| 1 | /* |
| 2 | * Copyright (C) 2017-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "KeyframeEffect.h" |
| 28 | |
| 29 | #include "Animation.h" |
| 30 | #include "CSSAnimation.h" |
| 31 | #include "CSSComputedStyleDeclaration.h" |
| 32 | #include "CSSKeyframeRule.h" |
| 33 | #include "CSSPropertyAnimation.h" |
| 34 | #include "CSSPropertyNames.h" |
| 35 | #include "CSSStyleDeclaration.h" |
| 36 | #include "CSSTimingFunctionValue.h" |
| 37 | #include "CSSTransition.h" |
| 38 | #include "Element.h" |
| 39 | #include "FontCascade.h" |
| 40 | #include "FrameView.h" |
| 41 | #include "GeometryUtilities.h" |
| 42 | #include "JSCompositeOperation.h" |
| 43 | #include "JSCompositeOperationOrAuto.h" |
| 44 | #include "JSKeyframeEffect.h" |
| 45 | #include "RenderBox.h" |
| 46 | #include "RenderBoxModelObject.h" |
| 47 | #include "RenderElement.h" |
| 48 | #include "RenderStyle.h" |
| 49 | #include "StylePendingResources.h" |
| 50 | #include "StyleResolver.h" |
| 51 | #include "TimingFunction.h" |
| 52 | #include "TranslateTransformOperation.h" |
| 53 | #include "WillChangeData.h" |
| 54 | #include <JavaScriptCore/Exception.h> |
| 55 | #include <wtf/UUID.h> |
| 56 | |
| 57 | namespace WebCore { |
| 58 | using namespace JSC; |
| 59 | |
| 60 | static inline void invalidateElement(Element* element) |
| 61 | { |
| 62 | if (element) |
| 63 | element->invalidateStyle(); |
| 64 | } |
| 65 | |
| 66 | static inline String CSSPropertyIDToIDLAttributeName(CSSPropertyID cssPropertyId) |
| 67 | { |
| 68 | // https://drafts.csswg.org/web-animations-1/#animation-property-name-to-idl-attribute-name |
| 69 | // 1. If property follows the <custom-property-name> production, return property. |
| 70 | // FIXME: We don't handle custom properties yet. |
| 71 | |
| 72 | // 2. If property refers to the CSS float property, return the string "cssFloat". |
| 73 | if (cssPropertyId == CSSPropertyFloat) |
| 74 | return "cssFloat" ; |
| 75 | |
| 76 | // 3. If property refers to the CSS offset property, return the string "cssOffset". |
| 77 | // FIXME: we don't support the CSS "offset" property |
| 78 | |
| 79 | // 4. Otherwise, return the result of applying the CSS property to IDL attribute algorithm [CSSOM] to property. |
| 80 | return getJSPropertyName(cssPropertyId); |
| 81 | } |
| 82 | |
| 83 | static inline CSSPropertyID IDLAttributeNameToAnimationPropertyName(const String& idlAttributeName) |
| 84 | { |
| 85 | // https://drafts.csswg.org/web-animations-1/#idl-attribute-name-to-animation-property-name |
| 86 | // 1. If attribute conforms to the <custom-property-name> production, return attribute. |
| 87 | // FIXME: We don't handle custom properties yet. |
| 88 | |
| 89 | // 2. If attribute is the string "cssFloat", then return an animation property representing the CSS float property. |
| 90 | if (idlAttributeName == "cssFloat" ) |
| 91 | return CSSPropertyFloat; |
| 92 | |
| 93 | // 3. If attribute is the string "cssOffset", then return an animation property representing the CSS offset property. |
| 94 | // FIXME: We don't support the CSS "offset" property. |
| 95 | |
| 96 | // 4. Otherwise, return the result of applying the IDL attribute to CSS property algorithm [CSSOM] to attribute. |
| 97 | auto cssPropertyId = CSSStyleDeclaration::getCSSPropertyIDFromJavaScriptPropertyName(idlAttributeName); |
| 98 | |
| 99 | // We need to check that converting the property back to IDL form yields the same result such that a property passed |
| 100 | // in non-IDL form is rejected, for instance "font-size". |
| 101 | if (idlAttributeName != CSSPropertyIDToIDLAttributeName(cssPropertyId)) |
| 102 | return CSSPropertyInvalid; |
| 103 | |
| 104 | return cssPropertyId; |
| 105 | } |
| 106 | |
| 107 | static inline void computeMissingKeyframeOffsets(Vector<KeyframeEffect::ParsedKeyframe>& keyframes) |
| 108 | { |
| 109 | // https://drafts.csswg.org/web-animations-1/#compute-missing-keyframe-offsets |
| 110 | |
| 111 | if (keyframes.isEmpty()) |
| 112 | return; |
| 113 | |
| 114 | // 1. For each keyframe, in keyframes, let the computed keyframe offset of the keyframe be equal to its keyframe offset value. |
| 115 | // In our implementation, we only set non-null values to avoid making computedOffset Optional<double>. Instead, we'll know |
| 116 | // that a keyframe hasn't had a computed offset by checking if it has a null offset and a 0 computedOffset, since the first |
| 117 | // keyframe will already have a 0 computedOffset. |
| 118 | for (auto& keyframe : keyframes) { |
| 119 | auto computedOffset = keyframe.offset; |
| 120 | keyframe.computedOffset = computedOffset ? *computedOffset : 0; |
| 121 | } |
| 122 | |
| 123 | // 2. If keyframes contains more than one keyframe and the computed keyframe offset of the first keyframe in keyframes is null, |
| 124 | // set the computed keyframe offset of the first keyframe to 0. |
| 125 | if (keyframes.size() > 1 && !keyframes[0].offset) |
| 126 | keyframes[0].computedOffset = 0; |
| 127 | |
| 128 | // 3. If the computed keyframe offset of the last keyframe in keyframes is null, set its computed keyframe offset to 1. |
| 129 | if (!keyframes.last().offset) |
| 130 | keyframes.last().computedOffset = 1; |
| 131 | |
| 132 | // 4. For each pair of keyframes A and B where: |
| 133 | // - A appears before B in keyframes, and |
| 134 | // - A and B have a computed keyframe offset that is not null, and |
| 135 | // - all keyframes between A and B have a null computed keyframe offset, |
| 136 | // calculate the computed keyframe offset of each keyframe between A and B as follows: |
| 137 | // 1. Let offsetk be the computed keyframe offset of a keyframe k. |
| 138 | // 2. Let n be the number of keyframes between and including A and B minus 1. |
| 139 | // 3. Let index refer to the position of keyframe in the sequence of keyframes between A and B such that the first keyframe after A has an index of 1. |
| 140 | // 4. Set the computed keyframe offset of keyframe to offsetA + (offsetB − offsetA) × index / n. |
| 141 | size_t indexOfLastKeyframeWithNonNullOffset = 0; |
| 142 | for (size_t i = 1; i < keyframes.size(); ++i) { |
| 143 | auto& keyframe = keyframes[i]; |
| 144 | // Keyframes with a null offset that don't yet have a non-zero computed offset are keyframes |
| 145 | // with an offset that needs to be computed. |
| 146 | if (!keyframe.offset && !keyframe.computedOffset) |
| 147 | continue; |
| 148 | if (indexOfLastKeyframeWithNonNullOffset != i - 1) { |
| 149 | double lastNonNullOffset = keyframes[indexOfLastKeyframeWithNonNullOffset].computedOffset; |
| 150 | double offsetDelta = keyframe.computedOffset - lastNonNullOffset; |
| 151 | double offsetIncrement = offsetDelta / (i - indexOfLastKeyframeWithNonNullOffset); |
| 152 | size_t indexOfFirstKeyframeWithNullOffset = indexOfLastKeyframeWithNonNullOffset + 1; |
| 153 | for (size_t j = indexOfFirstKeyframeWithNullOffset; j < i; ++j) |
| 154 | keyframes[j].computedOffset = lastNonNullOffset + (j - indexOfLastKeyframeWithNonNullOffset) * offsetIncrement; |
| 155 | } |
| 156 | indexOfLastKeyframeWithNonNullOffset = i; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | static inline ExceptionOr<KeyframeEffect::KeyframeLikeObject> processKeyframeLikeObject(ExecState& state, Strong<JSObject>&& keyframesInput, bool allowLists) |
| 161 | { |
| 162 | // https://drafts.csswg.org/web-animations-1/#process-a-keyframe-like-object |
| 163 | |
| 164 | VM& vm = state.vm(); |
| 165 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 166 | |
| 167 | // 1. Run the procedure to convert an ECMAScript value to a dictionary type [WEBIDL] with keyframe input as the ECMAScript value as follows: |
| 168 | // |
| 169 | // If allow lists is true, use the following dictionary type: |
| 170 | // |
| 171 | // dictionary BasePropertyIndexedKeyframe { |
| 172 | // (double? or sequence<double?>) offset = []; |
| 173 | // (DOMString or sequence<DOMString>) easing = []; |
| 174 | // (CompositeOperationOrAuto or sequence<CompositeOperationOrAuto>) composite = []; |
| 175 | // }; |
| 176 | // |
| 177 | // Otherwise, use the following dictionary type: |
| 178 | // |
| 179 | // dictionary BaseKeyframe { |
| 180 | // double? offset = null; |
| 181 | // DOMString easing = "linear"; |
| 182 | // CompositeOperationOrAuto composite = "auto"; |
| 183 | // }; |
| 184 | // |
| 185 | // Store the result of this procedure as keyframe output. |
| 186 | KeyframeEffect::BasePropertyIndexedKeyframe baseProperties; |
| 187 | if (allowLists) |
| 188 | baseProperties = convert<IDLDictionary<KeyframeEffect::BasePropertyIndexedKeyframe>>(state, keyframesInput.get()); |
| 189 | else { |
| 190 | auto baseKeyframe = convert<IDLDictionary<KeyframeEffect::BaseKeyframe>>(state, keyframesInput.get()); |
| 191 | if (baseKeyframe.offset) |
| 192 | baseProperties.offset = baseKeyframe.offset.value(); |
| 193 | else |
| 194 | baseProperties.offset = nullptr; |
| 195 | baseProperties.easing = baseKeyframe.easing; |
| 196 | baseProperties.composite = baseKeyframe.composite; |
| 197 | } |
| 198 | RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
| 199 | |
| 200 | KeyframeEffect::KeyframeLikeObject keyframeOuput; |
| 201 | keyframeOuput.baseProperties = baseProperties; |
| 202 | |
| 203 | // 2. Build up a list of animatable properties as follows: |
| 204 | // |
| 205 | // 1. Let animatable properties be a list of property names (including shorthand properties that have longhand sub-properties |
| 206 | // that are animatable) that can be animated by the implementation. |
| 207 | // 2. Convert each property name in animatable properties to the equivalent IDL attribute by applying the animation property |
