| 1 | /* |
| 2 | * Copyright (C) 2007, 2009, 2015 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2007 Justin Haygood <jhaygood@reaktix.com> |
| 4 | * Copyright (C) 2011 Research In Motion Limited. All rights reserved. |
| 5 | * Copyright (C) 2017 Yusuke Suzuki <utatane.tea@gmail.com> |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions |
| 9 | * are met: |
| 10 | * |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 17 | * its contributors may be used to endorse or promote products derived |
| 18 | * from this software without specific prior written permission. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 21 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 22 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 23 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 24 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 25 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 26 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 27 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 29 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | */ |
| 31 | |
| 32 | #include "config.h" |
| 33 | #include <wtf/Threading.h> |
| 34 | |
| 35 | #if USE(PTHREADS) |
| 36 | |
| 37 | #include <errno.h> |
| 38 | #include <wtf/DataLog.h> |
| 39 | #include <wtf/NeverDestroyed.h> |
| 40 | #include <wtf/RawPointer.h> |
| 41 | #include <wtf/StdLibExtras.h> |
| 42 | #include <wtf/ThreadGroup.h> |
| 43 | #include <wtf/ThreadingPrimitives.h> |
| 44 | #include <wtf/WordLock.h> |
| 45 | |
| 46 | #if OS(LINUX) |
| 47 | #include <sys/prctl.h> |
| 48 | #endif |
| 49 | |
| 50 | #if !COMPILER(MSVC) |
| 51 | #include <limits.h> |
| 52 | #include <sched.h> |
| 53 | #include <sys/time.h> |
| 54 | #endif |
| 55 | |
| 56 | #if !OS(DARWIN) && OS(UNIX) |
| 57 | |
| 58 | #include <semaphore.h> |
| 59 | #include <sys/mman.h> |
| 60 | #include <unistd.h> |
| 61 | #include <pthread.h> |
| 62 | |
| 63 | #if HAVE(PTHREAD_NP_H) |
| 64 | #include <pthread_np.h> |
| 65 | #endif |
| 66 | |
| 67 | #endif |
| 68 | |
| 69 | namespace WTF { |
| 70 | |
| 71 | static Lock globalSuspendLock; |
| 72 | |
| 73 | Thread::~Thread() |
| 74 | { |
| 75 | } |
| 76 | |
| 77 | #if !OS(DARWIN) |
| 78 | class Semaphore { |
| 79 | WTF_MAKE_NONCOPYABLE(Semaphore); |
| 80 | WTF_MAKE_FAST_ALLOCATED; |
| 81 | public: |
| 82 | explicit Semaphore(unsigned initialValue) |
| 83 | { |
| 84 | int sharedBetweenProcesses = 0; |
| 85 | sem_init(&m_platformSemaphore, sharedBetweenProcesses, initialValue); |
| 86 | } |
| 87 | |
| 88 | ~Semaphore() |
| 89 | { |
| 90 | sem_destroy(&m_platformSemaphore); |
| 91 | } |
| 92 | |
| 93 | void wait() |
| 94 | { |
| 95 | sem_wait(&m_platformSemaphore); |
| 96 | } |
| 97 | |
| 98 | void post() |
| 99 | { |
| 100 | sem_post(&m_platformSemaphore); |
| 101 | } |
| 102 | |
| 103 | private: |
| 104 | sem_t m_platformSemaphore; |
| 105 | }; |
| 106 | static LazyNeverDestroyed<Semaphore> globalSemaphoreForSuspendResume; |
| 107 | |
| 108 | static std::atomic<Thread*> targetThread { nullptr }; |
| 109 | |
| 110 | void Thread::signalHandlerSuspendResume(int, siginfo_t*, void* ucontext) |
| 111 | { |
| 112 | // Touching a global variable atomic types from signal handlers is allowed. |
| 113 | Thread* thread = targetThread.load(); |
| 114 | |
| 115 | if (thread->m_suspendCount) { |
| 116 | // This is signal handler invocation that is intended to be used to resume sigsuspend. |
| 117 | // So this handler invocation itself should not process. |
| 118 | // |
