| 1 | /* |
| 2 | * Copyright (C) 2011-2019 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "DFGOSREntry.h" |
| 28 | |
| 29 | #if ENABLE(DFG_JIT) |
| 30 | |
| 31 | #include "CallFrame.h" |
| 32 | #include "CodeBlock.h" |
| 33 | #include "DFGJITCode.h" |
| 34 | #include "DFGNode.h" |
| 35 | #include "InterpreterInlines.h" |
| 36 | #include "JIT.h" |
| 37 | #include "JSCInlines.h" |
| 38 | #include "VMInlines.h" |
| 39 | #include <wtf/CommaPrinter.h> |
| 40 | |
| 41 | namespace JSC { namespace DFG { |
| 42 | |
| 43 | void OSREntryData::dumpInContext(PrintStream& out, DumpContext* context) const |
| 44 | { |
| 45 | out.print("bc#" , m_bytecodeIndex, ", machine code = " , RawPointer(m_machineCode.executableAddress())); |
| 46 | out.print(", stack rules = [" ); |
| 47 | |
| 48 | auto printOperand = [&] (VirtualRegister reg) { |
| 49 | out.print(inContext(m_expectedValues.operand(reg), context), " (" ); |
| 50 | VirtualRegister toReg; |
| 51 | bool overwritten = false; |
| 52 | for (OSREntryReshuffling reshuffling : m_reshufflings) { |
| 53 | if (reg == VirtualRegister(reshuffling.fromOffset)) { |
| 54 | toReg = VirtualRegister(reshuffling.toOffset); |
| 55 | break; |
| 56 | } |
| 57 | if (reg == VirtualRegister(reshuffling.toOffset)) |
| 58 | overwritten = true; |
| 59 | } |
| 60 | if (!overwritten && !toReg.isValid()) |
| 61 | toReg = reg; |
| 62 | if (toReg.isValid()) { |
| 63 | if (toReg.isLocal() && !m_machineStackUsed.get(toReg.toLocal())) |
| 64 | out.print("ignored" ); |
| 65 | else |
| 66 | out.print("maps to " , toReg); |
| 67 | } else |
| 68 | out.print("overwritten" ); |
| 69 | if (reg.isLocal() && m_localsForcedDouble.get(reg.toLocal())) |
| 70 | out.print(", forced double" ); |
| 71 | if (reg.isLocal() && m_localsForcedAnyInt.get(reg.toLocal())) |
| 72 | out.print(", forced machine int" ); |
| 73 | out.print(")" ); |
| 74 | }; |
| 75 | |
| 76 | CommaPrinter comma; |
| 77 | for (size_t argumentIndex = m_expectedValues.numberOfArguments(); argumentIndex--;) { |
| 78 | out.print(comma, "arg" , argumentIndex, ":" ); |
| 79 | printOperand(virtualRegisterForArgument(argumentIndex)); |
| 80 | } |
| 81 | for (size_t localIndex = 0; localIndex < m_expectedValues.numberOfLocals(); ++localIndex) { |
| 82 | out.print(comma, "loc" , localIndex, ":" ); |
| 83 | printOperand(virtualRegisterForLocal(localIndex)); |
| 84 | } |
| 85 | |
| 86 | out.print("], machine stack used = " , m_machineStackUsed); |
| 87 | } |
| 88 | |
| 89 | void OSREntryData::dump(PrintStream& out) const |
| 90 | { |
| 91 | dumpInContext(out, nullptr); |
| 92 | } |
| 93 | |
| 94 | SUPPRESS_ASAN |
| 95 | void* prepareOSREntry(ExecState* exec, CodeBlock* codeBlock, unsigned bytecodeIndex) |
| 96 | { |
| 97 | ASSERT(JITCode::isOptimizingJIT(codeBlock->jitType())); |
| 98 | ASSERT(codeBlock->alternative()); |
| 99 | ASSERT(codeBlock->alternative()->jitType() == JITType::BaselineJIT); |
| 100 | ASSERT(!codeBlock->jitCodeMap()); |
| 101 | ASSERT(codeBlock->jitCode()->dfgCommon()->isStillValid); |
| 102 | |
| 103 | if (!Options::useOSREntryToDFG()) |
| 104 | return nullptr; |
| 105 | |
| 106 | if (Options::verboseOSR()) { |
| 107 | dataLog( |
| 108 | "DFG OSR in " , *codeBlock->alternative(), " -> " , *codeBlock, |
| 109 | " from bc#" , bytecodeIndex, "\n" ); |
| 110 | } |
| 111 | |
| 112 | VM* vm = &exec->vm(); |
| 113 | |
| 114 | sanitizeStackForVM(vm); |
| 115 | |
| 116 | if (bytecodeIndex) |
| 117 | codeBlock->ownerExecutable()->setDidTryToEnterInLoop(true); |
| 118 | |
| 119 | if (codeBlock->jitType() != JITType::DFGJIT) { |
| 120 | RELEASE_ASSERT(codeBlock->jitType() == JITType::FTLJIT); |
| 121 | |
| 122 | // When will this happen? We could have: |