| 208 | // name to IDL attribute name algorithm. |
| 209 | |
| 210 | // 3. Let input properties be the result of calling the EnumerableOwnNames operation with keyframe input as the object. |
| 211 | PropertyNameArray inputProperties(&vm, PropertyNameMode::Strings, PrivateSymbolMode::Exclude); |
| 212 | JSObject::getOwnPropertyNames(keyframesInput.get(), &state, inputProperties, EnumerationMode()); |
| 213 | |
| 214 | // 4. Make up a new list animation properties that consists of all of the properties that are in both input properties and animatable |
| 215 | // properties, or which are in input properties and conform to the <custom-property-name> production. |
| 216 | Vector<JSC::Identifier> animationProperties; |
| 217 | size_t numberOfProperties = inputProperties.size(); |
| 218 | for (size_t i = 0; i < numberOfProperties; ++i) { |
| 219 | if (CSSPropertyAnimation::isPropertyAnimatable(IDLAttributeNameToAnimationPropertyName(inputProperties[i].string()))) |
| 220 | animationProperties.append(inputProperties[i]); |
| 221 | } |
| 222 | |
| 223 | // 5. Sort animation properties in ascending order by the Unicode codepoints that define each property name. |
| 224 | std::sort(animationProperties.begin(), animationProperties.end(), [](auto& lhs, auto& rhs) { |
| 225 | return lhs.string().utf8() < rhs.string().utf8(); |
| 226 | }); |
| 227 | |
| 228 | // 6. For each property name in animation properties, |
| 229 | size_t numberOfAnimationProperties = animationProperties.size(); |
| 230 | for (size_t i = 0; i < numberOfAnimationProperties; ++i) { |
| 231 | // 1. Let raw value be the result of calling the [[Get]] internal method on keyframe input, with property name as the property |
| 232 | // key and keyframe input as the receiver. |
| 233 | auto rawValue = keyframesInput->get(&state, animationProperties[i]); |
| 234 | |
| 235 | // 2. Check the completion record of raw value. |
| 236 | RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
| 237 | |
| 238 | // 3. Convert raw value to a DOMString or sequence of DOMStrings property values as follows: |
| 239 | Vector<String> propertyValues; |
| 240 | if (allowLists) { |
| 241 | // If allow lists is true, |
| 242 | // Let property values be the result of converting raw value to IDL type (DOMString or sequence<DOMString>) |
| 243 | // using the procedures defined for converting an ECMAScript value to an IDL value [WEBIDL]. |
| 244 | // If property values is a single DOMString, replace property values with a sequence of DOMStrings with the original value of property |
| 245 | // Values as the only element. |
| 246 | if (rawValue.isString()) |
| 247 | propertyValues = { rawValue.toWTFString(&state) }; |
| 248 | else if (rawValue.isObject()) |
| 249 | propertyValues = convert<IDLSequence<IDLDOMString>>(state, rawValue); |
| 250 | } else { |
| 251 | // Otherwise, |
| 252 | // Let property values be the result of converting raw value to a DOMString using the procedure for converting an ECMAScript value to a DOMString. |
| 253 | propertyValues = { convert<IDLDOMString>(state, rawValue) }; |
| 254 | } |
| 255 | RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
| 256 | |
| 257 | // 4. Calculate the normalized property name as the result of applying the IDL attribute name to animation property name algorithm to property name. |
| 258 | auto cssPropertyID = IDLAttributeNameToAnimationPropertyName(animationProperties[i].string()); |
| 259 | |
| 260 | // 5. Add a property to to keyframe output with normalized property name as the property name, and property values as the property value. |
| 261 | keyframeOuput.propertiesAndValues.append({ cssPropertyID, propertyValues }); |
| 262 | } |
| 263 | |
| 264 | // 7. Return keyframe output. |
| 265 | return { WTFMove(keyframeOuput) }; |
| 266 | } |
| 267 | |
| 268 | static inline ExceptionOr<void> processIterableKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput, JSValue method, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes) |
| 269 | { |
| 270 | // 1. Let iter be GetIterator(object, method). |
| 271 | forEachInIterable(state, keyframesInput.get(), method, [&parsedKeyframes](VM& vm, ExecState& state, JSValue nextValue) -> ExceptionOr<void> { |
| 272 | // Steps 2 through 6 are already implemented by forEachInIterable(). |
| 273 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 274 | if (!nextValue || !nextValue.isObject()) { |
| 275 | throwException(&state, scope, JSC::Exception::create(vm, createTypeError(&state))); |
| 276 | return { }; |
| 277 | } |
| 278 | |
| 279 | // 7. Append to processed keyframes the result of running the procedure to process a keyframe-like object passing nextItem |
| 280 | // as the keyframe input and with the allow lists flag set to false. |
| 281 | auto processKeyframeLikeObjectResult = processKeyframeLikeObject(state, Strong<JSObject>(vm, nextValue.toObject(&state)), false); |
| 282 | if (processKeyframeLikeObjectResult.hasException()) |
| 283 | return processKeyframeLikeObjectResult.releaseException(); |
| 284 | auto keyframeLikeObject = processKeyframeLikeObjectResult.returnValue(); |
| 285 | |
| 286 | KeyframeEffect::ParsedKeyframe keyframeOutput; |
| 287 | |
| 288 | // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only offset |
| 289 | // alternatives we should expect are double and nullptr. |
| 290 | if (WTF::holds_alternative<double>(keyframeLikeObject.baseProperties.offset)) |
| 291 | keyframeOutput.offset = WTF::get<double>(keyframeLikeObject.baseProperties.offset); |
| 292 | else |
| 293 | ASSERT(WTF::holds_alternative<std::nullptr_t>(keyframeLikeObject.baseProperties.offset)); |
| 294 | |
| 295 | // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only easing |
| 296 | // alternative we should expect is String. |
| 297 | ASSERT(WTF::holds_alternative<String>(keyframeLikeObject.baseProperties.easing)); |
| 298 | keyframeOutput.easing = WTF::get<String>(keyframeLikeObject.baseProperties.easing); |
| 299 | |
| 300 | // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, the only composite |
| 301 | // alternatives we should expect is CompositeOperationAuto. |
| 302 | ASSERT(WTF::holds_alternative<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite)); |
| 303 | keyframeOutput.composite = WTF::get<CompositeOperationOrAuto>(keyframeLikeObject.baseProperties.composite); |
| 304 | |
| 305 | for (auto& propertyAndValue : keyframeLikeObject.propertiesAndValues) { |
| 306 | auto cssPropertyId = propertyAndValue.property; |
| 307 | // When calling processKeyframeLikeObject() with the "allow lists" flag set to false, |
| 308 | // there should only ever be a single value for a given property. |
| 309 | ASSERT(propertyAndValue.values.size() == 1); |
| 310 | auto stringValue = propertyAndValue.values[0]; |
| 311 | if (keyframeOutput.style->setProperty(cssPropertyId, stringValue)) |
| 312 | keyframeOutput.unparsedStyle.set(cssPropertyId, stringValue); |
| 313 | } |
| 314 | |
| 315 | parsedKeyframes.append(WTFMove(keyframeOutput)); |
| 316 | |
| 317 | return { }; |
| 318 | }); |
| 319 | |
| 320 | return { }; |
| 321 | } |
| 322 | |
| 323 | static inline ExceptionOr<void> processPropertyIndexedKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput, Vector<KeyframeEffect::ParsedKeyframe>& parsedKeyframes, Vector<String>& unusedEasings) |
| 324 | { |
| 325 | // 1. Let property-indexed keyframe be the result of running the procedure to process a keyframe-like object passing object as the keyframe input. |
| 326 | auto processKeyframeLikeObjectResult = processKeyframeLikeObject(state, WTFMove(keyframesInput), true); |
| 327 | if (processKeyframeLikeObjectResult.hasException()) |
| 328 | return processKeyframeLikeObjectResult.releaseException(); |
| 329 | auto propertyIndexedKeyframe = processKeyframeLikeObjectResult.returnValue(); |
| 330 | |
| 331 | // 2. For each member, m, in property-indexed keyframe, perform the following steps: |
| 332 | for (auto& m : propertyIndexedKeyframe.propertiesAndValues) { |
| 333 | // 1. Let property name be the key for m. |
| 334 | auto propertyName = m.property; |
| 335 | // 2. If property name is “composite”, or “easing”, or “offset”, skip the remaining steps in this loop and continue from the next member in property-indexed |
| 336 | // keyframe after m. |
| 337 | // We skip this test since we split those properties and the actual CSS properties that we're currently iterating over. |
| 338 | // 3. Let property values be the value for m. |
| 339 | auto propertyValues = m.values; |
| 340 | // 4. Let property keyframes be an empty sequence of keyframes. |
| 341 | Vector<KeyframeEffect::ParsedKeyframe> propertyKeyframes; |
| 342 | // 5. For each value, v, in property values perform the following steps: |
| 343 | for (auto& v : propertyValues) { |
| 344 | // 1. Let k be a new keyframe with a null keyframe offset. |
| 345 | KeyframeEffect::ParsedKeyframe k; |
| 346 | // 2. Add the property-value pair, property name → v, to k. |
| 347 | if (k.style->setProperty(propertyName, v)) |
| 348 | k.unparsedStyle.set(propertyName, v); |
| 349 | // 3. Append k to property keyframes. |
| 350 | propertyKeyframes.append(WTFMove(k)); |
| 351 | } |
| 352 | // 6. Apply the procedure to compute missing keyframe offsets to property keyframes. |
| 353 | computeMissingKeyframeOffsets(propertyKeyframes); |
| 354 | |
| 355 | // 7. Add keyframes in property keyframes to processed keyframes. |
| 356 | for (auto& keyframe : propertyKeyframes) |
| 357 | parsedKeyframes.append(WTFMove(keyframe)); |
| 358 | } |
| 359 | |
