properties in ascending order by the Unicode codepoints that define each property name. |
224 | std::sort(animationProperties.begin(), animationProperties.end(), [](auto& lhs, auto& rhs) { |
225 | return lhs.string().utf8() < rhs.string().utf8(); |
226 | }); |
227 | |
228 | // 6. For each property name in animation properties, |
229 | size_t numberOfAnimationProperties = animationProperties.size(); |
230 | for (size_t i = 0; i < numberOfAnimationProperties; ++i) { |
231 | // 1. Let raw value be the result of calling the [[Get]] internal method on keyframe input, with property name as the property |
232 | // key and keyframe input as the receiver. |
233 | auto rawValue = keyframesInput->get(&state, animationProperties[i]); |
234 | |
235 | // 2. Check the completion record of raw value. |
236 | RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
237 | |
238 | // 3. Convert raw value to a DOMString or sequence of DOMStrings property values as follows: |
239 | Vector<String> propertyValues; |
240 | if (allowLists) { |
241 | // If allow lists is true, |
242 | // Let property values be the result of converting raw value to IDL type (DOMString or sequence<DOMString>) |
243 | // using the procedures defined for converting an ECMAScript value to an IDL value [WEBIDL]. |
244 | // If property values is a single DOMString, replace property values with a sequence of DOMStrings with the original value of property |
245 | // Values as the only element. |
246 | if (rawValue.isString()) |
247 | propertyValues = { rawValue.toWTFString(&state) }; |
248 | else if (rawValue.isObject()) |
249 | propertyValues = convert<IDLSequence<IDLDOMString>>(state, rawValue); |
250 | } else { |
251 | // Otherwise, |
252 | // Let property values be the result of converting raw value to a DOMString using the procedure for converting an ECMAScript value to a DOMString. |
253 | propertyValues = { convert<IDLDOMString>(state, rawValue) }; |
254 | } |
255 | RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
256 | |
257 | // 4. Calculate the normalized property name as the result of applying the IDL attribute name to animation property name algorithm to property name. |
258 | auto cssPropertyID = IDLAttributeNameToAnimationPropertyName(animationProperties[i].string()); |
259 | |
260 | // 5. Add a property to to keyframe output with normalized property name as the property name, and property values as the property value. |
261 | keyframeOuput.propertiesAndValues.append({ cssPropertyID, propertyValues }); |
262 | } |
263 | |
264 | // 7. Return keyframe output. |
265 | return { WTFMove(keyframeOuput) }; |
266 | } |
267 | |
268 | static inline ExceptionOr<void> processIterableKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput, JSValue method, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes) |
269 | { |
270 | // 1. Let iter be GetIterator(object, method). |
271 | forEachInIterable(state, keyframesInput.get(), method, [&parsedKeyframes](VM& vm, ExecState& state, JSValue nextValue) -> ExceptionOr<void> { |
272 | // Steps 2 through 6 are already implemented by forEachInIterable(). |
273 | auto scope = DECLARE_THROW_SCOPE(vm); |
274 | if (!nextValue || !nextValue.isObject()) { |
275 | throwException(&state, scope, JSC::Exception::create(vm, createTypeError(&state))); |
276 | return { }; |
277 | } |
278 | |
279 | // 7. Append to processed keyframes the result of running the procedure to process a keyframe-like object passing nextItem |
280 | // as the keyframe input and with the allow lists flag set to false. |
281 | auto processKeyframeLikeObjectResult = processKeyframeLikeObject(state, Strong<JSObject>(vm, nextValue.toObject(&state)), false); |
282 | if (processKeyframeLikeObjectResult.hasException()) |
283 | return processKeyframeLikeObjectResult.releaseException(); |
284 | auto keyframeLikeObject = processKeyframeLikeObjectResult.returnValue(); |
285 | |
286 | KeyframeEffect::ParsedKeyframe keyframeOutput; |
287 | |
288 | // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only offset |
289 | // alternatives we should expect are double and nullptr. |
290 | if (WTF::holds_alternative<double>(keyframeLikeObject.baseProperties.offset)) |
291 | keyframeOutput.offset = WTF::get<double>(keyframeLikeObject.baseProperties.offset); |
292 | else |
293 | ASSERT(WTF::holds_alternative<std::nullptr_t>(keyframeLikeObject.baseProperties.offset)); |
294 | |
295 | // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only easing |
296 | // alternative we should expect is String. |
297 | ASSERT(WTF::holds_alternative<String>(keyframeLikeObject.baseProperties.easing)); |
298 | keyframeOutput.easing = WTF::get<String>(keyframeLikeObject.baseProperties.easing); |
299 | |
300 | // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only composite |
301 | // alternatives we should expect is CompositeOperationAuto. |
302 | ASSERT(WTF::holds_alternative<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite)); |
303 | keyframeOutput.composite = WTF::get<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite); |
304 | |
305 | for (auto& propertyAndValue : keyframeLikeObject.propertiesAndValues) { |
306 | auto cssPropertyId = propertyAndValue.property; |
307 | // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, |
308 | // there should only ever be a single value for a given property. |
309 | ASSERT(propertyAndValue.values.size() == 1); |
310 | auto stringValue = propertyAndValue.values[0]; |
311 | if (keyframeOutput.style->setProperty(cssPropertyId, stringValue)) |
312 | keyframeOutput.unparsedStyle.set(cssPropertyId, stringValue); |
313 | } |
314 | |
315 | parsedKeyframes.append(WTFMove(keyframeOutput)); |
316 | |
317 | return { }; |
318 | }); |
319 | |
320 | return { }; |
321 | } |
322 | |
323 | static inline ExceptionOr<void> processPropertyIndexedKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes, Vector<String>& unusedEasings) |
324 | { |
325 | // 1. Let property-indexed keyframe be the result of running the procedure to process a keyframe-like object passing object as the keyframe input. |
326 | auto processKeyframeLikeObjectResult = processKeyframeLikeObject(state, WTFMove(keyframesInput), true); |
327 | if (processKeyframeLikeObjectResult.hasException()) |
328 | return processKeyframeLikeObjectResult.releaseException(); |
329 | auto propertyIndexedKeyframe = processKeyframeLikeObjectResult.returnValue(); |
330 | |
331 | // 2. For each member, m, in property-indexed keyframe, perform the following steps: |
332 | for (auto& m : propertyIndexedKeyframe.propertiesAndValues) { |
333 | // 1. Let property name be the key for m. |
334 | auto propertyName = m.property; |
335 | // 2. If property name is “composite”, or “easing”, or “offset”, skip the remaining steps in this loop and continue from the next member in property-indexed |
336 | // keyframe after m. |
337 | // We skip this test since we split those properties and the actual CSS properties that we're currently iterating over. |
338 | // 3. Let property values be the value for m. |
339 | auto propertyValues = m.values; |
340 | // 4. Let property keyframes be an empty sequence of keyframes. |
341 | Vector<KeyframeEffect::ParsedKeyframe> propertyKeyframes; |
342 | // 5. For each value, v, in property values perform the following steps: |
343 | for (auto& v : propertyValues) { |
344 | // 1. Let k be a new keyframe with a null keyframe offset. |
345 | KeyframeEffect::ParsedKeyframe k; |
346 | // 2. Add the property-value pair, property name → v, to k. |
347 | if (k.style->setProperty(propertyName, v)) |
348 | k.unparsedStyle.set(propertyName, v); |
349 | // 3. Append k to property keyframes. |
350 | propertyKeyframes.append(WTFMove(k)); |
351 | } |
352 | // 6. Apply the procedure to compute missing keyframe offsets to property keyframes. |
353 | computeMissingKeyframeOffsets(propertyKeyframes); |
354 | |
