| 1 | /* |
| 2 | * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> |
| 4 | * Copyright (C) 2012 Igalia, S.L. |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions |
| 8 | * are met: |
| 9 | * |
| 10 | * 1. Redistributions of source code must retain the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer. |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in the |
| 14 | * documentation and/or other materials provided with the distribution. |
| 15 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 16 | * its contributors may be used to endorse or promote products derived |
| 17 | * from this software without specific prior written permission. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 20 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 21 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 22 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 23 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 24 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 25 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 26 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 28 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | */ |
| 30 | |
| 31 | #include "config.h" |
| 32 | #include "BytecodeGenerator.h" |
| 33 | |
| 34 | #include "ArithProfile.h" |
| 35 | #include "BuiltinExecutables.h" |
| 36 | #include "BuiltinNames.h" |
| 37 | #include "BytecodeGeneratorification.h" |
| 38 | #include "BytecodeLivenessAnalysis.h" |
| 39 | #include "BytecodeStructs.h" |
| 40 | #include "BytecodeUseDef.h" |
| 41 | #include "CatchScope.h" |
| 42 | #include "DefinePropertyAttributes.h" |
| 43 | #include "Interpreter.h" |
| 44 | #include "JSAsyncGeneratorFunction.h" |
| 45 | #include "JSBigInt.h" |
| 46 | #include "JSCInlines.h" |
| 47 | #include "JSFixedArray.h" |
| 48 | #include "JSFunction.h" |
| 49 | #include "JSGeneratorFunction.h" |
| 50 | #include "JSImmutableButterfly.h" |
| 51 | #include "JSLexicalEnvironment.h" |
| 52 | #include "JSTemplateObjectDescriptor.h" |
| 53 | #include "LowLevelInterpreter.h" |
| 54 | #include "Options.h" |
| 55 | #include "PreciseJumpTargetsInlines.h" |
| 56 | #include "StackAlignment.h" |
| 57 | #include "StrongInlines.h" |
| 58 | #include "SuperSamplerBytecodeScope.h" |
| 59 | #include "UnlinkedCodeBlock.h" |
| 60 | #include "UnlinkedEvalCodeBlock.h" |
| 61 | #include "UnlinkedFunctionCodeBlock.h" |
| 62 | #include "UnlinkedMetadataTableInlines.h" |
| 63 | #include "UnlinkedModuleProgramCodeBlock.h" |
| 64 | #include "UnlinkedProgramCodeBlock.h" |
| 65 | #include <wtf/BitVector.h> |
| 66 | #include <wtf/CommaPrinter.h> |
| 67 | #include <wtf/Optional.h> |
| 68 | #include <wtf/SmallPtrSet.h> |
| 69 | #include <wtf/StdLibExtras.h> |
| 70 | #include <wtf/text/WTFString.h> |
| 71 | |
| 72 | namespace JSC { |
| 73 | |
| 74 | template<typename CallOp, typename = std::true_type> |
| 75 | struct VarArgsOp; |
| 76 | |
| 77 | template<typename CallOp> |
| 78 | struct VarArgsOp<CallOp, std::enable_if_t<std::is_same<CallOp, OpTailCall>::value, std::true_type>> { |
| 79 | using type = OpTailCallVarargs; |
| 80 | }; |
| 81 | |
| 82 | |
| 83 | template<typename CallOp> |
| 84 | struct VarArgsOp<CallOp, std::enable_if_t<!std::is_same<CallOp, OpTailCall>::value, std::true_type>> { |
| 85 | using type = OpCallVarargs; |
| 86 | }; |
| 87 | |
| 88 | |
| 89 | template<typename T> |
| 90 | static inline void shrinkToFit(T& segmentedVector) |
| 91 | { |
| 92 | while (segmentedVector.size() && !segmentedVector.last().refCount()) |
| 93 | segmentedVector.removeLast(); |
| 94 | } |
| 95 | |
| 96 | void Label::setLocation(BytecodeGenerator& generator, unsigned location) |
| 97 | { |
| 98 | m_location = location; |
| 99 | |
| 100 | for (auto offset : m_unresolvedJumps) { |
| 101 | auto instruction = generator.m_writer.ref(offset); |
| 102 | int target = m_location - offset; |
| 103 | |
| 104 | #define CASE(__op) \ |
| 105 | case __op::opcodeID: \ |
| 106 | instruction->cast<__op>()->setTargetLabel(BoundLabel(target), [&]() { \ |
| 107 | generator.m_codeBlock->addOutOfLineJumpTarget(instruction.offset(), target); \ |
| 108 | return BoundLabel(); \ |
| 109 | }); \ |
| 110 | break; |
| 111 | |
| 112 | switch (instruction->opcodeID()) { |
| 113 | CASE(OpJmp) |
| 114 | CASE(OpJtrue) |
| 115 | CASE(OpJfalse) |
| 116 | CASE(OpJeqNull) |
| 117 | CASE(OpJneqNull) |
| 118 | CASE(OpJeq) |
| 119 | CASE(OpJstricteq) |
| 120 | CASE(OpJneq) |
| 121 | CASE(OpJneqPtr) |
| 122 | CASE(OpJnstricteq) |
| 123 | CASE(OpJless) |
| 124 | CASE(OpJlesseq) |
| 125 | CASE(OpJgreater) |
| 126 | CASE(OpJgreatereq) |
| 127 | CASE(OpJnless) |
| 128 | CASE(OpJnlesseq) |
| 129 | CASE(OpJngreater) |
| 130 | CASE(OpJngreatereq) |
| 131 | CASE(OpJbelow) |
| 132 | CASE(OpJbeloweq) |
| 133 | default: |
| 134 | ASSERT_NOT_REACHED(); |
| 135 | } |
| 136 | #undef CASE |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | int BoundLabel::target() |
| 141 | { |
| 142 | switch (m_type) { |
| 143 | case Offset: |
| 144 | return m_target; |
| 145 | case GeneratorBackward: |
| 146 | return m_target - m_generator->m_writer.position(); |
| 147 | case GeneratorForward: |
| 148 | return 0; |
| 149 | default: |
| 150 | RELEASE_ASSERT_NOT_REACHED(); |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | int BoundLabel::saveTarget() |
| 155 | { |
| 156 | if (m_type == GeneratorForward) { |
| 157 | m_savedTarget = m_generator->m_writer.position(); |
| 158 | return 0; |
| 159 | } |
| 160 | |
| 161 | m_savedTarget = target(); |
| 162 | return m_savedTarget; |
| 163 | } |
| 164 | |
| 165 | int BoundLabel::commitTarget() |
| 166 | { |
| 167 | if (m_type == GeneratorForward) { |
| 168 | m_label->m_unresolvedJumps.append(m_savedTarget); |
| 169 | return 0; |
| 170 | } |
| 171 | |
| 172 | return m_savedTarget; |
| 173 | } |
| 174 | |
| 175 | void Variable::dump(PrintStream& out) const |
| 176 | { |
| 177 | out.print( |
| 178 | "{ident = " , m_ident, |
| 179 | ", offset = " , m_offset, |
| 180 | ", local = " , RawPointer(m_local), |
| 181 | ", attributes = " , m_attributes, |
| 182 | ", kind = " , m_kind, |
| 183 | ", symbolTableConstantIndex = " , m_symbolTableConstantIndex, |
| 184 | ", isLexicallyScoped = " , m_isLexicallyScoped, "}" ); |
| 185 | } |
| 186 | |
| 187 | FinallyContext::FinallyContext(BytecodeGenerator& generator, Label& finallyLabel) |
| 188 | : m_outerContext(generator.m_currentFinallyContext) |
| 189 | , m_finallyLabel(&finallyLabel) |
| 190 | { |
| 191 | ASSERT(m_jumps.isEmpty()); |
| 192 | m_completionRecord.typeRegister = generator.newTemporary(); |
| 193 | m_completionRecord.valueRegister = generator.newTemporary(); |
| 194 | generator.emitLoad(completionTypeRegister(), CompletionType::Normal); |
| 195 | generator.moveEmptyValue(completionValueRegister()); |
| 196 | } |
| 197 | |
| 198 | ParserError BytecodeGenerator::generate() |
| 199 | { |
| 200 | m_codeBlock->setThisRegister(m_thisRegister.virtualRegister()); |
| 201 | |
| 202 | emitLogShadowChickenPrologueIfNecessary(); |
| 203 | |
| 204 | // If we have declared a variable named "arguments" and we are using arguments then we should |
| 205 | // perform that assignment now. |
| 206 | if (m_needToInitializeArguments) |
| 207 | initializeVariable(variable(propertyNames().arguments), m_argumentsRegister); |
| 208 | |
| 209 | if (m_restParameter) |
| 210 | m_restParameter->emit(*this); |
| 211 | |
| 212 | { |
| 213 | RefPtr<RegisterID> temp = newTemporary(); |
| 214 | RefPtr<RegisterID> tolLevelScope; |
| 215 | for (auto functionPair : m_functionsToInitialize) { |
| 216 | FunctionMetadataNode* metadata = functionPair.first; |
| 217 | FunctionVariableType functionType = functionPair.second; |
| 218 | emitNewFunction(temp.get(), metadata); |
| 219 | if (functionType == NormalFunctionVariable) |
| 220 | initializeVariable(variable(metadata->ident()), temp.get()); |
| 221 | else if (functionType == TopLevelFunctionVariable) { |
| 222 | if (!tolLevelScope) { |
| 223 | // We know this will resolve to the top level scope or global object because our parser/global initialization code |
| 224 | // doesn't allow let/const/class variables to have the same names as functions. |
| 225 | // This is a top level function, and it's an error to ever create a top level function |
| 226 | // name that would resolve to a lexical variable. E.g: |
| 227 | // ``` |
| 228 | // function f() { |
| 229 | // { |
| 230 | // let x; |
| 231 | // { |
| 232 | // //// error thrown here |
| 233 | // eval("function x(){}"); |
| 234 | // } |
| 235 | // } |
| 236 | // } |
| 237 | // ``` |
| 238 | // Therefore, we're guaranteed to have this resolve to a top level variable. |
| 239 | RefPtr<RegisterID> tolLevelObjectScope = emitResolveScope(nullptr, Variable(metadata->ident())); |
| 240 | tolLevelScope = newBlockScopeVariable(); |
| 241 | move(tolLevelScope.get(), tolLevelObjectScope.get()); |
| 242 | } |
| 243 | emitPutToScope(tolLevelScope.get(), Variable(metadata->ident()), temp.get(), ThrowIfNotFound, InitializationMode::NotInitialization); |
| 244 | } else |
| 245 | RELEASE_ASSERT_NOT_REACHED(); |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | bool callingClassConstructor = constructorKind() != ConstructorKind::None && !isConstructor(); |
| 250 | if (!callingClassConstructor) |
| 251 | m_scopeNode->emitBytecode(*this); |
| 252 | else { |
| 253 | // At this point we would have emitted an unconditional throw followed by some nonsense that's |
| 254 | // just an artifact of how this generator is structured. That code never runs, but it confuses |
| 255 | // bytecode analyses because it constitutes an unterminated basic block. So, we terminate the |
| 256 | // basic block the strongest way possible. |
| 257 | emitUnreachable(); |
| 258 | } |
| 259 | |
| 260 | for (auto& handler : m_exceptionHandlersToEmit) { |
| 261 | Ref<Label> realCatchTarget = newLabel(); |
| 262 | TryData* tryData = handler.tryData; |
| 263 | |
| 264 | OpCatch::emit(this, handler.exceptionRegister, handler.thrownValueRegister); |
| 265 | realCatchTarget->setLocation(*this, m_lastInstruction.offset()); |
| 266 | if (handler.completionTypeRegister.isValid()) { |
| 267 | RegisterID completionTypeRegister { handler.completionTypeRegister }; |
| 268 | CompletionType completionType = |
| 269 | tryData->handlerType == HandlerType::Finally || tryData->handlerType == HandlerType::SynthesizedFinally |
| 270 | ? CompletionType::Throw |
| 271 | : CompletionType::Normal; |
| 272 | emitLoad(&completionTypeRegister, completionType); |
| 273 | } |
| 274 | m_codeBlock->addJumpTarget(m_lastInstruction.offset()); |
| 275 | |
| 276 | |
| 277 | emitJump(tryData->target.get()); |
| 278 | tryData->target = WTFMove(realCatchTarget); |
| 279 | } |
| 280 | |
| 281 | m_staticPropertyAnalyzer.kill(); |
| 282 | |
| 283 | for (auto& range : m_tryRanges) { |
| 284 | int start = range.start->bind(); |
| 285 | int end = range.end->bind(); |
| 286 | |
| 287 | // This will happen for empty try blocks and for some cases of finally blocks: |
| 288 | // |
| 289 | // try { |
| 290 | // try { |
| 291 | // } finally { |
| 292 | // return 42; |
| 293 | // // *HERE* |
| 294 | // } |
| 295 | // } finally { |
| 296 | // print("things"); |
| 297 | // } |
| 298 | // |
| 299 | // The return will pop scopes to execute the outer finally block. But this includes |
| 300 | // popping the try context for the inner try. The try context is live in the fall-through |
| 301 | // part of the finally block not because we will emit a handler that overlaps the finally, |
| 302 | // but because we haven't yet had a chance to plant the catch target. Then when we finish |
| 303 | // emitting code for the outer finally block, we repush the try contex, this time with a |
| 304 | // new start index. But that means that the start index for the try range corresponding |
| 305 | // to the inner-finally-following-the-return (marked as "*HERE*" above) will be greater |
| 306 | // than the end index of the try block. This is harmless since end < start handlers will |
| 307 | // never get matched in our logic, but we do the runtime a favor and choose to not emit |
| 308 | // such handlers at all. |
| 309 | if (end <= start) |
| 310 | continue; |
| 311 | |
| 312 | UnlinkedHandlerInfo info(static_cast<uint32_t>(start), static_cast<uint32_t>(end), |
| 313 | static_cast<uint32_t>(range.tryData->target->bind()), range.tryData->handlerType); |
| 314 | m_codeBlock->addExceptionHandler(info); |
| 315 | } |
| 316 | |
| 317 | |
| 318 | if (isGeneratorOrAsyncFunctionBodyParseMode(m_codeBlock->parseMode())) |
| 319 | performGeneratorification(*this, m_codeBlock.get(), m_writer, m_generatorFrameSymbolTable.get(), m_generatorFrameSymbolTableIndex); |
| 320 | |
| 321 | RELEASE_ASSERT(static_cast<unsigned>(m_codeBlock->numCalleeLocals()) < static_cast<unsigned>(FirstConstantRegisterIndex)); |
| 322 | m_codeBlock->setInstructions(m_writer.finalize()); |
| 323 | |
| 324 | m_codeBlock->shrinkToFit(); |
| 325 | |
| 326 | if (m_expressionTooDeep) |
| 327 | return ParserError(ParserError::OutOfMemory); |
| 328 | return ParserError(ParserError::ErrorNone); |
| 329 | } |
| 330 | |
| 331 | BytecodeGenerator::BytecodeGenerator(VM& vm, ProgramNode* programNode, UnlinkedProgramCodeBlock* codeBlock, OptionSet<CodeGenerationMode> codeGenerationMode, const VariableEnvironment* parentScopeTDZVariables) |
| 332 | : m_codeGenerationMode(codeGenerationMode) |
| 333 | , m_scopeNode(programNode) |
| 334 | , m_codeBlock(vm, codeBlock) |
| 335 | , m_thisRegister(CallFrame::thisArgumentOffset()) |
| 336 | , m_codeType(GlobalCode) |
| 337 | , m_vm(&vm) |
| 338 | , m_needsToUpdateArrowFunctionContext(programNode->usesArrowFunction() || programNode->usesEval()) |
| 339 | { |
| 340 | ASSERT_UNUSED(parentScopeTDZVariables, !parentScopeTDZVariables->size()); |
| 341 | |
| 342 | for (auto& constantRegister : m_linkTimeConstantRegisters) |
| 343 | constantRegister = nullptr; |
| 344 | |
| 345 | allocateCalleeSaveSpace(); |
| 346 | |
| 347 | m_codeBlock->setNumParameters(1); // Allocate space for "this" |
| 348 | |
| 349 | emitEnter(); |
| 350 | |
| 351 | allocateAndEmitScope(); |
| 352 | |
| 353 | emitCheckTraps(); |
| 354 | |
| 355 | const FunctionStack& functionStack = programNode->functionStack(); |
| 356 | |
| 357 | for (auto* function : functionStack) |
| 358 | m_functionsToInitialize.append(std::make_pair(function, TopLevelFunctionVariable)); |
| 359 | |
| 360 | if (Options::validateBytecode()) { |
| 361 | for (auto& entry : programNode->varDeclarations()) |
| 362 | RELEASE_ASSERT(entry.value.isVar()); |
| 363 | } |
| 364 | codeBlock->setVariableDeclarations(programNode->varDeclarations()); |
| 365 | codeBlock->setLexicalDeclarations(programNode->lexicalVariables()); |
| 366 | // Even though this program may have lexical variables that go under TDZ, when linking the get_from_scope/put_to_scope |
| 367 | // operations we emit we will have ResolveTypes that implictly do TDZ checks. Therefore, we don't need |
| 368 | // additional TDZ checks on top of those. This is why we can omit pushing programNode->lexicalVariables() |
| 369 | // to the TDZ stack. |
| 370 | |
| 371 | if (needsToUpdateArrowFunctionContext()) { |
| 372 | initializeArrowFunctionContextScopeIfNeeded(); |
| 373 | emitPutThisToArrowFunctionContextScope(); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | BytecodeGenerator::BytecodeGenerator(VM& vm, FunctionNode* functionNode, UnlinkedFunctionCodeBlock* codeBlock, OptionSet<CodeGenerationMode> codeGenerationMode, const VariableEnvironment* parentScopeTDZVariables) |
| 378 | : m_codeGenerationMode(codeGenerationMode) |
| 379 | , m_scopeNode(functionNode) |
| 380 | , m_codeBlock(vm, codeBlock) |
| 381 | , m_codeType(FunctionCode) |
| 382 | , m_vm(&vm) |
| 383 | , m_isBuiltinFunction(codeBlock->isBuiltinFunction()) |
| 384 | , m_usesNonStrictEval(codeBlock->usesEval() && !codeBlock->isStrictMode()) |
| 385 | // FIXME: We should be able to have tail call elimination with the profiler |
| 386 | // enabled. This is currently not possible because the profiler expects |
| 387 | // op_will_call / op_did_call pairs before and after a call, which are not |
| 388 | // compatible with tail calls (we have no way of emitting op_did_call). |
| 389 | // https://bugs.webkit.org/show_bug.cgi?id=148819 |
| 390 | , m_inTailPosition(Options::useTailCalls() && !isConstructor() && constructorKind() == ConstructorKind::None && isStrictMode()) |