| 360 | // 3. Sort processed keyframes by the computed keyframe offset of each keyframe in increasing order. |
| 361 | std::sort(parsedKeyframes.begin(), parsedKeyframes.end(), [](auto& lhs, auto& rhs) { |
| 362 | return lhs.computedOffset < rhs.computedOffset; |
| 363 | }); |
| 364 | |
| 365 | // 4. Merge adjacent keyframes in processed keyframes when they have equal computed keyframe offsets. |
| 366 | size_t i = 1; |
| 367 | while (i < parsedKeyframes.size()) { |
| 368 | auto& keyframe = parsedKeyframes[i]; |
| 369 | auto& previousKeyframe = parsedKeyframes[i - 1]; |
| 370 | // If the offsets of this keyframe and the previous keyframe are different, |
| 371 | // this means that the two keyframes should not be merged and we can move |
| 372 | // on to the next keyframe. |
| 373 | if (keyframe.computedOffset != previousKeyframe.computedOffset) { |
| 374 | i++; |
| 375 | continue; |
| 376 | } |
| 377 | // Otherwise, both this keyframe and the previous keyframe should be merged. |
| 378 | // Unprocessed keyframes in parsedKeyframes at this stage have at most a single |
| 379 | // property in cssPropertiesAndValues, so just set this on the previous keyframe. |
| 380 | // In case an invalid or null value was originally provided, then the property |
| 381 | // was not set and the property count is 0, in which case there is nothing to merge. |
| 382 | if (keyframe.style->propertyCount()) { |
| 383 | auto property = keyframe.style->propertyAt(0); |
| 384 | previousKeyframe.style->setProperty(property.id(), property.value()); |
| 385 | previousKeyframe.unparsedStyle.set(property.id(), keyframe.unparsedStyle.get(property.id())); |
| 386 | } |
| 387 | // Since we've processed this keyframe, we can remove it and keep i the same |
| 388 | // so that we process the next keyframe in the next loop iteration. |
| 389 | parsedKeyframes.remove(i); |
| 390 | } |
| 391 | |
| 392 | // 5. Let offsets be a sequence of nullable double values assigned based on the type of the “offset” member of the property-indexed keyframe as follows: |
| 393 | // - sequence<double?>, the value of “offset” as-is. |
| 394 | // - double?, a sequence of length one with the value of “offset” as its single item, i.e. « offset », |
| 395 | Vector<Optional<double>> offsets; |
| 396 | if (WTF::holds_alternative<Vector<Optional<double>>>(propertyIndexedKeyframe.baseProperties.offset)) |
| 397 | offsets = WTF::get<Vector<Optional<double>>>(propertyIndexedKeyframe.baseProperties.offset); |
| 398 | else if (WTF::holds_alternative<double>(propertyIndexedKeyframe.baseProperties.offset)) |
| 399 | offsets.append(WTF::get<double>(propertyIndexedKeyframe.baseProperties.offset)); |
| 400 | else if (WTF::holds_alternative<std::nullptr_t>(propertyIndexedKeyframe.baseProperties.offset)) |
| 401 | offsets.append(WTF::nullopt); |
| 402 | |
| 403 | // 6. Assign each value in offsets to the keyframe offset of the keyframe with corresponding position in property keyframes until the end of either sequence is reached. |
| 404 | for (size_t i = 0; i < offsets.size() && i < parsedKeyframes.size(); ++i) |
| 405 | parsedKeyframes[i].offset = offsets[i]; |
| 406 | |
| 407 | // 7. Let easings be a sequence of DOMString values assigned based on the type of the “easing” member of the property-indexed keyframe as follows: |
| 408 | // - sequence<DOMString>, the value of “easing” as-is. |
| 409 | // - DOMString, a sequence of length one with the value of “easing” as its single item, i.e. « easing », |
| 410 | Vector<String> easings; |
| 411 | if (WTF::holds_alternative<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing)) |
| 412 | easings = WTF::get<Vector<String>>(propertyIndexedKeyframe.baseProperties.easing); |
| 413 | else if (WTF::holds_alternative<String>(propertyIndexedKeyframe.baseProperties.easing)) |
| 414 | easings.append(WTF::get<String>(propertyIndexedKeyframe.baseProperties.easing)); |
| 415 | |
| 416 | // 8. If easings is an empty sequence, let it be a sequence of length one containing the single value “linear”, i.e. « "linear" ». |
| 417 | if (easings.isEmpty()) |
| 418 | easings.append("linear" ); |
| 419 | |
| 420 | // 9. If easings has fewer items than property keyframes, repeat the elements in easings successively starting from the beginning of the list until easings has as many |
| 421 | // items as property keyframes. |
| 422 | if (easings.size() < parsedKeyframes.size()) { |
| 423 | size_t initialNumberOfEasings = easings.size(); |
| 424 | for (i = initialNumberOfEasings; i < parsedKeyframes.size(); ++i) |
| 425 | easings.append(easings[i % initialNumberOfEasings]); |
| 426 | } |
| 427 | |
| 428 | // 10. If easings has more items than property keyframes, store the excess items as unused easings. |
| 429 | while (easings.size() > parsedKeyframes.size()) |
| 430 | unusedEasings.append(easings.takeLast()); |
| 431 | |
| 432 | // 11. Assign each value in easings to a property named “easing” on the keyframe with the corresponding position in property keyframes until the end of property keyframes |
| 433 | // is reached. |
| 434 | for (size_t i = 0; i < parsedKeyframes.size(); ++i) |
| 435 | parsedKeyframes[i].easing = easings[i]; |
| 436 | |
| 437 | // 12. If the “composite” member of the property-indexed keyframe is not an empty sequence: |
| 438 | Vector<CompositeOperationOrAuto> compositeModes; |
| 439 | if (WTF::holds_alternative<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite)) |
| 440 | compositeModes = WTF::get<Vector<CompositeOperationOrAuto>>(propertyIndexedKeyframe.baseProperties.composite); |
| 441 | else if (WTF::holds_alternative<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite)) |
| 442 | compositeModes.append(WTF::get<CompositeOperationOrAuto>(propertyIndexedKeyframe.baseProperties.composite)); |
| 443 | if (!compositeModes.isEmpty()) { |
| 444 | // 1. Let composite modes be a sequence of CompositeOperationOrAuto values assigned from the “composite” member of property-indexed keyframe. If that member is a single |
| 445 | // CompositeOperationOrAuto value operation, let composite modes be a sequence of length one, with the value of the “composite” as its single item. |
| 446 | // 2. As with easings, if composite modes has fewer items than processed keyframes, repeat the elements in composite modes successively starting from the beginning of |
| 447 | // the list until composite modes has as many items as processed keyframes. |
| 448 | if (compositeModes.size() < parsedKeyframes.size()) { |
| 449 | size_t initialNumberOfCompositeModes = compositeModes.size(); |
| 450 | for (i = initialNumberOfCompositeModes; i < parsedKeyframes.size(); ++i) |
| 451 | compositeModes.append(compositeModes[i % initialNumberOfCompositeModes]); |
| 452 | } |
| 453 | // 3. Assign each value in composite modes that is not auto to the keyframe-specific composite operation on the keyframe with the corresponding position in processed |
| 454 | // keyframes until the end of processed keyframes is reached. |
| 455 | for (size_t i = 0; i < compositeModes.size() && i < parsedKeyframes.size(); ++i) { |
| 456 | if (compositeModes[i] != CompositeOperationOrAuto::Auto) |
| 457 | parsedKeyframes[i].composite = compositeModes[i]; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | return { }; |
| 462 | } |
| 463 | |
| 464 | ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(ExecState& state, Element* target, Strong<JSObject>&& keyframes, Optional<Variant<double, KeyframeEffectOptions>>&& options) |
| 465 | { |
| 466 | auto keyframeEffect = adoptRef(*new KeyframeEffect(target)); |
| 467 | |
| 468 | if (options) { |
| 469 | OptionalEffectTiming timing; |
| 470 | auto optionsValue = options.value(); |
| 471 | if (WTF::holds_alternative<double>(optionsValue)) { |
| 472 | Variant<double, String> duration = WTF::get<double>(optionsValue); |
| 473 | timing.duration = duration; |
| 474 | } else { |
| 475 | auto keyframeEffectOptions = WTF::get<KeyframeEffectOptions>(optionsValue); |
| 476 | timing = { |
| 477 | keyframeEffectOptions.duration, |
| 478 | keyframeEffectOptions.iterations, |
| 479 | keyframeEffectOptions.delay, |
| 480 | keyframeEffectOptions.endDelay, |
| 481 | keyframeEffectOptions.iterationStart, |
| 482 | keyframeEffectOptions.easing, |
| 483 | keyframeEffectOptions.fill, |
| 484 | keyframeEffectOptions.direction |
| 485 | }; |
| 486 | } |
| 487 | auto updateTimingResult = keyframeEffect->updateTiming(timing); |
| 488 | if (updateTimingResult.hasException()) |
| 489 | return updateTimingResult.releaseException(); |
| 490 | } |
| 491 | |
| 492 | auto processKeyframesResult = keyframeEffect->processKeyframes(state, WTFMove(keyframes)); |
| 493 | if (processKeyframesResult.hasException()) |
| 494 | return processKeyframesResult.releaseException(); |
| 495 | |
| 496 | return keyframeEffect; |
| 497 | } |
| 498 | |
| 499 | ExceptionOr<Ref<KeyframeEffect>> KeyframeEffect::create(JSC::ExecState&, Ref<KeyframeEffect>&& source) |
| 500 | { |
| 501 | auto keyframeEffect = adoptRef(*new KeyframeEffect(nullptr)); |
| 502 | keyframeEffect->copyPropertiesFromSource(WTFMove(source)); |
| 503 | return keyframeEffect; |
| 504 | } |
| 505 | |
| 506 | Ref<KeyframeEffect> KeyframeEffect::create(const Element& target) |
| 507 | { |
| 508 | return adoptRef(*new KeyframeEffect(const_cast<Element*>(&target))); |
| 509 | } |
| 510 | |
| 511 | KeyframeEffect::KeyframeEffect(Element* target) |
| 512 | : m_target(target) |
| 513 | { |
| 514 | } |
| 515 | |
| 516 | void KeyframeEffect::copyPropertiesFromSource(Ref<KeyframeEffect>&& source) |
| 517 | { |
| 518 | m_target = source->m_target; |
| 519 | m_compositeOperation = source->m_compositeOperation; |