355 | // 7. Add keyframes in property keyframes to processed keyframes. |
356 | for (auto& keyframe : propertyKeyframes) |
357 | parsedKeyframes.append(WTFMove(keyframe)); |
358 | } |
359 | |
360 | // 3. Sort processed keyframes by the computed keyframe offset of each keyframe in increasing order. |
361 | std::sort(parsedKeyframes.begin(), parsedKeyframes.end(), [](auto& lhs, auto& rhs) { |
362 | return lhs.computedOffset < rhs.computedOffset; |
363 | }); |
364 | |
365 | // 4. Merge adjacent keyframes in processed keyframes when they have equal computed keyframe offsets. |
366 | size_t i = 1; |
367 | while (i < parsedKeyframes.size()) { |
368 | auto& keyframe = parsedKeyframes[i]; |
369 | auto& previousKeyframe = parsedKeyframes[i - 1]; |
370 | // If the offsets of this keyframe and the previous keyframe are different, |
371 | // this means that the two keyframes should not be merged and we can move |
372 | // on to the next keyframe. |
373 | if (keyframe.computedOffset != previousKeyframe.computedOffset) { |
374 | i++; |
375 | continue; |
376 | } |
377 | // Otherwise, both this keyframe and the previous keyframe should be merged. |
378 | // Unprocessed keyframes in parsedKeyframes at this stage have at most a single |
379 | // property in cssPropertiesAndValues, so just set this on the previous keyframe. |
380 | // In case an invalid or null value was originally provided, then the property |
381 | // was not set and the property count is 0, in which case there is nothing to merge. |
382 | if (keyframe.style->propertyCount()) { |
383 | auto property = keyframe.style->propertyAt(0); |
384 | previousKeyframe.style->setProperty(property.id(), property.value()); |
385 | previousKeyframe.unparsedStyle.set(property.id(), keyframe.unparsedStyle.get(property.id())); |
386 | } |
387 | // Since we've processed this keyframe, we can remove it and keep i the same |
388 | // so that we process the next keyframe in the next loop iteration. |
389 | parsedKeyframes.remove(i); |
390 | } |
391 | |
392 | // 5. Let offsets be a sequence of nullable double values assigned based on the type of the “offset” member of the property-indexed keyframe as follows: |
393 | // - sequence<double?>, the value of “offset” as-is. |
394 | // - double?, a sequence of length one with the value of “offset” as its single item, i.e. « offset », |
395 | Vector<Optional<double>> offsets; |
396 | if (WTF::holds_alternative<Vector<Optional<double>>>(propertyIndexedKeyframe.baseProperties.offset)) |
397 | offsets = WTF::get<Vector<Optional<double>>>(propertyIndexedKeyframe.baseProperties.offset); |
398 | else if (WTF::holds_alternative<double>(propertyIndexedKeyframe.baseProperties.offset)) |
399 | offsets.append(WTF::get<double>(propertyIndexedKeyframe.baseProperties.offset)); |
400 | else if (WTF::holds_alternative<std::nullptr_t>(propertyIndexedKeyframe.baseProperties.offset)) |
401 | offsets.append(WTF::nullopt); |
402 | |
403 | // 6. Assign each value in offsets to the keyframe offset of the keyframe with corresponding position in property keyframes until the end of either sequence is reached. |
404 | for (size_t i = 0; i < offsets.size() && i < parsedKeyframes.size(); ++i) |
405 | parsedKeyframes[i].offset = offsets[i]; |
406 | |
407 | // 7. Let easings be a sequence of DOMString values assigned based on the type of the “easing” member of the property-indexed keyframe as follows: |
408 | // - sequence<DOMString>, the value of “easing” as-is. |
409 | // - DOMString, a sequence of length one with the value of “easing” as its single item, i.e. « easing », |
410 | Vector<String> easings; |
411 | if (WTF::holds_alternative<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing)) |
412 | easings = WTF::get<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing); |
413 | else if (WTF::holds_alternative<String>(propertyIndexedKeyframe.baseProperties.easing)) |
414 | easings.append(WTF::get<String>(propertyIndexedKeyframe.baseProperties.easing)); |
415 | |
416 | // 8. If easings is an empty sequence, let it be a sequence of length one containing the single value “linear”, i.e. « "linear" ». |
417 | if (easings.isEmpty()) |
418 | easings.append("linear" ); |
419 | |
420 | // 9. If easings has fewer items than property keyframes, repeat the elements in easings successively starting from the beginning of the list until easings has as many |
421 | // items as property keyframes. |
422 | if (easings.size() < parsedKeyframes.size()) { |
423 | size_t initialNumberOfEasings = easings.size(); |
424 | for (i = initialNumberOfEasings; i < parsedKeyframes.size(); ++i) |
425 | easings.append(easings[i % initialNumberOfEasings]); |
426 | } |
427 | |
428 | // 10. If easings has more items than property keyframes, store the excess items as unused easings. |
429 | while (easings.size() > parsedKeyframes.size()) |
430 | unusedEasings.append(easings.takeLast()); |
431 | |
432 | // 11. Assign each value in easings to a property named “easing” on the keyframe with the corresponding position in property keyframes until the end of property keyframes |
433 | // is reached. |
434 | for (size_t i = 0; i < parsedKeyframes.size(); ++i) |
435 | parsedKeyframes[i].easing = easings[i]; |
436 | |
437 | // 12. If the “composite” member of the property-indexed keyframe is not an empty sequence: |
438 | Vector<CompositeOperationOrAuto> compositeModes; |
439 | if (WTF::holds_alternative<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite)) |
440 | compositeModes = WTF::get<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite); |
441 | else if (WTF::holds_alternative<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite)) |
442 | compositeModes.append(WTF::get<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite)); |
443 | if (!compositeModes.isEmpty()) { |
444 | // 1. Let composite modes be a sequence of CompositeOperationOrAuto values assigned from the “composite” member of property-indexed keyframe. If that member is a single |
445 | // CompositeOperationOrAuto value operation, let composite modes be a sequence of length one, with the value of the “composite” as its single item. |
446 | // 2. As with easings, if composite modes has fewer items than processed keyframes, repeat the elements in composite modes successively starting from the beginning of |
447 | // the list until composite modes has as many items as processed keyframes. |
448 | if (compositeModes.size() < parsedKeyframes.size()) { |
449 | size_t initialNumberOfCompositeModes = compositeModes.size(); |
450 | for (i = initialNumberOfCompositeModes; i < parsedKeyframes.size(); ++i) |
451 | compositeModes.append(compositeModes[i % initialNumberOfCompositeModes]); |
452 | } |
453 | // 3. Assign each value in composite modes that is not auto to the keyframe-specific composite operation on the keyframe with the corresponding position in processed |
454 | // keyframes until the end of processed keyframes is reached. |
455 | for (size_t i = 0; i < compositeModes.size() && i < parsedKeyframes.size(); ++i) { |
456 | if (compositeModes[i] != CompositeOperationOrAuto::Auto) |
457 | parsedKeyframes[i].composite = compositeModes[i]; |
458 | } |
459 | } |
460 | |
461 | return { }; |
462 | } |
463 | |
464 | ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(ExecState& state, Element* target, Strong<JSObject>&& keyframes, Optional<Variant<double, KeyframeEffectOptions>>&& options) |
465 | { |
466 | auto keyframeEffect = adoptRef(*new KeyframeEffect(target)); |
467 | |
468 | if (options) { |
469 | OptionalEffectTiming timing; |
470 | auto optionsValue = options.value(); |
471 | if (WTF::holds_alternative<double>(optionsValue)) { |
472 | Variant<double, String> duration = WTF::get<double>(optionsValue); |
473 | timing.duration = duration; |
474 | } else { |
475 | auto keyframeEffectOptions = WTF::get<KeyframeEffectOptions>(optionsValue); |
476 | timing = { |
477 | keyframeEffectOptions.duration, |
