| 1 | /* |
| 2 | * Copyright (C) 2005-2016 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #include "FloatPoint.h" |
| 29 | #include "FloatPoint3D.h" |
| 30 | #include "IntPoint.h" |
| 31 | #include <array> |
| 32 | #include <string.h> //for memcpy |
| 33 | #include <wtf/FastMalloc.h> |
| 34 | #include <wtf/Forward.h> |
| 35 | |
| 36 | #if USE(CA) |
| 37 | typedef struct CATransform3D CATransform3D; |
| 38 | #endif |
| 39 | #if USE(CG) |
| 40 | typedef struct CGAffineTransform CGAffineTransform; |
| 41 | #endif |
| 42 | |
| 43 | #if PLATFORM(WIN) || (PLATFORM(GTK) && OS(WINDOWS)) |
| 44 | #if COMPILER(MINGW) && !COMPILER(MINGW64) |
| 45 | typedef struct _XFORM XFORM; |
| 46 | #else |
| 47 | typedef struct tagXFORM XFORM; |
| 48 | #endif |
| 49 | #endif |
| 50 | |
| 51 | #if PLATFORM(WIN) |
| 52 | struct D2D_MATRIX_3X2_F; |
| 53 | typedef D2D_MATRIX_3X2_F D2D1_MATRIX_3X2_F; |
| 54 | #endif |
| 55 | |
| 56 | namespace WTF { |
| 57 | class TextStream; |
| 58 | } |
| 59 | |
| 60 | namespace WebCore { |
| 61 | |
| 62 | class AffineTransform; |
| 63 | class IntRect; |
| 64 | class LayoutRect; |
| 65 | class FloatRect; |
| 66 | class FloatQuad; |
| 67 | |
| 68 | #if CPU(X86_64) |
| 69 | #define TRANSFORMATION_MATRIX_USE_X86_64_SSE2 |
| 70 | #endif |
| 71 | |
| 72 | class TransformationMatrix { |
| 73 | WTF_MAKE_FAST_ALLOCATED; |
| 74 | public: |
| 75 | |
| 76 | #if (PLATFORM(IOS_FAMILY) && CPU(ARM_THUMB2)) || defined(TRANSFORMATION_MATRIX_USE_X86_64_SSE2) |
| 77 | #if COMPILER(MSVC) |
| 78 | __declspec(align(16)) typedef double Matrix4[4][4]; |
| 79 | #else |
| 80 | typedef double Matrix4[4][4] __attribute__((aligned (16))); |
| 81 | #endif |
| 82 | #else |
| 83 | typedef double Matrix4[4][4]; |
| 84 | #endif |
| 85 | |
| 86 | constexpr TransformationMatrix() |
| 87 | : m_matrix { |
| 88 | { 1, 0, 0, 0 }, |
| 89 | { 0, 1, 0, 0 }, |
| 90 | { 0, 0, 1, 0 }, |
| 91 | { 0, 0, 0, 1 }, |
| 92 | } |
| 93 | { |
| 94 | } |
| 95 | |
| 96 | constexpr TransformationMatrix(double a, double b, double c, double d, double e, double f) |
| 97 | : m_matrix { |
| 98 | { a, b, 0, 0 }, |
| 99 | { c, d, 0, 0 }, |
| 100 | { 0, 0, 1, 0 }, |
| 101 | { e, f, 0, 1 }, |
| 102 | } |
| 103 | { |
| 104 | } |
| 105 | |
| 106 | constexpr TransformationMatrix( |
| 107 | double m11, double m12, double m13, double m14, |
| 108 | double m21, double m22, double m23, double m24, |
| 109 | double m31, double m32, double m33, double m34, |
| 110 | double m41, double m42, double m43, double m44) |
| 111 | : m_matrix { |
| 112 | { m11, m12, m13, m14 }, |
| 113 | { m21, m22, m23, m24 }, |
| 114 | { m31, m32, m33, m34 }, |
| 115 | { m41, m42, m43, m44 }, |
| 116 | } |
| 117 | { |
| 118 | } |
| 119 | |
| 120 | WEBCORE_EXPORT TransformationMatrix(const AffineTransform&); |
| 121 | |
| 122 | static const TransformationMatrix identity; |
| 123 | |
| 124 | void setMatrix(double a, double b, double c, double d, double e, double f) |
| 125 | { |
| 126 | m_matrix[0][0] = a; m_matrix[0][1] = b; m_matrix[0][2] = 0; m_matrix[0][3] = 0; |
| 127 | m_matrix[1][0] = c; m_matrix[1][1] = d; m_matrix[1][2] = 0; m_matrix[1][3] = 0; |