| 520 | m_iterationCompositeOperation = source->m_iterationCompositeOperation; |
| 521 | |
| 522 | Vector<ParsedKeyframe> parsedKeyframes; |
| 523 | for (auto& sourceParsedKeyframe : source->m_parsedKeyframes) { |
| 524 | ParsedKeyframe parsedKeyframe; |
| 525 | parsedKeyframe.easing = sourceParsedKeyframe.easing; |
| 526 | parsedKeyframe.offset = sourceParsedKeyframe.offset; |
| 527 | parsedKeyframe.composite = sourceParsedKeyframe.composite; |
| 528 | parsedKeyframe.unparsedStyle = sourceParsedKeyframe.unparsedStyle; |
| 529 | parsedKeyframe.computedOffset = sourceParsedKeyframe.computedOffset; |
| 530 | parsedKeyframe.timingFunction = sourceParsedKeyframe.timingFunction; |
| 531 | parsedKeyframe.style = sourceParsedKeyframe.style->mutableCopy(); |
| 532 | parsedKeyframes.append(WTFMove(parsedKeyframe)); |
| 533 | } |
| 534 | m_parsedKeyframes = WTFMove(parsedKeyframes); |
| 535 | |
| 536 | setFill(source->fill()); |
| 537 | setDelay(source->delay()); |
| 538 | setEndDelay(source->endDelay()); |
| 539 | setDirection(source->direction()); |
| 540 | setIterations(source->iterations()); |
| 541 | setTimingFunction(source->timingFunction()); |
| 542 | setIterationStart(source->iterationStart()); |
| 543 | setIterationDuration(source->iterationDuration()); |
| 544 | |
| 545 | KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString()); |
| 546 | for (auto& keyframe : source->m_blendingKeyframes.keyframes()) { |
| 547 | KeyframeValue keyframeValue(keyframe.key(), RenderStyle::clonePtr(*keyframe.style())); |
| 548 | for (auto propertyId : keyframe.properties()) |
| 549 | keyframeValue.addProperty(propertyId); |
| 550 | keyframeList.insert(WTFMove(keyframeValue)); |
| 551 | } |
| 552 | setBlendingKeyframes(keyframeList); |
| 553 | } |
| 554 | |
| 555 | Vector<Strong<JSObject>> KeyframeEffect::getKeyframes(ExecState& state) |
| 556 | { |
| 557 | // https://drafts.csswg.org/web-animations-1/#dom-keyframeeffectreadonly-getkeyframes |
| 558 | |
| 559 | auto lock = JSLockHolder { &state }; |
| 560 | |
| 561 | // Since keyframes are represented by a partially open-ended dictionary type that is not currently able to be expressed with WebIDL, |
| 562 | // the procedure used to prepare the result of this method is defined in prose below: |
| 563 | // |
| 564 | // 1. Let result be an empty sequence of objects. |
| 565 | Vector<Strong<JSObject>> result; |
| 566 | |
| 567 | // 2. Let keyframes be the result of applying the procedure to compute missing keyframe offsets to the keyframes for this keyframe effect. |
| 568 | |
| 569 | // 3. For each keyframe in keyframes perform the following steps: |
| 570 | if (is<DeclarativeAnimation>(animation())) { |
| 571 | auto = ComputedStyleExtractor(m_target.get()); |
| 572 | for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) { |
| 573 | // 1. Initialize a dictionary object, output keyframe, using the following definition: |
| 574 | // |
| 575 | // dictionary BaseComputedKeyframe { |
| 576 | // double? offset = null; |
| 577 | // double computedOffset; |
| 578 | // DOMString easing = "linear"; |
| 579 | // CompositeOperationOrAuto composite = "auto"; |
| 580 | // }; |
| 581 | |
| 582 | auto& keyframe = m_blendingKeyframes[i]; |
| 583 | |
| 584 | // 2. Set offset, computedOffset, easing members of output keyframe to the respective values keyframe offset, computed keyframe offset, |
| 585 | // and keyframe-specific timing function of keyframe. |
| 586 | BaseComputedKeyframe computedKeyframe; |
| 587 | computedKeyframe.offset = keyframe.key(); |
| 588 | computedKeyframe.computedOffset = keyframe.key(); |
| 589 | // For CSS transitions, there are only two keyframes and the second keyframe should always report "linear". In practice, this value |
| 590 | // has no bearing since, as the last keyframe, its value will never be used. |
| 591 | computedKeyframe.easing = is<CSSTransition>(animation()) && i == 1 ? "linear" : timingFunctionForKeyframeAtIndex(0)->cssText(); |
| 592 | |
| 593 | auto outputKeyframe = convertDictionaryToJS(state, *jsCast<JSDOMGlobalObject*>(state.lexicalGlobalObject()), computedKeyframe); |
| 594 | |
| 595 | // 3. For each animation property-value pair specified on keyframe, declaration, perform the following steps: |
| 596 | auto& style = *keyframe.style(); |
| 597 | for (auto cssPropertyId : keyframe.properties()) { |
| 598 | if (cssPropertyId == CSSPropertyCustom) |
| 599 | continue; |
| 600 | // 1. Let property name be the result of applying the animation property name to IDL attribute name algorithm to the property name of declaration. |
| 601 | auto propertyName = CSSPropertyIDToIDLAttributeName(cssPropertyId); |
| 602 | // 2. Let IDL value be the result of serializing the property value of declaration by passing declaration to the algorithm to serialize a CSS value. |
| 603 | String idlValue = "" ; |
| 604 | if (auto cssValue = computedStyleExtractor.valueForPropertyinStyle(style, cssPropertyId)) |
| 605 | idlValue = cssValue->cssText(); |
| 606 | // 3. Let value be the result of converting IDL value to an ECMAScript String value. |
| 607 | auto value = toJS<IDLDOMString>(state, idlValue); |
| 608 | // 4. Call the [[DefineOwnProperty]] internal method on output keyframe with property name property name, |
| 609 | // Property Descriptor { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, [[Value]]: value } and Boolean flag false. |
| 610 | JSObject::defineOwnProperty(outputKeyframe, &state, AtomicString(propertyName).impl(), PropertyDescriptor(value, 0), false); |
| 611 | } |
| 612 | |
| 613 | // 5. Append output keyframe to result. |
| 614 | result.append(JSC::Strong<JSC::JSObject> { state.vm(), outputKeyframe }); |
| 615 | } |
| 616 | } else { |
| 617 | for (size_t i = 0; i < m_parsedKeyframes.size(); ++i) { |
| 618 | // 1. Initialize a dictionary object, output keyframe, using the following definition: |
| 619 | // |
| 620 | // dictionary BaseComputedKeyframe { |
| 621 | // double? offset = null; |
| 622 | // double computedOffset; |
| 623 | // DOMString easing = "linear"; |
| 624 | // CompositeOperationOrAuto composite = "auto"; |
| 625 | // }; |
| 626 | |
| 627 | auto& parsedKeyframe = m_parsedKeyframes[i]; |
| 628 | |
| 629 | // 2. Set offset, computedOffset, easing, composite members of output keyframe to the respective values keyframe offset, computed keyframe |
| 630 | // offset, keyframe-specific timing function and keyframe-specific composite operation of keyframe. |
| 631 | BaseComputedKeyframe computedKeyframe; |
| 632 | computedKeyframe.offset = parsedKeyframe.offset; |
| 633 | computedKeyframe.computedOffset = parsedKeyframe.computedOffset; |
| 634 | computedKeyframe.easing = timingFunctionForKeyframeAtIndex(i)->cssText(); |
| 635 | computedKeyframe.composite = parsedKeyframe.composite; |
| 636 | |
| 637 | auto outputKeyframe = convertDictionaryToJS(state, *jsCast<JSDOMGlobalObject*>(state.lexicalGlobalObject()), computedKeyframe); |
| 638 | |
| 639 | // 3. For each animation property-value pair specified on keyframe, declaration, perform the following steps: |
| 640 | for (auto it = parsedKeyframe.unparsedStyle.begin(), end = parsedKeyframe.unparsedStyle.end(); it != end; ++it) { |
| 641 | // 1. Let property name be the result of applying the animation property name to IDL attribute name algorithm to the property name of declaration. |
| 642 | auto propertyName = CSSPropertyIDToIDLAttributeName(it->key); |
| 643 | // 2. Let IDL value be the result of serializing the property value of declaration by passing declaration to the algorithm to serialize a CSS value. |
| 644 | // 3. Let value be the result of converting IDL value to an ECMAScript String value. |
| 645 | auto value = toJS<IDLDOMString>(state, it->value); |
| 646 | // 4. Call the [[DefineOwnProperty]] internal method on output keyframe with property name property name, |
| 647 | // Property Descriptor { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true, [[Value]]: value } and Boolean flag false. |
| 648 | JSObject::defineOwnProperty(outputKeyframe, &state, AtomicString(propertyName).impl(), PropertyDescriptor(value, 0), false); |
| 649 | } |
| 650 | |
| 651 | // 4. Append output keyframe to result. |
| 652 | result.append(JSC::Strong<JSC::JSObject> { state.vm(), outputKeyframe }); |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | // 4. Return result. |
| 657 | return result; |
| 658 | } |
| 659 | |
| 660 | ExceptionOr<void> KeyframeEffect::setKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput) |
| 661 | { |
| 662 | return processKeyframes(state, WTFMove(keyframesInput)); |
| 663 | } |
| 664 | |
| 665 | ExceptionOr<void> KeyframeEffect::processKeyframes(ExecState& state, Strong<JSObject>&& keyframesInput) |
| 666 | { |
| 667 | // 1. If object is null, return an empty sequence of keyframes. |
| 668 | if (!keyframesInput.get()) |
| 669 | return { }; |
| 670 | |
| 671 | VM& vm = state.vm(); |
| 672 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 673 | |
| 674 | // 2. Let processed keyframes be an empty sequence of keyframes. |
| 675 | Vector<ParsedKeyframe> parsedKeyframes; |
| 676 | |
| 677 | // 3. Let method be the result of GetMethod(object, @@iterator). |
| 678 | auto method = keyframesInput.get()->get(&state, vm.propertyNames->iteratorSymbol); |
| 679 | |
| 680 | // 4. Check the completion record of method. |
| 681 | RETURN_IF_EXCEPTION(scope, Exception { TypeError }); |
| 682 | |
| 683 | // 5. Perform the steps corresponding to the first matching condition from below, |
| 684 | Vector<String> unusedEasings; |
| 685 | if (!method.isUndefined()) |