| 391 | , m_needsToUpdateArrowFunctionContext(functionNode->usesArrowFunction() || functionNode->usesEval()) |
| 392 | , m_derivedContextType(codeBlock->derivedContextType()) |
| 393 | { |
| 394 | for (auto& constantRegister : m_linkTimeConstantRegisters) |
| 395 | constantRegister = nullptr; |
| 396 | |
| 397 | allocateCalleeSaveSpace(); |
| 398 | |
| 399 | SymbolTable* functionSymbolTable = SymbolTable::create(*m_vm); |
| 400 | functionSymbolTable->setUsesNonStrictEval(m_usesNonStrictEval); |
| 401 | int symbolTableConstantIndex = 0; |
| 402 | |
| 403 | FunctionParameters& parameters = *functionNode->parameters(); |
| 404 | // http://www.ecma-international.org/ecma-262/6.0/index.html#sec-functiondeclarationinstantiation |
| 405 | // This implements IsSimpleParameterList in the Ecma 2015 spec. |
| 406 | // If IsSimpleParameterList is false, we will create a strict-mode like arguments object. |
| 407 | // IsSimpleParameterList is false if the argument list contains any default parameter values, |
| 408 | // a rest parameter, or any destructuring patterns. |
| 409 | // If we do have default parameters, destructuring parameters, or a rest parameter, our parameters will be allocated in a different scope. |
| 410 | bool isSimpleParameterList = parameters.isSimpleParameterList(); |
| 411 | |
| 412 | SourceParseMode parseMode = codeBlock->parseMode(); |
| 413 | |
| 414 | bool containsArrowOrEvalButNotInArrowBlock = ((functionNode->usesArrowFunction() && functionNode->doAnyInnerArrowFunctionsUseAnyFeature()) || functionNode->usesEval()) && !m_codeBlock->isArrowFunction(); |
| 415 | bool shouldCaptureSomeOfTheThings = shouldEmitDebugHooks() || functionNode->needsActivation() || containsArrowOrEvalButNotInArrowBlock; |
| 416 | |
| 417 | bool shouldCaptureAllOfTheThings = shouldEmitDebugHooks() || codeBlock->usesEval(); |
| 418 | bool needsArguments = ((functionNode->usesArguments() && !codeBlock->isArrowFunction()) || codeBlock->usesEval() || (functionNode->usesArrowFunction() && !codeBlock->isArrowFunction() && isArgumentsUsedInInnerArrowFunction())); |
| 419 | |
| 420 | if (isGeneratorOrAsyncFunctionBodyParseMode(parseMode)) { |
| 421 | // Generator and AsyncFunction never provides "arguments". "arguments" reference will be resolved in an upper generator function scope. |
| 422 | needsArguments = false; |
| 423 | } |
| 424 | |
| 425 | if (isGeneratorOrAsyncFunctionWrapperParseMode(parseMode) && needsArguments) { |
| 426 | // Generator does not provide "arguments". Instead, wrapping GeneratorFunction provides "arguments". |
| 427 | // This is because arguments of a generator should be evaluated before starting it. |
| 428 | // To workaround it, we evaluate these arguments as arguments of a wrapping generator function, and reference it from a generator. |
| 429 | // |
| 430 | // function *gen(a, b = hello()) |
| 431 | // { |
| 432 | // return { |
| 433 | // @generatorNext: function (@generator, @generatorState, @generatorValue, @generatorResumeMode, @generatorFrame) |
| 434 | // { |
| 435 | // arguments; // This `arguments` should reference to the gen's arguments. |
| 436 | // ... |
| 437 | // } |
| 438 | // } |
| 439 | // } |
| 440 | shouldCaptureSomeOfTheThings = true; |
| 441 | } |
| 442 | |
| 443 | if (shouldCaptureAllOfTheThings) |
| 444 | functionNode->varDeclarations().markAllVariablesAsCaptured(); |
| 445 | |
| 446 | auto captures = scopedLambda<bool (UniquedStringImpl*)>([&] (UniquedStringImpl* uid) -> bool { |
| 447 | if (!shouldCaptureSomeOfTheThings) |
| 448 | return false; |
| 449 | if (needsArguments && uid == propertyNames().arguments.impl()) { |
| 450 | // Actually, we only need to capture the arguments object when we "need full activation" |
| 451 | // because of name scopes. But historically we did it this way, so for now we just preserve |
| 452 | // the old behavior. |
| 453 | // FIXME: https://bugs.webkit.org/show_bug.cgi?id=143072 |
| 454 | return true; |
| 455 | } |
| 456 | return functionNode->captures(uid); |
| 457 | }); |
| 458 | auto varKind = [&] (UniquedStringImpl* uid) -> VarKind { |
| 459 | return captures(uid) ? VarKind::Scope : VarKind::Stack; |
| 460 | }; |
| 461 | |
| 462 | m_calleeRegister.setIndex(CallFrameSlot::callee); |
| 463 | |
| 464 | initializeParameters(parameters); |
| 465 | ASSERT(!(isSimpleParameterList && m_restParameter)); |
| 466 | |
| 467 | emitEnter(); |
| 468 | |
| 469 | if (isGeneratorOrAsyncFunctionBodyParseMode(parseMode)) |
| 470 | m_generatorRegister = &m_parameters[1]; |
| 471 | |
| 472 | allocateAndEmitScope(); |
| 473 | |
| 474 | emitCheckTraps(); |
| 475 | |
| 476 | if (functionNameIsInScope(functionNode->ident(), functionNode->functionMode())) { |
| 477 | ASSERT(parseMode != SourceParseMode::GeneratorBodyMode); |
| 478 | ASSERT(!isAsyncFunctionBodyParseMode(parseMode)); |
| 479 | bool isDynamicScope = functionNameScopeIsDynamic(codeBlock->usesEval(), codeBlock->isStrictMode()); |
| 480 | bool isFunctionNameCaptured = captures(functionNode->ident().impl()); |
| 481 | bool markAsCaptured = isDynamicScope || isFunctionNameCaptured; |
| 482 | emitPushFunctionNameScope(functionNode->ident(), &m_calleeRegister, markAsCaptured); |
| 483 | } |
| 484 | |
| 485 | if (shouldCaptureSomeOfTheThings) |
| 486 | m_lexicalEnvironmentRegister = addVar(); |
| 487 | |
| 488 | if (isGeneratorOrAsyncFunctionBodyParseMode(parseMode) || shouldCaptureSomeOfTheThings || shouldEmitTypeProfilerHooks()) |
| 489 | symbolTableConstantIndex = addConstantValue(functionSymbolTable)->index(); |
| 490 | |
| 491 | // We can allocate the "var" environment if we don't have default parameter expressions. If we have |
| 492 | // default parameter expressions, we have to hold off on allocating the "var" environment because |
| 493 | // the parent scope of the "var" environment is the parameter environment. |
| 494 | if (isSimpleParameterList) |
| 495 | initializeVarLexicalEnvironment(symbolTableConstantIndex, functionSymbolTable, shouldCaptureSomeOfTheThings); |
| 496 | |
| 497 | // Figure out some interesting facts about our arguments. |
| 498 | bool capturesAnyArgumentByName = false; |
| 499 | if (functionNode->hasCapturedVariables()) { |
| 500 | FunctionParameters& parameters = *functionNode->parameters(); |
| 501 | for (size_t i = 0; i < parameters.size(); ++i) { |
| 502 | auto pattern = parameters.at(i).first; |
| 503 | if (!pattern->isBindingNode()) |
| 504 | continue; |
| 505 | const Identifier& ident = static_cast<const BindingNode*>(pattern)->boundProperty(); |
| 506 | capturesAnyArgumentByName |= captures(ident.impl()); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | if (capturesAnyArgumentByName) |
| 511 | ASSERT(m_lexicalEnvironmentRegister); |
| 512 | |
| 513 | // Need to know what our functions are called. Parameters have some goofy behaviors when it |
| 514 | // comes to functions of the same name. |
| 515 | for (FunctionMetadataNode* function : functionNode->functionStack()) |
| 516 | m_functions.add(function->ident().impl()); |
| 517 | |
| 518 | if (needsArguments) { |
| 519 | // Create the arguments object now. We may put the arguments object into the activation if |
| 520 | // it is captured. Either way, we create two arguments object variables: one is our |
| 521 | // private variable that is immutable, and another that is the user-visible variable. The |
| 522 | // immutable one is only used here, or during formal parameter resolutions if we opt for |
| 523 | // DirectArguments. |
| 524 | |
| 525 | m_argumentsRegister = addVar(); |
| 526 | m_argumentsRegister->ref(); |
| 527 | } |
| 528 | |
| 529 | if (needsArguments && !codeBlock->isStrictMode() && isSimpleParameterList) { |
| 530 | // If we captured any formal parameter by name, then we use ScopedArguments. Otherwise we |
| 531 | // use DirectArguments. With ScopedArguments, we lift all of our arguments into the |
| 532 | // activation. |
| 533 | |
| 534 | if (capturesAnyArgumentByName) { |
| 535 | functionSymbolTable->setArgumentsLength(vm, parameters.size()); |
| 536 | |
| 537 | // For each parameter, we have two possibilities: |
| 538 | // Either it's a binding node with no function overlap, in which case it gets a name |
| 539 | // in the symbol table - or it just gets space reserved in the symbol table. Either |
| 540 | // way we lift the value into the scope. |
| 541 | for (unsigned i = 0; i < parameters.size(); ++i) { |
| 542 | ScopeOffset offset = functionSymbolTable->takeNextScopeOffset(NoLockingNecessary); |
| 543 | functionSymbolTable->setArgumentOffset(vm, i, offset); |
| 544 | if (UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first)) { |
| 545 | VarOffset varOffset(offset); |
| 546 | SymbolTableEntry entry(varOffset); |
| 547 | // Stores to these variables via the ScopedArguments object will not do |
| 548 | // notifyWrite(), since that would be cumbersome. Also, watching formal |
| 549 | // parameters when "arguments" is in play is unlikely to be super profitable. |
| 550 | // So, we just disable it. |
| 551 | entry.disableWatching(*m_vm); |
| 552 | functionSymbolTable->set(NoLockingNecessary, name, entry); |
| 553 | } |
| 554 | OpPutToScope::emit(this, m_lexicalEnvironmentRegister, UINT_MAX, virtualRegisterForArgument(1 + i), GetPutInfo(ThrowIfNotFound, LocalClosureVar, InitializationMode::NotInitialization), SymbolTableOrScopeDepth::symbolTable(VirtualRegister { symbolTableConstantIndex }), offset.offset()); |
| 555 | } |
| 556 | |
| 557 | // This creates a scoped arguments object and copies the overflow arguments into the |
| 558 | // scope. It's the equivalent of calling ScopedArguments::createByCopying(). |
| 559 | OpCreateScopedArguments::emit(this, m_argumentsRegister, m_lexicalEnvironmentRegister); |
| 560 | } else { |
| 561 | // We're going to put all parameters into the DirectArguments object. First ensure |
| 562 | // that the symbol table knows that this is happening. |
| 563 | for (unsigned i = 0; i < parameters.size(); ++i) { |
| 564 | if (UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first)) |
| 565 | functionSymbolTable->set(NoLockingNecessary, name, SymbolTableEntry(VarOffset(DirectArgumentsOffset(i)))); |
| 566 | } |
| 567 | |
| 568 | OpCreateDirectArguments::emit(this, m_argumentsRegister); |
| 569 | } |
| 570 | } else if (isSimpleParameterList) { |
| 571 | // Create the formal parameters the normal way. Any of them could be captured, or not. If |
| 572 | // captured, lift them into the scope. We cannot do this if we have default parameter expressions |
| 573 | // because when default parameter expressions exist, they belong in their own lexical environment |
| 574 | // separate from the "var" lexical environment. |
| 575 | for (unsigned i = 0; i < parameters.size(); ++i) { |
| 576 | UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first); |
| 577 | if (!name) |
| 578 | continue; |
| 579 | |
| 580 | if (!captures(name)) { |
| 581 | // This is the easy case - just tell the symbol table about the argument. It will |
| 582 | // be accessed directly. |
| 583 | functionSymbolTable->set(NoLockingNecessary, name, SymbolTableEntry(VarOffset(virtualRegisterForArgument(1 + i)))); |
| 584 | continue; |
| 585 | } |
| 586 | |
| 587 | ScopeOffset offset = functionSymbolTable->takeNextScopeOffset(NoLockingNecessary); |
| 588 | const Identifier& ident = |
| 589 | static_cast<const BindingNode*>(parameters.at(i).first)->boundProperty(); |
| 590 | functionSymbolTable->set(NoLockingNecessary, name, SymbolTableEntry(VarOffset(offset))); |
| 591 | |
| 592 | OpPutToScope::emit(this, m_lexicalEnvironmentRegister, addConstant(ident), virtualRegisterForArgument(1 + i), GetPutInfo(ThrowIfNotFound, LocalClosureVar, InitializationMode::NotInitialization), SymbolTableOrScopeDepth::symbolTable(VirtualRegister { symbolTableConstantIndex }), offset.offset()); |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | if (needsArguments && (codeBlock->isStrictMode() || !isSimpleParameterList)) { |
| 597 | // Allocate a cloned arguments object. |
| 598 | OpCreateClonedArguments::emit(this, m_argumentsRegister); |
| 599 | } |
| 600 | |
| 601 | // There are some variables that need to be preinitialized to something other than Undefined: |
| 602 | // |
| 603 | // - "arguments": unless it's used as a function or parameter, this should refer to the |
| 604 | // arguments object. |
| 605 | // |
| 606 | // - functions: these always override everything else. |
| 607 | // |
| 608 | // The most logical way to do all of this is to initialize none of the variables until now, |
| 609 | // and then initialize them in BytecodeGenerator::generate() in such an order that the rules |
| 610 | // for how these things override each other end up holding. We would initialize "arguments" first, |
| 611 | // then all arguments, then the functions. |
| 612 | // |
| 613 | // But some arguments are already initialized by default, since if they aren't captured and we |
| 614 | // don't have "arguments" then we just point the symbol table at the stack slot of those |
| 615 | // arguments. We end up initializing the rest of the arguments that have an uncomplicated |
| 616 | // binding (i.e. don't involve destructuring) above when figuring out how to lay them out, |
| 617 | // because that's just the simplest thing. This means that when we initialize them, we have to |
| 618 | // watch out for the things that override arguments (namely, functions). |
| 619 | |
| 620 | // This is our final act of weirdness. "arguments" is overridden by everything except the |
| 621 | // callee. We add it to the symbol table if it's not already there and it's not an argument. |
| 622 | bool shouldCreateArgumentsVariableInParameterScope = false; |
| 623 | if (needsArguments) { |
| 624 | // If "arguments" is overridden by a function or destructuring parameter name, then it's |
| 625 | // OK for us to call createVariable() because it won't change anything. It's also OK for |
| 626 | // us to them tell BytecodeGenerator::generate() to write to it because it will do so |
| 627 | // before it initializes functions and destructuring parameters. But if "arguments" is |
| 628 | // overridden by a "simple" function parameter, then we have to bail: createVariable() |
| 629 | // would assert and BytecodeGenerator::generate() would write the "arguments" after the |
| 630 | // argument value had already been properly initialized. |
| 631 | |
| 632 | bool haveParameterNamedArguments = false; |
| 633 | for (unsigned i = 0; i < parameters.size(); ++i) { |
| 634 | UniquedStringImpl* name = visibleNameForParameter(parameters.at(i).first); |
| 635 | if (name == propertyNames().arguments.impl()) { |
| 636 | haveParameterNamedArguments = true; |
| 637 | break; |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | bool shouldCreateArgumensVariable = !haveParameterNamedArguments |
| 642 | && !SourceParseModeSet(SourceParseMode::ArrowFunctionMode, SourceParseMode::AsyncArrowFunctionMode).contains(m_codeBlock->parseMode()); |
| 643 | shouldCreateArgumentsVariableInParameterScope = shouldCreateArgumensVariable && !isSimpleParameterList; |
| 644 | // Do not create arguments variable in case of Arrow function. Value will be loaded from parent scope |
| 645 | if (shouldCreateArgumensVariable && !shouldCreateArgumentsVariableInParameterScope) { |
| 646 | createVariable( |
| 647 | propertyNames().arguments, varKind(propertyNames().arguments.impl()), functionSymbolTable); |
| 648 | |
| 649 | m_needToInitializeArguments = true; |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | for (FunctionMetadataNode* function : functionNode->functionStack()) { |
| 654 | const Identifier& ident = function->ident(); |
| 655 | createVariable(ident, varKind(ident.impl()), functionSymbolTable); |
| 656 | m_functionsToInitialize.append(std::make_pair(function, NormalFunctionVariable)); |
| 657 | } |
| 658 | for (auto& entry : functionNode->varDeclarations()) { |
| 659 | ASSERT(!entry.value.isLet() && !entry.value.isConst()); |
| 660 | if (!entry.value.isVar()) // This is either a parameter or callee. |
| 661 | continue; |
| 662 | if (shouldCreateArgumentsVariableInParameterScope && entry.key.get() == propertyNames().arguments.impl()) |
| 663 | continue; |
| 664 | createVariable(Identifier::fromUid(m_vm, entry.key.get()), varKind(entry.key.get()), functionSymbolTable, IgnoreExisting); |
| 665 | } |
| 666 | |
| 667 | |
| 668 | m_newTargetRegister = addVar(); |
| 669 | switch (parseMode) { |
| 670 | case SourceParseMode::GeneratorWrapperFunctionMode: |