| 128 | m_matrix[2][0] = 0; m_matrix[2][1] = 0; m_matrix[2][2] = 1; m_matrix[2][3] = 0; |
| 129 | m_matrix[3][0] = e; m_matrix[3][1] = f; m_matrix[3][2] = 0; m_matrix[3][3] = 1; |
| 130 | } |
| 131 | |
| 132 | void setMatrix(double m11, double m12, double m13, double m14, |
| 133 | double m21, double m22, double m23, double m24, |
| 134 | double m31, double m32, double m33, double m34, |
| 135 | double m41, double m42, double m43, double m44) |
| 136 | { |
| 137 | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; m_matrix[0][3] = m14; |
| 138 | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; m_matrix[1][3] = m24; |
| 139 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; m_matrix[2][3] = m34; |
| 140 | m_matrix[3][0] = m41; m_matrix[3][1] = m42; m_matrix[3][2] = m43; m_matrix[3][3] = m44; |
| 141 | } |
| 142 | |
| 143 | TransformationMatrix& makeIdentity() |
| 144 | { |
| 145 | setMatrix(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); |
| 146 | return *this; |
| 147 | } |
| 148 | |
| 149 | bool isIdentity() const |
| 150 | { |
| 151 | return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 && |
| 152 | m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 && |
| 153 | m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 && |
| 154 | m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0 && m_matrix[3][3] == 1; |
| 155 | } |
| 156 | |
| 157 | // This form preserves the double math from input to output. |
| 158 | void map(double x, double y, double& x2, double& y2) const { multVecMatrix(x, y, x2, y2); } |
| 159 | void map4ComponentPoint(double& x, double& y, double& z, double& w) const; |
| 160 | |
| 161 | // Maps a 3D point through the transform, returning a 3D point. |
| 162 | FloatPoint3D mapPoint(const FloatPoint3D&) const; |
| 163 | |
| 164 | // Maps a 2D point through the transform, returning a 2D point. |
| 165 | // Note that this ignores the z component, effectively projecting the point into the z=0 plane. |
| 166 | WEBCORE_EXPORT FloatPoint mapPoint(const FloatPoint&) const; |
| 167 | |
| 168 | // Like the version above, except that it rounds the mapped point to the nearest integer value. |
| 169 | IntPoint mapPoint(const IntPoint& p) const |
| 170 | { |
| 171 | return roundedIntPoint(mapPoint(FloatPoint(p))); |
| 172 | } |
| 173 | |
| 174 | // If the matrix has 3D components, the z component of the result is |
| 175 | // dropped, effectively projecting the rect into the z=0 plane. |
| 176 | WEBCORE_EXPORT FloatRect mapRect(const FloatRect&) const; |
| 177 | |
| 178 | // Rounds the resulting mapped rectangle out. This is helpful for bounding |
| 179 | // box computations but may not be what is wanted in other contexts. |
| 180 | WEBCORE_EXPORT IntRect mapRect(const IntRect&) const; |
| 181 | LayoutRect mapRect(const LayoutRect&) const; |
| 182 | |
| 183 | // If the matrix has 3D components, the z component of the result is |
| 184 | // dropped, effectively projecting the quad into the z=0 plane. |
| 185 | WEBCORE_EXPORT FloatQuad mapQuad(const FloatQuad&) const; |