| 123 | // |
| 124 | // - An exit from the FTL JIT into the baseline JIT followed by an attempt |
| 125 | // to reenter. We're fine with allowing this to fail. If it happens |
| 126 | // enough we'll just reoptimize. It basically means that the OSR exit cost |
| 127 | // us dearly and so reoptimizing is the right thing to do. |
| 128 | // |
| 129 | // - We have recursive code with hot loops. Consider that foo has a hot loop |
| 130 | // that calls itself. We have two foo's on the stack, lets call them foo1 |
| 131 | // and foo2, with foo1 having called foo2 from foo's hot loop. foo2 gets |
| 132 | // optimized all the way into the FTL. Then it returns into foo1, and then |
| 133 | // foo1 wants to get optimized. It might reach this conclusion from its |
| 134 | // hot loop and attempt to OSR enter. And we'll tell it that it can't. It |
| 135 | // might be worth addressing this case, but I just think this case will |
| 136 | // be super rare. For now, if it does happen, it'll cause some compilation |
| 137 | // thrashing. |
| 138 | |
| 139 | if (Options::verboseOSR()) |
| 140 | dataLog(" OSR failed because the target code block is not DFG.\n" ); |
| 141 | return nullptr; |
| 142 | } |
| 143 | |
| 144 | JITCode* jitCode = codeBlock->jitCode()->dfg(); |
| 145 | OSREntryData* entry = jitCode->osrEntryDataForBytecodeIndex(bytecodeIndex); |
| 146 | |
| 147 | if (!entry) { |
| 148 | if (Options::verboseOSR()) |
| 149 | dataLogF(" OSR failed because the entrypoint was optimized out.\n" ); |
| 150 | return nullptr; |
| 151 | } |
| 152 | |
| 153 | ASSERT(entry->m_bytecodeIndex == bytecodeIndex); |
| 154 | |
| 155 | // The code below checks if it is safe to perform OSR entry. It may find |
| 156 | // that it is unsafe to do so, for any number of reasons, which are documented |
| 157 | // below. If the code decides not to OSR then it returns 0, and it's the caller's |
| 158 | // responsibility to patch up the state in such a way as to ensure that it's |
| 159 | // both safe and efficient to continue executing baseline code for now. This |
| 160 | // should almost certainly include calling either codeBlock->optimizeAfterWarmUp() |
| 161 | // or codeBlock->dontOptimizeAnytimeSoon(). |
| 162 | |
| 163 | // 1) Verify predictions. If the predictions are inconsistent with the actual |
| 164 | // values, then OSR entry is not possible at this time. It's tempting to |
| 165 | // assume that we could somehow avoid this case. We can certainly avoid it |
| 166 | // for first-time loop OSR - that is, OSR into a CodeBlock that we have just |
| 167 | // compiled. Then we are almost guaranteed that all of the predictions will |
| 168 | // check out. It would be pretty easy to make that a hard guarantee. But |
| 169 | // then there would still be the case where two call frames with the same |
| 170 | // baseline CodeBlock are on the stack at the same time. The top one |
| 171 | // triggers compilation and OSR. In that case, we may no longer have |
| 172 | // accurate value profiles for the one deeper in the stack. Hence, when we |
| 173 | // pop into the CodeBlock that is deeper on the stack, we might OSR and |
| 174 | // realize that the predictions are wrong. Probably, in most cases, this is |
| 175 | // just an anomaly in the sense that the older CodeBlock simply went off |
| 176 | // into a less-likely path. So, the wisest course of action is to simply not |
| 177 | // OSR at this time. |
| 178 | |
| 179 | for (size_t argument = 0; argument < entry->m_expectedValues.numberOfArguments(); ++argument) { |
| 180 | if (argument >= exec->argumentCountIncludingThis()) { |
| 181 | if (Options::verboseOSR()) { |