| 671 | case SourceParseMode::GeneratorWrapperMethodMode: |
| 672 | case SourceParseMode::AsyncGeneratorWrapperMethodMode: |
| 673 | case SourceParseMode::AsyncGeneratorWrapperFunctionMode: { |
| 674 | m_generatorRegister = addVar(); |
| 675 | |
| 676 | // FIXME: Emit to_this only when Generator uses it. |
| 677 | // https://bugs.webkit.org/show_bug.cgi?id=151586 |
| 678 | emitToThis(); |
| 679 | |
| 680 | move(m_generatorRegister, &m_calleeRegister); |
| 681 | emitCreateThis(m_generatorRegister); |
| 682 | break; |
| 683 | } |
| 684 | |
| 685 | case SourceParseMode::AsyncArrowFunctionMode: |
| 686 | case SourceParseMode::AsyncMethodMode: |
| 687 | case SourceParseMode::AsyncFunctionMode: { |
| 688 | ASSERT(!isConstructor()); |
| 689 | ASSERT(constructorKind() == ConstructorKind::None); |
| 690 | m_generatorRegister = addVar(); |
| 691 | m_promiseCapabilityRegister = addVar(); |
| 692 | |
| 693 | if (parseMode != SourceParseMode::AsyncArrowFunctionMode) { |
| 694 | // FIXME: Emit to_this only when AsyncFunctionBody uses it. |
| 695 | // https://bugs.webkit.org/show_bug.cgi?id=151586 |
| 696 | emitToThis(); |
| 697 | } |
| 698 | |
| 699 | emitNewObject(m_generatorRegister); |
| 700 | |
| 701 | // let promiseCapability be @newPromiseCapability(@Promise) |
| 702 | auto varNewPromiseCapability = variable(propertyNames().builtinNames().newPromiseCapabilityPrivateName()); |
| 703 | RefPtr<RegisterID> scope = newTemporary(); |
| 704 | move(scope.get(), emitResolveScope(scope.get(), varNewPromiseCapability)); |
| 705 | RefPtr<RegisterID> newPromiseCapability = emitGetFromScope(newTemporary(), scope.get(), varNewPromiseCapability, ThrowIfNotFound); |
| 706 | |
| 707 | CallArguments args(*this, nullptr, 1); |
| 708 | emitLoad(args.thisRegister(), jsUndefined()); |
| 709 | |
| 710 | auto& builtinNames = propertyNames().builtinNames(); |
| 711 | auto varPromiseConstructor = variable(m_isBuiltinFunction ? builtinNames.InternalPromisePrivateName() : builtinNames.PromisePrivateName()); |
| 712 | move(scope.get(), emitResolveScope(scope.get(), varPromiseConstructor)); |
| 713 | emitGetFromScope(args.argumentRegister(0), scope.get(), varPromiseConstructor, ThrowIfNotFound); |
| 714 | |
| 715 | // JSTextPosition(int _line, int _offset, int _lineStartOffset) |
| 716 | JSTextPosition divot(m_scopeNode->firstLine(), m_scopeNode->startOffset(), m_scopeNode->lineStartOffset()); |
| 717 | emitCall(promiseCapabilityRegister(), newPromiseCapability.get(), NoExpectedFunction, args, divot, divot, divot, DebuggableCall::No); |
| 718 | break; |
| 719 | } |
| 720 | |
| 721 | case SourceParseMode::AsyncGeneratorBodyMode: |
| 722 | case SourceParseMode::AsyncFunctionBodyMode: |
| 723 | case SourceParseMode::AsyncArrowFunctionBodyMode: |
| 724 | case SourceParseMode::GeneratorBodyMode: { |
| 725 | // |this| is already filled correctly before here. |
| 726 | emitLoad(m_newTargetRegister, jsUndefined()); |
| 727 | break; |
| 728 | } |
| 729 | |
| 730 | default: { |
| 731 | if (SourceParseMode::ArrowFunctionMode != parseMode) { |
| 732 | if (isConstructor()) { |
| 733 | move(m_newTargetRegister, &m_thisRegister); |
| 734 | if (constructorKind() == ConstructorKind::Extends) { |
| 735 | moveEmptyValue(&m_thisRegister); |
| 736 | } else |
| 737 | emitCreateThis(&m_thisRegister); |
| 738 | } else if (constructorKind() != ConstructorKind::None) |
| 739 | emitThrowTypeError("Cannot call a class constructor without |new|" ); |
| 740 | else { |
| 741 | bool shouldEmitToThis = false; |
| 742 | if (functionNode->usesThis() || codeBlock->usesEval() || m_scopeNode->doAnyInnerArrowFunctionsUseThis() || m_scopeNode->doAnyInnerArrowFunctionsUseEval()) |
| 743 | shouldEmitToThis = true; |
| 744 | else if ((functionNode->usesSuperProperty() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperProperty()) && !codeBlock->isStrictMode()) { |
| 745 | // We must emit to_this when we're not in strict mode because we |
| 746 | // will convert |this| to an object, and that object may be passed |
| 747 | // to a strict function as |this|. This is observable because that |
| 748 | // strict function's to_this will just return the object. |
| 749 | // |
| 750 | // We don't need to emit this for strict-mode code because |
| 751 | // strict-mode code may call another strict function, which will |
| 752 | // to_this if it directly uses this; this is OK, because we defer |
| 753 | // to_this until |this| is used directly. Strict-mode code might |
| 754 | // also call a sloppy mode function, and that will to_this, which |
| 755 | // will defer the conversion, again, until necessary. |
| 756 | shouldEmitToThis = true; |
| 757 | } |
| 758 | |
| 759 | if (shouldEmitToThis) |
| 760 | emitToThis(); |
| 761 | } |
| 762 | } |
| 763 | break; |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | // We need load |super| & |this| for arrow function before initializeDefaultParameterValuesAndSetupFunctionScopeStack |
| 768 | // if we have default parameter expression. Because |super| & |this| values can be used there |
| 769 | if ((SourceParseModeSet(SourceParseMode::ArrowFunctionMode, SourceParseMode::AsyncArrowFunctionMode).contains(parseMode) && !isSimpleParameterList) || parseMode == SourceParseMode::AsyncArrowFunctionBodyMode) { |
| 770 | if (functionNode->usesThis() || functionNode->usesSuperProperty()) |
| 771 | emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| 772 | |
| 773 | if (m_scopeNode->usesNewTarget() || m_scopeNode->usesSuperCall()) |
| 774 | emitLoadNewTargetFromArrowFunctionLexicalEnvironment(); |
| 775 | } |
| 776 | |
| 777 | if (needsToUpdateArrowFunctionContext() && !codeBlock->isArrowFunction()) { |
| 778 | bool canReuseLexicalEnvironment = isSimpleParameterList; |
| 779 | initializeArrowFunctionContextScopeIfNeeded(functionSymbolTable, canReuseLexicalEnvironment); |
| 780 | emitPutThisToArrowFunctionContextScope(); |
| 781 | emitPutNewTargetToArrowFunctionContextScope(); |
| 782 | emitPutDerivedConstructorToArrowFunctionContextScope(); |
| 783 | } |
| 784 | |
| 785 | // All "addVar()"s needs to happen before "initializeDefaultParameterValuesAndSetupFunctionScopeStack()" is called |
| 786 | // because a function's default parameter ExpressionNodes will use temporary registers. |
| 787 | pushTDZVariables(*parentScopeTDZVariables, TDZCheckOptimization::DoNotOptimize, TDZRequirement::UnderTDZ); |
| 788 | |
| 789 | Ref<Label> catchLabel = newLabel(); |
| 790 | TryData* tryFormalParametersData = nullptr; |
| 791 | bool needTryCatch = isAsyncFunctionWrapperParseMode(parseMode) && !isSimpleParameterList; |
| 792 | if (needTryCatch) { |
| 793 | Ref<Label> = newEmittedLabel(); |
| 794 | tryFormalParametersData = pushTry(tryFormalParametersStart.get(), catchLabel.get(), HandlerType::SynthesizedCatch); |
| 795 | } |
| 796 | |
| 797 | initializeDefaultParameterValuesAndSetupFunctionScopeStack(parameters, isSimpleParameterList, functionNode, functionSymbolTable, symbolTableConstantIndex, captures, shouldCreateArgumentsVariableInParameterScope); |
| 798 | |
| 799 | if (needTryCatch) { |
| 800 | Ref<Label> didNotThrow = newLabel(); |
| 801 | emitJump(didNotThrow.get()); |
| 802 | emitLabel(catchLabel.get()); |
| 803 | popTry(tryFormalParametersData, catchLabel.get()); |
| 804 | |
| 805 | RefPtr<RegisterID> thrownValue = newTemporary(); |
| 806 | emitOutOfLineCatchHandler(thrownValue.get(), nullptr, tryFormalParametersData); |
| 807 | |
| 808 | // return promiseCapability.@reject(thrownValue) |
| 809 | RefPtr<RegisterID> reject = emitGetById(newTemporary(), promiseCapabilityRegister(), m_vm->propertyNames->builtinNames().rejectPrivateName()); |
| 810 | |
| 811 | CallArguments args(*this, nullptr, 1); |
| 812 | emitLoad(args.thisRegister(), jsUndefined()); |
| 813 | move(args.argumentRegister(0), thrownValue.get()); |
| 814 | |
| 815 | JSTextPosition divot(functionNode->firstLine(), functionNode->startOffset(), functionNode->lineStartOffset()); |
| 816 | |
| 817 | RefPtr<RegisterID> result = emitCall(newTemporary(), reject.get(), NoExpectedFunction, args, divot, divot, divot, DebuggableCall::No); |
| 818 | emitReturn(emitGetById(newTemporary(), promiseCapabilityRegister(), m_vm->propertyNames->builtinNames().promisePrivateName())); |
| 819 | |
| 820 | emitLabel(didNotThrow.get()); |
| 821 | } |
| 822 | |
| 823 | // If we don't have default parameter expression, then loading |this| inside an arrow function must be done |
| 824 | // after initializeDefaultParameterValuesAndSetupFunctionScopeStack() because that function sets up the |
| 825 | // SymbolTable stack and emitLoadThisFromArrowFunctionLexicalEnvironment() consults the SymbolTable stack |
| 826 | if (SourceParseModeSet(SourceParseMode::ArrowFunctionMode, SourceParseMode::AsyncArrowFunctionMode).contains(parseMode) && isSimpleParameterList) { |
| 827 | if (functionNode->usesThis() || functionNode->usesSuperProperty()) |
| 828 | emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| 829 | |
| 830 | if (m_scopeNode->usesNewTarget() || m_scopeNode->usesSuperCall()) |
| 831 | emitLoadNewTargetFromArrowFunctionLexicalEnvironment(); |
| 832 | } |
| 833 | |
| 834 | // Set up the lexical environment scope as the generator frame. We store the saved and resumed generator registers into this scope with the symbol keys. |
| 835 | // Since they are symbol keyed, these variables cannot be reached from the usual code. |
| 836 | if (isGeneratorOrAsyncFunctionBodyParseMode(parseMode)) { |
| 837 | m_generatorFrameSymbolTable.set(*m_vm, functionSymbolTable); |
| 838 | m_generatorFrameSymbolTableIndex = symbolTableConstantIndex; |
| 839 | if (m_lexicalEnvironmentRegister) |
| 840 | move(generatorFrameRegister(), m_lexicalEnvironmentRegister); |
| 841 | else { |
| 842 | // It would be possible that generator does not need to suspend and resume any registers. |
| 843 | // In this case, we would like to avoid creating a lexical environment as much as possible. |
| 844 | // op_create_generator_frame_environment is a marker, which is similar to op_yield. |
| 845 | // Generatorification inserts lexical environment creation if necessary. Otherwise, we convert it to op_mov frame, `undefined`. |
| 846 | OpCreateGeneratorFrameEnvironment::emit(this, generatorFrameRegister(), scopeRegister(), VirtualRegister { symbolTableConstantIndex }, addConstantValue(jsUndefined())); |
| 847 | } |
| 848 | emitPutById(generatorRegister(), propertyNames().builtinNames().generatorFramePrivateName(), generatorFrameRegister()); |
| 849 | } |
| 850 | |
| 851 | bool shouldInitializeBlockScopedFunctions = false; // We generate top-level function declarations in ::generate(). |
| 852 | pushLexicalScope(m_scopeNode, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, shouldInitializeBlockScopedFunctions); |
| 853 | } |
| 854 | |
| 855 | BytecodeGenerator::BytecodeGenerator(VM& vm, EvalNode* evalNode, UnlinkedEvalCodeBlock* codeBlock, OptionSet<CodeGenerationMode> codeGenerationMode, const VariableEnvironment* parentScopeTDZVariables) |
| 856 | : m_codeGenerationMode(codeGenerationMode) |
| 857 | , m_scopeNode(evalNode) |
| 858 | , m_codeBlock(vm, codeBlock) |
| 859 | , m_thisRegister(CallFrame::thisArgumentOffset()) |
| 860 | , m_codeType(EvalCode) |
| 861 | , m_vm(&vm) |
| 862 | , m_usesNonStrictEval(codeBlock->usesEval() && !codeBlock->isStrictMode()) |
| 863 | , m_needsToUpdateArrowFunctionContext(evalNode->usesArrowFunction() || evalNode->usesEval()) |
| 864 | , m_derivedContextType(codeBlock->derivedContextType()) |
| 865 | { |
| 866 | for (auto& constantRegister : m_linkTimeConstantRegisters) |
| 867 | constantRegister = nullptr; |
| 868 | |
| 869 | allocateCalleeSaveSpace(); |
| 870 | |
| 871 | m_codeBlock->setNumParameters(1); |
| 872 | |
| 873 | pushTDZVariables(*parentScopeTDZVariables, TDZCheckOptimization::DoNotOptimize, TDZRequirement::UnderTDZ); |
| 874 | |
| 875 | emitEnter(); |
| 876 | |
| 877 | allocateAndEmitScope(); |
| 878 | |
| 879 | emitCheckTraps(); |
| 880 | |
| 881 | for (FunctionMetadataNode* function : evalNode->functionStack()) { |
| 882 | m_codeBlock->addFunctionDecl(makeFunction(function)); |
| 883 | m_functionsToInitialize.append(std::make_pair(function, TopLevelFunctionVariable)); |
| 884 | } |
| 885 | |
| 886 | const VariableEnvironment& varDeclarations = evalNode->varDeclarations(); |
| 887 | Vector<Identifier, 0, UnsafeVectorOverflow> variables; |
| 888 | Vector<Identifier, 0, UnsafeVectorOverflow> hoistedFunctions; |
| 889 | for (auto& entry : varDeclarations) { |
| 890 | ASSERT(entry.value.isVar()); |
| 891 | ASSERT(entry.key->isAtomic() || entry.key->isSymbol()); |
| 892 | if (entry.value.isSloppyModeHoistingCandidate()) |
| 893 | hoistedFunctions.append(Identifier::fromUid(m_vm, entry.key.get())); |
| 894 | else |
| 895 | variables.append(Identifier::fromUid(m_vm, entry.key.get())); |
| 896 | } |
| 897 | codeBlock->adoptVariables(variables); |
| 898 | codeBlock->adoptFunctionHoistingCandidates(WTFMove(hoistedFunctions)); |
| 899 | |
| 900 | if (evalNode->usesSuperCall() || evalNode->usesNewTarget()) |
| 901 | m_newTargetRegister = addVar(); |
| 902 | |
| 903 | if (codeBlock->isArrowFunctionContext() && (evalNode->usesThis() || evalNode->usesSuperProperty())) |
| 904 | emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| 905 | |
| 906 | if (evalNode->usesSuperCall() || evalNode->usesNewTarget()) |
| 907 | emitLoadNewTargetFromArrowFunctionLexicalEnvironment(); |
| 908 | |
| 909 | if (needsToUpdateArrowFunctionContext() && !codeBlock->isArrowFunctionContext() && !isDerivedConstructorContext()) { |
| 910 | initializeArrowFunctionContextScopeIfNeeded(); |
| 911 | emitPutThisToArrowFunctionContextScope(); |
| 912 | } |
| 913 | |
| 914 | bool shouldInitializeBlockScopedFunctions = false; // We generate top-level function declarations in ::generate(). |
| 915 | pushLexicalScope(m_scopeNode, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, shouldInitializeBlockScopedFunctions); |
| 916 | } |
| 917 | |
| 918 | BytecodeGenerator::BytecodeGenerator(VM& vm, ModuleProgramNode* moduleProgramNode, UnlinkedModuleProgramCodeBlock* codeBlock, OptionSet<CodeGenerationMode> codeGenerationMode, const VariableEnvironment* parentScopeTDZVariables) |
| 919 | : m_codeGenerationMode(codeGenerationMode) |
| 920 | , m_scopeNode(moduleProgramNode) |
| 921 | , m_codeBlock(vm, codeBlock) |
| 922 | , m_thisRegister(CallFrame::thisArgumentOffset()) |
| 923 | , m_codeType(ModuleCode) |
| 924 | , m_vm(&vm) |
| 925 | , m_usesNonStrictEval(false) |
| 926 | , m_needsToUpdateArrowFunctionContext(moduleProgramNode->usesArrowFunction() || moduleProgramNode->usesEval()) |
| 927 | { |
| 928 | ASSERT_UNUSED(parentScopeTDZVariables, !parentScopeTDZVariables->size()); |
| 929 | |
| 930 | for (auto& constantRegister : m_linkTimeConstantRegisters) |
| 931 | constantRegister = nullptr; |
| 932 | |
| 933 | allocateCalleeSaveSpace(); |
| 934 | |
| 935 | SymbolTable* moduleEnvironmentSymbolTable = SymbolTable::create(*m_vm); |
| 936 | moduleEnvironmentSymbolTable->setUsesNonStrictEval(m_usesNonStrictEval); |
| 937 | moduleEnvironmentSymbolTable->setScopeType(SymbolTable::ScopeType::LexicalScope); |
| 938 | |
| 939 | bool shouldCaptureAllOfTheThings = shouldEmitDebugHooks() || codeBlock->usesEval(); |
| 940 | if (shouldCaptureAllOfTheThings) |
| 941 | moduleProgramNode->varDeclarations().markAllVariablesAsCaptured(); |
| 942 | |
| 943 | auto captures = [&] (UniquedStringImpl* uid) -> bool { |
| 944 | return moduleProgramNode->captures(uid); |
| 945 | }; |
| 946 | auto lookUpVarKind = [&] (UniquedStringImpl* uid, const VariableEnvironmentEntry& entry) -> VarKind { |
| 947 | // Allocate the exported variables in the module environment. |
| 948 | if (entry.isExported()) |
| 949 | return VarKind::Scope; |
| 950 | |
| 951 | // Allocate the namespace variables in the module environment to instantiate |
| 952 | // it from the outside of the module code. |
| 953 | if (entry.isImportedNamespace()) |
| 954 | return VarKind::Scope; |
| 955 | |
| 956 | if (entry.isCaptured()) |
| 957 | return VarKind::Scope; |
| 958 | return captures(uid) ? VarKind::Scope : VarKind::Stack; |
| 959 | }; |
| 960 | |
| 961 | emitEnter(); |
| 962 | |
| 963 | allocateAndEmitScope(); |
| 964 | |
| 965 | emitCheckTraps(); |
| 966 | |
| 967 | m_calleeRegister.setIndex(CallFrameSlot::callee); |
| 968 | |
| 969 | m_codeBlock->setNumParameters(1); // Allocate space for "this" |
| 970 | |
| 971 | // Now declare all variables. |
| 972 | |