| 686 | processIterableKeyframes(state, WTFMove(keyframesInput), WTFMove(method), parsedKeyframes); |
| 687 | else |
| 688 | processPropertyIndexedKeyframes(state, WTFMove(keyframesInput), parsedKeyframes, unusedEasings); |
| 689 | |
| 690 | // 6. If processed keyframes is not loosely sorted by offset, throw a TypeError and abort these steps. |
| 691 | // 7. If there exist any keyframe in processed keyframes whose keyframe offset is non-null and less than |
| 692 | // zero or greater than one, throw a TypeError and abort these steps. |
| 693 | double lastNonNullOffset = -1; |
| 694 | for (auto& keyframe : parsedKeyframes) { |
| 695 | if (!keyframe.offset) |
| 696 | continue; |
| 697 | auto offset = keyframe.offset.value(); |
| 698 | if (offset < lastNonNullOffset || offset < 0 || offset > 1) |
| 699 | return Exception { TypeError }; |
| 700 | lastNonNullOffset = offset; |
| 701 | } |
| 702 | |
| 703 | // We take a slight detour from the spec text and compute the missing keyframe offsets right away |
| 704 | // since they can be computed up-front. |
| 705 | computeMissingKeyframeOffsets(parsedKeyframes); |
| 706 | |
| 707 | // 8. For each frame in processed keyframes, perform the following steps: |
| 708 | for (auto& keyframe : parsedKeyframes) { |
| 709 | // Let the timing function of frame be the result of parsing the “easing” property on frame using the CSS syntax |
| 710 | // defined for the easing property of the AnimationEffectTiming interface. |
| 711 | // If parsing the “easing” property fails, throw a TypeError and abort this procedure. |
| 712 | auto timingFunctionResult = TimingFunction::createFromCSSText(keyframe.easing); |
| 713 | if (timingFunctionResult.hasException()) |
| 714 | return timingFunctionResult.releaseException(); |
| 715 | keyframe.timingFunction = timingFunctionResult.returnValue(); |
| 716 | } |
| 717 | |
| 718 | // 9. Parse each of the values in unused easings using the CSS syntax defined for easing property of the |
| 719 | // AnimationEffectTiming interface, and if any of the values fail to parse, throw a TypeError |
| 720 | // and abort this procedure. |
| 721 | for (auto& easing : unusedEasings) { |
| 722 | auto timingFunctionResult = TimingFunction::createFromCSSText(easing); |
| 723 | if (timingFunctionResult.hasException()) |
| 724 | return timingFunctionResult.releaseException(); |
| 725 | } |
| 726 | |
| 727 | m_parsedKeyframes = WTFMove(parsedKeyframes); |
| 728 | |
| 729 | m_blendingKeyframes.clear(); |
| 730 | |
| 731 | return { }; |
| 732 | } |
| 733 | |
| 734 | void KeyframeEffect::updateBlendingKeyframes(RenderStyle& elementStyle) |
| 735 | { |
| 736 | if (!m_blendingKeyframes.isEmpty() || !m_target) |
| 737 | return; |
| 738 | |
| 739 | KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString()); |
| 740 | StyleResolver& styleResolver = m_target->styleResolver(); |
| 741 | |
| 742 | for (auto& keyframe : m_parsedKeyframes) { |
| 743 | styleResolver.setNewStateWithElement(*m_target); |
| 744 | KeyframeValue keyframeValue(keyframe.computedOffset, nullptr); |
| 745 | |
| 746 | auto styleProperties = keyframe.style->immutableCopyIfNeeded(); |
| 747 | for (unsigned i = 0; i < styleProperties->propertyCount(); ++i) |
| 748 | keyframeList.addProperty(styleProperties->propertyAt(i).id()); |
| 749 | |
| 750 | auto keyframeRule = StyleRuleKeyframe::create(WTFMove(styleProperties)); |
| 751 | keyframeValue.setStyle(styleResolver.styleForKeyframe(&elementStyle, keyframeRule.ptr(), keyframeValue)); |
| 752 | keyframeList.insert(WTFMove(keyframeValue)); |
| 753 | } |
| 754 | |
| 755 | setBlendingKeyframes(keyframeList); |
| 756 | } |
| 757 | |
| 758 | bool KeyframeEffect::forceLayoutIfNeeded() |
| 759 | { |
| 760 | if (!m_needsForcedLayout || !m_target) |
| 761 | return false; |
| 762 | |
| 763 | auto* renderer = m_target->renderer(); |
| 764 | if (!renderer || !renderer->parent()) |
| 765 | return false; |
| 766 | |
| 767 | auto* frameView = m_target->document().view(); |
| 768 | if (!frameView) |
| 769 | return false; |
| 770 | |
| 771 | frameView->forceLayout(); |
| 772 | return true; |
| 773 | } |
| 774 | |
| 775 | void KeyframeEffect::setBlendingKeyframes(KeyframeList& blendingKeyframes) |
| 776 | { |
| 777 | m_blendingKeyframes = WTFMove(blendingKeyframes); |
| 778 | |
| 779 | computedNeedsForcedLayout(); |
| 780 | computeStackingContextImpact(); |
| 781 | computeShouldRunAccelerated(); |
| 782 | |
| 783 | checkForMatchingTransformFunctionLists(); |
| 784 | checkForMatchingFilterFunctionLists(); |
| 785 | #if ENABLE(FILTERS_LEVEL_2) |
| 786 | checkForMatchingBackdropFilterFunctionLists(); |
| 787 | #endif |
| 788 | checkForMatchingColorFilterFunctionLists(); |
| 789 | } |
| 790 | |
| 791 | void KeyframeEffect::checkForMatchingTransformFunctionLists() |
| 792 | { |
| 793 | m_transformFunctionListsMatch = false; |
| 794 | |
| 795 | if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(CSSPropertyTransform)) |
| 796 | return; |
| 797 | |
| 798 | // Empty transforms match anything, so find the first non-empty entry as the reference. |
| 799 | size_t numKeyframes = m_blendingKeyframes.size(); |
| 800 | size_t firstNonEmptyTransformKeyframeIndex = numKeyframes; |
| 801 | |
| 802 | for (size_t i = 0; i < numKeyframes; ++i) { |
| 803 | const KeyframeValue& currentKeyframe = m_blendingKeyframes[i]; |
| 804 | if (currentKeyframe.style()->transform().operations().size()) { |
| 805 | firstNonEmptyTransformKeyframeIndex = i; |
| 806 | break; |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | if (firstNonEmptyTransformKeyframeIndex == numKeyframes) |
| 811 | return; |
| 812 | |
| 813 | const TransformOperations* firstVal = &m_blendingKeyframes[firstNonEmptyTransformKeyframeIndex].style()->transform(); |
| 814 | for (size_t i = firstNonEmptyTransformKeyframeIndex + 1; i < numKeyframes; ++i) { |
| 815 | const KeyframeValue& currentKeyframe = m_blendingKeyframes[i]; |
| 816 | const TransformOperations* val = ¤tKeyframe.style()->transform(); |
| 817 | |
| 818 | // An empty transform list matches anything. |
| 819 | if (val->operations().isEmpty()) |
| 820 | continue; |
| 821 | |
| 822 | if (!firstVal->operationsMatch(*val)) |
| 823 | return; |
| 824 | } |
| 825 | |
| 826 | m_transformFunctionListsMatch = true; |
| 827 | } |
| 828 | |
| 829 | bool KeyframeEffect::checkForMatchingFilterFunctionLists(CSSPropertyID propertyID, const std::function<const FilterOperations& (const RenderStyle&)>& filtersGetter) const |
| 830 | { |
| 831 | if (m_blendingKeyframes.size() < 2 || !m_blendingKeyframes.containsProperty(propertyID)) |
| 832 | return false; |
| 833 | |
| 834 | // Empty filters match anything, so find the first non-empty entry as the reference. |
| 835 | size_t numKeyframes = m_blendingKeyframes.size(); |
| 836 | size_t firstNonEmptyKeyframeIndex = numKeyframes; |
| 837 | |
| 838 | for (size_t i = 0; i < numKeyframes; ++i) { |
| 839 | if (filtersGetter(*m_blendingKeyframes[i].style()).operations().size()) { |
| 840 | firstNonEmptyKeyframeIndex = i; |
| 841 | break; |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | if (firstNonEmptyKeyframeIndex == numKeyframes) |
| 846 | return false; |
| 847 | |
| 848 | auto& firstVal = filtersGetter(*m_blendingKeyframes[firstNonEmptyKeyframeIndex].style()); |
| 849 | for (size_t i = firstNonEmptyKeyframeIndex + 1; i < numKeyframes; ++i) { |
| 850 | auto& value = filtersGetter(*m_blendingKeyframes[i].style()); |
| 851 | |
| 852 | // An empty filter list matches anything. |
| 853 | if (value.operations().isEmpty()) |
| 854 | continue; |
| 855 | |
| 856 | if (!firstVal.operationsMatch(value)) |
| 857 | return false; |
| 858 | } |
| 859 | |
| 860 | return true; |
| 861 | } |
| 862 | |
| 863 | void KeyframeEffect::checkForMatchingFilterFunctionLists() |
| 864 | { |
| 865 | m_filterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyFilter, [] (const RenderStyle& style) -> const FilterOperations& { |
| 866 | return style.filter(); |
| 867 | }); |
| 868 | } |
| 869 | |
| 870 | #if ENABLE(FILTERS_LEVEL_2) |
| 871 | void KeyframeEffect::checkForMatchingBackdropFilterFunctionLists() |
| 872 | { |
| 873 | m_backdropFilterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyWebkitBackdropFilter, [] (const RenderStyle& style) -> const FilterOperations& { |
| 874 | return style.backdropFilter(); |
| 875 | }); |
| 876 | } |
| 877 | #endif |
| 878 | |
| 879 | void KeyframeEffect::checkForMatchingColorFilterFunctionLists() |
| 880 | { |
| 881 | m_colorFilterFunctionListsMatch = checkForMatchingFilterFunctionLists(CSSPropertyAppleColorFilter, [] (const RenderStyle& style) -> const FilterOperations& { |
| 882 | return style.appleColorFilter(); |
| 883 | }); |
| 884 | } |
| 885 | |
| 886 | void KeyframeEffect::computeDeclarativeAnimationBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle) |
| 887 | { |
| 888 | ASSERT(is<DeclarativeAnimation>(animation())); |
| 889 | if (is<CSSAnimation>(animation())) |
| 890 | computeCSSAnimationBlendingKeyframes(); |
| 891 | else if (is<CSSTransition>(animation())) |
| 892 | computeCSSTransitionBlendingKeyframes(oldStyle, newStyle); |
| 893 | } |
| 894 | |
| 895 | void KeyframeEffect::computeCSSAnimationBlendingKeyframes() |
| 896 | { |
| 897 | ASSERT(is<CSSAnimation>(animation())); |
| 898 | |
| 899 | auto cssAnimation = downcast<CSSAnimation>(animation()); |
| 900 | auto& backingAnimation = cssAnimation->backingAnimation(); |
| 901 | |
| 902 | KeyframeList keyframeList(backingAnimation.name()); |
| 903 | if (auto* styleScope = Style::Scope::forOrdinal(*m_target, backingAnimation.nameStyleScopeOrdinal())) |