| 186 | |
| 187 | // Maps a point on the z=0 plane into a point on the plane with with the transform applied, by |
| 188 | // extending a ray perpendicular to the source plane and computing the local x,y position of |
| 189 | // the point where that ray intersects with the destination plane. |
| 190 | FloatPoint projectPoint(const FloatPoint&, bool* clamped = 0) const; |
| 191 | // Projects the four corners of the quad. |
| 192 | FloatQuad projectQuad(const FloatQuad&, bool* clamped = 0) const; |
| 193 | // Projects the four corners of the quad and takes a bounding box, |
| 194 | // while sanitizing values created when the w component is negative. |
| 195 | LayoutRect clampedBoundsOfProjectedQuad(const FloatQuad&) const; |
| 196 | |
| 197 | double m11() const { return m_matrix[0][0]; } |
| 198 | void setM11(double f) { m_matrix[0][0] = f; } |
| 199 | double m12() const { return m_matrix[0][1]; } |
| 200 | void setM12(double f) { m_matrix[0][1] = f; } |
| 201 | double m13() const { return m_matrix[0][2]; } |
| 202 | void setM13(double f) { m_matrix[0][2] = f; } |
| 203 | double m14() const { return m_matrix[0][3]; } |
| 204 | void setM14(double f) { m_matrix[0][3] = f; } |
| 205 | double m21() const { return m_matrix[1][0]; } |
| 206 | void setM21(double f) { m_matrix[1][0] = f; } |
| 207 | double m22() const { return m_matrix[1][1]; } |
| 208 | void setM22(double f) { m_matrix[1][1] = f; } |
| 209 | double m23() const { return m_matrix[1][2]; } |
| 210 | void setM23(double f) { m_matrix[1][2] = f; } |
| 211 | double m24() const { return m_matrix[1][3]; } |
| 212 | void setM24(double f) { m_matrix[1][3] = f; } |
| 213 | double m31() const { return m_matrix[2][0]; } |
| 214 | void setM31(double f) { m_matrix[2][0] = f; } |
| 215 | double m32() const { return m_matrix[2][1]; } |
| 216 | void setM32(double f) { m_matrix[2][1] = f; } |
| 217 | double m33() const { return m_matrix[2][2]; } |
| 218 | void setM33(double f) { m_matrix[2][2] = f; } |
| 219 | double m34() const { return m_matrix[2][3]; } |
| 220 | void setM34(double f) { m_matrix[2][3] = f; } |
| 221 | double m41() const { return m_matrix[3][0]; } |
| 222 | void setM41(double f) { m_matrix[3][0] = f; } |
| 223 | double m42() const { return m_matrix[3][1]; } |
| 224 | void setM42(double f) { m_matrix[3][1] = f; } |
| 225 | double m43() const { return m_matrix[3][2]; } |
| 226 | void setM43(double f) { m_matrix[3][2] = f; } |
| 227 | double m44() const { return m_matrix[3][3]; } |
| 228 | void setM44(double f) { m_matrix[3][3] = f; } |
| 229 | |
| 230 | double a() const { return m_matrix[0][0]; } |
| 231 | void setA(double a) { m_matrix[0][0] = a; } |
| 232 | |
| 233 | double b() const { return m_matrix[0][1]; } |
| 234 | void setB(double b) { m_matrix[0][1] = b; } |
| 235 | |
| 236 | double c() const { return m_matrix[1][0]; } |
| 237 | void setC(double c) { m_matrix[1][0] = c; } |
| 238 | |
| 239 | double d() const { return m_matrix[1][1]; } |
| 240 | void setD(double d) { m_matrix[1][1] = d; } |
| 241 | |
| 242 | double e() const { return m_matrix[3][0]; } |