| 973 | createVariable(m_vm->propertyNames->builtinNames().metaPrivateName(), VarKind::Scope, moduleEnvironmentSymbolTable, VerifyExisting); |
| 974 | |
| 975 | for (auto& entry : moduleProgramNode->varDeclarations()) { |
| 976 | ASSERT(!entry.value.isLet() && !entry.value.isConst()); |
| 977 | if (!entry.value.isVar()) // This is either a parameter or callee. |
| 978 | continue; |
| 979 | // Imported bindings are not allocated in the module environment as usual variables' way. |
| 980 | // These references remain the "Dynamic" in the unlinked code block. Later, when linking |
| 981 | // the code block, we resolve the reference to the "ModuleVar". |
| 982 | if (entry.value.isImported() && !entry.value.isImportedNamespace()) |
| 983 | continue; |
| 984 | createVariable(Identifier::fromUid(m_vm, entry.key.get()), lookUpVarKind(entry.key.get(), entry.value), moduleEnvironmentSymbolTable, IgnoreExisting); |
| 985 | } |
| 986 | |
| 987 | VariableEnvironment& lexicalVariables = moduleProgramNode->lexicalVariables(); |
| 988 | instantiateLexicalVariables(lexicalVariables, moduleEnvironmentSymbolTable, ScopeRegisterType::Block, lookUpVarKind); |
| 989 | |
| 990 | // We keep the symbol table in the constant pool. |
| 991 | RegisterID* constantSymbolTable = nullptr; |
| 992 | if (shouldEmitTypeProfilerHooks()) |
| 993 | constantSymbolTable = addConstantValue(moduleEnvironmentSymbolTable); |
| 994 | else |
| 995 | constantSymbolTable = addConstantValue(moduleEnvironmentSymbolTable->cloneScopePart(*m_vm)); |
| 996 | |
| 997 | pushTDZVariables(lexicalVariables, TDZCheckOptimization::Optimize, TDZRequirement::UnderTDZ); |
| 998 | bool isWithScope = false; |
| 999 | m_lexicalScopeStack.append({ moduleEnvironmentSymbolTable, m_topMostScope, isWithScope, constantSymbolTable->index() }); |
| 1000 | emitPrefillStackTDZVariables(lexicalVariables, moduleEnvironmentSymbolTable); |
| 1001 | |
| 1002 | // makeFunction assumes that there's correct TDZ stack entries. |
| 1003 | // So it should be called after putting our lexical environment to the TDZ stack correctly. |
| 1004 | |
| 1005 | for (FunctionMetadataNode* function : moduleProgramNode->functionStack()) { |
| 1006 | const auto& iterator = moduleProgramNode->varDeclarations().find(function->ident().impl()); |
| 1007 | RELEASE_ASSERT(iterator != moduleProgramNode->varDeclarations().end()); |
| 1008 | RELEASE_ASSERT(!iterator->value.isImported()); |
| 1009 | |
| 1010 | VarKind varKind = lookUpVarKind(iterator->key.get(), iterator->value); |
| 1011 | if (varKind == VarKind::Scope) { |
| 1012 | // http://www.ecma-international.org/ecma-262/6.0/#sec-moduledeclarationinstantiation |
| 1013 | // Section 15.2.1.16.4, step 16-a-iv-1. |
| 1014 | // All heap allocated function declarations should be instantiated when the module environment |
| 1015 | // is created. They include the exported function declarations and not-exported-but-heap-allocated |
| 1016 | // function declarations. This is required because exported function should be instantiated before |
| 1017 | // executing the any module in the dependency graph. This enables the modules to link the imported |
| 1018 | // bindings before executing the any module code. |
| 1019 | // |
| 1020 | // And since function declarations are instantiated before executing the module body code, the spec |
| 1021 | // allows the functions inside the module to be executed before its module body is executed under |
| 1022 | // the circular dependencies. The following is the example. |
| 1023 | // |
| 1024 | // Module A (executed first): |
| 1025 | // import { b } from "B"; |
| 1026 | // // Here, the module "B" is not executed yet, but the function declaration is already instantiated. |
| 1027 | // // So we can call the function exported from "B". |
| 1028 | // b(); |
| 1029 | // |
| 1030 | // export function a() { |
| 1031 | // } |
| 1032 | // |
| 1033 | // Module B (executed second): |
| 1034 | // import { a } from "A"; |
| 1035 | // |
| 1036 | // export function b() { |
| 1037 | // c(); |
| 1038 | // } |
| 1039 | // |
| 1040 | // // c is not exported, but since it is referenced from the b, we should instantiate it before |
| 1041 | // // executing the "B" module code. |
| 1042 | // function c() { |
| 1043 | // a(); |
| 1044 | // } |
| 1045 | // |
| 1046 | // Module EntryPoint (executed last): |
| 1047 | // import "B"; |
| 1048 | // import "A"; |
| 1049 | // |
| 1050 | m_codeBlock->addFunctionDecl(makeFunction(function)); |
| 1051 | } else { |
| 1052 | // Stack allocated functions can be allocated when executing the module's body. |
| 1053 | m_functionsToInitialize.append(std::make_pair(function, NormalFunctionVariable)); |
| 1054 | } |
| 1055 | } |
| 1056 | |
| 1057 | // Remember the constant register offset to the top-most symbol table. This symbol table will be |
| 1058 | // cloned in the code block linking. After that, to create the module environment, we retrieve |
| 1059 | // the cloned symbol table from the linked code block by using this offset. |
| 1060 | codeBlock->setModuleEnvironmentSymbolTableConstantRegisterOffset(constantSymbolTable->index()); |
| 1061 | } |
| 1062 | |
| 1063 | BytecodeGenerator::~BytecodeGenerator() |
| 1064 | { |
| 1065 | } |
| 1066 | |
| 1067 | void BytecodeGenerator::initializeDefaultParameterValuesAndSetupFunctionScopeStack( |
| 1068 | FunctionParameters& parameters, bool isSimpleParameterList, FunctionNode* functionNode, SymbolTable* functionSymbolTable, |
| 1069 | int symbolTableConstantIndex, const ScopedLambda<bool (UniquedStringImpl*)>& captures, bool shouldCreateArgumentsVariableInParameterScope) |
| 1070 | { |
| 1071 | Vector<std::pair<Identifier, RefPtr<RegisterID>>> valuesToMoveIntoVars; |
| 1072 | ASSERT(!(isSimpleParameterList && shouldCreateArgumentsVariableInParameterScope)); |
| 1073 | if (!isSimpleParameterList) { |
| 1074 | // Refer to the ES6 spec section 9.2.12: http://www.ecma-international.org/ecma-262/6.0/index.html#sec-functiondeclarationinstantiation |
| 1075 | // This implements step 21. |
| 1076 | VariableEnvironment environment; |
| 1077 | Vector<Identifier> allParameterNames; |
| 1078 | for (unsigned i = 0; i < parameters.size(); i++) |
| 1079 | parameters.at(i).first->collectBoundIdentifiers(allParameterNames); |
| 1080 | if (shouldCreateArgumentsVariableInParameterScope) |
| 1081 | allParameterNames.append(propertyNames().arguments); |
| 1082 | IdentifierSet parameterSet; |
| 1083 | for (auto& ident : allParameterNames) { |
| 1084 | parameterSet.add(ident.impl()); |
| 1085 | auto addResult = environment.add(ident); |
| 1086 | addResult.iterator->value.setIsLet(); // When we have default parameter expressions, parameters act like "let" variables. |
| 1087 | if (captures(ident.impl())) |
| 1088 | addResult.iterator->value.setIsCaptured(); |
| 1089 | } |
| 1090 | // This implements step 25 of section 9.2.12. |
| 1091 | pushLexicalScopeInternal(environment, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block); |
| 1092 | |
| 1093 | if (shouldCreateArgumentsVariableInParameterScope) { |
| 1094 | Variable argumentsVariable = variable(propertyNames().arguments); |
| 1095 | initializeVariable(argumentsVariable, m_argumentsRegister); |
| 1096 | liftTDZCheckIfPossible(argumentsVariable); |
| 1097 | } |
| 1098 | |
| 1099 | RefPtr<RegisterID> temp = newTemporary(); |
| 1100 | for (unsigned i = 0; i < parameters.size(); i++) { |
| 1101 | std::pair<DestructuringPatternNode*, ExpressionNode*> parameter = parameters.at(i); |
| 1102 | if (parameter.first->isRestParameter()) |
| 1103 | continue; |
| 1104 | if ((i + 1) < m_parameters.size()) |
| 1105 | move(temp.get(), &m_parameters[i + 1]); |
| 1106 | else |
| 1107 | emitGetArgument(temp.get(), i); |
| 1108 | if (parameter.second) { |
| 1109 | RefPtr<RegisterID> condition = emitIsUndefined(newTemporary(), temp.get()); |
| 1110 | Ref<Label> skipDefaultParameterBecauseNotUndefined = newLabel(); |
| 1111 | emitJumpIfFalse(condition.get(), skipDefaultParameterBecauseNotUndefined.get()); |
| 1112 | emitNode(temp.get(), parameter.second); |
| 1113 | emitLabel(skipDefaultParameterBecauseNotUndefined.get()); |
| 1114 | } |
| 1115 | |
| 1116 | parameter.first->bindValue(*this, temp.get()); |
| 1117 | } |
| 1118 | |
| 1119 | // Final act of weirdness for default parameters. If a "var" also |
| 1120 | // has the same name as a parameter, it should start out as the |
| 1121 | // value of that parameter. Note, though, that they will be distinct |
| 1122 | // bindings. |
| 1123 | // This is step 28 of section 9.2.12. |
| 1124 | for (auto& entry : functionNode->varDeclarations()) { |
| 1125 | if (!entry.value.isVar()) // This is either a parameter or callee. |
| 1126 | continue; |
| 1127 | |
| 1128 | if (parameterSet.contains(entry.key)) { |
| 1129 | Identifier ident = Identifier::fromUid(m_vm, entry.key.get()); |
| 1130 | Variable var = variable(ident); |
| 1131 | RegisterID* scope = emitResolveScope(nullptr, var); |
| 1132 | RefPtr<RegisterID> value = emitGetFromScope(newTemporary(), scope, var, DoNotThrowIfNotFound); |
| 1133 | valuesToMoveIntoVars.append(std::make_pair(ident, value)); |
| 1134 | } |
| 1135 | } |
| 1136 | |
| 1137 | // Functions with default parameter expressions must have a separate environment |
| 1138 | // record for parameters and "var"s. The "var" environment record must have the |
| 1139 | // parameter environment record as its parent. |
| 1140 | // See step 28 of section 9.2.12. |
| 1141 | bool hasCapturedVariables = !!m_lexicalEnvironmentRegister; |
| 1142 | initializeVarLexicalEnvironment(symbolTableConstantIndex, functionSymbolTable, hasCapturedVariables); |
| 1143 | } |
| 1144 | |
| 1145 | // This completes step 28 of section 9.2.12. |
| 1146 | for (unsigned i = 0; i < valuesToMoveIntoVars.size(); i++) { |
| 1147 | ASSERT(!isSimpleParameterList); |
| 1148 | Variable var = variable(valuesToMoveIntoVars[i].first); |
| 1149 | RegisterID* scope = emitResolveScope(nullptr, var); |
| 1150 | emitPutToScope(scope, var, valuesToMoveIntoVars[i].second.get(), DoNotThrowIfNotFound, InitializationMode::NotInitialization); |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | bool BytecodeGenerator::needsDerivedConstructorInArrowFunctionLexicalEnvironment() |
| 1155 | { |
| 1156 | ASSERT(m_codeBlock->isClassContext() || !(isConstructor() && constructorKind() == ConstructorKind::Extends)); |
| 1157 | return m_codeBlock->isClassContext() && isSuperUsedInInnerArrowFunction(); |
| 1158 | } |
| 1159 | |
| 1160 | void BytecodeGenerator::initializeArrowFunctionContextScopeIfNeeded(SymbolTable* functionSymbolTable, bool canReuseLexicalEnvironment) |
| 1161 | { |
| 1162 | ASSERT(!m_arrowFunctionContextLexicalEnvironmentRegister); |
| 1163 | |
| 1164 | if (canReuseLexicalEnvironment && m_lexicalEnvironmentRegister) { |
| 1165 | RELEASE_ASSERT(!m_codeBlock->isArrowFunction()); |
| 1166 | RELEASE_ASSERT(functionSymbolTable); |
| 1167 | |
| 1168 | m_arrowFunctionContextLexicalEnvironmentRegister = m_lexicalEnvironmentRegister; |
| 1169 | |
| 1170 | ScopeOffset offset; |
| 1171 | |
| 1172 | if (isThisUsedInInnerArrowFunction()) { |
| 1173 | offset = functionSymbolTable->takeNextScopeOffset(NoLockingNecessary); |
| 1174 | functionSymbolTable->set(NoLockingNecessary, propertyNames().thisIdentifier.impl(), SymbolTableEntry(VarOffset(offset))); |
| 1175 | } |
| 1176 | |
| 1177 | if (m_codeType == FunctionCode && isNewTargetUsedInInnerArrowFunction()) { |
| 1178 | offset = functionSymbolTable->takeNextScopeOffset(); |
| 1179 | functionSymbolTable->set(NoLockingNecessary, propertyNames().builtinNames().newTargetLocalPrivateName().impl(), SymbolTableEntry(VarOffset(offset))); |
| 1180 | } |
| 1181 | |
| 1182 | if (needsDerivedConstructorInArrowFunctionLexicalEnvironment()) { |
| 1183 | offset = functionSymbolTable->takeNextScopeOffset(NoLockingNecessary); |
| 1184 | functionSymbolTable->set(NoLockingNecessary, propertyNames().builtinNames().derivedConstructorPrivateName().impl(), SymbolTableEntry(VarOffset(offset))); |
| 1185 | } |
| 1186 | |
| 1187 | return; |
| 1188 | } |
| 1189 | |
| 1190 | VariableEnvironment environment; |
| 1191 | |
| 1192 | if (isThisUsedInInnerArrowFunction()) { |
| 1193 | auto addResult = environment.add(propertyNames().thisIdentifier); |
| 1194 | addResult.iterator->value.setIsCaptured(); |
| 1195 | addResult.iterator->value.setIsLet(); |
| 1196 | } |
| 1197 | |
| 1198 | if (m_codeType == FunctionCode && isNewTargetUsedInInnerArrowFunction()) { |
| 1199 | auto addTarget = environment.add(propertyNames().builtinNames().newTargetLocalPrivateName()); |
| 1200 | addTarget.iterator->value.setIsCaptured(); |
| 1201 | addTarget.iterator->value.setIsLet(); |
| 1202 | } |
| 1203 | |
| 1204 | if (needsDerivedConstructorInArrowFunctionLexicalEnvironment()) { |
| 1205 | auto derivedConstructor = environment.add(propertyNames().builtinNames().derivedConstructorPrivateName()); |
| 1206 | derivedConstructor.iterator->value.setIsCaptured(); |
| 1207 | derivedConstructor.iterator->value.setIsLet(); |
| 1208 | } |
| 1209 | |
| 1210 | if (environment.size() > 0) { |
| 1211 | size_t size = m_lexicalScopeStack.size(); |
| 1212 | pushLexicalScopeInternal(environment, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block); |
| 1213 | |
| 1214 | ASSERT_UNUSED(size, m_lexicalScopeStack.size() == size + 1); |
| 1215 | |
| 1216 | m_arrowFunctionContextLexicalEnvironmentRegister = m_lexicalScopeStack.last().m_scope; |
| 1217 | } |
| 1218 | } |
| 1219 | |
| 1220 | RegisterID* BytecodeGenerator::initializeNextParameter() |
| 1221 | { |
| 1222 | VirtualRegister reg = virtualRegisterForArgument(m_codeBlock->numParameters()); |
| 1223 | m_parameters.grow(m_parameters.size() + 1); |
| 1224 | auto& parameter = registerFor(reg); |
| 1225 | parameter.setIndex(reg.offset()); |
| 1226 | m_codeBlock->addParameter(); |
| 1227 | return ¶meter; |
| 1228 | } |
| 1229 | |
| 1230 | void BytecodeGenerator::initializeParameters(FunctionParameters& parameters) |
| 1231 | { |
| 1232 | // Make sure the code block knows about all of our parameters, and make sure that parameters |
| 1233 | // needing destructuring are noted. |
| 1234 | m_thisRegister.setIndex(initializeNextParameter()->index()); // this |
| 1235 | |
| 1236 | bool nonSimpleArguments = false; |
| 1237 | for (unsigned i = 0; i < parameters.size(); ++i) { |
| 1238 | auto parameter = parameters.at(i); |
| 1239 | auto pattern = parameter.first; |
| 1240 | if (pattern->isRestParameter()) { |
| 1241 | RELEASE_ASSERT(!m_restParameter); |
| 1242 | m_restParameter = static_cast<RestParameterNode*>(pattern); |
| 1243 | nonSimpleArguments = true; |
| 1244 | continue; |
| 1245 | } |
| 1246 | if (parameter.second) { |
| 1247 | nonSimpleArguments = true; |
| 1248 | continue; |
| 1249 | } |
| 1250 | if (!nonSimpleArguments) |
| 1251 | initializeNextParameter(); |
| 1252 | } |
| 1253 | } |
| 1254 | |
| 1255 | void BytecodeGenerator::initializeVarLexicalEnvironment(int symbolTableConstantIndex, SymbolTable* functionSymbolTable, bool hasCapturedVariables) |
| 1256 | { |
| 1257 | if (hasCapturedVariables) { |
| 1258 | RELEASE_ASSERT(m_lexicalEnvironmentRegister); |
| 1259 | OpCreateLexicalEnvironment::emit(this, m_lexicalEnvironmentRegister, scopeRegister(), VirtualRegister { symbolTableConstantIndex }, addConstantValue(jsUndefined())); |
| 1260 | |
| 1261 | OpMov::emit(this, scopeRegister(), m_lexicalEnvironmentRegister); |
| 1262 | |
| 1263 | pushLocalControlFlowScope(); |
| 1264 | } |
| 1265 | bool isWithScope = false; |
| 1266 | m_lexicalScopeStack.append({ functionSymbolTable, m_lexicalEnvironmentRegister, isWithScope, symbolTableConstantIndex }); |
| 1267 | m_varScopeLexicalScopeStackIndex = m_lexicalScopeStack.size() - 1; |
| 1268 | } |
| 1269 | |
| 1270 | UniquedStringImpl* BytecodeGenerator::visibleNameForParameter(DestructuringPatternNode* pattern) |
| 1271 | { |
| 1272 | if (pattern->isBindingNode()) { |
| 1273 | const Identifier& ident = static_cast<const BindingNode*>(pattern)->boundProperty(); |
| 1274 | if (!m_functions.contains(ident.impl())) |
| 1275 | return ident.impl(); |
| 1276 | } |
| 1277 | return nullptr; |
| 1278 | } |
| 1279 | |
| 1280 | RegisterID* BytecodeGenerator::newRegister() |
| 1281 | { |
| 1282 | m_calleeLocals.append(virtualRegisterForLocal(m_calleeLocals.size())); |
| 1283 | int numCalleeLocals = std::max<int>(m_codeBlock->m_numCalleeLocals, m_calleeLocals.size()); |
| 1284 | numCalleeLocals = WTF::roundUpToMultipleOf(stackAlignmentRegisters(), numCalleeLocals); |