| 904 | styleScope->resolver().keyframeStylesForAnimation(*m_target, &cssAnimation->unanimatedStyle(), keyframeList); |
| 905 | |
| 906 | // Ensure resource loads for all the frames. |
| 907 | for (auto& keyframe : keyframeList.keyframes()) { |
| 908 | if (auto* style = const_cast<RenderStyle*>(keyframe.style())) |
| 909 | Style::loadPendingResources(*style, m_target->document(), m_target.get()); |
| 910 | } |
| 911 | |
| 912 | setBlendingKeyframes(keyframeList); |
| 913 | } |
| 914 | |
| 915 | void KeyframeEffect::computeCSSTransitionBlendingKeyframes(const RenderStyle* oldStyle, const RenderStyle& newStyle) |
| 916 | { |
| 917 | ASSERT(is<CSSTransition>(animation())); |
| 918 | |
| 919 | if (!oldStyle || m_blendingKeyframes.size()) |
| 920 | return; |
| 921 | |
| 922 | auto property = downcast<CSSTransition>(animation())->property(); |
| 923 | |
| 924 | auto toStyle = RenderStyle::clonePtr(newStyle); |
| 925 | if (m_target) |
| 926 | Style::loadPendingResources(*toStyle, m_target->document(), m_target.get()); |
| 927 | |
| 928 | KeyframeList keyframeList("keyframe-effect-" + createCanonicalUUIDString()); |
| 929 | keyframeList.addProperty(property); |
| 930 | |
| 931 | KeyframeValue fromKeyframeValue(0, RenderStyle::clonePtr(*oldStyle)); |
| 932 | fromKeyframeValue.addProperty(property); |
| 933 | keyframeList.insert(WTFMove(fromKeyframeValue)); |
| 934 | |
| 935 | KeyframeValue toKeyframeValue(1, WTFMove(toStyle)); |
| 936 | toKeyframeValue.addProperty(property); |
| 937 | keyframeList.insert(WTFMove(toKeyframeValue)); |
| 938 | |
| 939 | setBlendingKeyframes(keyframeList); |
| 940 | } |
| 941 | |
| 942 | void KeyframeEffect::computedNeedsForcedLayout() |
| 943 | { |
| 944 | m_needsForcedLayout = false; |
| 945 | if (is<CSSTransition>(animation()) || !m_blendingKeyframes.containsProperty(CSSPropertyTransform)) |
| 946 | return; |
| 947 | |
| 948 | size_t numberOfKeyframes = m_blendingKeyframes.size(); |
| 949 | for (size_t i = 0; i < numberOfKeyframes; i++) { |
| 950 | auto* keyframeStyle = m_blendingKeyframes[i].style(); |
| 951 | if (!keyframeStyle) { |
| 952 | ASSERT_NOT_REACHED(); |
| 953 | continue; |
| 954 | } |
| 955 | if (keyframeStyle->hasTransform()) { |
| 956 | auto& transformOperations = keyframeStyle->transform(); |
| 957 | for (const auto& operation : transformOperations.operations()) { |
| 958 | if (operation->isTranslateTransformOperationType()) { |
| 959 | auto translation = downcast<TranslateTransformOperation>(operation.get()); |
| 960 | if (translation->x().isPercent() || translation->y().isPercent()) { |
| 961 | m_needsForcedLayout = true; |
| 962 | return; |
| 963 | } |
| 964 | } |
| 965 | } |
| 966 | } |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | void KeyframeEffect::computeStackingContextImpact() |
| 971 | { |
| 972 | m_triggersStackingContext = false; |
| 973 | for (auto cssPropertyId : m_blendingKeyframes.properties()) { |
| 974 | if (WillChangeData::propertyCreatesStackingContext(cssPropertyId)) { |
| 975 | m_triggersStackingContext = true; |
| 976 | break; |
| 977 | } |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | void KeyframeEffect::setTarget(RefPtr<Element>&& newTarget) |
| 982 | { |
| 983 | if (m_target == newTarget) |
| 984 | return; |
| 985 | |
| 986 | auto previousTarget = std::exchange(m_target, WTFMove(newTarget)); |
| 987 | |
| 988 | if (auto* effectAnimation = animation()) |
| 989 | effectAnimation->effectTargetDidChange(previousTarget.get(), m_target.get()); |
| 990 | |
| 991 | m_blendingKeyframes.clear(); |
| 992 | |
| 993 | // We need to invalidate the effect now that the target has changed |
| 994 | // to ensure the effect's styles are applied to the new target right away. |
| 995 | invalidate(); |
| 996 | |
| 997 | // Likewise, we need to invalidate styles on the previous target so that |
| 998 | // any animated styles are removed immediately. |
| 999 | invalidateElement(previousTarget.get()); |
| 1000 | } |
| 1001 | |
| 1002 | void KeyframeEffect::apply(RenderStyle& targetStyle) |
| 1003 | { |
| 1004 | if (!m_target) |
| 1005 | return; |
| 1006 | |
| 1007 | updateBlendingKeyframes(targetStyle); |
| 1008 | |
| 1009 | updateAcceleratedAnimationState(); |
| 1010 | |
| 1011 | auto progress = getComputedTiming().progress; |
| 1012 | if (!progress) |
| 1013 | return; |
| 1014 | |
| 1015 | setAnimatedPropertiesInStyle(targetStyle, progress.value()); |
| 1016 | |
| 1017 | // https://w3c.github.io/web-animations/#side-effects-section |
| 1018 | // For every property targeted by at least one animation effect that is current or in effect, the user agent |
| 1019 | // must act as if the will-change property ([css-will-change-1]) on the target element includes the property. |
| 1020 | if (m_triggersStackingContext && targetStyle.hasAutoZIndex()) |
| 1021 | targetStyle.setZIndex(0); |
| 1022 | } |
| 1023 | |
| 1024 | void KeyframeEffect::invalidate() |
| 1025 | { |
| 1026 | invalidateElement(m_target.get()); |
| 1027 | } |
| 1028 | |
| 1029 | void KeyframeEffect::computeShouldRunAccelerated() |
| 1030 | { |
| 1031 | m_shouldRunAccelerated = hasBlendingKeyframes(); |
| 1032 | for (auto cssPropertyId : m_blendingKeyframes.properties()) { |
| 1033 | if (!CSSPropertyAnimation::animationOfPropertyIsAccelerated(cssPropertyId)) { |
| 1034 | m_shouldRunAccelerated = false; |
| 1035 | return; |
| 1036 | } |
| 1037 | } |
| 1038 | } |
| 1039 | |
| 1040 | void KeyframeEffect::getAnimatedStyle(std::unique_ptr<RenderStyle>& animatedStyle) |
| 1041 | { |
| 1042 | if (!m_target || !animation()) |
| 1043 | return; |
| 1044 | |
| 1045 | auto progress = getComputedTiming().progress; |
| 1046 | if (!progress) |
| 1047 | return; |
| 1048 | |
| 1049 | if (!animatedStyle) |
| 1050 | animatedStyle = RenderStyle::clonePtr(renderer()->style()); |
| 1051 | |
| 1052 | setAnimatedPropertiesInStyle(*animatedStyle.get(), progress.value()); |
| 1053 | } |
| 1054 | |
| 1055 | void KeyframeEffect::setAnimatedPropertiesInStyle(RenderStyle& targetStyle, double iterationProgress) |
| 1056 | { |
| 1057 | // 4.4.3. The effect value of a keyframe effect |
| 1058 | // https://drafts.csswg.org/web-animations-1/#the-effect-value-of-a-keyframe-animation-effect |
| 1059 | // |
| 1060 | // The effect value of a single property referenced by a keyframe effect as one of its target properties, |
| 1061 | // for a given iteration progress, current iteration and underlying value is calculated as follows. |
| 1062 | |
| 1063 | updateBlendingKeyframes(targetStyle); |
| 1064 | if (m_blendingKeyframes.isEmpty()) |
| 1065 | return; |
| 1066 | |
| 1067 | bool isCSSAnimation = is<CSSAnimation>(animation()); |
| 1068 | |
| 1069 | for (auto cssPropertyId : m_blendingKeyframes.properties()) { |
| 1070 | // 1. If iteration progress is unresolved abort this procedure. |
| 1071 | // 2. Let target property be the longhand property for which the effect value is to be calculated. |
| 1072 | // 3. If animation type of the target property is not animatable abort this procedure since the effect cannot be applied. |
| 1073 | // 4. Define the neutral value for composition as a value which, when combined with an underlying value using the add composite operation, |
| 1074 | // produces the underlying value. |
| 1075 | |
| 1076 | // 5. Let property-specific keyframes be the result of getting the set of computed keyframes for this keyframe effect. |
| 1077 | // 6. Remove any keyframes from property-specific keyframes that do not have a property value for target property. |
| 1078 | unsigned numberOfKeyframesWithZeroOffset = 0; |
| 1079 | unsigned numberOfKeyframesWithOneOffset = 0; |
| 1080 | Vector<Optional<size_t>> propertySpecificKeyframes; |
| 1081 | for (size_t i = 0; i < m_blendingKeyframes.size(); ++i) { |
| 1082 | auto& keyframe = m_blendingKeyframes[i]; |
| 1083 | auto offset = keyframe.key(); |
| 1084 | if (!keyframe.containsProperty(cssPropertyId)) { |
| 1085 | // If we're dealing with a CSS animation, we consider the first and last keyframes to always have the property listed |
| 1086 | // since the underlying style was provided and should be captured. |
| 1087 | if (!isCSSAnimation || (offset && offset < 1)) |
| 1088 | continue; |
| 1089 | } |
| 1090 | if (!offset) |
| 1091 | numberOfKeyframesWithZeroOffset++; |
| 1092 | if (offset == 1) |
| 1093 | numberOfKeyframesWithOneOffset++; |
| 1094 | propertySpecificKeyframes.append(i); |
| 1095 | } |
| 1096 | |
| 1097 | // 7. If property-specific keyframes is empty, return underlying value. |
| 1098 | if (propertySpecificKeyframes.isEmpty()) |
| 1099 | continue; |
| 1100 | |
| 1101 | // 8. If there is no keyframe in property-specific keyframes with a computed keyframe offset of 0, create a new keyframe with a computed keyframe |
| 1102 | // offset of 0, a property value set to the neutral value for composition, and a composite operation of add, and prepend it to the beginning of |
| 1103 | // property-specific keyframes. |
| 1104 | if (!numberOfKeyframesWithZeroOffset) { |
| 1105 | propertySpecificKeyframes.insert(0, WTF::nullopt); |
| 1106 | numberOfKeyframesWithZeroOffset = 1; |
| 1107 | } |
| 1108 | |
| 1109 | // 9. Similarly, if there is no keyframe in property-specific keyframes with a computed keyframe offset of 1, create a new keyframe with a computed |
| 1110 | // keyframe offset of 1, a property value set to the neutral value for composition, and a composite operation of add, and append it to the end of |
| 1111 | // property-specific keyframes. |
| 1112 | if (!numberOfKeyframesWithOneOffset) { |
| 1113 | propertySpecificKeyframes.append(WTF::nullopt); |
| 1114 | numberOfKeyframesWithOneOffset = 1; |
| 1115 | } |
| 1116 | |