| 243 | void setE(double e) { m_matrix[3][0] = e; } |
| 244 | |
| 245 | double f() const { return m_matrix[3][1]; } |
| 246 | void setF(double f) { m_matrix[3][1] = f; } |
| 247 | |
| 248 | // this = mat * this. |
| 249 | WEBCORE_EXPORT TransformationMatrix& multiply(const TransformationMatrix&); |
| 250 | |
| 251 | WEBCORE_EXPORT TransformationMatrix& scale(double); |
| 252 | WEBCORE_EXPORT TransformationMatrix& scaleNonUniform(double sx, double sy); |
| 253 | TransformationMatrix& scale3d(double sx, double sy, double sz); |
| 254 | |
| 255 | // Angle is in degrees. |
| 256 | TransformationMatrix& rotate(double d) { return rotate3d(0, 0, d); } |
| 257 | TransformationMatrix& rotateFromVector(double x, double y); |
| 258 | WEBCORE_EXPORT TransformationMatrix& rotate3d(double rx, double ry, double rz); |
| 259 | |
| 260 | // The vector (x,y,z) is normalized if it's not already. A vector of (0,0,0) uses a vector of (0,0,1). |
| 261 | TransformationMatrix& rotate3d(double x, double y, double z, double angle); |
| 262 | |
| 263 | WEBCORE_EXPORT TransformationMatrix& translate(double tx, double ty); |
| 264 | TransformationMatrix& translate3d(double tx, double ty, double tz); |
| 265 | |
| 266 | // translation added with a post-multiply |
| 267 | TransformationMatrix& translateRight(double tx, double ty); |
| 268 | TransformationMatrix& translateRight3d(double tx, double ty, double tz); |
| 269 | |
| 270 | WEBCORE_EXPORT TransformationMatrix& flipX(); |
| 271 | WEBCORE_EXPORT TransformationMatrix& flipY(); |
| 272 | WEBCORE_EXPORT TransformationMatrix& skew(double angleX, double angleY); |
| 273 | TransformationMatrix& skewX(double angle) { return skew(angle, 0); } |
| 274 | TransformationMatrix& skewY(double angle) { return skew(0, angle); } |
| 275 | |
| 276 | TransformationMatrix& applyPerspective(double p); |
| 277 | bool hasPerspective() const { return m_matrix[2][3] != 0.0f; } |
| 278 | |
| 279 | // Returns a transformation that maps a rect to a rect. |
| 280 | WEBCORE_EXPORT static TransformationMatrix rectToRect(const FloatRect&, const FloatRect&); |
| 281 | |
| 282 | bool isInvertible() const; // If you call this this, you're probably doing it wrong. |
| 283 | WEBCORE_EXPORT Optional<TransformationMatrix> inverse() const; |
| 284 | |
| 285 | // Decompose the matrix into its component parts. |
| 286 | struct Decomposed2Type { |
| 287 | double scaleX, scaleY; |
| 288 | double translateX, translateY; |
| 289 | double angle; |
| 290 | double m11, m12, m21, m22; |
| 291 | |
| 292 | bool operator==(const Decomposed2Type& other) const |
| 293 | { |
| 294 | return scaleX == other.scaleX && scaleY == other.scaleY |
| 295 | && translateX == other.translateX && translateY == other.translateY |
| 296 | && angle == other.angle |
| 297 | && m11 == other.m11 && m12 == other.m12 && m21 == other.m21 && m22 == other.m22; |
| 298 | } |
| 299 | }; |
| 300 | |
| 301 | struct Decomposed4Type { |
| 302 | double scaleX, scaleY, scaleZ; |
| 303 | double skewXY, skewXZ, skewYZ; |
| 304 | double quaternionX, quaternionY, quaternionZ, quaternionW; |