478 | keyframeEffectOptions.iterations, |
479 | keyframeEffectOptions.delay, |
480 | keyframeEffectOptions.endDelay, |
481 | keyframeEffectOptions.iterationStart, |
482 | keyframeEffectOptions.easing, |
483 | keyframeEffectOptions.fill, |
484 | keyframeEffectOptions.direction |
485 | }; |
486 | } |
487 | auto updateTimingResult = keyframeEffect->updateTiming(timing); |
488 | if (updateTimingResult.hasException()) |
489 | return updateTimingResult.releaseException(); |
490 | } |
491 | |
492 | auto processKeyframesResult = keyframeEffect->processKeyframes(state, WTFMove(keyframes)); |
493 | if (processKeyframesResult.hasException()) |
494 | return processKeyframesResult.releaseException(); |
495 | |
496 | return keyframeEffect; |
497 | } |
498 | |
499 | ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(JSC::ExecState&, Ref<KeyframeEffect>&& source) |
500 | { |
501 | auto keyframeEffect = adoptRef(*new KeyframeEffect(nullptr)); |
502 | keyframeEffect->copyPropertiesFromSource(WTFMove(source)); |
503 | return keyframeEffect; |
504 | } |
505 | |
506 | Ref<KeyframeEffect> KeyframeEffect::create(const Element& target) |
507 | { |
508 | return adoptRef(*new KeyframeEffect(const_cast<Element*>(&target))); |
509 | } |
510 | |
511 | KeyframeEffect::KeyframeEffect(Element* target) |
512 | : m_target(target) |
513 | { |
514 | } |
515 | |
516 | void KeyframeEffect::copyPropertiesFromSource(Ref<KeyframeEffect>&& source) |
517 | { |
518 | m_target = source->m_target; |
519 | m_compositeOperation = source->m_compositeOperation; |
520 | m_iterationCompositeOperation = source->m_iterationCompositeOperation; |
521 | |
522 | Vector<ParsedKeyframe> parsedKeyframes; |
523 | for (auto& sourceParsedKeyframe : source->m_parsedKeyframes) { |
524 | ParsedKeyframe parsedKeyframe; |
525 | parsedKeyframe.easing = sourceParsedKeyframe.easing; |
526 | parsedKeyframe.offset = sourceParsedKeyframe.offset; |
527 | parsedKeyframe.composite = sourceParsedKeyframe.composite; |
528 | parsedKeyframe.unparsedStyle = sourceParsedKeyframe.unparsedStyle; |
529 | parsedKeyframe.computedOffset = sourceParsedKeyframe.computedOffset; |
530 | parsedKeyframe.timingFunction = sourceParsedKeyframe.timingFunction; |
531 | parsedKeyframe.style = sourceParsedKeyframe.style->mutableCopy(); |
532 | parsedKeyframes.append(WTFMove(parsedKeyframe)); |
533 | } |
534 | m_parsedKeyframes = WTFMove(parsedKeyframes); |
535 | |
536 | setFill(source->fill()); |
537 | setDelay(source->delay()); |
538 | setEndDelay(source->endDelay()); |
539 | setDirection(source->direction()); |
540 | setIterations(source->iterations()); |
541 | setTimingFunction(source->timingFunction()); |
542 | setIterationStart(source->iterationStart()); |
543 | setIterationDuration(source->iterationDuration()); |
544 | |
545 | KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString()); |
546 | for (auto& keyframe : source->m_blendingKeyframes.keyframes()) { |
547 | KeyframeValue keyframeValue(keyframe.key(), RenderStyle::clonePtr(*keyframe.style())); |
548 | for (auto propertyId : keyframe.properties()) |
549 | keyframeValue.addProperty(propertyId); |
550 | keyframeList.insert(WTFMove(keyframeValue)); |
551 | } |
552 | setBlendingKeyframes(keyframeList); |
553 | } |
554 | |
555 | Vector<Strong<JSObject>> KeyframeEffect::getKeyframes(ExecState& state) |
556 | { |
557 | // https://drafts.csswg.org/web-animations-1/#dom-keyframeeffectreadonly-getkeyframes |
558 | |
559 | auto lock = JSLockHolder { &state }; |
560 | |
561 | // Since keyframes are represented by a partially open-ended dictionary type that is not currently able to be expressed with WebIDL, |
562 | // the procedure used to prepare the result of this method is defined in prose below: |
563 | // |
564 | // 1. Let result be an empty sequence of objects. |
565 | Vector<Strong<JSObject>> result; |
566 | |
567 | // 2. Let keyframes be the result of applying the procedure to compute missing keyframe offsets to the keyframes for this keyframe effect. |
568 | |
569 | // 3. For each keyframe in keyframes perform the following steps: |
570 | if (is<DeclarativeAnimation>(animation())) { |
571 | auto = ComputedStyleExtractor(m_target.get()); |
572 | for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) { |
573 | // 1. Initialize a dictionary object, output keyframe, using the following definition: |
574 | // |
575 | // dictionary BaseComputedKeyframe { |
576 | // double? offset = null; |
577 | // double computedOffset; |
578 | // DOMString easing = "linear"; |
579 | // CompositeOperationOrAuto composite = "auto"; |
580 | // }; |
581 | |
582 | auto& keyframe = m_blendingKeyframes[i]; |
583 | |
584 | // 2. Set offset, computedOffset, easing members of output keyframe to the respective values keyframe offset, computed keyframe offset, |
585 | // and keyframe-specific timing function of keyframe. |
586 | BaseComputedKeyframe computedKeyframe; |
587 | computedKeyframe.offset = keyframe.key(); |
588 | computedKeyframe.computedOffset = keyframe.key(); |
589 | // For CSS transitions, there are only two keyframes and the second keyframe should always report "linear". In practice, this value |
590 | // has no bearing since, as the last keyframe, its value will never be used. |
591 | computedKeyframe.easing = is<CSSTransition>(animation()) && i == 1 ? "linear" : timingFunctionForKeyframeAtIndex(0)->cssText(); |
592 | |
593 | auto outputKeyframe = convertDictionaryToJS(state, *jsCast<JSDOMGlobalObject*>(state.lexicalGlobalObject()), computedKeyframe); |
594 | |
595 | // 3. For each animation property-value pair specified on keyframe, declaration, perform the following steps: |
596 | auto& style = *keyframe.style(); |
597 | for (auto cssPropertyId : keyframe.properties()) { |
598 | if (cssPropertyId == CSSPropertyCustom) |
599 | continue; |
600 | // 1. Let property name be the result of applying the animation property name to IDL attribute name algorithm to the property name of declaration. |
601 | auto propertyName = CSSPropertyIDToIDLAttributeName(cssPropertyId); |
602 | // 2. Let IDL value be the result of serializing the property value of declaration by passing declaration to the algorithm to serialize a CSS value. |
603 | String idlValue = "" ; |
604 | if (auto cssValue = computedStyleExtractor.valueForPropertyinStyle(style, cssPropertyId)) |
605 | idlValue = cssValue->cssText(); |
606 | // 3. Let value be the result of converting IDL value to an ECMAScript String value. |
607 | auto value = toJS<IDLDOMString>(state, idlValue); |
608 | // 4. Call the [[DefineOwnProperty]] internal method on output keyframe with property name property name, |
609 | // Property Descriptor { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, [[Value]]: value } and Boolean flag false. |
610 | JSObject::defineOwnProperty(outputKeyframe, &state, AtomicString(propertyName).impl(), PropertyDescriptor(value, 0), false); |
611 | } |
612 | |
613 | // 5. Append output keyframe to result. |
614 | result.append(JSC::Strong<JSC::JSObject> { state.vm(), outputKeyframe }); |
615 | } |
616 | } else { |
617 | for (size_t i = 0; i < m_parsedKeyframes.size(); ++i) { |
618 | // 1. Initialize a dictionary object, output keyframe, using the following definition: |
619 | // |
620 | // dictionary BaseComputedKeyframe { |
621 | // double? offset = null; |
622 | // double computedOffset; |
623 | // DOMString easing = "linear"; |
624 | // CompositeOperationOrAuto composite = "auto"; |
625 | // }; |
626 | |
627 | auto& parsedKeyframe = m_parsedKeyframes[i]; |
628 | |
629 | // 2. Set offset, computedOffset, easing, composite members of output keyframe to the respective values keyframe offset, computed keyframe |
630 | // offset, keyframe-specific timing function and keyframe-specific composite operation of keyframe. |
631 | BaseComputedKeyframe computedKeyframe; |
632 | computedKeyframe.offset = parsedKeyframe.offset; |