| 1285 | m_codeBlock->m_numCalleeLocals = numCalleeLocals; |
| 1286 | return &m_calleeLocals.last(); |
| 1287 | } |
| 1288 | |
| 1289 | void BytecodeGenerator::reclaimFreeRegisters() |
| 1290 | { |
| 1291 | shrinkToFit(m_calleeLocals); |
| 1292 | } |
| 1293 | |
| 1294 | RegisterID* BytecodeGenerator::newBlockScopeVariable() |
| 1295 | { |
| 1296 | reclaimFreeRegisters(); |
| 1297 | |
| 1298 | return newRegister(); |
| 1299 | } |
| 1300 | |
| 1301 | RegisterID* BytecodeGenerator::newTemporary() |
| 1302 | { |
| 1303 | reclaimFreeRegisters(); |
| 1304 | |
| 1305 | RegisterID* result = newRegister(); |
| 1306 | result->setTemporary(); |
| 1307 | return result; |
| 1308 | } |
| 1309 | |
| 1310 | Ref<LabelScope> BytecodeGenerator::newLabelScope(LabelScope::Type type, const Identifier* name) |
| 1311 | { |
| 1312 | shrinkToFit(m_labelScopes); |
| 1313 | |
| 1314 | // Allocate new label scope. |
| 1315 | m_labelScopes.append(type, name, labelScopeDepth(), newLabel(), type == LabelScope::Loop ? RefPtr<Label>(newLabel()) : RefPtr<Label>()); // Only loops have continue targets. |
| 1316 | return m_labelScopes.last(); |
| 1317 | } |
| 1318 | |
| 1319 | Ref<Label> BytecodeGenerator::newLabel() |
| 1320 | { |
| 1321 | shrinkToFit(m_labels); |
| 1322 | |
| 1323 | // Allocate new label ID. |
| 1324 | m_labels.append(); |
| 1325 | return m_labels.last(); |
| 1326 | } |
| 1327 | |
| 1328 | Ref<Label> BytecodeGenerator::newEmittedLabel() |
| 1329 | { |
| 1330 | Ref<Label> label = newLabel(); |
| 1331 | emitLabel(label.get()); |
| 1332 | return label; |
| 1333 | } |
| 1334 | |
| 1335 | void BytecodeGenerator::recordOpcode(OpcodeID opcodeID) |
| 1336 | { |
| 1337 | ASSERT(m_lastOpcodeID == op_end || (m_lastOpcodeID == m_lastInstruction->opcodeID() && m_writer.position() == m_lastInstruction.offset() + m_lastInstruction->size())); |
| 1338 | m_lastInstruction = m_writer.ref(); |
| 1339 | m_lastOpcodeID = opcodeID; |
| 1340 | } |
| 1341 | |
| 1342 | void BytecodeGenerator::alignWideOpcode() |
| 1343 | { |
| 1344 | #if CPU(NEEDS_ALIGNED_ACCESS) |
| 1345 | while ((m_writer.position() + 1) % OpcodeSize::Wide) |
| 1346 | OpNop::emit<OpcodeSize::Narrow>(this); |
| 1347 | #endif |
| 1348 | } |
| 1349 | |
| 1350 | void BytecodeGenerator::emitLabel(Label& l0) |
| 1351 | { |
| 1352 | unsigned newLabelIndex = instructions().size(); |
| 1353 | l0.setLocation(*this, newLabelIndex); |
| 1354 | |
| 1355 | if (m_codeBlock->numberOfJumpTargets()) { |
| 1356 | unsigned lastLabelIndex = m_codeBlock->lastJumpTarget(); |
| 1357 | ASSERT(lastLabelIndex <= newLabelIndex); |
| 1358 | if (newLabelIndex == lastLabelIndex) { |
| 1359 | // Peephole optimizations have already been disabled by emitting the last label |
| 1360 | return; |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | m_codeBlock->addJumpTarget(newLabelIndex); |
| 1365 | |
| 1366 | // This disables peephole optimizations when an instruction is a jump target |
| 1367 | m_lastOpcodeID = op_end; |
| 1368 | } |
| 1369 | |
| 1370 | void BytecodeGenerator::emitEnter() |
| 1371 | { |
| 1372 | OpEnter::emit(this); |
| 1373 | |
| 1374 | if (LIKELY(Options::optimizeRecursiveTailCalls())) { |
| 1375 | // We must add the end of op_enter as a potential jump target, because the bytecode parser may decide to split its basic block |
| 1376 | // to have somewhere to jump to if there is a recursive tail-call that points to this function. |
| 1377 | m_codeBlock->addJumpTarget(instructions().size()); |
| 1378 | // This disables peephole optimizations when an instruction is a jump target |
| 1379 | m_lastOpcodeID = op_end; |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | void BytecodeGenerator::emitLoopHint() |
| 1384 | { |
| 1385 | OpLoopHint::emit(this); |
| 1386 | emitCheckTraps(); |
| 1387 | } |
| 1388 | |
| 1389 | void BytecodeGenerator::emitJump(Label& target) |
| 1390 | { |
| 1391 | OpJmp::emit(this, target.bind(this)); |
| 1392 | } |
| 1393 | |
| 1394 | void BytecodeGenerator::emitCheckTraps() |
| 1395 | { |
| 1396 | OpCheckTraps::emit(this); |
| 1397 | } |
| 1398 | |
| 1399 | void ALWAYS_INLINE BytecodeGenerator::rewind() |
| 1400 | { |
| 1401 | ASSERT(m_lastInstruction.isValid()); |
| 1402 | m_lastOpcodeID = op_end; |
| 1403 | m_writer.rewind(m_lastInstruction); |
| 1404 | } |
| 1405 | |
| 1406 | template<typename BinOp, typename JmpOp> |
| 1407 | bool BytecodeGenerator::fuseCompareAndJump(RegisterID* cond, Label& target, bool swapOperands) |
| 1408 | { |
| 1409 | ASSERT(canDoPeepholeOptimization()); |
| 1410 | auto binop = m_lastInstruction->as<BinOp>(); |
| 1411 | if (cond->index() == binop.m_dst.offset() && cond->isTemporary() && !cond->refCount()) { |
| 1412 | rewind(); |
| 1413 | |
| 1414 | if (swapOperands) |
| 1415 | std::swap(binop.m_lhs, binop.m_rhs); |
| 1416 | |
| 1417 | JmpOp::emit(this, binop.m_lhs, binop.m_rhs, target.bind(this)); |
| 1418 | return true; |
| 1419 | } |
| 1420 | return false; |
| 1421 | } |
| 1422 | |
| 1423 | template<typename UnaryOp, typename JmpOp> |
| 1424 | bool BytecodeGenerator::fuseTestAndJmp(RegisterID* cond, Label& target) |
| 1425 | { |
| 1426 | ASSERT(canDoPeepholeOptimization()); |
| 1427 | auto unop = m_lastInstruction->as<UnaryOp>(); |
| 1428 | if (cond->index() == unop.m_dst.offset() && cond->isTemporary() && !cond->refCount()) { |
| 1429 | rewind(); |
| 1430 | |
| 1431 | JmpOp::emit(this, unop.m_operand, target.bind(this)); |
| 1432 | return true; |
| 1433 | } |
| 1434 | return false; |
| 1435 | } |
| 1436 | |
| 1437 | void BytecodeGenerator::emitJumpIfTrue(RegisterID* cond, Label& target) |
| 1438 | { |
| 1439 | if (canDoPeepholeOptimization()) { |
| 1440 | if (m_lastOpcodeID == op_less) { |
| 1441 | if (fuseCompareAndJump<OpLess, OpJless>(cond, target)) |
| 1442 | return; |
| 1443 | } else if (m_lastOpcodeID == op_lesseq) { |
| 1444 | if (fuseCompareAndJump<OpLesseq, OpJlesseq>(cond, target)) |
| 1445 | return; |
| 1446 | } else if (m_lastOpcodeID == op_greater) { |
| 1447 | if (fuseCompareAndJump<OpGreater, OpJgreater>(cond, target)) |
| 1448 | return; |
| 1449 | } else if (m_lastOpcodeID == op_greatereq) { |
| 1450 | if (fuseCompareAndJump<OpGreatereq, OpJgreatereq>(cond, target)) |
| 1451 | return; |
| 1452 | } else if (m_lastOpcodeID == op_eq) { |
| 1453 | if (fuseCompareAndJump<OpEq, OpJeq>(cond, target)) |
| 1454 | return; |
| 1455 | } else if (m_lastOpcodeID == op_stricteq) { |
| 1456 | if (fuseCompareAndJump<OpStricteq, OpJstricteq>(cond, target)) |
| 1457 | return; |
| 1458 | } else if (m_lastOpcodeID == op_neq) { |
| 1459 | if (fuseCompareAndJump<OpNeq, OpJneq>(cond, target)) |
| 1460 | return; |
| 1461 | } else if (m_lastOpcodeID == op_nstricteq) { |
| 1462 | if (fuseCompareAndJump<OpNstricteq, OpJnstricteq>(cond, target)) |
| 1463 | return; |
| 1464 | } else if (m_lastOpcodeID == op_below) { |
| 1465 | if (fuseCompareAndJump<OpBelow, OpJbelow>(cond, target)) |
| 1466 | return; |
| 1467 | } else if (m_lastOpcodeID == op_beloweq) { |
| 1468 | if (fuseCompareAndJump<OpBeloweq, OpJbeloweq>(cond, target)) |
| 1469 | return; |
| 1470 | } else if (m_lastOpcodeID == op_eq_null && target.isForward()) { |
| 1471 | if (fuseTestAndJmp<OpEqNull, OpJeqNull>(cond, target)) |
| 1472 | return; |
| 1473 | } else if (m_lastOpcodeID == op_neq_null && target.isForward()) { |
| 1474 | if (fuseTestAndJmp<OpNeqNull, OpJneqNull>(cond, target)) |
| 1475 | return; |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | OpJtrue::emit(this, cond, target.bind(this)); |
| 1480 | } |
| 1481 | |
| 1482 | void BytecodeGenerator::emitJumpIfFalse(RegisterID* cond, Label& target) |
| 1483 | { |
| 1484 | if (canDoPeepholeOptimization()) { |
| 1485 | if (m_lastOpcodeID == op_less && target.isForward()) { |
| 1486 | if (fuseCompareAndJump<OpLess, OpJnless>(cond, target)) |
| 1487 | return; |
| 1488 | } else if (m_lastOpcodeID == op_lesseq && target.isForward()) { |
| 1489 | if (fuseCompareAndJump<OpLesseq, OpJnlesseq>(cond, target)) |
| 1490 | return; |
| 1491 | } else if (m_lastOpcodeID == op_greater && target.isForward()) { |
| 1492 | if (fuseCompareAndJump<OpGreater, OpJngreater>(cond, target)) |
| 1493 | return; |
| 1494 | } else if (m_lastOpcodeID == op_greatereq && target.isForward()) { |
| 1495 | if (fuseCompareAndJump<OpGreatereq, OpJngreatereq>(cond, target)) |
| 1496 | return; |
| 1497 | } else if (m_lastOpcodeID == op_eq && target.isForward()) { |
| 1498 | if (fuseCompareAndJump<OpEq, OpJneq>(cond, target)) |
| 1499 | return; |
| 1500 | } else if (m_lastOpcodeID == op_stricteq && target.isForward()) { |
| 1501 | if (fuseCompareAndJump<OpStricteq, OpJnstricteq>(cond, target)) |
| 1502 | return; |
| 1503 | } else if (m_lastOpcodeID == op_neq && target.isForward()) { |
| 1504 | if (fuseCompareAndJump<OpNeq, OpJeq>(cond, target)) |
| 1505 | return; |
| 1506 | } else if (m_lastOpcodeID == op_nstricteq && target.isForward()) { |
| 1507 | if (fuseCompareAndJump<OpNstricteq, OpJstricteq>(cond, target)) |
| 1508 | return; |
| 1509 | } else if (m_lastOpcodeID == op_below && target.isForward()) { |
| 1510 | if (fuseCompareAndJump<OpBelow, OpJbeloweq>(cond, target, true)) |
| 1511 | return; |
| 1512 | } else if (m_lastOpcodeID == op_beloweq && target.isForward()) { |
| 1513 | if (fuseCompareAndJump<OpBeloweq, OpJbelow>(cond, target, true)) |
| 1514 | return; |
| 1515 | } else if (m_lastOpcodeID == op_not) { |
| 1516 | if (fuseTestAndJmp<OpNot, OpJtrue>(cond, target)) |
| 1517 | return; |
| 1518 | } else if (m_lastOpcodeID == op_eq_null && target.isForward()) { |
| 1519 | if (fuseTestAndJmp<OpEqNull, OpJneqNull>(cond, target)) |
| 1520 | return; |
| 1521 | } else if (m_lastOpcodeID == op_neq_null && target.isForward()) { |
| 1522 | if (fuseTestAndJmp<OpNeqNull, OpJeqNull>(cond, target)) |
| 1523 | return; |
| 1524 | } |
| 1525 | } |
| 1526 | |
| 1527 | OpJfalse::emit(this, cond, target.bind(this)); |
| 1528 | } |
| 1529 | |
| 1530 | void BytecodeGenerator::emitJumpIfNotFunctionCall(RegisterID* cond, Label& target) |
| 1531 | { |
| 1532 | OpJneqPtr::emit(this, cond, Special::CallFunction, target.bind(this)); |
| 1533 | } |
| 1534 | |
| 1535 | void BytecodeGenerator::emitJumpIfNotFunctionApply(RegisterID* cond, Label& target) |
| 1536 | { |
| 1537 | OpJneqPtr::emit(this, cond, Special::ApplyFunction, target.bind(this)); |
| 1538 | } |
| 1539 | |
| 1540 | bool BytecodeGenerator::hasConstant(const Identifier& ident) const |
| 1541 | { |
| 1542 | UniquedStringImpl* rep = ident.impl(); |
| 1543 | return m_identifierMap.contains(rep); |
| 1544 | } |
| 1545 | |
| 1546 | unsigned BytecodeGenerator::addConstant(const Identifier& ident) |
| 1547 | { |
| 1548 | UniquedStringImpl* rep = ident.impl(); |
| 1549 | IdentifierMap::AddResult result = m_identifierMap.add(rep, m_codeBlock->numberOfIdentifiers()); |
| 1550 | if (result.isNewEntry) |
| 1551 | m_codeBlock->addIdentifier(ident); |
| 1552 | |
| 1553 | return result.iterator->value; |
| 1554 | } |
| 1555 | |
| 1556 | // We can't hash JSValue(), so we use a dedicated data member to cache it. |
| 1557 | RegisterID* BytecodeGenerator::addConstantEmptyValue() |
| 1558 | { |
| 1559 | if (!m_emptyValueRegister) { |
| 1560 | int index = addConstantIndex(); |
| 1561 | m_codeBlock->addConstant(JSValue()); |
| 1562 | m_emptyValueRegister = &m_constantPoolRegisters[index]; |
| 1563 | } |
| 1564 | |
| 1565 | return m_emptyValueRegister; |
| 1566 | } |
| 1567 | |
| 1568 | RegisterID* BytecodeGenerator::addConstantValue(JSValue v, SourceCodeRepresentation sourceCodeRepresentation) |
| 1569 | { |
| 1570 | if (!v) |
| 1571 | return addConstantEmptyValue(); |
| 1572 | |
| 1573 | int index = m_nextConstantOffset; |
| 1574 | |
| 1575 | if (sourceCodeRepresentation == SourceCodeRepresentation::Double && v.isInt32()) |
| 1576 | v = jsDoubleNumber(v.asNumber()); |
| 1577 | EncodedJSValueWithRepresentation valueMapKey { JSValue::encode(v), sourceCodeRepresentation }; |
| 1578 | JSValueMap::AddResult result = m_jsValueMap.add(valueMapKey, m_nextConstantOffset); |
| 1579 | if (result.isNewEntry) { |
| 1580 | addConstantIndex(); |
| 1581 | m_codeBlock->addConstant(v, sourceCodeRepresentation); |
| 1582 | } else |
| 1583 | index = result.iterator->value; |
| 1584 | return &m_constantPoolRegisters[index]; |
| 1585 | } |
| 1586 | |
| 1587 | RegisterID* BytecodeGenerator::moveLinkTimeConstant(RegisterID* dst, LinkTimeConstant type) |
| 1588 | { |
| 1589 | unsigned constantIndex = static_cast<unsigned>(type); |
| 1590 | if (!m_linkTimeConstantRegisters[constantIndex]) { |
| 1591 | int index = addConstantIndex(); |
| 1592 | m_codeBlock->addConstant(type); |
| 1593 | m_linkTimeConstantRegisters[constantIndex] = &m_constantPoolRegisters[index]; |
| 1594 | } |
| 1595 | |
| 1596 | if (!dst) |
| 1597 | return m_linkTimeConstantRegisters[constantIndex]; |
| 1598 | |
| 1599 | OpMov::emit(this, dst, m_linkTimeConstantRegisters[constantIndex]); |
| 1600 | |
| 1601 | return dst; |
| 1602 | } |
| 1603 | |
| 1604 | RegisterID* BytecodeGenerator::moveEmptyValue(RegisterID* dst) |
| 1605 | { |
| 1606 | RefPtr<RegisterID> emptyValue = addConstantEmptyValue(); |
| 1607 | |
| 1608 | OpMov::emit(this, dst, emptyValue.get()); |
| 1609 | |
| 1610 | return dst; |
| 1611 | } |
| 1612 | |
| 1613 | RegisterID* BytecodeGenerator::emitMove(RegisterID* dst, RegisterID* src) |
| 1614 | { |
| 1615 | ASSERT(src != m_emptyValueRegister); |
| 1616 | |
| 1617 | m_staticPropertyAnalyzer.mov(dst, src); |
| 1618 | OpMov::emit(this, dst, src); |
| 1619 | |
| 1620 | return dst; |
| 1621 | } |
| 1622 | |
| 1623 | RegisterID* BytecodeGenerator::emitUnaryOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src, OperandTypes types) |
| 1624 | { |
| 1625 | switch (opcodeID) { |
| 1626 | case op_not: |
| 1627 | emitUnaryOp<OpNot>(dst, src); |
| 1628 | break; |
| 1629 | case op_negate: |
| 1630 | OpNegate::emit(this, dst, src, types); |
| 1631 | break; |
| 1632 | case op_bitnot: |
| 1633 | emitUnaryOp<OpBitnot>(dst, src); |
| 1634 | break; |
| 1635 | case op_to_number: |
| 1636 | emitUnaryOp<OpToNumber>(dst, src); |
| 1637 | break; |
| 1638 | default: |
| 1639 | ASSERT_NOT_REACHED(); |
| 1640 | } |
| 1641 | return dst; |
| 1642 | } |
| 1643 | |
| 1644 | RegisterID* BytecodeGenerator::emitBinaryOp(OpcodeID opcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes types) |
| 1645 | { |
| 1646 | switch (opcodeID) { |
| 1647 | case op_eq: |
| 1648 | return emitBinaryOp<OpEq>(dst, src1, src2, types); |
| 1649 | case op_neq: |
| 1650 | return emitBinaryOp<OpNeq>(dst, src1, src2, types); |
| 1651 | case op_stricteq: |
| 1652 | return emitBinaryOp<OpStricteq>(dst, src1, src2, types); |
| 1653 | case op_nstricteq: |
| 1654 | return emitBinaryOp<OpNstricteq>(dst, src1, src2, types); |
| 1655 | case op_less: |
| 1656 | return emitBinaryOp<OpLess>(dst, src1, src2, types); |
| 1657 | case op_lesseq: |
| 1658 | return emitBinaryOp<OpLesseq>(dst, src1, src2, types); |
| 1659 | case op_greater: |
| 1660 | return emitBinaryOp<OpGreater>(dst, src1, src2, types); |
| 1661 | case op_greatereq: |
| 1662 | return emitBinaryOp<OpGreatereq>(dst, src1, src2, types); |
| 1663 | case op_below: |
| 1664 | return emitBinaryOp<OpBelow>(dst, src1, src2, types); |
| 1665 | case op_beloweq: |
| 1666 | return emitBinaryOp<OpBeloweq>(dst, src1, src2, types); |
| 1667 | case op_mod: |
| 1668 | return emitBinaryOp<OpMod>(dst, src1, src2, types); |
| 1669 | case op_pow: |
| 1670 | return emitBinaryOp<OpPow>(dst, src1, src2, types); |
| 1671 | case op_lshift: |
| 1672 | return emitBinaryOp<OpLshift>(dst, src1, src2, types); |
| 1673 | case op_rshift: |
| 1674 | return emitBinaryOp<OpRshift>(dst, src1, src2, types); |
| 1675 | case op_urshift: |
| 1676 | return emitBinaryOp<OpUrshift>(dst, src1, src2, types); |
| 1677 | case op_add: |
| 1678 | return emitBinaryOp<OpAdd>(dst, src1, src2, types); |
| 1679 | case op_mul: |
| 1680 | return emitBinaryOp<OpMul>(dst, src1, src2, types); |
| 1681 | case op_div: |
| 1682 | return emitBinaryOp<OpDiv>(dst, src1, src2, types); |
| 1683 | case op_sub: |
| 1684 | return emitBinaryOp<OpSub>(dst, src1, src2, types); |
| 1685 | case op_bitand: |
| 1686 | return emitBinaryOp<OpBitand>(dst, src1, src2, types); |
| 1687 | case op_bitxor: |
| 1688 | return emitBinaryOp<OpBitxor>(dst, src1, src2, types); |
| 1689 | case op_bitor: |
| 1690 | return emitBinaryOp<OpBitor>(dst, src1, src2, types); |
| 1691 | default: |
| 1692 | ASSERT_NOT_REACHED(); |
| 1693 | return nullptr; |
| 1694 | } |
| 1695 | } |
| 1696 | |