| 305 | double translateX, translateY, translateZ; |
| 306 | double perspectiveX, perspectiveY, perspectiveZ, perspectiveW; |
| 307 | |
| 308 | bool operator==(const Decomposed4Type& other) const |
| 309 | { |
| 310 | return scaleX == other.scaleX && scaleY == other.scaleY && scaleZ == other.scaleZ |
| 311 | && skewXY == other.skewXY && skewXZ == other.skewXZ && skewYZ == other.skewYZ |
| 312 | && quaternionX == other.quaternionX && quaternionY == other.quaternionY && quaternionZ == other.quaternionZ && quaternionW == other.quaternionW |
| 313 | && translateX == other.translateX && translateY == other.translateY && translateZ == other.translateZ |
| 314 | && perspectiveX == other.perspectiveX && perspectiveY == other.perspectiveY && perspectiveZ == other.perspectiveZ && perspectiveW == other.perspectiveW; |
| 315 | } |
| 316 | }; |
| 317 | |
| 318 | bool decompose2(Decomposed2Type&) const; |
| 319 | void recompose2(const Decomposed2Type&); |
| 320 | |
| 321 | bool decompose4(Decomposed4Type&) const; |
| 322 | void recompose4(const Decomposed4Type&); |
| 323 | |
| 324 | WEBCORE_EXPORT void blend(const TransformationMatrix& from, double progress); |
| 325 | WEBCORE_EXPORT void blend2(const TransformationMatrix& from, double progress); |
| 326 | WEBCORE_EXPORT void blend4(const TransformationMatrix& from, double progress); |
| 327 | |
| 328 | bool isAffine() const |
| 329 | { |
| 330 | return (m13() == 0 && m14() == 0 && m23() == 0 && m24() == 0 && |
| 331 | m31() == 0 && m32() == 0 && m33() == 1 && m34() == 0 && m43() == 0 && m44() == 1); |
| 332 | } |
| 333 | |
| 334 | // Throw away the non-affine parts of the matrix (lossy!). |
| 335 | WEBCORE_EXPORT void makeAffine(); |
| 336 | |
| 337 | WEBCORE_EXPORT AffineTransform toAffineTransform() const; |
| 338 | |
| 339 | bool operator==(const TransformationMatrix& m2) const |
| 340 | { |
| 341 | return (m_matrix[0][0] == m2.m_matrix[0][0] && |
| 342 | m_matrix[0][1] == m2.m_matrix[0][1] && |
| 343 | m_matrix[0][2] == m2.m_matrix[0][2] && |
| 344 | m_matrix[0][3] == m2.m_matrix[0][3] && |
| 345 | m_matrix[1][0] == m2.m_matrix[1][0] && |
| 346 | m_matrix[1][1] == m2.m_matrix[1][1] && |
| 347 | m_matrix[1][2] == m2.m_matrix[1][2] && |
| 348 | m_matrix[1][3] == m2.m_matrix[1][3] && |
| 349 | m_matrix[2][0] == m2.m_matrix[2][0] && |
| 350 | m_matrix[2][1] == m2.m_matrix[2][1] && |
| 351 | m_matrix[2][2] == m2.m_matrix[2][2] && |
| 352 | m_matrix[2][3] == m2.m_matrix[2][3] && |
| 353 | m_matrix[3][0] == m2.m_matrix[3][0] && |
| 354 | m_matrix[3][1] == m2.m_matrix[3][1] && |
| 355 | m_matrix[3][2] == m2.m_matrix[3][2] && |
| 356 | m_matrix[3][3] == m2.m_matrix[3][3]); |
| 357 | } |
| 358 | |
| 359 | bool operator!=(const TransformationMatrix& other) const { return !(*this == other); } |
| 360 | |
| 361 | // *this = *this * t |
| 362 | TransformationMatrix& operator*=(const TransformationMatrix& t) |
| 363 | { |
| 364 | return multiply(t); |
| 365 | } |
| 366 | |
| 367 | // result = *this * t |
| 368 | TransformationMatrix operator*(const TransformationMatrix& t) const |
| 369 | { |