633 | computedKeyframe.computedOffset = parsedKeyframe.computedOffset; |
634 | computedKeyframe.easing = timingFunctionForKeyframeAtIndex(i)->cssText(); |
635 | computedKeyframe.composite = parsedKeyframe.composite; |
636 | |
637 | auto outputKeyframe = convertDictionaryToJS(state, *jsCast<JSDOMGlobalObject*>(state.lexicalGlobalObject()), computedKeyframe); |
638 | |
639 | // 3. For each animation property-value pair specified on keyframe, declaration, perform the following steps: |
640 | for (auto it = parsedKeyframe.unparsedStyle.begin(), end = parsedKeyframe.unparsedStyle.end(); it != end; ++it) { |
641 | // 1. Let property name be the result of applying the animation property name to IDL attribute name algorithm to the property name of declaration. |
642 | auto propertyName = CSSPropertyIDToIDLAttributeName(it->key); |
643 | // 2. Let IDL value be the result of serializing the property value of declaration by passing declaration to the algorithm to serialize a CSS value. |
644 | // 3. Let value be the result of converting IDL value to an ECMAScript String value. |
645 | auto value = toJS<IDLDOMString>(state, it->value); |
646 | // 4. Call the [[DefineOwnProperty]] internal method on output keyframe with property name property name, |
647 | // Property Descriptor { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, [[Value]]: value } and Boolean flag false. |
648 | JSObject::defineOwnProperty(outputKeyframe, &state, AtomicString(propertyName).impl(), PropertyDescriptor(value, 0), false); |
649 | } |
650 | |
651 | // 4. Append output keyframe to result. |
652 | result.append(JSC::Strong<JSC::JSObject> { state.vm(), outputKeyframe }); |
653 | } |
654 | } |
655 | |
656 | // 4. Return result. |
657 | return result; |
658 | } |
659 | |
660 | ExceptionOr<void> KeyframeEffect::setKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput) |
661 | { |
662 | return processKeyframes(state, WTFMove(keyframesInput)); |
663 | } |
664 | |
665 | ExceptionOr<void> KeyframeEffect::processKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput) |
666 | { |
667 | // 1. If object is null, return an empty sequence of keyframes. |
668 | if (!keyframesInput.get()) |
669 | return { }; |
670 | |
671 | VM& vm = state.vm(); |
672 | auto scope = DECLARE_THROW_SCOPE(vm); |
673 | |
674 | // 2. Let processed keyframes be an empty sequence of keyframes. |
675 | Vector<ParsedKeyframe> parsedKeyframes; |
676 | |
677 | // 3. Let method be the result of GetMethod(object, @@iterator). |
678 | auto method = keyframesInput.get()->get(&state, vm.propertyNames->iteratorSymbol); |
679 | |
680 | // 4. Check the completion record of method. |
681 | RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
682 | |
683 | // 5. Perform the steps corresponding to the first matching condition from below, |
684 | Vector<String> unusedEasings; |
685 | if (!method.isUndefined()) |
686 | processIterableKeyframes(state, WTFMove(keyframesInput), WTFMove(method), parsedKeyframes); |
687 | else |
688 | processPropertyIndexedKeyframes(state, WTFMove(keyframesInput), parsedKeyframes, unusedEasings); |
689 | |
690 | // 6. If processed keyframes is not loosely sorted by offset, throw a TypeError and abort these steps. |
691 | // 7. If there exist any keyframe in processed keyframes whose keyframe offset is non-null and less than |
692 | // zero or greater than one, throw a TypeError and abort these steps. |
693 | double lastNonNullOffset = -1; |
694 | for (auto& keyframe : parsedKeyframes) { |
695 | if (!keyframe.offset) |
696 | continue; |
697 | auto offset = keyframe.offset.value(); |
698 | if (offset < lastNonNullOffset || offset < 0 || offset > 1) |
699 | return Exception { TypeError }; |
700 | lastNonNullOffset = offset; |
701 | } |
702 | |
703 | // We take a slight detour from the spec text and compute the missing keyframe offsets right away |
704 | // since they can be computed up-front. |
705 | computeMissingKeyframeOffsets(parsedKeyframes); |
706 | |
707 | // 8. For each frame in processed keyframes, perform the following steps: |
708 | for (auto& keyframe : parsedKeyframes) { |
709 | // Let the timing function of frame be the result of parsing the “easing” property on frame using the CSS syntax |
710 | // defined for the easing property of the AnimationEffectTiming interface. |
711 | // If parsing the “easing” property fails, throw a TypeError and abort this procedure. |
712 | auto timingFunctionResult = TimingFunction::createFromCSSText(keyframe.easing); |
713 | if (timingFunctionResult.hasException()) |
714 | return timingFunctionResult.releaseException(); |
715 | keyframe.timingFunction = timingFunctionResult.returnValue(); |
716 | } |
717 | |
718 | // 9. Parse each of the values in unused easings using the CSS syntax defined for easing property of the |
719 | // AnimationEffectTiming interface, and if any of the values fail to parse, throw a TypeError |
720 | // and abort this procedure. |
721 | for (auto& easing : unusedEasings) { |
722 | auto timingFunctionResult = TimingFunction::createFromCSSText(easing); |
723 | if (timingFunctionResult.hasException()) |
724 | return timingFunctionResult.releaseException(); |
725 | } |
726 | |
727 | m_parsedKeyframes = WTFMove(parsedKeyframes); |
728 | |
729 | m_blendingKeyframes.clear(); |
730 | |
731 | return { }; |
732 | } |
733 | |
734 | void KeyframeEffect::updateBlendingKeyframes(RenderStyle& elementStyle) |
735 | { |
736 | if (!m_blendingKeyframes.isEmpty() || !m_target) |
737 | return; |
738 | |
739 | KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString()); |
740 | StyleResolver& styleResolver = m_target->styleResolver(); |
741 | |
742 | for (auto& keyframe : m_parsedKeyframes) { |
743 | styleResolver.setNewStateWithElement(*m_target); |
744 | KeyframeValue keyframeValue(keyframe.computedOffset, nullptr); |
745 | |
746 | auto styleProperties = keyframe.style->immutableCopyIfNeeded(); |
747 | for (unsigned i = 0; i < styleProperties->propertyCount(); ++i) |
748 | keyframeList.addProperty(styleProperties->propertyAt(i).id()); |
749 | |
750 | auto keyframeRule = StyleRuleKeyframe::create(WTFMove(styleProperties)); |
751 | keyframeValue.setStyle(styleResolver.styleForKeyframe(&elementStyle, keyframeRule.ptr(), keyframeValue)); |
752 | keyframeList.insert(WTFMove(keyframeValue)); |
753 | } |
754 | |
755 | setBlendingKeyframes(keyframeList); |
756 | } |
757 | |
758 | bool KeyframeEffect::forceLayoutIfNeeded() |
759 | { |
760 | if (!m_needsForcedLayout || !m_target) |
761 | return false; |
762 | |
763 | auto* renderer = m_target->renderer(); |
764 | if (!renderer || !renderer->parent()) |
765 | return false; |
766 | |
767 | auto* frameView = m_target->document().view(); |
768 | if (!frameView) |
769 | return false; |
770 | |
771 | frameView->forceLayout(); |
772 | return true; |
773 | } |
774 | |
775 | void KeyframeEffect::setBlendingKeyframes(KeyframeList& blendingKeyframes) |
776 | { |
777 | m_blendingKeyframes = WTFMove(blendingKeyframes); |
778 | |
779 | computedNeedsForcedLayout(); |
780 | computeStackingContextImpact(); |
781 | computeShouldRunAccelerated(); |
782 | |
783 | checkForMatchingTransformFunctionLists(); |
784 | checkForMatchingFilterFunctionLists(); |
785 | #if ENABLE(FILTERS_LEVEL_2) |
786 | checkForMatchingBackdropFilterFunctionLists(); |
787 | #endif |
788 | checkForMatchingColorFilterFunctionLists(); |
789 | } |
790 | |
791 | void KeyframeEffect::checkForMatchingTransformFunctionLists() |
792 | { |
793 | m_transformFunctionListsMatch = false; |
794 | |
795 | if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(CSSPropertyTransform)) |
796 | return; |
797 | |
798 | // Empty transforms match anything, so find the first non-empty entry as the reference. |
799 | size_t numKeyframes = m_blendingKeyframes.size(); |
800 | size_t firstNonEmptyTransformKeyframeIndex = numKeyframes; |
801 | |
802 | for (size_t i = 0; i < numKeyframes; ++i) { |