| 182 | dataLogF(" OSR failed because argument %zu was not passed, expected " , argument); |
| 183 | entry->m_expectedValues.argument(argument).dump(WTF::dataFile()); |
| 184 | dataLogF(".\n" ); |
| 185 | } |
| 186 | return nullptr; |
| 187 | } |
| 188 | |
| 189 | JSValue value; |
| 190 | if (!argument) |
| 191 | value = exec->thisValue(); |
| 192 | else |
| 193 | value = exec->argument(argument - 1); |
| 194 | |
| 195 | if (!entry->m_expectedValues.argument(argument).validateOSREntryValue(value, FlushedJSValue)) { |
| 196 | if (Options::verboseOSR()) { |
| 197 | dataLog( |
| 198 | " OSR failed because argument " , argument, " is " , value, |
| 199 | ", expected " , entry->m_expectedValues.argument(argument), ".\n" ); |
| 200 | } |
| 201 | return nullptr; |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | for (size_t local = 0; local < entry->m_expectedValues.numberOfLocals(); ++local) { |
| 206 | int localOffset = virtualRegisterForLocal(local).offset(); |
| 207 | JSValue value = exec->registers()[localOffset].asanUnsafeJSValue(); |
| 208 | FlushFormat format = FlushedJSValue; |
| 209 | |
| 210 | if (entry->m_localsForcedAnyInt.get(local)) { |
| 211 | if (!value.isAnyInt()) { |
| 212 | dataLogLnIf(Options::verboseOSR(), |
| 213 | " OSR failed because variable " , localOffset, " is " , |
| 214 | value, ", expected " , |
| 215 | "machine int." ); |
| 216 | return nullptr; |
| 217 | } |
| 218 | value = jsDoubleNumber(value.asAnyInt()); |
| 219 | format = FlushedInt52; |
| 220 | } |
| 221 | |
| 222 | if (entry->m_localsForcedDouble.get(local)) { |
| 223 | if (!value.isNumber()) { |
| 224 | dataLogLnIf(Options::verboseOSR(), |
| 225 | " OSR failed because variable " , localOffset, " is " , |
| 226 | value, ", expected number." ); |
| 227 | return nullptr; |
| 228 | } |
| 229 | value = jsDoubleNumber(value.asNumber()); |
| 230 | format = FlushedDouble; |
| 231 | } |
| 232 | |
| 233 | if (!entry->m_expectedValues.local(local).validateOSREntryValue(value, format)) { |
| 234 | dataLogLnIf(Options::verboseOSR(), |
| 235 | " OSR failed because variable " , VirtualRegister(localOffset), " is " , |
| 236 | value, ", expected " , |
| 237 | entry->m_expectedValues.local(local), "." ); |
| 238 | return nullptr; |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | // 2) Check the stack height. The DFG JIT may require a taller stack than the |
| 243 | // baseline JIT, in some cases. If we can't grow the stack, then don't do |
| 244 | // OSR right now. That's the only option we have unless we want basic block |
| 245 | // boundaries to start throwing RangeErrors. Although that would be possible, |
| 246 | // it seems silly: you'd be diverting the program to error handling when it |
| 247 | // would have otherwise just kept running albeit less quickly. |
| 248 | |
| 249 | unsigned frameSizeForCheck = jitCode->common.requiredRegisterCountForExecutionAndExit(); |
| 250 | if (UNLIKELY(!vm->ensureStackCapacityFor(&exec->registers()[virtualRegisterForLocal(frameSizeForCheck - 1).offset()]))) { |
| 251 | if (Options::verboseOSR()) |
| 252 | dataLogF(" OSR failed because stack growth failed.\n" ); |
| 253 | return nullptr; |
| 254 | } |
| 255 | |
| 256 | if (Options::verboseOSR()) |
| 257 | dataLogF(" OSR should succeed.\n" ); |
| 258 | |
| 259 | // At this point we're committed to entering. We will do some work to set things up, |
| 260 | // but we also rely on our caller recognizing that when we return a non-null pointer, |
| 261 | // that means that we're already past the point of no return and we must succeed at |
| 262 | // entering. |
| 263 | |
| 264 | // 3) Set up the data in the scratch buffer and perform data format conversions. |
| 265 | |