| 119 | // When signal comes, first, the system calls signal handler. And later, sigsuspend will be resumed. Signal handler invocation always precedes. |
| 120 | // So, the problem never happens that suspended.store(true, ...) will be executed before the handler is called. |
| 121 | // http://pubs.opengroup.org/onlinepubs/009695399/functions/sigsuspend.html |
| 122 | return; |
| 123 | } |
| 124 | |
| 125 | void* approximateStackPointer = currentStackPointer(); |
| 126 | if (!thread->m_stack.contains(approximateStackPointer)) { |
| 127 | // This happens if we use an alternative signal stack. |
| 128 | // 1. A user-defined signal handler is invoked with an alternative signal stack. |
| 129 | // 2. In the middle of the execution of the handler, we attempt to suspend the target thread. |
| 130 | // 3. A nested signal handler is executed. |
| 131 | // 4. The stack pointer saved in the machine context will be pointing to the alternative signal stack. |
| 132 | // In this case, we back off the suspension and retry a bit later. |
| 133 | thread->m_platformRegisters = nullptr; |
| 134 | globalSemaphoreForSuspendResume->post(); |
| 135 | return; |
| 136 | } |
| 137 | |
| 138 | #if HAVE(MACHINE_CONTEXT) |
| 139 | ucontext_t* userContext = static_cast<ucontext_t*>(ucontext); |
| 140 | thread->m_platformRegisters = ®istersFromUContext(userContext); |
| 141 | #else |
| 142 | UNUSED_PARAM(ucontext); |
| 143 | PlatformRegisters platformRegisters { approximateStackPointer }; |
| 144 | thread->m_platformRegisters = &platformRegisters; |
| 145 | #endif |
| 146 | |
| 147 | // Allow suspend caller to see that this thread is suspended. |
| 148 | // sem_post is async-signal-safe function. It means that we can call this from a signal handler. |
| 149 | // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03 |
| 150 | // |
| 151 | // And sem_post emits memory barrier that ensures that PlatformRegisters are correctly saved. |
| 152 | // http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_11 |
| 153 | globalSemaphoreForSuspendResume->post(); |
| 154 | |
| 155 | // Reaching here, SigThreadSuspendResume is blocked in this handler (this is configured by sigaction's sa_mask). |
| 156 | // So before calling sigsuspend, SigThreadSuspendResume to this thread is deferred. This ensures that the handler is not executed recursively. |
| 157 | sigset_t blockedSignalSet; |
| 158 | sigfillset(&blockedSignalSet); |
| 159 | sigdelset(&blockedSignalSet, SigThreadSuspendResume); |
| 160 | sigsuspend(&blockedSignalSet); |
| 161 | |
| 162 | thread->m_platformRegisters = nullptr; |
| 163 | |
| 164 | // Allow resume caller to see that this thread is resumed. |
| 165 | globalSemaphoreForSuspendResume->post(); |
| 166 | } |
| 167 | |
| 168 | #endif // !OS(DARWIN) |
| 169 | |
| 170 | void Thread::initializePlatformThreading() |
| 171 | { |
| 172 | #if !OS(DARWIN) |
| 173 | globalSemaphoreForSuspendResume.construct(0); |
| 174 | |
| 175 | // Signal handlers are process global configuration. |
| 176 | // Intentionally block SigThreadSuspendResume in the handler. |
| 177 | // SigThreadSuspendResume will be allowed in the handler by sigsuspend. |
| 178 | struct sigaction action; |
| 179 | sigemptyset(&action.sa_mask); |
| 180 | sigaddset(&action.sa_mask, SigThreadSuspendResume); |
| 181 | |
| 182 | action.sa_sigaction = &signalHandlerSuspendResume; |
| 183 | action.sa_flags = SA_RESTART | SA_SIGINFO; |
| 184 | sigaction(SigThreadSuspendResume, &action, 0); |
| 185 | #endif |
| 186 | } |
| 187 | |
| 188 | void Thread::initializeCurrentThreadEvenIfNonWTFCreated() |