803 | const KeyframeValue& currentKeyframe = m_blendingKeyframes[i]; |
804 | if (currentKeyframe.style()->transform().operations().size()) { |
805 | firstNonEmptyTransformKeyframeIndex = i; |
806 | break; |
807 | } |
808 | } |
809 | |
810 | if (firstNonEmptyTransformKeyframeIndex == numKeyframes) |
811 | return; |
812 | |
813 | const TransformOperations* firstVal = &m_blendingKeyframes[firstNonEmptyTransformKeyframeIndex].style()->transform(); |
814 | for (size_t i = firstNonEmptyTransformKeyframeIndex + 1; i < numKeyframes; ++i) { |
815 | const KeyframeValue& currentKeyframe = m_blendingKeyframes[i]; |
816 | const TransformOperations* val = ¤tKeyframe.style()->transform(); |
817 | |
818 | // An empty transform list matches anything. |
819 | if (val->operations().isEmpty()) |
820 | continue; |
821 | |
822 | if (!firstVal->operationsMatch(*val)) |
823 | return; |
824 | } |
825 | |
826 | m_transformFunctionListsMatch = true; |
827 | } |
828 | |
829 | bool KeyframeEffect::checkForMatchingFilterFunctionLists(CSSPropertyID propertyID, const std::function<const FilterOperations& (const RenderStyle&)>& filtersGetter) const |
830 | { |
831 | if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(propertyID)) |
832 | return false; |
833 | |
834 | // Empty filters match anything, so find the first non-empty entry as the reference. |
835 | size_t numKeyframes = m_blendingKeyframes.size(); |
836 | size_t firstNonEmptyKeyframeIndex = numKeyframes; |
837 | |
838 | for (size_t i = 0; i < numKeyframes; ++i) { |
839 | if (filtersGetter(*m_blendingKeyframes[i].style()).operations().size()) { |
840 | firstNonEmptyKeyframeIndex = i; |
841 | break; |
842 | } |
843 | } |
844 | |
845 | if (firstNonEmptyKeyframeIndex == numKeyframes) |
846 | return false; |
847 | |
848 | auto& firstVal = filtersGetter(*m_blendingKeyframes[firstNonEmptyKeyframeIndex].style()); |
849 | for (size_t i = firstNonEmptyKeyframeIndex + 1; i < numKeyframes; ++i) { |
850 | auto& value = filtersGetter(*m_blendingKeyframes[i].style()); |
851 | |
852 | // An empty filter list matches anything. |
853 | if (value.operations().isEmpty()) |
854 | continue; |
855 | |
856 | if (!firstVal.operationsMatch(value)) |
857 | return false; |
858 | } |
859 | |
860 | return true; |
861 | } |
862 | |
863 | void KeyframeEffect::checkForMatchingFilterFunctionLists() |
864 | { |
865 | m_filterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyFilter, [] (const RenderStyle& style) -> const FilterOperations& { |
866 | return style.filter(); |
867 | }); |
868 | } |
869 | |
870 | #if ENABLE(FILTERS_LEVEL_2) |
871 | void KeyframeEffect::checkForMatchingBackdropFilterFunctionLists() |
872 | { |
873 | m_backdropFilterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyWebkitBackdropFilter, [] (const RenderStyle& style) -> const FilterOperations& { |
874 | return style.backdropFilter(); |
875 | }); |
876 | } |
877 | #endif |
878 | |
879 | void KeyframeEffect::checkForMatchingColorFilterFunctionLists() |
880 | { |
881 | m_colorFilterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyAppleColorFilter, [] (const RenderStyle& style) -> const FilterOperations& { |
882 | return style.appleColorFilter(); |
883 | }); |
884 | } |
885 | |
886 | void KeyframeEffect::computeDeclarativeAnimationBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle) |
887 | { |
888 | ASSERT(is<DeclarativeAnimation>(animation())); |
889 | if (is<CSSAnimation>(animation())) |
890 | computeCSSAnimationBlendingKeyframes(); |
891 | else if (is<CSSTransition>(animation())) |
892 | computeCSSTransitionBlendingKeyframes(oldStyle, newStyle); |
893 | } |
894 | |
895 | void KeyframeEffect::computeCSSAnimationBlendingKeyframes() |
896 | { |
897 | ASSERT(is<CSSAnimation>(animation())); |
898 | |
899 | auto cssAnimation = downcast<CSSAnimation>(animation()); |
900 | auto& backingAnimation = cssAnimation->backingAnimation(); |
901 | |
902 | KeyframeList keyframeList(backingAnimation.name()); |
903 | if (auto* styleScope = Style::Scope::forOrdinal(*m_target, backingAnimation.nameStyleScopeOrdinal())) |
904 | styleScope->resolver().keyframeStylesForAnimation(*m_target, &cssAnimation->unanimatedStyle(), keyframeList); |
905 | |
906 | // Ensure resource loads for all the frames. |
907 | for (auto& keyframe : keyframeList.keyframes()) { |
908 | if (auto* style = const_cast<RenderStyle*>(keyframe.style())) |
909 | Style::loadPendingResources(*style, m_target->document(), m_target.get()); |
910 | } |
911 | |
912 | setBlendingKeyframes(keyframeList); |
913 | } |
914 | |
915 | void KeyframeEffect::computeCSSTransitionBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle) |
916 | { |
917 | ASSERT(is<CSSTransition>(animation())); |
918 | |
919 | if (!oldStyle || m_blendingKeyframes.size()) |
920 | return; |
921 | |
922 | auto property = downcast<CSSTransition>(animation())->property(); |
923 | |
924 | auto toStyle = RenderStyle::clonePtr(newStyle); |
925 | if (m_target) |
926 | Style::loadPendingResources(*toStyle, m_target->document(), m_target.get()); |
927 | |
928 | KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString()); |
929 | keyframeList.addProperty(property); |
930 | |
931 | KeyframeValue fromKeyframeValue(0, RenderStyle::clonePtr(*oldStyle)); |
932 | fromKeyframeValue.addProperty(property); |
933 | keyframeList.insert(WTFMove(fromKeyframeValue)); |
934 | |
935 | KeyframeValue toKeyframeValue(1, WTFMove(toStyle)); |
936 | toKeyframeValue.addProperty(property); |
937 | keyframeList.insert(WTFMove(toKeyframeValue)); |
938 | |
939 | setBlendingKeyframes(keyframeList); |
940 | } |
941 | |
942 | void KeyframeEffect::computedNeedsForcedLayout() |
943 | { |
944 | m_needsForcedLayout = false; |
945 | if (is<CSSTransition>(animation()) || !m_blendingKeyframes.containsProperty(CSSPropertyTransform)) |
946 | return; |
947 | |
948 | size_t numberOfKeyframes = m_blendingKeyframes.size(); |
949 | for (size_t i = 0; i < numberOfKeyframes; i++) { |
950 | auto* keyframeStyle = m_blendingKeyframes[i].style(); |
951 | if (!keyframeStyle) { |
952 | ASSERT_NOT_REACHED(); |
953 | continue; |
954 | } |
955 | if (keyframeStyle->hasTransform()) { |
956 | auto& transformOperations = keyframeStyle->transform(); |
957 | for (const auto& operation : transformOperations.operations()) { |
958 | if (operation->isTranslateTransformOperationType()) { |
959 | auto translation = downcast<TranslateTransformOperation>(operation.get()); |
960 | if (translation->x().isPercent() || translation->y().isPercent()) { |
961 | m_needsForcedLayout = true; |
962 | return; |
963 | } |
964 | } |
965 | } |
966 | } |
967 | } |
968 | } |
969 | |
970 | void KeyframeEffect::computeStackingContextImpact() |
971 | { |
972 | m_triggersStackingContext = false; |
973 | for (auto cssPropertyId : m_blendingKeyframes.properties()) { |
974 | if (WillChangeData::propertyCreatesStackingContext(cssPropertyId)) { |
975 | m_triggersStackingContext = true; |
976 | break; |
977 | } |
978 | } |
979 | } |
980 | |
981 | void KeyframeEffect::setTarget(RefPtr<Element>&& newTarget) |
982 | { |
983 | if (m_target == newTarget) |
984 | return; |
985 | |
986 | auto previousTarget = std::exchange(m_target, WTFMove(newTarget)); |
987 | |
988 | if (auto* effectAnimation = animation()) |
989 | effectAnimation->effectTargetDidChange(previousTarget.get(), m_target.get()); |
990 | |
991 | m_blendingKeyframes.clear(); |
992 | |
993 | // We need to invalidate the effect now that the target has changed |
994 | // to ensure the effect's styles are applied to the new target right away. |
995 | invalidate(); |
996 | |
997 | // Likewise, we need to invalidate styles on the previous target so that |
998 | // any animated styles are removed immediately. |
999 | invalidateElement(previousTarget.get()); |
1000 | } |
1001 | |
1002 | void KeyframeEffect::apply(RenderStyle& targetStyle) |
1003 | { |
1004 | if (!m_target) |
1005 | return; |
1006 | |