| 266 | unsigned frameSize = jitCode->common.frameRegisterCount; |
| 267 | unsigned baselineFrameSize = entry->m_expectedValues.numberOfLocals(); |
| 268 | unsigned maxFrameSize = std::max(frameSize, baselineFrameSize); |
| 269 | |
| 270 | Register* scratch = bitwise_cast<Register*>(vm->scratchBufferForSize(sizeof(Register) * (2 + CallFrame::headerSizeInRegisters + maxFrameSize))->dataBuffer()); |
| 271 | |
| 272 | *bitwise_cast<size_t*>(scratch + 0) = frameSize; |
| 273 | |
| 274 | void* targetPC = entry->m_machineCode.executableAddress(); |
| 275 | RELEASE_ASSERT(codeBlock->jitCode()->contains(entry->m_machineCode.untaggedExecutableAddress())); |
| 276 | if (Options::verboseOSR()) |
| 277 | dataLogF(" OSR using target PC %p.\n" , targetPC); |
| 278 | RELEASE_ASSERT(targetPC); |
| 279 | *bitwise_cast<void**>(scratch + 1) = retagCodePtr(targetPC, OSREntryPtrTag, bitwise_cast<PtrTag>(exec)); |
| 280 | |
| 281 | Register* pivot = scratch + 2 + CallFrame::headerSizeInRegisters; |
| 282 | |
| 283 | for (int index = -CallFrame::headerSizeInRegisters; index < static_cast<int>(baselineFrameSize); ++index) { |
| 284 | VirtualRegister reg(-1 - index); |
| 285 | |
| 286 | if (reg.isLocal()) { |
| 287 | if (entry->m_localsForcedDouble.get(reg.toLocal())) { |
| 288 | *bitwise_cast<double*>(pivot + index) = exec->registers()[reg.offset()].asanUnsafeJSValue().asNumber(); |
| 289 | continue; |
| 290 | } |
| 291 | |
| 292 | if (entry->m_localsForcedAnyInt.get(reg.toLocal())) { |
| 293 | *bitwise_cast<int64_t*>(pivot + index) = exec->registers()[reg.offset()].asanUnsafeJSValue().asAnyInt() << JSValue::int52ShiftAmount; |
| 294 | continue; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | pivot[index] = exec->registers()[reg.offset()].asanUnsafeJSValue(); |
| 299 | } |
| 300 | |
| 301 | // 4) Reshuffle those registers that need reshuffling. |
| 302 | Vector<JSValue> temporaryLocals(entry->m_reshufflings.size()); |
| 303 | for (unsigned i = entry->m_reshufflings.size(); i--;) |
| 304 | temporaryLocals[i] = pivot[VirtualRegister(entry->m_reshufflings[i].fromOffset).toLocal()].asanUnsafeJSValue(); |
| 305 | for (unsigned i = entry->m_reshufflings.size(); i--;) |
| 306 | pivot[VirtualRegister(entry->m_reshufflings[i].toOffset).toLocal()] = temporaryLocals[i]; |
| 307 | |
| 308 | // 5) Clear those parts of the call frame that the DFG ain't using. This helps GC on |
| 309 | // some programs by eliminating some stale pointer pathologies. |
| 310 | for (unsigned i = frameSize; i--;) { |
| 311 | if (entry->m_machineStackUsed.get(i)) |
| 312 | continue; |
| 313 | pivot[i] = JSValue(); |
| 314 | } |
| 315 | |
| 316 | // 6) Copy our callee saves to buffer. |
| 317 | #if NUMBER_OF_CALLEE_SAVES_REGISTERS > 0 |
| 318 | const RegisterAtOffsetList* registerSaveLocations = codeBlock->calleeSaveRegisters(); |
| 319 | RegisterAtOffsetList* allCalleeSaves = RegisterSet::vmCalleeSaveRegisterOffsets(); |
| 320 | RegisterSet dontSaveRegisters = RegisterSet(RegisterSet::stackRegisters(), RegisterSet::allFPRs()); |
| 321 | |
| 322 | unsigned registerCount = registerSaveLocations->size(); |
| 323 | VMEntryRecord* record = vmEntryRecord(vm->topEntryFrame); |
| 324 | for (unsigned i = 0; i < registerCount; i++) { |
| 325 | RegisterAtOffset currentEntry = registerSaveLocations->at(i); |
| 326 | if (dontSaveRegisters.get(currentEntry.reg())) |
| 327 | continue; |
| 328 | RegisterAtOffset* calleeSavesEntry = allCalleeSaves->find(currentEntry.reg()); |
| 329 | |
| 330 | *(bitwise_cast<intptr_t*>(pivot - 1) - currentEntry.offsetAsIndex()) = record->calleeSaveRegistersBuffer[calleeSavesEntry->offsetAsIndex()]; |
| 331 | } |
| 332 | #endif |
| 333 | |
| 334 | // 7) Fix the call frame to have the right code block. |