| 189 | { |
| 190 | #if !OS(DARWIN) |
| 191 | sigset_t mask; |
| 192 | sigemptyset(&mask); |
| 193 | sigaddset(&mask, SigThreadSuspendResume); |
| 194 | pthread_sigmask(SIG_UNBLOCK, &mask, 0); |
| 195 | #endif |
| 196 | } |
| 197 | |
| 198 | static void* wtfThreadEntryPoint(void* context) |
| 199 | { |
| 200 | Thread::entryPoint(reinterpret_cast<Thread::NewThreadContext*>(context)); |
| 201 | return nullptr; |
| 202 | } |
| 203 | |
| 204 | bool Thread::establishHandle(NewThreadContext* context) |
| 205 | { |
| 206 | pthread_t threadHandle; |
| 207 | pthread_attr_t attr; |
| 208 | pthread_attr_init(&attr); |
| 209 | #if HAVE(QOS_CLASSES) |
| 210 | pthread_attr_set_qos_class_np(&attr, adjustedQOSClass(QOS_CLASS_USER_INITIATED), 0); |
| 211 | #endif |
| 212 | int error = pthread_create(&threadHandle, &attr, wtfThreadEntryPoint, context); |
| 213 | pthread_attr_destroy(&attr); |
| 214 | if (error) { |
| 215 | LOG_ERROR("Failed to create pthread at entry point %p with context %p" , wtfThreadEntryPoint, context); |
| 216 | return false; |
| 217 | } |
| 218 | establishPlatformSpecificHandle(threadHandle); |
| 219 | return true; |
| 220 | } |
| 221 | |
| 222 | void Thread::initializeCurrentThreadInternal(const char* threadName) |
| 223 | { |
| 224 | #if HAVE(PTHREAD_SETNAME_NP) |
| 225 | pthread_setname_np(normalizeThreadName(threadName)); |
| 226 | #elif OS(LINUX) |
| 227 | prctl(PR_SET_NAME, normalizeThreadName(threadName)); |
| 228 | #else |
| 229 | UNUSED_PARAM(threadName); |
| 230 | #endif |
| 231 | initializeCurrentThreadEvenIfNonWTFCreated(); |
| 232 | } |
| 233 | |
| 234 | void Thread::changePriority(int delta) |
| 235 | { |
| 236 | #if HAVE(PTHREAD_SETSCHEDPARAM) |
| 237 | auto locker = holdLock(m_mutex); |
| 238 | |
| 239 | int policy; |
| 240 | struct sched_param param; |
| 241 | |
| 242 | if (pthread_getschedparam(m_handle, &policy, ¶m)) |
| 243 | return; |
| 244 | |
| 245 | param.sched_priority += delta; |
| 246 | |
| 247 | pthread_setschedparam(m_handle, policy, ¶m); |
| 248 | #endif |
| 249 | } |
| 250 | |
| 251 | int Thread::waitForCompletion() |
| 252 | { |
| 253 | pthread_t handle; |
| 254 | { |
| 255 | auto locker = holdLock(m_mutex); |
| 256 | handle = m_handle; |
| 257 | } |
| 258 | |
| 259 | int joinResult = pthread_join(handle, 0); |
| 260 | |
| 261 | if (joinResult == EDEADLK) |
| 262 | LOG_ERROR("Thread %p was found to be deadlocked trying to quit" , this); |
| 263 | else if (joinResult) |
| 264 | LOG_ERROR("Thread %p was unable to be joined.\n" , this); |
| 265 | |
| 266 | auto locker = holdLock(m_mutex); |
| 267 | ASSERT(joinableState() == Joinable); |
| 268 | |
| 269 | // If the thread has already exited, then do nothing. If the thread hasn't exited yet, then just signal that we've already joined on it. |
| 270 | // In both cases, Thread::destructTLS() will take care of destroying Thread. |
| 271 | if (!hasExited()) |
| 272 | didJoin(); |
| 273 | |
| 274 | return joinResult; |
| 275 | } |
| 276 | |
| 277 | void Thread::detach() |
| 278 | { |
| 279 | auto locker = holdLock(m_mutex); |
| 280 | int detachResult = pthread_detach(m_handle); |
| 281 | if (detachResult) |
| 282 | LOG_ERROR("Thread %p was unable to be detached\n" , this); |
| 283 | |
| 284 | if (!hasExited()) |
| 285 | didBecomeDetached(); |
| 286 | } |
| 287 | |
| 288 | Thread& Thread::initializeCurrentTLS() |
| 289 | { |
| 290 | // Not a WTF-created thread, Thread is not established yet. |
| 291 | Ref<Thread> thread = adoptRef(*new Thread()); |