| 1117 | // 10. Let interval endpoints be an empty sequence of keyframes. |
| 1118 | Vector<Optional<size_t>> intervalEndpoints; |
| 1119 | |
| 1120 | // 11. Populate interval endpoints by following the steps from the first matching condition from below: |
| 1121 | if (iterationProgress < 0 && numberOfKeyframesWithZeroOffset > 1) { |
| 1122 | // If iteration progress < 0 and there is more than one keyframe in property-specific keyframes with a computed keyframe offset of 0, |
| 1123 | // Add the first keyframe in property-specific keyframes to interval endpoints. |
| 1124 | intervalEndpoints.append(propertySpecificKeyframes.first()); |
| 1125 | } else if (iterationProgress >= 1 && numberOfKeyframesWithOneOffset > 1) { |
| 1126 | // If iteration progress ≥ 1 and there is more than one keyframe in property-specific keyframes with a computed keyframe offset of 1, |
| 1127 | // Add the last keyframe in property-specific keyframes to interval endpoints. |
| 1128 | intervalEndpoints.append(propertySpecificKeyframes.last()); |
| 1129 | } else { |
| 1130 | // Otherwise, |
| 1131 | // 1. Append to interval endpoints the last keyframe in property-specific keyframes whose computed keyframe offset is less than or equal |
| 1132 | // to iteration progress and less than 1. If there is no such keyframe (because, for example, the iteration progress is negative), |
| 1133 | // add the last keyframe whose computed keyframe offset is 0. |
| 1134 | // 2. Append to interval endpoints the next keyframe in property-specific keyframes after the one added in the previous step. |
| 1135 | size_t indexOfLastKeyframeWithZeroOffset = 0; |
| 1136 | int indexOfFirstKeyframeToAddToIntervalEndpoints = -1; |
| 1137 | for (size_t i = 0; i < propertySpecificKeyframes.size(); ++i) { |
| 1138 | auto keyframeIndex = propertySpecificKeyframes[i]; |
| 1139 | auto offset = [&] () -> double { |
| 1140 | if (!keyframeIndex) |
| 1141 | return i ? 1 : 0; |
| 1142 | return m_blendingKeyframes[keyframeIndex.value()].key(); |
| 1143 | }(); |
| 1144 | if (!offset) |
| 1145 | indexOfLastKeyframeWithZeroOffset = i; |
| 1146 | if (offset <= iterationProgress && offset < 1) |
| 1147 | indexOfFirstKeyframeToAddToIntervalEndpoints = i; |
| 1148 | else |
| 1149 | break; |
| 1150 | } |
| 1151 | |
| 1152 | if (indexOfFirstKeyframeToAddToIntervalEndpoints >= 0) { |
| 1153 | intervalEndpoints.append(propertySpecificKeyframes[indexOfFirstKeyframeToAddToIntervalEndpoints]); |
| 1154 | intervalEndpoints.append(propertySpecificKeyframes[indexOfFirstKeyframeToAddToIntervalEndpoints + 1]); |
| 1155 | } else { |
| 1156 | ASSERT(indexOfLastKeyframeWithZeroOffset < propertySpecificKeyframes.size() - 1); |
| 1157 | intervalEndpoints.append(propertySpecificKeyframes[indexOfLastKeyframeWithZeroOffset]); |
| 1158 | intervalEndpoints.append(propertySpecificKeyframes[indexOfLastKeyframeWithZeroOffset + 1]); |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | // 12. For each keyframe in interval endpoints… |
| 1163 | // FIXME: we don't support this step yet since we don't deal with any composite operation other than "replace". |
| 1164 | |
| 1165 | // 13. If there is only one keyframe in interval endpoints return the property value of target property on that keyframe. |
| 1166 | if (intervalEndpoints.size() == 1) { |
| 1167 | auto keyframeIndex = intervalEndpoints[0]; |
| 1168 | auto keyframeStyle = !keyframeIndex ? &targetStyle : m_blendingKeyframes[keyframeIndex.value()].style(); |
| 1169 | CSSPropertyAnimation::blendProperties(this, cssPropertyId, &targetStyle, keyframeStyle, keyframeStyle, 0); |
| 1170 | continue; |
| 1171 | } |
| 1172 | |
| 1173 | // 14. Let start offset be the computed keyframe offset of the first keyframe in interval endpoints. |
| 1174 | auto startKeyframeIndex = intervalEndpoints.first(); |
| 1175 | auto startOffset = !startKeyframeIndex ? 0 : m_blendingKeyframes[startKeyframeIndex.value()].key(); |
| 1176 | |
| 1177 | // 15. Let end offset be the computed keyframe offset of last keyframe in interval endpoints. |
| 1178 | auto endKeyframeIndex = intervalEndpoints.last(); |
| 1179 | auto endOffset = !endKeyframeIndex ? 1 : m_blendingKeyframes[endKeyframeIndex.value()].key(); |
| 1180 | |
| 1181 | // 16. Let interval distance be the result of evaluating (iteration progress - start offset) / (end offset - start offset). |
| 1182 | auto intervalDistance = (iterationProgress - startOffset) / (endOffset - startOffset); |
| 1183 | |
| 1184 | // 17. Let transformed distance be the result of evaluating the timing function associated with the first keyframe in interval endpoints |
| 1185 | // passing interval distance as the input progress. |
| 1186 | auto transformedDistance = intervalDistance; |
| 1187 | if (startKeyframeIndex) { |
| 1188 | if (auto duration = iterationDuration()) { |
| 1189 | auto rangeDuration = (endOffset - startOffset) * duration.seconds(); |
| 1190 | if (auto* timingFunction = timingFunctionForKeyframeAtIndex(startKeyframeIndex.value())) |
| 1191 | transformedDistance = timingFunction->transformTime(intervalDistance, rangeDuration); |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | // 18. Return the result of applying the interpolation procedure defined by the animation type of the target property, to the values of the target |
| 1196 | // property specified on the two keyframes in interval endpoints taking the first such value as Vstart and the second as Vend and using transformed |
| 1197 | // distance as the interpolation parameter p. |
| 1198 | auto startStyle = !startKeyframeIndex ? &targetStyle : m_blendingKeyframes[startKeyframeIndex.value()].style(); |
| 1199 | auto endStyle = !endKeyframeIndex ? &targetStyle : m_blendingKeyframes[endKeyframeIndex.value()].style(); |
| 1200 | CSSPropertyAnimation::blendProperties(this, cssPropertyId, &targetStyle, startStyle, endStyle, transformedDistance); |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | TimingFunction* KeyframeEffect::timingFunctionForKeyframeAtIndex(size_t index) |
| 1205 | { |
| 1206 | if (!m_parsedKeyframes.isEmpty()) |
| 1207 | return m_parsedKeyframes[index].timingFunction.get(); |
| 1208 | |
| 1209 | auto effectAnimation = animation(); |
| 1210 | if (is<DeclarativeAnimation>(effectAnimation)) { |
| 1211 | // If we're dealing with a CSS Animation, the timing function is specified either on the keyframe itself. |
| 1212 | if (is<CSSAnimation>(effectAnimation)) { |
| 1213 | if (auto* timingFunction = m_blendingKeyframes[index].timingFunction()) |
| 1214 | return timingFunction; |
| 1215 | } |
| 1216 | |
| 1217 | // Failing that, or for a CSS Transition, the timing function is inherited from the backing Animation object. |
| 1218 | return downcast<DeclarativeAnimation>(effectAnimation)->backingAnimation().timingFunction(); |
| 1219 | } |
| 1220 | |
| 1221 | return nullptr; |
| 1222 | } |
| 1223 | |
| 1224 | void KeyframeEffect::updateAcceleratedAnimationState() |
| 1225 | { |
| 1226 | if (!m_shouldRunAccelerated) |
| 1227 | return; |
| 1228 | |
| 1229 | if (!renderer()) { |
| 1230 | if (isRunningAccelerated()) |
| 1231 | addPendingAcceleratedAction(AcceleratedAction::Stop); |
| 1232 | return; |
| 1233 | } |
| 1234 | |
| 1235 | auto localTime = animation()->currentTime(); |
| 1236 | |
| 1237 | // If we don't have a localTime or localTime < 0, we either don't have a start time or we're before the startTime |
| 1238 | // so we shouldn't be running. |
| 1239 | if (!localTime || localTime.value() < 0_s) { |
| 1240 | if (isRunningAccelerated()) |
| 1241 | addPendingAcceleratedAction(AcceleratedAction::Stop); |
| 1242 | return; |
| 1243 | } |
| 1244 | |
| 1245 | auto playState = animation()->playState(); |
| 1246 | if (playState == WebAnimation::PlayState::Paused) { |
| 1247 | if (m_lastRecordedAcceleratedAction != AcceleratedAction::Pause) { |
| 1248 | if (m_lastRecordedAcceleratedAction == AcceleratedAction::Stop) |
| 1249 | addPendingAcceleratedAction(AcceleratedAction::Play); |
| 1250 | addPendingAcceleratedAction(AcceleratedAction::Pause); |
| 1251 | } |
| 1252 | return; |
| 1253 | } |
| 1254 | |
| 1255 | if (playState == WebAnimation::PlayState::Finished) { |
| 1256 | if (isRunningAccelerated()) |
| 1257 | addPendingAcceleratedAction(AcceleratedAction::Stop); |
| 1258 | else { |
| 1259 | m_lastRecordedAcceleratedAction = AcceleratedAction::Stop; |
| 1260 | m_pendingAcceleratedActions.clear(); |
| 1261 | animation()->acceleratedStateDidChange(); |
| 1262 | } |
| 1263 | return; |
| 1264 | } |
| 1265 | |
| 1266 | if (playState == WebAnimation::PlayState::Running && localTime >= 0_s) { |
| 1267 | if (m_lastRecordedAcceleratedAction != AcceleratedAction::Play) |
| 1268 | addPendingAcceleratedAction(AcceleratedAction::Play); |
| 1269 | return; |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | void KeyframeEffect::addPendingAcceleratedAction(AcceleratedAction action) |
| 1274 | { |
| 1275 | if (action == AcceleratedAction::Stop) |
| 1276 | m_pendingAcceleratedActions.clear(); |
| 1277 | m_pendingAcceleratedActions.append(action); |
| 1278 | if (action != AcceleratedAction::Seek) |
| 1279 | m_lastRecordedAcceleratedAction = action; |
| 1280 | animation()->acceleratedStateDidChange(); |
| 1281 | } |
| 1282 | |
| 1283 | void KeyframeEffect::animationDidSeek() |
| 1284 | { |
| 1285 | // There is no need to seek if we're not playing an animation already. If seeking |
| 1286 | // means we're moving into an active state, we'll pick this up in apply(). |
| 1287 | if (m_shouldRunAccelerated && isRunningAccelerated()) |
| 1288 | addPendingAcceleratedAction(AcceleratedAction::Seek); |
| 1289 | } |