| 335 | |
| 336 | *bitwise_cast<CodeBlock**>(pivot - 1 - CallFrameSlot::codeBlock) = codeBlock; |
| 337 | |
| 338 | if (Options::verboseOSR()) |
| 339 | dataLogF(" OSR returning data buffer %p.\n" , scratch); |
| 340 | return scratch; |
| 341 | } |
| 342 | |
| 343 | MacroAssemblerCodePtr<ExceptionHandlerPtrTag> prepareCatchOSREntry(ExecState* exec, CodeBlock* codeBlock, unsigned bytecodeIndex) |
| 344 | { |
| 345 | ASSERT(codeBlock->jitType() == JITType::DFGJIT || codeBlock->jitType() == JITType::FTLJIT); |
| 346 | ASSERT(codeBlock->jitCode()->dfgCommon()->isStillValid); |
| 347 | |
| 348 | if (!Options::useOSREntryToDFG() && codeBlock->jitCode()->jitType() == JITType::DFGJIT) |
| 349 | return nullptr; |
| 350 | if (!Options::useOSREntryToFTL() && codeBlock->jitCode()->jitType() == JITType::FTLJIT) |
| 351 | return nullptr; |
| 352 | |
| 353 | VM& vm = exec->vm(); |
| 354 | |
| 355 | CommonData* dfgCommon = codeBlock->jitCode()->dfgCommon(); |
| 356 | RELEASE_ASSERT(dfgCommon); |
| 357 | DFG::CatchEntrypointData* catchEntrypoint = dfgCommon->catchOSREntryDataForBytecodeIndex(bytecodeIndex); |
| 358 | if (!catchEntrypoint) { |
| 359 | // This can be null under some circumstances. The most common is that we didn't |
| 360 | // compile this op_catch as an entrypoint since it had never executed when starting |
| 361 | // the compilation. |
| 362 | return nullptr; |
| 363 | } |
| 364 | |
| 365 | // We're only allowed to OSR enter if we've proven we have compatible argument types. |
| 366 | for (unsigned argument = 0; argument < catchEntrypoint->argumentFormats.size(); ++argument) { |
| 367 | JSValue value = exec->uncheckedR(virtualRegisterForArgument(argument)).jsValue(); |
| 368 | switch (catchEntrypoint->argumentFormats[argument]) { |
| 369 | case DFG::FlushedInt32: |
| 370 | if (!value.isInt32()) |
| 371 | return nullptr; |
| 372 | break; |
| 373 | case DFG::FlushedCell: |
| 374 | if (!value.isCell()) |
| 375 | return nullptr; |
| 376 | break; |
| 377 | case DFG::FlushedBoolean: |
| 378 | if (!value.isBoolean()) |
| 379 | return nullptr; |
| 380 | break; |
| 381 | case DFG::DeadFlush: |
| 382 | // This means the argument is not alive. Therefore, it's allowed to be any type. |
| 383 | break; |
| 384 | case DFG::FlushedJSValue: |
| 385 | // An argument is trivially a JSValue. |
| 386 | break; |
| 387 | default: |
| 388 | RELEASE_ASSERT_NOT_REACHED(); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | unsigned frameSizeForCheck = dfgCommon->requiredRegisterCountForExecutionAndExit(); |
| 393 | if (UNLIKELY(!vm.ensureStackCapacityFor(&exec->registers()[virtualRegisterForLocal(frameSizeForCheck).offset()]))) |
| 394 | return nullptr; |
| 395 | |
| 396 | auto instruction = exec->codeBlock()->instructions().at(exec->bytecodeOffset()); |
| 397 | ASSERT(instruction->is<OpCatch>()); |
| 398 | ValueProfileAndOperandBuffer* buffer = instruction->as<OpCatch>().metadata(exec).m_buffer; |
| 399 | JSValue* dataBuffer = reinterpret_cast<JSValue*>(dfgCommon->catchOSREntryBuffer->dataBuffer()); |
| 400 | unsigned index = 0; |
| 401 | buffer->forEach([&] (ValueProfileAndOperand& profile) { |
| 402 | if (!VirtualRegister(profile.m_operand).isLocal()) |
| 403 | return; |
| 404 | dataBuffer[index] = exec->uncheckedR(profile.m_operand).jsValue(); |
| 405 | ++index; |
| 406 | }); |
| 407 | |
| 408 | // The active length of catchOSREntryBuffer will be zeroed by ClearCatchLocals node. |
| 409 | dfgCommon->catchOSREntryBuffer->setActiveLength(sizeof(JSValue) * index); |
| 410 | return catchEntrypoint->machineCode; |
| 411 | } |
| 412 | |
| 413 | } } // namespace JSC::DFG |
| 414 | |
| 415 | #endif // ENABLE(DFG_JIT) |
| 416 | |