| 292 | thread->establishPlatformSpecificHandle(pthread_self()); |
| 293 | thread->initializeInThread(); |
| 294 | initializeCurrentThreadEvenIfNonWTFCreated(); |
| 295 | |
| 296 | return initializeTLS(WTFMove(thread)); |
| 297 | } |
| 298 | |
| 299 | bool Thread::signal(int signalNumber) |
| 300 | { |
| 301 | auto locker = holdLock(m_mutex); |
| 302 | if (hasExited()) |
| 303 | return false; |
| 304 | int errNo = pthread_kill(m_handle, signalNumber); |
| 305 | return !errNo; // A 0 errNo means success. |
| 306 | } |
| 307 | |
| 308 | auto Thread::suspend() -> Expected<void, PlatformSuspendError> |
| 309 | { |
| 310 | RELEASE_ASSERT_WITH_MESSAGE(this != &Thread::current(), "We do not support suspending the current thread itself." ); |
| 311 | // During suspend, suspend or resume should not be executed from the other threads. |
| 312 | // We use global lock instead of per thread lock. |
| 313 | // Consider the following case, there are threads A and B. |
| 314 | // And A attempt to suspend B and B attempt to suspend A. |
| 315 | // A and B send signals. And later, signals are delivered to A and B. |
| 316 | // In that case, both will be suspended. |
| 317 | // |
| 318 | // And it is important to use a global lock to suspend and resume. Let's consider using per-thread lock. |
| 319 | // Your issuing thread (A) attempts to suspend the target thread (B). Then, you will suspend the thread (C) additionally. |
| 320 | // This case frequently happens if you stop threads to perform stack scanning. But thread (B) may hold the lock of thread (C). |
| 321 | // In that case, dead lock happens. Using global lock here avoids this dead lock. |
| 322 | LockHolder locker(globalSuspendLock); |
| 323 | #if OS(DARWIN) |
| 324 | kern_return_t result = thread_suspend(m_platformThread); |
| 325 | if (result != KERN_SUCCESS) |
| 326 | return makeUnexpected(result); |
| 327 | return { }; |
| 328 | #else |
| 329 | if (!m_suspendCount) { |
| 330 | // Ideally, we would like to use pthread_sigqueue. It allows us to pass the argument to the signal handler. |
| 331 | // But it can be used in a few platforms, like Linux. |
| 332 | // Instead, we use Thread* stored in a global variable to pass it to the signal handler. |
| 333 | targetThread.store(this); |
| 334 | |
| 335 | while (true) { |
| 336 | int result = pthread_kill(m_handle, SigThreadSuspendResume); |
| 337 | if (result) |
| 338 | return makeUnexpected(result); |
| 339 | globalSemaphoreForSuspendResume->wait(); |
| 340 | if (m_platformRegisters) |
| 341 | break; |
| 342 | // Because of an alternative signal stack, we failed to suspend this thread. |
| 343 | // Retry suspension again after yielding. |
| 344 | Thread::yield(); |
| 345 | } |
| 346 | } |
| 347 | ++m_suspendCount; |
| 348 | return { }; |
| 349 | #endif |
| 350 | } |
| 351 | |
| 352 | void Thread::resume() |
| 353 | { |
| 354 | // During resume, suspend or resume should not be executed from the other threads. |
| 355 | LockHolder locker(globalSuspendLock); |
| 356 | #if OS(DARWIN) |
| 357 | thread_resume(m_platformThread); |
| 358 | #else |
| 359 | if (m_suspendCount == 1) { |
| 360 | // When allowing SigThreadSuspendResume interrupt in the signal handler by sigsuspend and SigThreadSuspendResume is actually issued, |
| 361 | // the signal handler itself will be called once again. |
| 362 | // There are several ways to distinguish the handler invocation for suspend and resume. |
| 363 | // 1. Use different signal numbers. And check the signal number in the handler. |