| 1697 | RegisterID* BytecodeGenerator::emitToObject(RegisterID* dst, RegisterID* src, const Identifier& message) |
| 1698 | { |
| 1699 | OpToObject::emit(this, dst, src, addConstant(message)); |
| 1700 | return dst; |
| 1701 | } |
| 1702 | |
| 1703 | RegisterID* BytecodeGenerator::emitToNumber(RegisterID* dst, RegisterID* src) |
| 1704 | { |
| 1705 | return emitUnaryOp<OpToNumber>(dst, src); |
| 1706 | } |
| 1707 | |
| 1708 | RegisterID* BytecodeGenerator::emitToString(RegisterID* dst, RegisterID* src) |
| 1709 | { |
| 1710 | return emitUnaryOp<OpToString>(dst, src); |
| 1711 | } |
| 1712 | |
| 1713 | RegisterID* BytecodeGenerator::emitTypeOf(RegisterID* dst, RegisterID* src) |
| 1714 | { |
| 1715 | return emitUnaryOp<OpTypeof>(dst, src); |
| 1716 | } |
| 1717 | |
| 1718 | RegisterID* BytecodeGenerator::emitInc(RegisterID* srcDst) |
| 1719 | { |
| 1720 | OpInc::emit(this, srcDst); |
| 1721 | return srcDst; |
| 1722 | } |
| 1723 | |
| 1724 | RegisterID* BytecodeGenerator::emitDec(RegisterID* srcDst) |
| 1725 | { |
| 1726 | OpDec::emit(this, srcDst); |
| 1727 | return srcDst; |
| 1728 | } |
| 1729 | |
| 1730 | bool BytecodeGenerator::emitEqualityOpImpl(RegisterID* dst, RegisterID* src1, RegisterID* src2) |
| 1731 | { |
| 1732 | if (!canDoPeepholeOptimization()) |
| 1733 | return false; |
| 1734 | |
| 1735 | if (m_lastInstruction->is<OpTypeof>()) { |
| 1736 | auto op = m_lastInstruction->as<OpTypeof>(); |
| 1737 | if (src1->index() == op.m_dst.offset() |
| 1738 | && src1->isTemporary() |
| 1739 | && m_codeBlock->isConstantRegisterIndex(src2->index()) |
| 1740 | && m_codeBlock->constantRegister(src2->index()).get().isString()) { |
| 1741 | const String& value = asString(m_codeBlock->constantRegister(src2->index()).get())->tryGetValue(); |
| 1742 | if (value == "undefined" ) { |
| 1743 | rewind(); |
| 1744 | OpIsUndefined::emit(this, dst, op.m_value); |
| 1745 | return true; |
| 1746 | } |
| 1747 | if (value == "boolean" ) { |
| 1748 | rewind(); |
| 1749 | OpIsBoolean::emit(this, dst, op.m_value); |
| 1750 | return true; |
| 1751 | } |
| 1752 | if (value == "number" ) { |
| 1753 | rewind(); |
| 1754 | OpIsNumber::emit(this, dst, op.m_value); |
| 1755 | return true; |
| 1756 | } |
| 1757 | if (value == "string" ) { |
| 1758 | rewind(); |
| 1759 | OpIsCellWithType::emit(this, dst, op.m_value, StringType); |
| 1760 | return true; |
| 1761 | } |
| 1762 | if (value == "symbol" ) { |
| 1763 | rewind(); |
| 1764 | OpIsCellWithType::emit(this, dst, op.m_value, SymbolType); |
| 1765 | return true; |
| 1766 | } |
| 1767 | if (Options::useBigInt() && value == "bigint" ) { |
| 1768 | rewind(); |
| 1769 | OpIsCellWithType::emit(this, dst, op.m_value, BigIntType); |
| 1770 | return true; |
| 1771 | } |
| 1772 | if (value == "object" ) { |
| 1773 | rewind(); |
| 1774 | OpIsObjectOrNull::emit(this, dst, op.m_value); |
| 1775 | return true; |
| 1776 | } |
| 1777 | if (value == "function" ) { |
| 1778 | rewind(); |
| 1779 | OpIsFunction::emit(this, dst, op.m_value); |
| 1780 | return true; |
| 1781 | } |
| 1782 | } |
| 1783 | } |
| 1784 | |
| 1785 | return false; |
| 1786 | } |
| 1787 | |
| 1788 | void BytecodeGenerator::emitTypeProfilerExpressionInfo(const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| 1789 | { |
| 1790 | ASSERT(shouldEmitTypeProfilerHooks()); |
| 1791 | |
| 1792 | unsigned start = startDivot.offset; // Ranges are inclusive of their endpoints, AND 0 indexed. |
| 1793 | unsigned end = endDivot.offset - 1; // End Ranges already go one past the inclusive range, so subtract 1. |
| 1794 | unsigned instructionOffset = instructions().size() - 1; |
| 1795 | m_codeBlock->addTypeProfilerExpressionInfo(instructionOffset, start, end); |
| 1796 | } |
| 1797 | |
| 1798 | void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag flag) |
| 1799 | { |
| 1800 | if (!shouldEmitTypeProfilerHooks()) |
| 1801 | return; |
| 1802 | |
| 1803 | if (!registerToProfile) |
| 1804 | return; |
| 1805 | |
| 1806 | OpProfileType::emit(this, registerToProfile, { }, flag, { }, resolveType()); |
| 1807 | |
| 1808 | // Don't emit expression info for this version of profile type. This generally means |
| 1809 | // we're profiling information for something that isn't in the actual text of a JavaScript |
| 1810 | // program. For example, implicit return undefined from a function call. |
| 1811 | } |
| 1812 | |
| 1813 | void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| 1814 | { |
| 1815 | emitProfileType(registerToProfile, ProfileTypeBytecodeDoesNotHaveGlobalID, startDivot, endDivot); |
| 1816 | } |
| 1817 | |
| 1818 | void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag flag, const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| 1819 | { |
| 1820 | if (!shouldEmitTypeProfilerHooks()) |
| 1821 | return; |
| 1822 | |
| 1823 | if (!registerToProfile) |
| 1824 | return; |
| 1825 | |
| 1826 | OpProfileType::emit(this, registerToProfile, { }, flag, { }, resolveType()); |
| 1827 | emitTypeProfilerExpressionInfo(startDivot, endDivot); |
| 1828 | } |
| 1829 | |
| 1830 | void BytecodeGenerator::emitProfileType(RegisterID* registerToProfile, const Variable& var, const JSTextPosition& startDivot, const JSTextPosition& endDivot) |
| 1831 | { |
| 1832 | if (!shouldEmitTypeProfilerHooks()) |
| 1833 | return; |
| 1834 | |
| 1835 | if (!registerToProfile) |
| 1836 | return; |
| 1837 | |
| 1838 | ProfileTypeBytecodeFlag flag; |
| 1839 | SymbolTableOrScopeDepth symbolTableOrScopeDepth; |
| 1840 | if (var.local() || var.offset().isScope()) { |
| 1841 | flag = ProfileTypeBytecodeLocallyResolved; |
| 1842 | ASSERT(var.symbolTableConstantIndex()); |
| 1843 | symbolTableOrScopeDepth = SymbolTableOrScopeDepth::symbolTable(VirtualRegister { var.symbolTableConstantIndex() }); |
| 1844 | } else { |
| 1845 | flag = ProfileTypeBytecodeClosureVar; |
| 1846 | symbolTableOrScopeDepth = SymbolTableOrScopeDepth::scopeDepth(localScopeDepth()); |
| 1847 | } |
| 1848 | |
| 1849 | OpProfileType::emit(this, registerToProfile, symbolTableOrScopeDepth, flag, addConstant(var.ident()), resolveType()); |
| 1850 | emitTypeProfilerExpressionInfo(startDivot, endDivot); |
| 1851 | } |
| 1852 | |
| 1853 | void BytecodeGenerator::emitProfileControlFlow(int textOffset) |
| 1854 | { |
| 1855 | if (shouldEmitControlFlowProfilerHooks()) { |
| 1856 | RELEASE_ASSERT(textOffset >= 0); |
| 1857 | |
| 1858 | OpProfileControlFlow::emit(this, textOffset); |
| 1859 | m_codeBlock->addOpProfileControlFlowBytecodeOffset(m_lastInstruction.offset()); |
| 1860 | } |
| 1861 | } |
| 1862 | |
| 1863 | unsigned BytecodeGenerator::addConstantIndex() |
| 1864 | { |
| 1865 | unsigned index = m_nextConstantOffset; |
| 1866 | m_constantPoolRegisters.append(FirstConstantRegisterIndex + m_nextConstantOffset); |
| 1867 | ++m_nextConstantOffset; |
| 1868 | return index; |
| 1869 | } |
| 1870 | |
| 1871 | RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, bool b) |
| 1872 | { |
| 1873 | return emitLoad(dst, jsBoolean(b)); |
| 1874 | } |
| 1875 | |
| 1876 | RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, const Identifier& identifier) |
| 1877 | { |
| 1878 | ASSERT(!identifier.isSymbol()); |
| 1879 | JSString*& stringInMap = m_stringMap.add(identifier.impl(), nullptr).iterator->value; |
| 1880 | if (!stringInMap) |
| 1881 | stringInMap = jsOwnedString(vm(), identifier.string()); |
| 1882 | |
| 1883 | return emitLoad(dst, JSValue(stringInMap)); |
| 1884 | } |
| 1885 | |
| 1886 | RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, JSValue v, SourceCodeRepresentation sourceCodeRepresentation) |
| 1887 | { |
| 1888 | RegisterID* constantID = addConstantValue(v, sourceCodeRepresentation); |
| 1889 | if (dst) |
| 1890 | return move(dst, constantID); |
| 1891 | return constantID; |
| 1892 | } |
| 1893 | |
| 1894 | RegisterID* BytecodeGenerator::emitLoad(RegisterID* dst, IdentifierSet& set) |
| 1895 | { |
| 1896 | if (m_codeBlock->numberOfConstantIdentifierSets()) { |
| 1897 | for (const auto& entry : m_codeBlock->constantIdentifierSets()) { |
| 1898 | if (entry.first != set) |
| 1899 | continue; |
| 1900 | |
| 1901 | return &m_constantPoolRegisters[entry.second]; |
| 1902 | } |
| 1903 | } |
| 1904 | |
| 1905 | unsigned index = addConstantIndex(); |
| 1906 | m_codeBlock->addSetConstant(set); |
| 1907 | RegisterID* m_setRegister = &m_constantPoolRegisters[index]; |
| 1908 | |
| 1909 | if (dst) |
| 1910 | return move(dst, m_setRegister); |
| 1911 | |
| 1912 | return m_setRegister; |
| 1913 | } |
| 1914 | |
| 1915 | template<typename LookUpVarKindFunctor> |
| 1916 | bool BytecodeGenerator::instantiateLexicalVariables(const VariableEnvironment& lexicalVariables, SymbolTable* symbolTable, ScopeRegisterType scopeRegisterType, LookUpVarKindFunctor lookUpVarKind) |
| 1917 | { |
| 1918 | bool hasCapturedVariables = false; |
| 1919 | { |
| 1920 | for (auto& entry : lexicalVariables) { |
| 1921 | ASSERT(entry.value.isLet() || entry.value.isConst() || entry.value.isFunction()); |
| 1922 | ASSERT(!entry.value.isVar()); |
| 1923 | SymbolTableEntry symbolTableEntry = symbolTable->get(NoLockingNecessary, entry.key.get()); |
| 1924 | ASSERT(symbolTableEntry.isNull()); |
| 1925 | |
| 1926 | // Imported bindings which are not the namespace bindings are not allocated |
| 1927 | // in the module environment as usual variables' way. |
| 1928 | // And since these types of the variables only seen in the module environment, |
| 1929 | // other lexical environment need not to take care this. |
| 1930 | if (entry.value.isImported() && !entry.value.isImportedNamespace()) |
| 1931 | continue; |
| 1932 | |
| 1933 | VarKind varKind = lookUpVarKind(entry.key.get(), entry.value); |
| 1934 | VarOffset varOffset; |
| 1935 | if (varKind == VarKind::Scope) { |
| 1936 | varOffset = VarOffset(symbolTable->takeNextScopeOffset(NoLockingNecessary)); |
| 1937 | hasCapturedVariables = true; |
| 1938 | } else { |
| 1939 | ASSERT(varKind == VarKind::Stack); |
| 1940 | RegisterID* local; |
| 1941 | if (scopeRegisterType == ScopeRegisterType::Block) { |
| 1942 | local = newBlockScopeVariable(); |
| 1943 | local->ref(); |
| 1944 | } else |
| 1945 | local = addVar(); |
| 1946 | varOffset = VarOffset(local->virtualRegister()); |
| 1947 | } |
| 1948 | |
| 1949 | SymbolTableEntry newEntry(varOffset, static_cast<unsigned>(entry.value.isConst() ? PropertyAttribute::ReadOnly : PropertyAttribute::None)); |
| 1950 | symbolTable->add(NoLockingNecessary, entry.key.get(), newEntry); |
| 1951 | } |
| 1952 | } |
| 1953 | return hasCapturedVariables; |
| 1954 | } |
| 1955 | |
| 1956 | void BytecodeGenerator::emitPrefillStackTDZVariables(const VariableEnvironment& lexicalVariables, SymbolTable* symbolTable) |
| 1957 | { |
| 1958 | // Prefill stack variables with the TDZ empty value. |
| 1959 | // Scope variables will be initialized to the TDZ empty value when JSLexicalEnvironment is allocated. |
| 1960 | for (auto& entry : lexicalVariables) { |
| 1961 | // Imported bindings which are not the namespace bindings are not allocated |
| 1962 | // in the module environment as usual variables' way. |
| 1963 | // And since these types of the variables only seen in the module environment, |
| 1964 | // other lexical environment need not to take care this. |
| 1965 | if (entry.value.isImported() && !entry.value.isImportedNamespace()) |
| 1966 | continue; |
| 1967 | |
| 1968 | if (entry.value.isFunction()) |
| 1969 | continue; |
| 1970 | |
| 1971 | SymbolTableEntry symbolTableEntry = symbolTable->get(NoLockingNecessary, entry.key.get()); |
| 1972 | ASSERT(!symbolTableEntry.isNull()); |
| 1973 | VarOffset offset = symbolTableEntry.varOffset(); |
| 1974 | if (offset.isScope()) |
| 1975 | continue; |
| 1976 | |
| 1977 | ASSERT(offset.isStack()); |
| 1978 | moveEmptyValue(®isterFor(offset.stackOffset())); |
| 1979 | } |
| 1980 | } |
| 1981 | |
| 1982 | void BytecodeGenerator::pushLexicalScope(VariableEnvironmentNode* node, TDZCheckOptimization tdzCheckOptimization, NestedScopeType nestedScopeType, RegisterID** constantSymbolTableResult, bool shouldInitializeBlockScopedFunctions) |
| 1983 | { |
| 1984 | VariableEnvironment& environment = node->lexicalVariables(); |
| 1985 | RegisterID* constantSymbolTableResultTemp = nullptr; |
| 1986 | pushLexicalScopeInternal(environment, tdzCheckOptimization, nestedScopeType, &constantSymbolTableResultTemp, TDZRequirement::UnderTDZ, ScopeType::LetConstScope, ScopeRegisterType::Block); |
| 1987 | |
| 1988 | if (shouldInitializeBlockScopedFunctions) |
| 1989 | initializeBlockScopedFunctions(environment, node->functionStack(), constantSymbolTableResultTemp); |
| 1990 | |
| 1991 | if (constantSymbolTableResult && constantSymbolTableResultTemp) |
| 1992 | *constantSymbolTableResult = constantSymbolTableResultTemp; |
| 1993 | } |
| 1994 | |
| 1995 | void BytecodeGenerator::pushLexicalScopeInternal(VariableEnvironment& environment, TDZCheckOptimization tdzCheckOptimization, NestedScopeType nestedScopeType, |
| 1996 | RegisterID** constantSymbolTableResult, TDZRequirement tdzRequirement, ScopeType scopeType, ScopeRegisterType scopeRegisterType) |
| 1997 | { |
| 1998 | if (!environment.size()) |
| 1999 | return; |
| 2000 | |
| 2001 | if (shouldEmitDebugHooks()) |
| 2002 | environment.markAllVariablesAsCaptured(); |
| 2003 | |
| 2004 | SymbolTable* symbolTable = SymbolTable::create(*m_vm); |
| 2005 | switch (scopeType) { |
| 2006 | case ScopeType::CatchScope: |
| 2007 | symbolTable->setScopeType(SymbolTable::ScopeType::CatchScope); |
| 2008 | break; |
| 2009 | case ScopeType::LetConstScope: |
| 2010 | symbolTable->setScopeType(SymbolTable::ScopeType::LexicalScope); |
| 2011 | break; |
| 2012 | case ScopeType::FunctionNameScope: |
| 2013 | symbolTable->setScopeType(SymbolTable::ScopeType::FunctionNameScope); |
| 2014 | break; |
| 2015 | } |
| 2016 | |
| 2017 | if (nestedScopeType == NestedScopeType::IsNested) |
| 2018 | symbolTable->markIsNestedLexicalScope(); |
| 2019 | |
| 2020 | auto lookUpVarKind = [] (UniquedStringImpl*, const VariableEnvironmentEntry& entry) -> VarKind { |
| 2021 | return entry.isCaptured() ? VarKind::Scope : VarKind::Stack; |
| 2022 | }; |
| 2023 | |
| 2024 | bool hasCapturedVariables = instantiateLexicalVariables(environment, symbolTable, scopeRegisterType, lookUpVarKind); |
| 2025 | |
| 2026 | RegisterID* newScope = nullptr; |
| 2027 | RegisterID* constantSymbolTable = nullptr; |
| 2028 | int symbolTableConstantIndex = 0; |
| 2029 | if (shouldEmitTypeProfilerHooks()) { |
| 2030 | constantSymbolTable = addConstantValue(symbolTable); |
| 2031 | symbolTableConstantIndex = constantSymbolTable->index(); |
| 2032 | } |
| 2033 | if (hasCapturedVariables) { |
| 2034 | if (scopeRegisterType == ScopeRegisterType::Block) { |
| 2035 | newScope = newBlockScopeVariable(); |
| 2036 | newScope->ref(); |
| 2037 | } else |
| 2038 | newScope = addVar(); |
| 2039 | if (!constantSymbolTable) { |
| 2040 | ASSERT(!shouldEmitTypeProfilerHooks()); |
| 2041 | constantSymbolTable = addConstantValue(symbolTable->cloneScopePart(*m_vm)); |
| 2042 | symbolTableConstantIndex = constantSymbolTable->index(); |
| 2043 | } |
| 2044 | if (constantSymbolTableResult) |
| 2045 | *constantSymbolTableResult = constantSymbolTable; |
| 2046 | |
| 2047 | OpCreateLexicalEnvironment::emit(this, newScope, scopeRegister(), VirtualRegister { symbolTableConstantIndex }, addConstantValue(tdzRequirement == TDZRequirement::UnderTDZ ? jsTDZValue() : jsUndefined())); |
| 2048 | |
| 2049 | move(scopeRegister(), newScope); |
| 2050 | |
| 2051 | pushLocalControlFlowScope(); |
| 2052 | } |
| 2053 | |
| 2054 | bool isWithScope = false; |
| 2055 | m_lexicalScopeStack.append({ symbolTable, newScope, isWithScope, symbolTableConstantIndex }); |
| 2056 | pushTDZVariables(environment, tdzCheckOptimization, tdzRequirement); |
| 2057 | |
| 2058 | if (tdzRequirement == TDZRequirement::UnderTDZ) |
| 2059 | emitPrefillStackTDZVariables(environment, symbolTable); |
| 2060 | } |
| 2061 | |
| 2062 | void BytecodeGenerator::initializeBlockScopedFunctions(VariableEnvironment& environment, FunctionStack& functionStack, RegisterID* constantSymbolTable) |
| 2063 | { |
| 2064 | /* |
| 2065 | * We must transform block scoped function declarations in strict mode like so: |
| 2066 | * |
| 2067 | * function foo() { |
| 2068 | * if (c) { |
| 2069 | * function foo() { ... } |
| 2070 | * if (bar) { ... } |
| 2071 | * else { ... } |
| 2072 | * function baz() { ... } |
| 2073 | * } |
| 2074 | * } |
| 2075 | * |
| 2076 | * to: |
| 2077 | * |
| 2078 | * function foo() { |