1007 | updateBlendingKeyframes(targetStyle); |
1008 | |
1009 | updateAcceleratedAnimationState(); |
1010 | |
1011 | auto progress = getComputedTiming().progress; |
1012 | if (!progress) |
1013 | return; |
1014 | |
1015 | setAnimatedPropertiesInStyle(targetStyle, progress.value()); |
1016 | |
1017 | // https://w3c.github.io/web-animations/#side-effects-section |
1018 | // For every property targeted by at least one animation effect that is current or in effect, the user agent |
1019 | // must act as if the will-change property ([css-will-change-1]) on the target element includes the property. |
1020 | if (m_triggersStackingContext && targetStyle.hasAutoZIndex()) |
1021 | targetStyle.setZIndex(0); |
1022 | } |
1023 | |
1024 | void KeyframeEffect::invalidate() |
1025 | { |
1026 | invalidateElement(m_target.get()); |
1027 | } |
1028 | |
1029 | void KeyframeEffect::computeShouldRunAccelerated() |
1030 | { |
1031 | m_shouldRunAccelerated = hasBlendingKeyframes(); |
1032 | for (auto cssPropertyId : m_blendingKeyframes.properties()) { |
1033 | if (!CSSPropertyAnimation::animationOfPropertyIsAccelerated(cssPropertyId)) { |
1034 | m_shouldRunAccelerated = false; |
1035 | return; |
1036 | } |
1037 | } |
1038 | } |
1039 | |
1040 | void KeyframeEffect::getAnimatedStyle(std::unique_ptr<RenderStyle>& animatedStyle) |
1041 | { |
1042 | if (!m_target || !animation()) |
1043 | return; |
1044 | |
1045 | auto progress = getComputedTiming().progress; |
1046 | if (!progress) |
1047 | return; |
1048 | |
1049 | if (!animatedStyle) |
1050 | animatedStyle = RenderStyle::clonePtr(renderer()->style()); |
1051 | |
1052 | setAnimatedPropertiesInStyle(*animatedStyle.get(), progress.value()); |
1053 | } |
1054 | |
1055 | void KeyframeEffect::setAnimatedPropertiesInStyle(RenderStyle& targetStyle, double iterationProgress) |
1056 | { |
1057 | // 4.4.3. The effect value of a keyframe effect |
1058 | // https://drafts.csswg.org/web-animations-1/#the-effect-value-of-a-keyframe-animation-effect |
1059 | // |
1060 | // The effect value of a single property referenced by a keyframe effect as one of its target properties, |
1061 | // for a given iteration progress, current iteration and underlying value is calculated as follows. |
1062 | |
1063 | updateBlendingKeyframes(targetStyle); |
1064 | if (m_blendingKeyframes.isEmpty()) |
1065 | return; |
1066 | |
1067 | bool isCSSAnimation = is<CSSAnimation>(animation()); |
1068 | |
1069 | for (auto cssPropertyId : m_blendingKeyframes.properties()) { |
1070 | // 1. If iteration progress is unresolved abort this procedure. |
1071 | // 2. Let target property be the longhand property for which the effect value is to be calculated. |
1072 | // 3. If animation type of the target property is not animatable abort this procedure since the effect cannot be applied. |
1073 | // 4. Define the neutral value for composition as a value which, when combined with an underlying value using the add composite operation, |
1074 | // produces the underlying value. |
1075 | |
1076 | // 5. Let property-specific keyframes be the result of getting the set of computed keyframes for this keyframe effect. |
1077 | // 6. Remove any keyframes from property-specific keyframes that do not have a property value for target property. |
1078 | unsigned numberOfKeyframesWithZeroOffset = 0; |
1079 | unsigned numberOfKeyframesWithOneOffset = 0; |
1080 | Vector<Optional<size_t>> propertySpecificKeyframes; |
1081 | for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) { |
1082 | auto& keyframe = m_blendingKeyframes[i]; |
1083 | auto offset = keyframe.key(); |
1084 | if (!keyframe.containsProperty(cssPropertyId)) { |
1085 | // If we're dealing with a CSS animation, we consider the first and last keyframes to always have the property listed |
1086 | // since the underlying style was provided and should be captured. |
1087 | if (!isCSSAnimation || (offset && offset < 1)) |
1088 | continue; |
1089 | } |
1090 | if (!offset) |
1091 | numberOfKeyframesWithZeroOffset++; |
1092 | if (offset == 1) |
1093 | numberOfKeyframesWithOneOffset++; |
1094 | propertySpecificKeyframes.append(i); |
1095 | } |
1096 | |
1097 | // 7. If property-specific keyframes is empty, return underlying value. |
1098 | if (propertySpecificKeyframes.isEmpty()) |
1099 | continue; |
1100 | |
1101 | // 8. If there is no keyframe in property-specific keyframes with a computed keyframe offset of 0, create a new keyframe with a computed keyframe |
1102 | // offset of 0, a property value set to the neutral value for composition, and a composite operation of add, and prepend it to the beginning of |
1103 | // property-specific keyframes. |
1104 | if (!numberOfKeyframesWithZeroOffset) { |
1105 | propertySpecificKeyframes.insert(0, WTF::nullopt); |
1106 | numberOfKeyframesWithZeroOffset = 1; |
1107 | } |
1108 | |
1109 | // 9. Similarly, if there is no keyframe in property-specific keyframes with a computed keyframe offset of 1, create a new keyframe with a computed |
1110 | // keyframe offset of 1, a property value set to the neutral value for composition, and a composite operation of add, and append it to the end of |
1111 | // property-specific keyframes. |
1112 | if (!numberOfKeyframesWithOneOffset) { |
1113 | propertySpecificKeyframes.append(WTF::nullopt); |
1114 | numberOfKeyframesWithOneOffset = 1; |
1115 | } |
1116 | |
1117 | // 10. Let interval endpoints be an empty sequence of keyframes. |
1118 | Vector<Optional<size_t>> intervalEndpoints; |
1119 | |
1120 | // 11. Populate interval endpoints by following the steps from the first matching condition from below: |
1121 | if (iterationProgress < 0 && numberOfKeyframesWithZeroOffset > 1) { |
1122 | // If iteration progress < 0 and there is more than one keyframe in property-specific keyframes with a computed keyframe offset of 0, |
1123 | // Add the first keyframe in property-specific keyframes to interval endpoints. |
1124 | intervalEndpoints.append(propertySpecificKeyframes.first()); |
1125 | } else if (iterationProgress >= 1 && numberOfKeyframesWithOneOffset > 1) { |
1126 | // If iteration progress ≥ 1 and there is more than one keyframe in property-specific keyframes with a computed keyframe offset of 1, |
1127 | // Add the last keyframe in property-specific keyframes to interval endpoints. |
1128 | intervalEndpoints.append(propertySpecificKeyframes.last()); |
1129 | } else { |
1130 | // Otherwise, |
1131 | // 1. Append to interval endpoints the last keyframe in property-specific keyframes whose computed keyframe offset is less than or equal |
1132 | // to iteration progress and less than 1. If there is no such keyframe (because, for example, the iteration progress is negative), |
1133 | // add the last keyframe whose computed keyframe offset is 0. |
1134 | // 2. Append to interval endpoints the next keyframe in property-specific keyframes after the one added in the previous step. |
1135 | size_t indexOfLastKeyframeWithZeroOffset = 0; |
1136 | int indexOfFirstKeyframeToAddToIntervalEndpoints = -1; |
1137 | for (size_t i = 0; i < propertySpecificKeyframes.size(); ++i) { |
1138 | auto keyframeIndex = propertySpecificKeyframes[i]; |
1139 | auto offset = [&] () -> double { |
1140 | if (!keyframeIndex) |
1141 | return i ? 1 : 0; |
1142 | return m_blendingKeyframes[keyframeIndex.value()].key(); |
1143 | }(); |
1144 | if (!offset) |
1145 | indexOfLastKeyframeWithZeroOffset = i; |
1146 | if (offset <= iterationProgress && offset < 1) |
1147 | indexOfFirstKeyframeToAddToIntervalEndpoints = i; |
1148 | else |
1149 | break; |
1150 | } |
1151 | |
1152 | if (indexOfFirstKeyframeToAddToIntervalEndpoints >= 0) { |
1153 | intervalEndpoints.append(propertySpecificKeyframes[indexOfFirstKeyframeToAddToIntervalEndpoints]); |
1154 | intervalEndpoints.append(propertySpecificKeyframes[indexOfFirstKeyframeToAddToIntervalEndpoints + 1]); |
1155 | } else { |
1156 | ASSERT(indexOfLastKeyframeWithZeroOffset < propertySpecificKeyframes.size() - 1); |