| 370 | TransformationMatrix result = *this; |
| 371 | result.multiply(t); |
| 372 | return result; |
| 373 | } |
| 374 | |
| 375 | #if USE(CA) |
| 376 | WEBCORE_EXPORT TransformationMatrix(const CATransform3D&); |
| 377 | WEBCORE_EXPORT operator CATransform3D() const; |
| 378 | #endif |
| 379 | #if USE(CG) |
| 380 | WEBCORE_EXPORT TransformationMatrix(const CGAffineTransform&); |
| 381 | WEBCORE_EXPORT operator CGAffineTransform() const; |
| 382 | #endif |
| 383 | |
| 384 | #if PLATFORM(WIN) || (PLATFORM(GTK) && OS(WINDOWS)) |
| 385 | operator XFORM() const; |
| 386 | #endif |
| 387 | |
| 388 | #if PLATFORM(WIN) |
| 389 | TransformationMatrix(const D2D1_MATRIX_3X2_F&); |
| 390 | operator D2D1_MATRIX_3X2_F() const; |
| 391 | #endif |
| 392 | |
| 393 | bool isIdentityOrTranslation() const |
| 394 | { |
| 395 | return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 |
| 396 | && m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 |
| 397 | && m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 |
| 398 | && m_matrix[3][3] == 1; |
| 399 | } |
| 400 | |
| 401 | bool isIntegerTranslation() const; |
| 402 | |
| 403 | bool containsOnlyFiniteValues() const; |
| 404 | |
| 405 | // Returns the matrix without 3D components. |
| 406 | TransformationMatrix to2dTransform() const; |
| 407 | |
| 408 | using FloatMatrix4 = std::array<float, 16>; |
| 409 | FloatMatrix4 toColumnMajorFloatArray() const; |
| 410 | |
| 411 | // A local-space layer is implicitly defined at the z = 0 plane, with its front side |
| 412 | // facing the positive z-axis (i.e. a camera looking along the negative z-axis sees |
| 413 | // the front side of the layer). This function checks if the transformed layer's back |
| 414 | // face would be visible to a camera looking along the negative z-axis in the target space. |
| 415 | bool isBackFaceVisible() const; |
| 416 | |
| 417 | private: |
| 418 | // multiply passed 2D point by matrix (assume z=0) |
| 419 | void multVecMatrix(double x, double y, double& dstX, double& dstY) const; |
| 420 | FloatPoint internalMapPoint(const FloatPoint& sourcePoint) const |
| 421 | { |
| 422 | double resultX; |
| 423 | double resultY; |
| 424 | multVecMatrix(sourcePoint.x(), sourcePoint.y(), resultX, resultY); |
| 425 | return FloatPoint(static_cast<float>(resultX), static_cast<float>(resultY)); |
| 426 | } |
| 427 | |
| 428 | void multVecMatrix(double x, double y, double z, double& dstX, double& dstY, double& dstZ) const; |
| 429 | FloatPoint3D internalMapPoint(const FloatPoint3D& sourcePoint) const |
| 430 | { |
| 431 | double resultX; |
| 432 | double resultY; |
| 433 | double resultZ; |
| 434 | multVecMatrix(sourcePoint.x(), sourcePoint.y(), sourcePoint.z(), resultX, resultY, resultZ); |
| 435 | return FloatPoint3D(static_cast<float>(resultX), static_cast<float>(resultY), static_cast<float>(resultZ)); |
| 436 | } |
| 437 | |
| 438 | Matrix4 m_matrix; |
| 439 | }; |
| 440 | |
| 441 | WEBCORE_EXPORT WTF::TextStream& operator<<(WTF::TextStream&, const TransformationMatrix&); |
| 442 | |
| 443 | } // namespace WebCore |
| 444 | |