| 2079 | * if (c) { |
| 2080 | * let foo = function foo() { ... } |
| 2081 | * let baz = function baz() { ... } |
| 2082 | * if (bar) { ... } |
| 2083 | * else { ... } |
| 2084 | * } |
| 2085 | * } |
| 2086 | * |
| 2087 | * But without the TDZ checks. |
| 2088 | */ |
| 2089 | |
| 2090 | if (!environment.size()) { |
| 2091 | RELEASE_ASSERT(!functionStack.size()); |
| 2092 | return; |
| 2093 | } |
| 2094 | |
| 2095 | if (!functionStack.size()) |
| 2096 | return; |
| 2097 | |
| 2098 | SymbolTable* symbolTable = m_lexicalScopeStack.last().m_symbolTable; |
| 2099 | RegisterID* scope = m_lexicalScopeStack.last().m_scope; |
| 2100 | RefPtr<RegisterID> temp = newTemporary(); |
| 2101 | int symbolTableIndex = constantSymbolTable ? constantSymbolTable->index() : 0; |
| 2102 | for (FunctionMetadataNode* function : functionStack) { |
| 2103 | const Identifier& name = function->ident(); |
| 2104 | auto iter = environment.find(name.impl()); |
| 2105 | RELEASE_ASSERT(iter != environment.end()); |
| 2106 | RELEASE_ASSERT(iter->value.isFunction()); |
| 2107 | // We purposefully don't hold the symbol table lock around this loop because emitNewFunctionExpressionCommon may GC. |
| 2108 | SymbolTableEntry entry = symbolTable->get(NoLockingNecessary, name.impl()); |
| 2109 | RELEASE_ASSERT(!entry.isNull()); |
| 2110 | emitNewFunctionExpressionCommon(temp.get(), function); |
| 2111 | bool isLexicallyScoped = true; |
| 2112 | emitPutToScope(scope, variableForLocalEntry(name, entry, symbolTableIndex, isLexicallyScoped), temp.get(), DoNotThrowIfNotFound, InitializationMode::Initialization); |
| 2113 | } |
| 2114 | } |
| 2115 | |
| 2116 | void BytecodeGenerator::hoistSloppyModeFunctionIfNecessary(const Identifier& functionName) |
| 2117 | { |
| 2118 | if (m_scopeNode->hasSloppyModeHoistedFunction(functionName.impl())) { |
| 2119 | if (codeType() != EvalCode) { |
| 2120 | Variable currentFunctionVariable = variable(functionName); |
| 2121 | RefPtr<RegisterID> currentValue; |
| 2122 | if (RegisterID* local = currentFunctionVariable.local()) |
| 2123 | currentValue = local; |
| 2124 | else { |
| 2125 | RefPtr<RegisterID> scope = emitResolveScope(nullptr, currentFunctionVariable); |
| 2126 | currentValue = emitGetFromScope(newTemporary(), scope.get(), currentFunctionVariable, DoNotThrowIfNotFound); |
| 2127 | } |
| 2128 | |
| 2129 | ASSERT(m_varScopeLexicalScopeStackIndex); |
| 2130 | ASSERT(*m_varScopeLexicalScopeStackIndex < m_lexicalScopeStack.size()); |
| 2131 | LexicalScopeStackEntry varScope = m_lexicalScopeStack[*m_varScopeLexicalScopeStackIndex]; |
| 2132 | SymbolTable* varSymbolTable = varScope.m_symbolTable; |
| 2133 | ASSERT(varSymbolTable->scopeType() == SymbolTable::ScopeType::VarScope); |
| 2134 | SymbolTableEntry entry = varSymbolTable->get(NoLockingNecessary, functionName.impl()); |
| 2135 | if (functionName == propertyNames().arguments && entry.isNull()) { |
| 2136 | // "arguments" might be put in the parameter scope when we have a non-simple |
| 2137 | // parameter list since "arguments" is visible to expressions inside the |
| 2138 | // parameter evaluation list. |
| 2139 | // e.g: |
| 2140 | // function foo(x = arguments) { { function arguments() { } } } |
| 2141 | RELEASE_ASSERT(*m_varScopeLexicalScopeStackIndex > 0); |
| 2142 | varScope = m_lexicalScopeStack[*m_varScopeLexicalScopeStackIndex - 1]; |
| 2143 | SymbolTable* parameterSymbolTable = varScope.m_symbolTable; |
| 2144 | entry = parameterSymbolTable->get(NoLockingNecessary, functionName.impl()); |
| 2145 | } |
| 2146 | RELEASE_ASSERT(!entry.isNull()); |
| 2147 | bool isLexicallyScoped = false; |
| 2148 | emitPutToScope(varScope.m_scope, variableForLocalEntry(functionName, entry, varScope.m_symbolTableConstantIndex, isLexicallyScoped), currentValue.get(), DoNotThrowIfNotFound, InitializationMode::NotInitialization); |
| 2149 | } else { |
| 2150 | Variable currentFunctionVariable = variable(functionName); |
| 2151 | RefPtr<RegisterID> currentValue; |
| 2152 | if (RegisterID* local = currentFunctionVariable.local()) |
| 2153 | currentValue = local; |
| 2154 | else { |
| 2155 | RefPtr<RegisterID> scope = emitResolveScope(nullptr, currentFunctionVariable); |
| 2156 | currentValue = emitGetFromScope(newTemporary(), scope.get(), currentFunctionVariable, DoNotThrowIfNotFound); |
| 2157 | } |
| 2158 | |
| 2159 | RefPtr<RegisterID> scopeId = emitResolveScopeForHoistingFuncDeclInEval(nullptr, functionName); |
| 2160 | RefPtr<RegisterID> checkResult = emitIsUndefined(newTemporary(), scopeId.get()); |
| 2161 | |
| 2162 | Ref<Label> isNotVarScopeLabel = newLabel(); |
| 2163 | emitJumpIfTrue(checkResult.get(), isNotVarScopeLabel.get()); |
| 2164 | |
| 2165 | // Put to outer scope |
| 2166 | emitPutToScope(scopeId.get(), functionName, currentValue.get(), DoNotThrowIfNotFound, InitializationMode::NotInitialization); |
| 2167 | emitLabel(isNotVarScopeLabel.get()); |
| 2168 | |
| 2169 | } |
| 2170 | } |
| 2171 | } |
| 2172 | |
| 2173 | RegisterID* BytecodeGenerator::emitResolveScopeForHoistingFuncDeclInEval(RegisterID* dst, const Identifier& property) |
| 2174 | { |
| 2175 | ASSERT(m_codeType == EvalCode); |
| 2176 | |
| 2177 | dst = finalDestination(dst); |
| 2178 | OpResolveScopeForHoistingFuncDeclInEval::emit(this, kill(dst), m_topMostScope, addConstant(property)); |
| 2179 | return dst; |
| 2180 | } |
| 2181 | |
| 2182 | void BytecodeGenerator::popLexicalScope(VariableEnvironmentNode* node) |
| 2183 | { |
| 2184 | VariableEnvironment& environment = node->lexicalVariables(); |
| 2185 | popLexicalScopeInternal(environment); |
| 2186 | } |
| 2187 | |
| 2188 | void BytecodeGenerator::popLexicalScopeInternal(VariableEnvironment& environment) |
| 2189 | { |
| 2190 | // NOTE: This function only makes sense for scopes that aren't ScopeRegisterType::Var (only function name scope right now is ScopeRegisterType::Var). |
| 2191 | // This doesn't make sense for ScopeRegisterType::Var because we deref RegisterIDs here. |
| 2192 | if (!environment.size()) |
| 2193 | return; |
| 2194 | |
| 2195 | if (shouldEmitDebugHooks()) |
| 2196 | environment.markAllVariablesAsCaptured(); |
| 2197 | |
| 2198 | auto stackEntry = m_lexicalScopeStack.takeLast(); |
| 2199 | SymbolTable* symbolTable = stackEntry.m_symbolTable; |
| 2200 | bool hasCapturedVariables = false; |
| 2201 | for (auto& entry : environment) { |
| 2202 | if (entry.value.isCaptured()) { |
| 2203 | hasCapturedVariables = true; |
| 2204 | continue; |
| 2205 | } |
| 2206 | SymbolTableEntry symbolTableEntry = symbolTable->get(NoLockingNecessary, entry.key.get()); |
| 2207 | ASSERT(!symbolTableEntry.isNull()); |
| 2208 | VarOffset offset = symbolTableEntry.varOffset(); |
| 2209 | ASSERT(offset.isStack()); |
| 2210 | RegisterID* local = ®isterFor(offset.stackOffset()); |
| 2211 | local->deref(); |
| 2212 | } |
| 2213 | |
| 2214 | if (hasCapturedVariables) { |
| 2215 | RELEASE_ASSERT(stackEntry.m_scope); |
| 2216 | emitPopScope(scopeRegister(), stackEntry.m_scope); |
| 2217 | popLocalControlFlowScope(); |
| 2218 | stackEntry.m_scope->deref(); |
| 2219 | } |
| 2220 | |
| 2221 | m_TDZStack.removeLast(); |
| 2222 | m_cachedVariablesUnderTDZ = { }; |
| 2223 | } |
| 2224 | |
| 2225 | void BytecodeGenerator::prepareLexicalScopeForNextForLoopIteration(VariableEnvironmentNode* node, RegisterID* loopSymbolTable) |
| 2226 | { |
| 2227 | VariableEnvironment& environment = node->lexicalVariables(); |
| 2228 | if (!environment.size()) |
| 2229 | return; |
| 2230 | if (shouldEmitDebugHooks()) |
| 2231 | environment.markAllVariablesAsCaptured(); |
| 2232 | if (!environment.hasCapturedVariables()) |
| 2233 | return; |
| 2234 | |
| 2235 | RELEASE_ASSERT(loopSymbolTable); |
| 2236 | |
| 2237 | // This function needs to do setup for a for loop's activation if any of |
| 2238 | // the for loop's lexically declared variables are captured (that is, variables |
| 2239 | // declared in the loop header, not the loop body). This function needs to |
| 2240 | // make a copy of the current activation and copy the values from the previous |
| 2241 | // activation into the new activation because each iteration of a for loop |
| 2242 | // gets a new activation. |
| 2243 | |
| 2244 | auto stackEntry = m_lexicalScopeStack.last(); |
| 2245 | SymbolTable* symbolTable = stackEntry.m_symbolTable; |
| 2246 | RegisterID* loopScope = stackEntry.m_scope; |
| 2247 | ASSERT(symbolTable->scopeSize()); |
| 2248 | ASSERT(loopScope); |
| 2249 | Vector<std::pair<RegisterID*, Identifier>> activationValuesToCopyOver; |
| 2250 | |
| 2251 | { |
| 2252 | activationValuesToCopyOver.reserveInitialCapacity(symbolTable->scopeSize()); |
| 2253 | |
| 2254 | for (auto end = symbolTable->end(NoLockingNecessary), ptr = symbolTable->begin(NoLockingNecessary); ptr != end; ++ptr) { |
| 2255 | if (!ptr->value.varOffset().isScope()) |
| 2256 | continue; |
| 2257 | |
| 2258 | RefPtr<UniquedStringImpl> ident = ptr->key; |
| 2259 | Identifier identifier = Identifier::fromUid(m_vm, ident.get()); |
| 2260 | |
| 2261 | RegisterID* transitionValue = newBlockScopeVariable(); |
| 2262 | transitionValue->ref(); |
| 2263 | emitGetFromScope(transitionValue, loopScope, variableForLocalEntry(identifier, ptr->value, loopSymbolTable->index(), true), DoNotThrowIfNotFound); |
| 2264 | activationValuesToCopyOver.uncheckedAppend(std::make_pair(transitionValue, identifier)); |
| 2265 | } |
| 2266 | } |
| 2267 | |
| 2268 | // We need this dynamic behavior of the executing code to ensure |
| 2269 | // each loop iteration has a new activation object. (It's pretty ugly). |
| 2270 | // Also, this new activation needs to be assigned to the same register |
| 2271 | // as the previous scope because the loop body is compiled under |
| 2272 | // the assumption that the scope's register index is constant even |
| 2273 | // though the value in that register will change on each loop iteration. |
| 2274 | RefPtr<RegisterID> parentScope = emitGetParentScope(newTemporary(), loopScope); |
| 2275 | move(scopeRegister(), parentScope.get()); |
| 2276 | |
| 2277 | OpCreateLexicalEnvironment::emit(this, loopScope, scopeRegister(), loopSymbolTable, addConstantValue(jsTDZValue())); |
| 2278 | |
| 2279 | move(scopeRegister(), loopScope); |
| 2280 | |
| 2281 | { |
| 2282 | for (auto pair : activationValuesToCopyOver) { |
| 2283 | const Identifier& identifier = pair.second; |
| 2284 | SymbolTableEntry entry = symbolTable->get(NoLockingNecessary, identifier.impl()); |
| 2285 | RELEASE_ASSERT(!entry.isNull()); |
| 2286 | RegisterID* transitionValue = pair.first; |
| 2287 | emitPutToScope(loopScope, variableForLocalEntry(identifier, entry, loopSymbolTable->index(), true), transitionValue, DoNotThrowIfNotFound, InitializationMode::NotInitialization); |
| 2288 | transitionValue->deref(); |
| 2289 | } |
| 2290 | } |
| 2291 | } |
| 2292 | |
| 2293 | Variable BytecodeGenerator::variable(const Identifier& property, ThisResolutionType thisResolutionType) |
| 2294 | { |
| 2295 | if (property == propertyNames().thisIdentifier && thisResolutionType == ThisResolutionType::Local) |
| 2296 | return Variable(property, VarOffset(thisRegister()->virtualRegister()), thisRegister(), static_cast<unsigned>(PropertyAttribute::ReadOnly), Variable::SpecialVariable, 0, false); |
| 2297 | |
| 2298 | // We can optimize lookups if the lexical variable is found before a "with" or "catch" |
| 2299 | // scope because we're guaranteed static resolution. If we have to pass through |
| 2300 | // a "with" or "catch" scope we loose this guarantee. |
| 2301 | // We can't optimize cases like this: |
| 2302 | // { |
| 2303 | // let x = ...; |
| 2304 | // with (o) { |
| 2305 | // doSomethingWith(x); |
| 2306 | // } |
| 2307 | // } |
| 2308 | // Because we can't gaurantee static resolution on x. |
| 2309 | // But, in this case, we are guaranteed static resolution: |
| 2310 | // { |
| 2311 | // let x = ...; |
| 2312 | // with (o) { |
| 2313 | // let x = ...; |
| 2314 | // doSomethingWith(x); |
| 2315 | // } |
| 2316 | // } |
| 2317 | for (unsigned i = m_lexicalScopeStack.size(); i--; ) { |
| 2318 | auto& stackEntry = m_lexicalScopeStack[i]; |
| 2319 | if (stackEntry.m_isWithScope) |
| 2320 | return Variable(property); |
| 2321 | SymbolTable* symbolTable = stackEntry.m_symbolTable; |
| 2322 | SymbolTableEntry symbolTableEntry = symbolTable->get(NoLockingNecessary, property.impl()); |
| 2323 | if (symbolTableEntry.isNull()) |
| 2324 | continue; |
| 2325 | bool resultIsCallee = false; |
| 2326 | if (symbolTable->scopeType() == SymbolTable::ScopeType::FunctionNameScope) { |
| 2327 | if (m_usesNonStrictEval) { |
| 2328 | // We don't know if an eval has introduced a "var" named the same thing as the function name scope variable name. |
| 2329 | // We resort to dynamic lookup to answer this question. |
| 2330 | Variable result = Variable(property); |
| 2331 | return result; |
| 2332 | } |
| 2333 | resultIsCallee = true; |
| 2334 | } |
| 2335 | Variable result = variableForLocalEntry(property, symbolTableEntry, stackEntry.m_symbolTableConstantIndex, symbolTable->scopeType() == SymbolTable::ScopeType::LexicalScope); |
| 2336 | if (resultIsCallee) |
| 2337 | result.setIsReadOnly(); |
| 2338 | return result; |
| 2339 | } |
| 2340 | |
| 2341 | return Variable(property); |
| 2342 | } |
| 2343 | |
| 2344 | Variable BytecodeGenerator::variableForLocalEntry( |
| 2345 | const Identifier& property, const SymbolTableEntry& entry, int symbolTableConstantIndex, bool isLexicallyScoped) |
| 2346 | { |
| 2347 | VarOffset offset = entry.varOffset(); |
| 2348 | |
| 2349 | RegisterID* local; |
| 2350 | if (offset.isStack()) |
| 2351 | local = ®isterFor(offset.stackOffset()); |
| 2352 | else |
| 2353 | local = nullptr; |
| 2354 | |
| 2355 | return Variable(property, offset, local, entry.getAttributes(), Variable::NormalVariable, symbolTableConstantIndex, isLexicallyScoped); |
| 2356 | } |
| 2357 | |
| 2358 | void BytecodeGenerator::createVariable( |
| 2359 | const Identifier& property, VarKind varKind, SymbolTable* symbolTable, ExistingVariableMode existingVariableMode) |
| 2360 | { |
| 2361 | ASSERT(property != propertyNames().thisIdentifier); |
| 2362 | SymbolTableEntry entry = symbolTable->get(NoLockingNecessary, property.impl()); |
| 2363 | |
| 2364 | if (!entry.isNull()) { |
| 2365 | if (existingVariableMode == IgnoreExisting) |
| 2366 | return; |
| 2367 | |
| 2368 | // Do some checks to ensure that the variable we're being asked to create is sufficiently |
| 2369 | // compatible with the one we have already created. |
| 2370 | |
| 2371 | VarOffset offset = entry.varOffset(); |
| 2372 | |
| 2373 | // We can't change our minds about whether it's captured. |
| 2374 | if (offset.kind() != varKind) { |
| 2375 | dataLog( |
| 2376 | "Trying to add variable called " , property, " as " , varKind, |
| 2377 | " but it was already added as " , offset, ".\n" ); |
| 2378 | RELEASE_ASSERT_NOT_REACHED(); |
| 2379 | } |
| 2380 | |
| 2381 | return; |
| 2382 | } |
| 2383 | |
| 2384 | VarOffset varOffset; |
| 2385 | if (varKind == VarKind::Scope) |
| 2386 | varOffset = VarOffset(symbolTable->takeNextScopeOffset(NoLockingNecessary)); |
| 2387 | else { |
| 2388 | ASSERT(varKind == VarKind::Stack); |
| 2389 | varOffset = VarOffset(virtualRegisterForLocal(m_calleeLocals.size())); |
| 2390 | } |
| 2391 | SymbolTableEntry newEntry(varOffset, 0); |
| 2392 | symbolTable->add(NoLockingNecessary, property.impl(), newEntry); |
| 2393 | |
| 2394 | if (varKind == VarKind::Stack) { |
| 2395 | RegisterID* local = addVar(); |
| 2396 | RELEASE_ASSERT(local->index() == varOffset.stackOffset().offset()); |
| 2397 | } |
| 2398 | } |
| 2399 | |
| 2400 | RegisterID* BytecodeGenerator::emitOverridesHasInstance(RegisterID* dst, RegisterID* constructor, RegisterID* hasInstanceValue) |
| 2401 | { |
| 2402 | OpOverridesHasInstance::emit(this, dst, constructor, hasInstanceValue); |
| 2403 | return dst; |
| 2404 | } |
| 2405 | |
| 2406 | // Indicates the least upper bound of resolve type based on local scope. The bytecode linker |
| 2407 | // will start with this ResolveType and compute the least upper bound including intercepting scopes. |
| 2408 | ResolveType BytecodeGenerator::resolveType() |
| 2409 | { |
| 2410 | for (unsigned i = m_lexicalScopeStack.size(); i--; ) { |
| 2411 | if (m_lexicalScopeStack[i].m_isWithScope) |
| 2412 | return Dynamic; |
| 2413 | if (m_usesNonStrictEval && m_lexicalScopeStack[i].m_symbolTable->scopeType() == SymbolTable::ScopeType::FunctionNameScope) { |