1157 | intervalEndpoints.append(propertySpecificKeyframes[indexOfLastKeyframeWithZeroOffset]); |
1158 | intervalEndpoints.append(propertySpecificKeyframes[indexOfLastKeyframeWithZeroOffset + 1]); |
1159 | } |
1160 | } |
1161 | |
1162 | // 12. For each keyframe in interval endpoints… |
1163 | // FIXME: we don't support this step yet since we don't deal with any composite operation other than "replace". |
1164 | |
1165 | // 13. If there is only one keyframe in interval endpoints return the property value of target property on that keyframe. |
1166 | if (intervalEndpoints.size() == 1) { |
1167 | auto keyframeIndex = intervalEndpoints[0]; |
1168 | auto keyframeStyle = !keyframeIndex ? &targetStyle : m_blendingKeyframes[keyframeIndex.value()].style(); |
1169 | CSSPropertyAnimation::blendProperties(this, cssPropertyId, &targetStyle, keyframeStyle, keyframeStyle, 0); |
1170 | continue; |
1171 | } |
1172 | |
1173 | // 14. Let start offset be the computed keyframe offset of the first keyframe in interval endpoints. |
1174 | auto startKeyframeIndex = intervalEndpoints.first(); |
1175 | auto startOffset = !startKeyframeIndex ? 0 : m_blendingKeyframes[startKeyframeIndex.value()].key(); |
1176 | |
1177 | // 15. Let end offset be the computed keyframe offset of last keyframe in interval endpoints. |
1178 | auto endKeyframeIndex = intervalEndpoints.last(); |
1179 | auto endOffset = !endKeyframeIndex ? 1 : m_blendingKeyframes[endKeyframeIndex.value()].key(); |
1180 | |
1181 | // 16. Let interval distance be the result of evaluating (iteration progress - start offset) / (end offset - start offset). |
1182 | auto intervalDistance = (iterationProgress - startOffset) / (endOffset - startOffset); |
1183 | |
1184 | // 17. Let transformed distance be the result of evaluating the timing function associated with the first keyframe in interval endpoints |
1185 | // passing interval distance as the input progress. |
1186 | auto transformedDistance = intervalDistance; |
1187 | if (startKeyframeIndex) { |
1188 | if (auto duration = iterationDuration()) { |
1189 | auto rangeDuration = (endOffset - startOffset) * duration.seconds(); |
1190 | if (auto* timingFunction = timingFunctionForKeyframeAtIndex(startKeyframeIndex.value())) |
1191 | transformedDistance = timingFunction->transformTime(intervalDistance, rangeDuration); |
1192 | } |
1193 | } |
1194 | |
1195 | // 18. Return the result of applying the interpolation procedure defined by the animation type of the target property, to the values of the target |
1196 | // property specified on the two keyframes in interval endpoints taking the first such value as Vstart and the second as Vend and using transformed |
1197 | // distance as the interpolation parameter p. |
1198 | auto startStyle = !startKeyframeIndex ? &targetStyle : m_blendingKeyframes[startKeyframeIndex.value()].style(); |
1199 | auto endStyle = !endKeyframeIndex ? &targetStyle : m_blendingKeyframes[endKeyframeIndex.value()].style(); |
1200 | CSSPropertyAnimation::blendProperties(this, cssPropertyId, &targetStyle, startStyle, endStyle, transformedDistance); |
1201 | } |
1202 | } |
1203 | |
1204 | TimingFunction* KeyframeEffect::timingFunctionForKeyframeAtIndex(size_t index) |
1205 | { |
1206 | if (!m_parsedKeyframes.isEmpty()) |
1207 | return m_parsedKeyframes[index].timingFunction.get(); |
1208 | |
1209 | auto effectAnimation = animation(); |
1210 | if (is<DeclarativeAnimation>(effectAnimation)) { |
1211 | // If we're dealing with a CSS Animation, the timing function is specified either on the keyframe itself. |
1212 | if (is<CSSAnimation>(effectAnimation)) { |
1213 | if (auto* timingFunction = m_blendingKeyframes[index].timingFunction()) |
1214 | return timingFunction; |
1215 | } |
1216 | |
1217 | // Failing that, or for a CSS Transition, the timing function is inherited from the backing Animation object. |
1218 | return downcast<DeclarativeAnimation>(effectAnimation)->backingAnimation().timingFunction(); |
1219 | } |
1220 | |
1221 | return nullptr; |
1222 | } |
1223 | |
1224 | void KeyframeEffect::updateAcceleratedAnimationState() |
1225 | { |
1226 | if (!m_shouldRunAccelerated) |
1227 | return; |
1228 | |
1229 | if (!renderer()) { |
1230 | if (isRunningAccelerated()) |
1231 | addPendingAcceleratedAction(AcceleratedAction::Stop); |
1232 | return; |
1233 | } |
1234 | |
1235 | auto localTime = animation()->currentTime(); |
1236 | |
1237 | // If we don't have a localTime or localTime < 0, we either don't have a start time or we're before the startTime |
1238 | // so we shouldn't be running. |
1239 | if (!localTime || localTime.value() < 0_s) { |
1240 | if (isRunningAccelerated()) |
1241 | addPendingAcceleratedAction(AcceleratedAction::Stop); |
1242 | return; |
1243 | } |
1244 | |
1245 | auto playState = animation()->playState(); |
1246 | if (playState == WebAnimation::PlayState::Paused) { |
1247 | if (m_lastRecordedAcceleratedAction != AcceleratedAction::Pause) { |
1248 | if (m_lastRecordedAcceleratedAction == AcceleratedAction::Stop) |
1249 | addPendingAcceleratedAction(AcceleratedAction::Play); |
1250 | addPendingAcceleratedAction(AcceleratedAction::Pause); |
1251 | } |
1252 | return; |
1253 | } |
1254 | |
1255 | if (playState == WebAnimation::PlayState::Finished) { |
1256 | if (isRunningAccelerated()) |
1257 | addPendingAcceleratedAction(AcceleratedAction::Stop); |
1258 | else { |
1259 | m_lastRecordedAcceleratedAction = AcceleratedAction::Stop; |
1260 | m_pendingAcceleratedActions.clear(); |
1261 | animation()->acceleratedStateDidChange(); |
1262 | } |
1263 | return; |
1264 | } |
1265 | |
1266 | if (playState == WebAnimation::PlayState::Running && localTime >= 0_s) { |
1267 | if (m_lastRecordedAcceleratedAction != AcceleratedAction::Play) |
1268 | addPendingAcceleratedAction(AcceleratedAction::Play); |
1269 | return; |
1270 | } |
1271 | } |
1272 | |
1273 | void KeyframeEffect::addPendingAcceleratedAction(AcceleratedAction action) |
1274 | { |
1275 | if (action == AcceleratedAction::Stop) |
1276 | m_pendingAcceleratedActions.clear(); |
1277 | m_pendingAcceleratedActions.append(action); |
1278 | if (action != AcceleratedAction::Seek) |
1279 | m_lastRecordedAcceleratedAction = action; |
1280 | animation()->acceleratedStateDidChange(); |
1281 | } |
1282 | |
1283 | void KeyframeEffect::animationDidSeek() |
1284 | { |
1285 | // There is no need to seek if we're not playing an animation already. If seeking |
1286 | // means we're moving into an active state, we'll pick this up in apply(). |
1287 | if (m_shouldRunAccelerated && isRunningAccelerated()) |
1288 | addPendingAcceleratedAction(AcceleratedAction::Seek); |
1289 | } |
1290 | |
1291 | void KeyframeEffect::animationSuspensionStateDidChange(bool animationIsSuspended) |
1292 | { |
1293 | if (m_shouldRunAccelerated) |
1294 | addPendingAcceleratedAction(animationIsSuspended ? AcceleratedAction::Pause : AcceleratedAction::Play); |
1295 | } |
1296 | |
1297 | void KeyframeEffect::applyPendingAcceleratedActions() |
1298 | { |
1299 | // Once an accelerated animation has been committed, we no longer want to force a layout. |
1300 | // This should have been performed by a call to forceLayoutIfNeeded() prior to applying |
1301 | // pending accelerated actions. |
1302 | m_needsForcedLayout = false; |
1303 | |
1304 | if (m_pendingAcceleratedActions.isEmpty()) |
1305 | return; |
1306 | |
1307 | auto* renderer = this->renderer(); |
1308 | if (!renderer || !renderer->isComposited()) |
1309 | return; |
1310 | |
1311 | auto pendingAcceleratedActions = m_pendingAcceleratedActions; |
1312 | m_pendingAcceleratedActions.clear(); |
1313 | |
1314 | auto* compositedRenderer = downcast<RenderBoxModelObject>(renderer); |
1315 | |
1316 | // To simplify the code we use a default of 0s for an unresolved current time since for a Stop action that is acceptable. |