| 364 | // 2. Use some arguments to distinguish suspend and resume in the handler. If pthread_sigqueue can be used, we can take this. |
| 365 | // 3. Use thread's flag. |
| 366 | // In this implementaiton, we take (3). m_suspendCount is used to distinguish it. |
| 367 | targetThread.store(this); |
| 368 | if (pthread_kill(m_handle, SigThreadSuspendResume) == ESRCH) |
| 369 | return; |
| 370 | globalSemaphoreForSuspendResume->wait(); |
| 371 | } |
| 372 | --m_suspendCount; |
| 373 | #endif |
| 374 | } |
| 375 | |
| 376 | #if OS(DARWIN) |
| 377 | struct ThreadStateMetadata { |
| 378 | unsigned userCount; |
| 379 | thread_state_flavor_t flavor; |
| 380 | }; |
| 381 | |
| 382 | static ThreadStateMetadata threadStateMetadata() |
| 383 | { |
| 384 | #if CPU(X86) |
| 385 | unsigned userCount = sizeof(PlatformRegisters) / sizeof(int); |
| 386 | thread_state_flavor_t flavor = i386_THREAD_STATE; |
| 387 | #elif CPU(X86_64) |
| 388 | unsigned userCount = x86_THREAD_STATE64_COUNT; |
| 389 | thread_state_flavor_t flavor = x86_THREAD_STATE64; |
| 390 | #elif CPU(PPC) |
| 391 | unsigned userCount = PPC_THREAD_STATE_COUNT; |
| 392 | thread_state_flavor_t flavor = PPC_THREAD_STATE; |
| 393 | #elif CPU(PPC64) |
| 394 | unsigned userCount = PPC_THREAD_STATE64_COUNT; |
| 395 | thread_state_flavor_t flavor = PPC_THREAD_STATE64; |
| 396 | #elif CPU(ARM) |
| 397 | unsigned userCount = ARM_THREAD_STATE_COUNT; |
| 398 | thread_state_flavor_t flavor = ARM_THREAD_STATE; |
| 399 | #elif CPU(ARM64) |
| 400 | unsigned userCount = ARM_THREAD_STATE64_COUNT; |
| 401 | thread_state_flavor_t flavor = ARM_THREAD_STATE64; |
| 402 | #else |
| 403 | #error Unknown Architecture |
| 404 | #endif |
| 405 | return ThreadStateMetadata { userCount, flavor }; |
| 406 | } |
| 407 | #endif // OS(DARWIN) |
| 408 | |
| 409 | size_t Thread::getRegisters(PlatformRegisters& registers) |
| 410 | { |
| 411 | LockHolder locker(globalSuspendLock); |
| 412 | #if OS(DARWIN) |
| 413 | auto metadata = threadStateMetadata(); |
| 414 | kern_return_t result = thread_get_state(m_platformThread, metadata.flavor, (thread_state_t)®isters, &metadata.userCount); |
| 415 | if (result != KERN_SUCCESS) { |
| 416 | WTFReportFatalError(__FILE__, __LINE__, WTF_PRETTY_FUNCTION, "JavaScript garbage collection failed because thread_get_state returned an error (%d). This is probably the result of running inside Rosetta, which is not supported." , result); |
| 417 | CRASH(); |
| 418 | } |
| 419 | return metadata.userCount * sizeof(uintptr_t); |
| 420 | #else |
| 421 | ASSERT_WITH_MESSAGE(m_suspendCount, "We can get registers only if the thread is suspended." ); |
| 422 | ASSERT(m_platformRegisters); |
| 423 | registers = *m_platformRegisters; |
| 424 | return sizeof(PlatformRegisters); |
| 425 | #endif |
| 426 | } |
| 427 | |
| 428 | void Thread::establishPlatformSpecificHandle(pthread_t handle) |
| 429 | { |
| 430 | auto locker = holdLock(m_mutex); |
| 431 | m_handle = handle; |
| 432 | #if OS(DARWIN) |
| 433 | m_platformThread = pthread_mach_thread_np(handle); |
| 434 | #endif |
| 435 | } |
| 436 | |
| 437 | #if !HAVE(FAST_TLS) |
| 438 | void Thread::initializeTLSKey() |
| 439 | { |
| 440 | threadSpecificKeyCreate(&s_key, destructTLS); |
| 441 | } |
| 442 | #endif |
| 443 | |
| 444 | Thread& Thread::initializeTLS(Ref<Thread>&& thread) |
| 445 | { |
| 446 | // We leak the ref to keep the Thread alive while it is held in TLS. destructTLS will deref it later at thread destruction time. |
| 447 | auto& threadInTLS = thread.leakRef(); |
| 448 | #if !HAVE(FAST_TLS) |