| 1290 | |
| 1291 | void KeyframeEffect::animationSuspensionStateDidChange(bool animationIsSuspended) |
| 1292 | { |
| 1293 | if (m_shouldRunAccelerated) |
| 1294 | addPendingAcceleratedAction(animationIsSuspended ? AcceleratedAction::Pause : AcceleratedAction::Play); |
| 1295 | } |
| 1296 | |
| 1297 | void KeyframeEffect::applyPendingAcceleratedActions() |
| 1298 | { |
| 1299 | // Once an accelerated animation has been committed, we no longer want to force a layout. |
| 1300 | // This should have been performed by a call to forceLayoutIfNeeded() prior to applying |
| 1301 | // pending accelerated actions. |
| 1302 | m_needsForcedLayout = false; |
| 1303 | |
| 1304 | if (m_pendingAcceleratedActions.isEmpty()) |
| 1305 | return; |
| 1306 | |
| 1307 | auto* renderer = this->renderer(); |
| 1308 | if (!renderer || !renderer->isComposited()) |
| 1309 | return; |
| 1310 | |
| 1311 | auto pendingAcceleratedActions = m_pendingAcceleratedActions; |
| 1312 | m_pendingAcceleratedActions.clear(); |
| 1313 | |
| 1314 | auto* compositedRenderer = downcast<RenderBoxModelObject>(renderer); |
| 1315 | |
| 1316 | // To simplify the code we use a default of 0s for an unresolved current time since for a Stop action that is acceptable. |
| 1317 | auto timeOffset = animation()->currentTime().valueOr(0_s).seconds() - delay().seconds(); |
| 1318 | |
| 1319 | for (const auto& action : pendingAcceleratedActions) { |
| 1320 | switch (action) { |
| 1321 | case AcceleratedAction::Play: |
| 1322 | if (!compositedRenderer->startAnimation(timeOffset, backingAnimationForCompositedRenderer(), m_blendingKeyframes)) { |
| 1323 | m_shouldRunAccelerated = false; |
| 1324 | m_lastRecordedAcceleratedAction = AcceleratedAction::Stop; |
| 1325 | animation()->acceleratedStateDidChange(); |
| 1326 | return; |
| 1327 | } |
| 1328 | break; |
| 1329 | case AcceleratedAction::Pause: |
| 1330 | compositedRenderer->animationPaused(timeOffset, m_blendingKeyframes.animationName()); |
| 1331 | break; |
| 1332 | case AcceleratedAction::Seek: |
| 1333 | compositedRenderer->animationSeeked(timeOffset, m_blendingKeyframes.animationName()); |
| 1334 | break; |
| 1335 | case AcceleratedAction::Stop: |
| 1336 | compositedRenderer->animationFinished(m_blendingKeyframes.animationName()); |
| 1337 | if (!m_target->document().renderTreeBeingDestroyed()) |
| 1338 | m_target->invalidateStyleAndLayerComposition(); |
| 1339 | break; |
| 1340 | } |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | Ref<const Animation> KeyframeEffect::backingAnimationForCompositedRenderer() const |
| 1345 | { |
| 1346 | auto effectAnimation = animation(); |
| 1347 | if (is<DeclarativeAnimation>(effectAnimation)) |
| 1348 | return downcast<DeclarativeAnimation>(effectAnimation)->backingAnimation(); |
| 1349 | |
| 1350 | // FIXME: The iterationStart and endDelay AnimationEffectTiming properties do not have |
| 1351 | // corresponding Animation properties. |
| 1352 | auto animation = Animation::create(); |
| 1353 | animation->setDuration(iterationDuration().seconds()); |
| 1354 | animation->setDelay(delay().seconds()); |
| 1355 | animation->setIterationCount(iterations()); |
| 1356 | animation->setTimingFunction(timingFunction()->clone()); |
| 1357 | |
| 1358 | switch (fill()) { |
| 1359 | case FillMode::None: |
| 1360 | case FillMode::Auto: |
| 1361 | animation->setFillMode(AnimationFillMode::None); |
| 1362 | break; |
| 1363 | case FillMode::Backwards: |
| 1364 | animation->setFillMode(AnimationFillMode::Backwards); |
| 1365 | break; |
| 1366 | case FillMode::Forwards: |
| 1367 | animation->setFillMode(AnimationFillMode::Forwards); |
| 1368 | break; |
| 1369 | case FillMode::Both: |
| 1370 | animation->setFillMode(AnimationFillMode::Both); |
| 1371 | break; |
| 1372 | } |
| 1373 | |
| 1374 | switch (direction()) { |
| 1375 | case PlaybackDirection::Normal: |
| 1376 | animation->setDirection(Animation::AnimationDirectionNormal); |
| 1377 | break; |
| 1378 | case PlaybackDirection::Alternate: |
| 1379 | animation->setDirection(Animation::AnimationDirectionAlternate); |
| 1380 | break; |
| 1381 | case PlaybackDirection::Reverse: |
| 1382 | animation->setDirection(Animation::AnimationDirectionReverse); |
| 1383 | break; |
| 1384 | case PlaybackDirection::AlternateReverse: |
| 1385 | animation->setDirection(Animation::AnimationDirectionAlternateReverse); |
| 1386 | break; |
| 1387 | } |
| 1388 | |
| 1389 | return animation; |
| 1390 | } |
| 1391 | |
| 1392 | RenderElement* KeyframeEffect::renderer() const |
| 1393 | { |
| 1394 | return m_target ? m_target->renderer() : nullptr; |
| 1395 | } |
| 1396 | |
| 1397 | const RenderStyle& KeyframeEffect::currentStyle() const |
| 1398 | { |
| 1399 | if (auto* renderer = this->renderer()) |
| 1400 | return renderer->style(); |
| 1401 | return RenderStyle::defaultStyle(); |
| 1402 | } |
| 1403 | |
| 1404 | bool KeyframeEffect::computeExtentOfTransformAnimation(LayoutRect& bounds) const |
| 1405 | { |
| 1406 | ASSERT(m_blendingKeyframes.containsProperty(CSSPropertyTransform)); |
| 1407 | |
| 1408 | if (!is<RenderBox>(renderer())) |
| 1409 | return true; // Non-boxes don't get transformed; |
| 1410 | |
| 1411 | auto& box = downcast<RenderBox>(*renderer()); |
| 1412 | auto rendererBox = snapRectToDevicePixels(box.borderBoxRect(), box.document().deviceScaleFactor()); |
| 1413 | |
| 1414 | auto cumulativeBounds = bounds; |
| 1415 | |
| 1416 | for (const auto& keyframe : m_blendingKeyframes.keyframes()) { |
| 1417 | const auto* keyframeStyle = keyframe.style(); |
| 1418 | |
| 1419 | // FIXME: maybe for declarative animations we always say it's true for the first and last keyframe. |
| 1420 | if (!keyframe.containsProperty(CSSPropertyTransform)) { |
| 1421 | // If the first keyframe is missing transform style, use the current style. |
| 1422 | if (!keyframe.key()) |
| 1423 | keyframeStyle = &box.style(); |
| 1424 | else |
| 1425 | continue; |
| 1426 | } |
| 1427 | |
| 1428 | auto keyframeBounds = bounds; |
| 1429 | |
| 1430 | bool canCompute; |
| 1431 | if (transformFunctionListsMatch()) |
| 1432 | canCompute = computeTransformedExtentViaTransformList(rendererBox, *keyframeStyle, keyframeBounds); |
| 1433 | else |
| 1434 | canCompute = computeTransformedExtentViaMatrix(rendererBox, *keyframeStyle, keyframeBounds); |
| 1435 | |
| 1436 | if (!canCompute) |
| 1437 | return false; |
| 1438 | |
| 1439 | cumulativeBounds.unite(keyframeBounds); |
| 1440 | } |
| 1441 | |
| 1442 | bounds = cumulativeBounds; |
| 1443 | return true; |
| 1444 | } |
| 1445 | |
| 1446 | static bool containsRotation(const Vector<RefPtr<TransformOperation>>& operations) |
| 1447 | { |
| 1448 | for (const auto& operation : operations) { |
| 1449 | if (operation->type() == TransformOperation::ROTATE) |
| 1450 | return true; |
| 1451 | } |
| 1452 | return false; |
| 1453 | } |
| 1454 | |
| 1455 | bool KeyframeEffect::computeTransformedExtentViaTransformList(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const |
| 1456 | { |
| 1457 | FloatRect floatBounds = bounds; |
| 1458 | FloatPoint transformOrigin; |
| 1459 | |
| 1460 | bool applyTransformOrigin = containsRotation(style.transform().operations()) || style.transform().affectedByTransformOrigin(); |
| 1461 | if (applyTransformOrigin) { |
| 1462 | transformOrigin.setX(rendererBox.x() + floatValueForLength(style.transformOriginX(), rendererBox.width())); |
| 1463 | transformOrigin.setY(rendererBox.y() + floatValueForLength(style.transformOriginY(), rendererBox.height())); |
| 1464 | // Ignore transformOriginZ because we'll bail if we encounter any 3D transforms. |
| 1465 | |
| 1466 | floatBounds.moveBy(-transformOrigin); |
| 1467 | } |
| 1468 | |
| 1469 | for (const auto& operation : style.transform().operations()) { |
| 1470 | if (operation->type() == TransformOperation::ROTATE) { |
| 1471 | // For now, just treat this as a full rotation. This could take angle into account to reduce inflation. |
| 1472 | floatBounds = boundsOfRotatingRect(floatBounds); |
| 1473 | } else { |
| 1474 | TransformationMatrix transform; |
| 1475 | operation->apply(transform, rendererBox.size()); |
| 1476 | if (!transform.isAffine()) |
| 1477 | return false; |
| 1478 | |
| 1479 | if (operation->type() == TransformOperation::MATRIX || operation->type() == TransformOperation::MATRIX_3D) { |
| 1480 | TransformationMatrix::Decomposed2Type toDecomp; |
| 1481 | transform.decompose2(toDecomp); |
| 1482 | // Any rotation prevents us from using a simple start/end rect union. |
| 1483 | if (toDecomp.angle) |
| 1484 | return false; |
| 1485 | } |
| 1486 | |
| 1487 | floatBounds = transform.mapRect(floatBounds); |
| 1488 | } |
| 1489 | } |
| 1490 | |
| 1491 | if (applyTransformOrigin) |
| 1492 | floatBounds.moveBy(transformOrigin); |
| 1493 | |
| 1494 | bounds = LayoutRect(floatBounds); |
| 1495 | return true; |
| 1496 | } |
| 1497 | |
| 1498 | bool KeyframeEffect::computeTransformedExtentViaMatrix(const FloatRect& rendererBox, const RenderStyle& style, LayoutRect& bounds) const |
| 1499 | { |
| 1500 | TransformationMatrix transform; |
| 1501 | style.applyTransform(transform, rendererBox, RenderStyle::IncludeTransformOrigin); |
| 1502 | if (!transform.isAffine()) |
| 1503 | return false; |
| 1504 | |
| 1505 | TransformationMatrix::Decomposed2Type fromDecomp; |
| 1506 | transform.decompose2(fromDecomp); |
| 1507 | // Any rotation prevents us from using a simple start/end rect union. |
| 1508 | if (fromDecomp.angle) |
| 1509 | return false; |
| 1510 | |
| 1511 | bounds = LayoutRect(transform.mapRect(bounds)); |
| 1512 | return true; |
| 1513 | } |
| 1514 | |
| 1515 | } // namespace WebCore |
| 1516 | |