1317 | auto timeOffset = animation()->currentTime().valueOr(0_s).seconds() - delay().seconds(); |
1318 | |
1319 | for (const auto& action : pendingAcceleratedActions) { |
1320 | switch (action) { |
1321 | case AcceleratedAction::Play: |
1322 | if (!compositedRenderer->startAnimation(timeOffset, backingAnimationForCompositedRenderer(), m_blendingKeyframes)) { |
1323 | m_shouldRunAccelerated = false; |
1324 | m_lastRecordedAcceleratedAction = AcceleratedAction::Stop; |
1325 | animation()->acceleratedStateDidChange(); |
1326 | return; |
1327 | } |
1328 | break; |
1329 | case AcceleratedAction::Pause: |
1330 | compositedRenderer->animationPaused(timeOffset, m_blendingKeyframes.animationName()); |
1331 | break; |
1332 | case AcceleratedAction::Seek: |
1333 | compositedRenderer->animationSeeked(timeOffset, m_blendingKeyframes.animationName()); |
1334 | break; |
1335 | case AcceleratedAction::Stop: |
1336 | compositedRenderer->animationFinished(m_blendingKeyframes.animationName()); |
1337 | if (!m_target->document().renderTreeBeingDestroyed()) |
1338 | m_target->invalidateStyleAndLayerComposition(); |
1339 | break; |
1340 | } |
1341 | } |
1342 | } |
1343 | |
1344 | Ref<const Animation> KeyframeEffect::backingAnimationForCompositedRenderer() const |
1345 | { |
1346 | auto effectAnimation = animation(); |
1347 | if (is<DeclarativeAnimation>(effectAnimation)) |
1348 | return downcast<DeclarativeAnimation>(effectAnimation)->backingAnimation(); |
1349 | |
1350 | // FIXME: The iterationStart and endDelay AnimationEffectTiming properties do not have |
1351 | // corresponding Animation properties. |
1352 | auto animation = Animation::create(); |
1353 | animation->setDuration(iterationDuration().seconds()); |
1354 | animation->setDelay(delay().seconds()); |
1355 | animation->setIterationCount(iterations()); |
1356 | animation->setTimingFunction(timingFunction()->clone()); |
1357 | |
1358 | switch (fill()) { |
1359 | case FillMode::None: |
1360 | case FillMode::Auto: |
1361 | animation->setFillMode(AnimationFillMode::None); |
1362 | break; |
1363 | case FillMode::Backwards: |
1364 | animation->setFillMode(AnimationFillMode::Backwards); |
1365 | break; |
1366 | case FillMode::Forwards: |
1367 | animation->setFillMode(AnimationFillMode::Forwards); |
1368 | break; |
1369 | case FillMode::Both: |
1370 | animation->setFillMode(AnimationFillMode::Both); |
1371 | break; |
1372 | } |
1373 | |
1374 | switch (direction()) { |
1375 | case PlaybackDirection::Normal: |
1376 | animation->setDirection(Animation::AnimationDirectionNormal); |
1377 | break; |
1378 | case PlaybackDirection::Alternate: |
1379 | animation->setDirection(Animation::AnimationDirectionAlternate); |
1380 | break; |
1381 | case PlaybackDirection::Reverse: |
1382 | animation->setDirection(Animation::AnimationDirectionReverse); |
1383 | break; |
1384 | case PlaybackDirection::AlternateReverse: |
1385 | animation->setDirection(Animation::AnimationDirectionAlternateReverse); |
1386 | break; |
1387 | } |
1388 | |
1389 | return animation; |
1390 | } |
1391 | |
1392 | RenderElement* KeyframeEffect::renderer() const |
1393 | { |
1394 | return m_target ? m_target->renderer() : nullptr; |
1395 | } |
1396 | |
1397 | const RenderStyle& KeyframeEffect::currentStyle() const |
1398 | { |
1399 | if (auto* renderer = this->renderer()) |
1400 | return renderer->style(); |
1401 | return RenderStyle::defaultStyle(); |
1402 | } |
1403 | |
1404 | bool KeyframeEffect::computeExtentOfTransformAnimation(LayoutRect& bounds) const |
1405 | { |
1406 | ASSERT(m_blendingKeyframes.containsProperty(CSSPropertyTransform)); |
1407 | |
1408 | if (!is<RenderBox>(renderer())) |
1409 | return true; // Non-boxes don't get transformed; |
1410 | |
1411 | auto& box = downcast<RenderBox>(*renderer()); |
1412 | auto rendererBox = snapRectToDevicePixels(box.borderBoxRect(), box.document().deviceScaleFactor()); |
1413 | |
1414 | auto cumulativeBounds = bounds; |
1415 | |
1416 | for (const auto& keyframe : m_blendingKeyframes.keyframes()) { |
1417 | const auto* keyframeStyle = keyframe.style(); |
1418 | |
1419 | // FIXME: maybe for declarative animations we always say it's true for the first and last keyframe. |
1420 | if (!keyframe.containsProperty(CSSPropertyTransform)) { |
1421 | // If the first keyframe is missing transform style, use the current style. |
1422 | if (!keyframe.key()) |
1423 | keyframeStyle = &box.style(); |
1424 | else |
1425 | continue; |
1426 | } |
1427 | |
1428 | auto keyframeBounds = bounds; |
1429 | |
1430 | bool canCompute; |
1431 | if (transformFunctionListsMatch()) |
1432 | canCompute = computeTransformedExtentViaTransformList(rendererBox, *keyframeStyle, keyframeBounds); |
1433 | else |
1434 | canCompute = computeTransformedExtentViaMatrix(rendererBox, *keyframeStyle, keyframeBounds); |
1435 | |
1436 | if (!canCompute) |
1437 | return false; |
1438 | |
1439 | cumulativeBounds.unite(keyframeBounds); |
1440 | } |
1441 | |
1442 | bounds = cumulativeBounds; |
1443 | return true; |
1444 | } |
1445 | |
1446 | static bool containsRotation(const Vector<RefPtr<TransformOperation>>& operations) |
1447 | { |
1448 | for (const auto& operation : operations) { |
1449 | if (operation->type() == TransformOperation::ROTATE) |
1450 | return true; |
1451 | } |
1452 | return false; |
1453 | } |
1454 | |
1455 | bool KeyframeEffect::computeTransformedExtentViaTransformList(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const |
1456 | { |
1457 | FloatRect floatBounds = bounds; |
1458 | FloatPoint transformOrigin; |
1459 | |
1460 | bool applyTransformOrigin = containsRotation(style.transform().operations()) || style.transform().affectedByTransformOrigin(); |
1461 | if (applyTransformOrigin) { |
1462 | transformOrigin.setX(rendererBox.x() + floatValueForLength(style.transformOriginX(), rendererBox.width())); |
1463 | transformOrigin.setY(rendererBox.y() + floatValueForLength(style.transformOriginY(), rendererBox.height())); |
1464 | // Ignore transformOriginZ because we'll bail if we encounter any 3D transforms. |
1465 | |
1466 | floatBounds.moveBy(-transformOrigin); |
1467 | } |
1468 | |
1469 | for (const auto& operation : style.transform().operations()) { |
1470 | if (operation->type() == TransformOperation::ROTATE) { |
1471 | // For now, just treat this as a full rotation. This could take angle into account to reduce inflation. |
1472 | floatBounds = boundsOfRotatingRect(floatBounds); |
1473 | } else { |
1474 | TransformationMatrix transform; |
1475 | operation->apply(transform, rendererBox.size()); |
1476 | if (!transform.isAffine()) |
1477 | return false; |
1478 | |
1479 | if (operation->type() == TransformOperation::MATRIX || operation->type() == TransformOperation::MATRIX_3D) { |
1480 | TransformationMatrix::Decomposed2Type toDecomp; |
1481 | transform.decompose2(toDecomp); |
1482 | // Any rotation prevents us from using a simple start/end rect union. |
1483 | if (toDecomp.angle) |
1484 | return false; |
1485 | } |
1486 | |
1487 | floatBounds = transform.mapRect(floatBounds); |
1488 | } |
1489 | } |
1490 | |
1491 | if (applyTransformOrigin) |
1492 | floatBounds.moveBy(transformOrigin); |
1493 | |
1494 | bounds = LayoutRect(floatBounds); |
1495 | return true; |
1496 | } |
1497 | |
1498 | bool KeyframeEffect::computeTransformedExtentViaMatrix(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const |
1499 | { |
1500 | TransformationMatrix transform; |
1501 | style.applyTransform(transform, rendererBox, RenderStyle::IncludeTransformOrigin); |
1502 | if (!transform.isAffine()) |
1503 | return false; |
1504 | |
1505 | TransformationMatrix::Decomposed2Type fromDecomp; |
1506 | transform.decompose2(fromDecomp); |
1507 | // Any rotation prevents us from using a simple start/end rect union. |
1508 | if (fromDecomp.angle) |
1509 | return false; |
1510 | |
1511 | bounds = LayoutRect(transform.mapRect(bounds)); |
1512 | return true; |
1513 | } |
1514 | |
1515 | } // namespace WebCore |
1516 | |