| 449 | ASSERT(s_key != InvalidThreadSpecificKey); |
| 450 | threadSpecificSet(s_key, &threadInTLS); |
| 451 | #else |
| 452 | _pthread_setspecific_direct(WTF_THREAD_DATA_KEY, &threadInTLS); |
| 453 | pthread_key_init_np(WTF_THREAD_DATA_KEY, &destructTLS); |
| 454 | #endif |
| 455 | return threadInTLS; |
| 456 | } |
| 457 | |
| 458 | void Thread::destructTLS(void* data) |
| 459 | { |
| 460 | Thread* thread = static_cast<Thread*>(data); |
| 461 | ASSERT(thread); |
| 462 | |
| 463 | if (thread->m_isDestroyedOnce) { |
| 464 | thread->didExit(); |
| 465 | thread->deref(); |
| 466 | return; |
| 467 | } |
| 468 | |
| 469 | thread->m_isDestroyedOnce = true; |
| 470 | // Re-setting the value for key causes another destructTLS() call after all other thread-specific destructors were called. |
| 471 | #if !HAVE(FAST_TLS) |
| 472 | ASSERT(s_key != InvalidThreadSpecificKey); |
| 473 | threadSpecificSet(s_key, thread); |
| 474 | #else |
| 475 | _pthread_setspecific_direct(WTF_THREAD_DATA_KEY, thread); |
| 476 | pthread_key_init_np(WTF_THREAD_DATA_KEY, &destructTLS); |
| 477 | #endif |
| 478 | } |
| 479 | |
| 480 | Mutex::~Mutex() |
| 481 | { |
| 482 | int result = pthread_mutex_destroy(&m_mutex); |
| 483 | ASSERT_UNUSED(result, !result); |
| 484 | } |
| 485 | |
| 486 | void Mutex::lock() |
| 487 | { |
| 488 | int result = pthread_mutex_lock(&m_mutex); |
| 489 | ASSERT_UNUSED(result, !result); |
| 490 | } |
| 491 | |
| 492 | bool Mutex::tryLock() |
| 493 | { |
| 494 | int result = pthread_mutex_trylock(&m_mutex); |
| 495 | |
| 496 | if (result == 0) |
| 497 | return true; |
| 498 | if (result == EBUSY) |
| 499 | return false; |
| 500 | |
| 501 | ASSERT_NOT_REACHED(); |
| 502 | return false; |
| 503 | } |
| 504 | |
| 505 | void Mutex::unlock() |
| 506 | { |
| 507 | int result = pthread_mutex_unlock(&m_mutex); |
| 508 | ASSERT_UNUSED(result, !result); |
| 509 | } |
| 510 | |
| 511 | ThreadCondition::~ThreadCondition() |
| 512 | { |
| 513 | pthread_cond_destroy(&m_condition); |
| 514 | } |
| 515 | |
| 516 | void ThreadCondition::wait(Mutex& mutex) |
| 517 | { |
| 518 | int result = pthread_cond_wait(&m_condition, &mutex.impl()); |
| 519 | ASSERT_UNUSED(result, !result); |
| 520 | } |
| 521 | |
| 522 | bool ThreadCondition::timedWait(Mutex& mutex, WallTime absoluteTime) |
| 523 | { |
| 524 | if (absoluteTime < WallTime::now()) |
| 525 | return false; |
| 526 | |
| 527 | if (absoluteTime > WallTime::fromRawSeconds(INT_MAX)) { |
| 528 | wait(mutex); |
| 529 | return true; |
| 530 | } |
| 531 | |
| 532 | double rawSeconds = absoluteTime.secondsSinceEpoch().value(); |
| 533 | |
| 534 | int timeSeconds = static_cast<int>(rawSeconds); |
| 535 | int timeNanoseconds = static_cast<int>((rawSeconds - timeSeconds) * 1E9); |
| 536 | |
| 537 | timespec targetTime; |
| 538 | targetTime.tv_sec = timeSeconds; |
| 539 | targetTime.tv_nsec = timeNanoseconds; |
| 540 | |
| 541 | return pthread_cond_timedwait(&m_condition, &mutex.impl(), &targetTime) == 0; |
| 542 | } |
| 543 | |
| 544 | void ThreadCondition::signal() |
| 545 | { |
| 546 | int result = pthread_cond_signal(&m_condition); |
| 547 | ASSERT_UNUSED(result, !result); |
| 548 | } |
| 549 | |
| 550 | void ThreadCondition::broadcast() |
| 551 | { |
| 552 | int result = pthread_cond_broadcast(&m_condition); |
| 553 | ASSERT_UNUSED(result, !result); |
| 554 | } |
| 555 | |
| 556 | void Thread::yield() |
| 557 | { |
| 558 | sched_yield(); |
| 559 | } |
| 560 | |
| 561 | } // namespace WTF |
| 562 | |
| 563 | #endif // USE(PTHREADS) |
| 564 | |