| 2414 | // We never want to assign to a FunctionNameScope. Returning Dynamic here achieves this goal. |
| 2415 | // If we aren't in non-strict eval mode, then NodesCodeGen needs to take care not to emit |
| 2416 | // a put_to_scope with the destination being the function name scope variable. |
| 2417 | return Dynamic; |
| 2418 | } |
| 2419 | } |
| 2420 | |
| 2421 | if (m_usesNonStrictEval) |
| 2422 | return GlobalPropertyWithVarInjectionChecks; |
| 2423 | return GlobalProperty; |
| 2424 | } |
| 2425 | |
| 2426 | RegisterID* BytecodeGenerator::emitResolveScope(RegisterID* dst, const Variable& variable) |
| 2427 | { |
| 2428 | switch (variable.offset().kind()) { |
| 2429 | case VarKind::Stack: |
| 2430 | return nullptr; |
| 2431 | |
| 2432 | case VarKind::DirectArgument: |
| 2433 | return argumentsRegister(); |
| 2434 | |
| 2435 | case VarKind::Scope: { |
| 2436 | // This always refers to the activation that *we* allocated, and not the current scope that code |
| 2437 | // lives in. Note that this will change once we have proper support for block scoping. Once that |
| 2438 | // changes, it will be correct for this code to return scopeRegister(). The only reason why we |
| 2439 | // don't do that already is that m_lexicalEnvironment is required by ConstDeclNode. ConstDeclNode |
| 2440 | // requires weird things because it is a shameful pile of nonsense, but block scoping would make |
| 2441 | // that code sensible and obviate the need for us to do bad things. |
| 2442 | for (unsigned i = m_lexicalScopeStack.size(); i--; ) { |
| 2443 | auto& stackEntry = m_lexicalScopeStack[i]; |
| 2444 | // We should not resolve a variable to VarKind::Scope if a "with" scope lies in between the current |
| 2445 | // scope and the resolved scope. |
| 2446 | RELEASE_ASSERT(!stackEntry.m_isWithScope); |
| 2447 | |
| 2448 | if (stackEntry.m_symbolTable->get(NoLockingNecessary, variable.ident().impl()).isNull()) |
| 2449 | continue; |
| 2450 | |
| 2451 | RegisterID* scope = stackEntry.m_scope; |
| 2452 | RELEASE_ASSERT(scope); |
| 2453 | return scope; |
| 2454 | } |
| 2455 | |
| 2456 | RELEASE_ASSERT_NOT_REACHED(); |
| 2457 | return nullptr; |
| 2458 | |
| 2459 | } |
| 2460 | case VarKind::Invalid: |
| 2461 | // Indicates non-local resolution. |
| 2462 | |
| 2463 | dst = tempDestination(dst); |
| 2464 | OpResolveScope::emit(this, kill(dst), scopeRegister(), addConstant(variable.ident()), resolveType(), localScopeDepth()); |
| 2465 | m_codeBlock->addPropertyAccessInstruction(m_lastInstruction.offset()); |
| 2466 | return dst; |
| 2467 | } |
| 2468 | |
| 2469 | RELEASE_ASSERT_NOT_REACHED(); |
| 2470 | return nullptr; |
| 2471 | } |
| 2472 | |
| 2473 | RegisterID* BytecodeGenerator::emitGetFromScope(RegisterID* dst, RegisterID* scope, const Variable& variable, ResolveMode resolveMode) |
| 2474 | { |
| 2475 | switch (variable.offset().kind()) { |
| 2476 | case VarKind::Stack: |
| 2477 | return move(dst, variable.local()); |
| 2478 | |
| 2479 | case VarKind::DirectArgument: { |
| 2480 | OpGetFromArguments::emit(this, kill(dst), scope, variable.offset().capturedArgumentsOffset().offset()); |
| 2481 | return dst; |
| 2482 | } |
| 2483 | |
| 2484 | case VarKind::Scope: |
| 2485 | case VarKind::Invalid: { |
| 2486 | OpGetFromScope::emit( |
| 2487 | this, |
| 2488 | kill(dst), |
| 2489 | scope, |
| 2490 | addConstant(variable.ident()), |
| 2491 | GetPutInfo(resolveMode, variable.offset().isScope() ? LocalClosureVar : resolveType(), InitializationMode::NotInitialization), |
| 2492 | localScopeDepth(), |
| 2493 | variable.offset().isScope() ? variable.offset().scopeOffset().offset() : 0); |
| 2494 | m_codeBlock->addPropertyAccessInstruction(m_lastInstruction.offset()); |
| 2495 | return dst; |
| 2496 | } } |
| 2497 | |
| 2498 | RELEASE_ASSERT_NOT_REACHED(); |
| 2499 | } |
| 2500 | |
| 2501 | RegisterID* BytecodeGenerator::emitPutToScope(RegisterID* scope, const Variable& variable, RegisterID* value, ResolveMode resolveMode, InitializationMode initializationMode) |
| 2502 | { |
| 2503 | switch (variable.offset().kind()) { |
| 2504 | case VarKind::Stack: |
| 2505 | move(variable.local(), value); |
| 2506 | return value; |
| 2507 | |
| 2508 | case VarKind::DirectArgument: |
| 2509 | OpPutToArguments::emit(this, scope, variable.offset().capturedArgumentsOffset().offset(), value); |
| 2510 | return value; |
| 2511 | |
| 2512 | case VarKind::Scope: |
| 2513 | case VarKind::Invalid: { |
| 2514 | GetPutInfo getPutInfo(0); |
| 2515 | SymbolTableOrScopeDepth symbolTableOrScopeDepth; |
| 2516 | ScopeOffset offset; |
| 2517 | if (variable.offset().isScope()) { |
| 2518 | offset = variable.offset().scopeOffset(); |
| 2519 | getPutInfo = GetPutInfo(resolveMode, LocalClosureVar, initializationMode); |
| 2520 | symbolTableOrScopeDepth = SymbolTableOrScopeDepth::symbolTable(VirtualRegister { variable.symbolTableConstantIndex() }); |
| 2521 | } else { |
| 2522 | ASSERT(resolveType() != LocalClosureVar); |
| 2523 | getPutInfo = GetPutInfo(resolveMode, resolveType(), initializationMode); |
| 2524 | symbolTableOrScopeDepth = SymbolTableOrScopeDepth::scopeDepth(localScopeDepth()); |
| 2525 | } |
| 2526 | OpPutToScope::emit(this, scope, addConstant(variable.ident()), value, getPutInfo, symbolTableOrScopeDepth, !!offset ? offset.offset() : 0); |
| 2527 | m_codeBlock->addPropertyAccessInstruction(m_lastInstruction.offset()); |
| 2528 | return value; |
| 2529 | } } |
| 2530 | |
| 2531 | RELEASE_ASSERT_NOT_REACHED(); |
| 2532 | } |
| 2533 | |
| 2534 | RegisterID* BytecodeGenerator::initializeVariable(const Variable& variable, RegisterID* value) |
| 2535 | { |
| 2536 | RELEASE_ASSERT(variable.offset().kind() != VarKind::Invalid); |
| 2537 | RegisterID* scope = emitResolveScope(nullptr, variable); |
| 2538 | return emitPutToScope(scope, variable, value, ThrowIfNotFound, InitializationMode::NotInitialization); |
| 2539 | } |
| 2540 | |
| 2541 | RegisterID* BytecodeGenerator::emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* basePrototype) |
| 2542 | { |
| 2543 | OpInstanceof::emit(this, dst, value, basePrototype); |
| 2544 | return dst; |
| 2545 | } |
| 2546 | |
| 2547 | RegisterID* BytecodeGenerator::emitInstanceOfCustom(RegisterID* dst, RegisterID* value, RegisterID* constructor, RegisterID* hasInstanceValue) |
| 2548 | { |
| 2549 | OpInstanceofCustom::emit(this, dst, value, constructor, hasInstanceValue); |
| 2550 | return dst; |
| 2551 | } |
| 2552 | |
| 2553 | RegisterID* BytecodeGenerator::emitInByVal(RegisterID* dst, RegisterID* property, RegisterID* base) |
| 2554 | { |
| 2555 | OpInByVal::emit(this, dst, base, property); |
| 2556 | return dst; |
| 2557 | } |
| 2558 | |
| 2559 | RegisterID* BytecodeGenerator::emitInById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| 2560 | { |
| 2561 | OpInById::emit(this, dst, base, addConstant(property)); |
| 2562 | return dst; |
| 2563 | } |
| 2564 | |
| 2565 | RegisterID* BytecodeGenerator::emitTryGetById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| 2566 | { |
| 2567 | ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties are not supported with tryGetById." ); |
| 2568 | |
| 2569 | OpTryGetById::emit(this, kill(dst), base, addConstant(property)); |
| 2570 | return dst; |
| 2571 | } |
| 2572 | |
| 2573 | RegisterID* BytecodeGenerator::emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| 2574 | { |
| 2575 | ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with get_by_val." ); |
| 2576 | |
| 2577 | OpGetById::emit(this, kill(dst), base, addConstant(property)); |
| 2578 | m_codeBlock->addPropertyAccessInstruction(m_lastInstruction.offset()); |
| 2579 | return dst; |
| 2580 | } |
| 2581 | |
| 2582 | RegisterID* BytecodeGenerator::emitGetById(RegisterID* dst, RegisterID* base, RegisterID* thisVal, const Identifier& property) |
| 2583 | { |
| 2584 | ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with get_by_val." ); |
| 2585 | |
| 2586 | OpGetByIdWithThis::emit(this, kill(dst), base, thisVal, addConstant(property)); |
| 2587 | return dst; |
| 2588 | } |
| 2589 | |
| 2590 | RegisterID* BytecodeGenerator::emitDirectGetById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| 2591 | { |
| 2592 | ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with get_by_val_direct." ); |
| 2593 | |
| 2594 | OpGetByIdDirect::emit(this, kill(dst), base, addConstant(property)); |
| 2595 | m_codeBlock->addPropertyAccessInstruction(m_lastInstruction.offset()); |
| 2596 | return dst; |
| 2597 | } |
| 2598 | |
| 2599 | RegisterID* BytecodeGenerator::emitPutById(RegisterID* base, const Identifier& property, RegisterID* value) |
| 2600 | { |
| 2601 | ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with put_by_val." ); |
| 2602 | |
| 2603 | unsigned propertyIndex = addConstant(property); |
| 2604 | |
| 2605 | m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| 2606 | |
| 2607 | OpPutById::emit(this, base, propertyIndex, value, PutByIdNone); // is not direct |
| 2608 | m_codeBlock->addPropertyAccessInstruction(m_lastInstruction.offset()); |
| 2609 | |
| 2610 | return value; |
| 2611 | } |
| 2612 | |
| 2613 | RegisterID* BytecodeGenerator::emitPutById(RegisterID* base, RegisterID* thisValue, const Identifier& property, RegisterID* value) |
| 2614 | { |
| 2615 | ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with put_by_val." ); |
| 2616 | |
| 2617 | unsigned propertyIndex = addConstant(property); |
| 2618 | |
| 2619 | OpPutByIdWithThis::emit(this, base, thisValue, propertyIndex, value); |
| 2620 | |
| 2621 | return value; |
| 2622 | } |
| 2623 | |
| 2624 | RegisterID* BytecodeGenerator::emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value, PropertyNode::PutType putType) |
| 2625 | { |
| 2626 | ASSERT_WITH_MESSAGE(!parseIndex(property), "Indexed properties should be handled with put_by_val(direct)." ); |
| 2627 | |
| 2628 | unsigned propertyIndex = addConstant(property); |
| 2629 | |
| 2630 | m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| 2631 | |
| 2632 | PutByIdFlags type = (putType == PropertyNode::KnownDirect || property != m_vm->propertyNames->underscoreProto) ? PutByIdIsDirect : PutByIdNone; |
| 2633 | OpPutById::emit(this, base, propertyIndex, value, type); |
| 2634 | m_codeBlock->addPropertyAccessInstruction(m_lastInstruction.offset()); |
| 2635 | return value; |
| 2636 | } |
| 2637 | |
| 2638 | void BytecodeGenerator::emitPutGetterById(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter) |
| 2639 | { |
| 2640 | unsigned propertyIndex = addConstant(property); |
| 2641 | m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| 2642 | |
| 2643 | OpPutGetterById::emit(this, base, propertyIndex, attributes, getter); |
| 2644 | } |
| 2645 | |
| 2646 | void BytecodeGenerator::emitPutSetterById(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* setter) |
| 2647 | { |
| 2648 | unsigned propertyIndex = addConstant(property); |
| 2649 | m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| 2650 | |
| 2651 | OpPutSetterById::emit(this, base, propertyIndex, attributes, setter); |
| 2652 | } |
| 2653 | |
| 2654 | void BytecodeGenerator::emitPutGetterSetter(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter, RegisterID* setter) |
| 2655 | { |
| 2656 | unsigned propertyIndex = addConstant(property); |
| 2657 | |
| 2658 | m_staticPropertyAnalyzer.putById(base, propertyIndex); |
| 2659 | |
| 2660 | OpPutGetterSetterById::emit(this, base, propertyIndex, attributes, getter, setter); |
| 2661 | } |
| 2662 | |
| 2663 | void BytecodeGenerator::emitPutGetterByVal(RegisterID* base, RegisterID* property, unsigned attributes, RegisterID* getter) |
| 2664 | { |
| 2665 | OpPutGetterByVal::emit(this, base, property, attributes, getter); |
| 2666 | } |
| 2667 | |
| 2668 | void BytecodeGenerator::emitPutSetterByVal(RegisterID* base, RegisterID* property, unsigned attributes, RegisterID* setter) |
| 2669 | { |
| 2670 | OpPutSetterByVal::emit(this, base, property, attributes, setter); |
| 2671 | } |
| 2672 | |
| 2673 | void BytecodeGenerator::emitPutGeneratorFields(RegisterID* nextFunction) |
| 2674 | { |
| 2675 | // FIXME: Currently, we just create an object and store generator related fields as its properties for ease. |
| 2676 | // But to make it efficient, we will introduce JSGenerator class, add opcode new_generator and use its C++ fields instead of these private properties. |
| 2677 | // https://bugs.webkit.org/show_bug.cgi?id=151545 |
| 2678 | |
| 2679 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().generatorNextPrivateName(), nextFunction, PropertyNode::KnownDirect); |
| 2680 | |
| 2681 | // We do not store 'this' in arrow function within constructor, |
| 2682 | // because it might be not initialized, if super is called later. |
| 2683 | if (!(isDerivedConstructorContext() && m_codeBlock->parseMode() == SourceParseMode::AsyncArrowFunctionMode)) |
| 2684 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().generatorThisPrivateName(), &m_thisRegister, PropertyNode::KnownDirect); |
| 2685 | |
| 2686 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().generatorStatePrivateName(), emitLoad(nullptr, jsNumber(0)), PropertyNode::KnownDirect); |
| 2687 | |
| 2688 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().generatorFramePrivateName(), emitLoad(nullptr, jsNull()), PropertyNode::KnownDirect); |
| 2689 | } |
| 2690 | |
| 2691 | void BytecodeGenerator::emitPutAsyncGeneratorFields(RegisterID* nextFunction) |
| 2692 | { |
| 2693 | ASSERT(isAsyncGeneratorWrapperParseMode(parseMode())); |
| 2694 | |
| 2695 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().generatorNextPrivateName(), nextFunction, PropertyNode::KnownDirect); |
| 2696 | |
| 2697 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().generatorThisPrivateName(), &m_thisRegister, PropertyNode::KnownDirect); |
| 2698 | |
| 2699 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().generatorStatePrivateName(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSAsyncGeneratorFunction::AsyncGeneratorState::SuspendedStart))), PropertyNode::KnownDirect); |
| 2700 | |
| 2701 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().generatorFramePrivateName(), emitLoad(nullptr, jsNull()), PropertyNode::KnownDirect); |
| 2702 | |
| 2703 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().asyncGeneratorSuspendReasonPrivateName(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSAsyncGeneratorFunction::AsyncGeneratorSuspendReason::None))), PropertyNode::KnownDirect); |
| 2704 | |
| 2705 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().asyncGeneratorQueueFirstPrivateName(), emitLoad(nullptr, jsNull()), PropertyNode::KnownDirect); |
| 2706 | emitDirectPutById(m_generatorRegister, propertyNames().builtinNames().asyncGeneratorQueueLastPrivateName(), emitLoad(nullptr, jsNull()), PropertyNode::KnownDirect); |
| 2707 | } |
| 2708 | |
| 2709 | RegisterID* BytecodeGenerator::emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier& property) |
| 2710 | { |
| 2711 | OpDelById::emit(this, dst, base, addConstant(property)); |
| 2712 | return dst; |
| 2713 | } |
| 2714 | |
| 2715 | RegisterID* BytecodeGenerator::emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property) |
| 2716 | { |
| 2717 | for (size_t i = m_forInContextStack.size(); i--; ) { |
| 2718 | ForInContext& context = m_forInContextStack[i].get(); |
| 2719 | if (context.local() != property) |
| 2720 | continue; |
| 2721 | |
| 2722 | if (context.isIndexedForInContext()) { |
| 2723 | auto& indexedContext = context.asIndexedForInContext(); |
| 2724 | OpGetByVal::emit<OpcodeSize::Wide>(this, kill(dst), base, indexedContext.index()); |
| 2725 | indexedContext.addGetInst(m_lastInstruction.offset(), property->index()); |
| 2726 | return dst; |
| 2727 | } |
| 2728 | |
| 2729 | StructureForInContext& structureContext = context.asStructureForInContext(); |
| 2730 | OpGetDirectPname::emit<OpcodeSize::Wide>(this, kill(dst), base, property, structureContext.index(), structureContext.enumerator()); |
| 2731 | |
| 2732 | structureContext.addGetInst(m_lastInstruction.offset(), property->index()); |
| 2733 | return dst; |
| 2734 | } |
| 2735 | |
| 2736 | OpGetByVal::emit(this, kill(dst), base, property); |
| 2737 | return dst; |
| 2738 | } |
| 2739 | |
| 2740 | RegisterID* BytecodeGenerator::emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* thisValue, RegisterID* property) |
| 2741 | { |
| 2742 | OpGetByValWithThis::emit(this, kill(dst), base, thisValue, property); |
| 2743 | return dst; |
| 2744 | } |
| 2745 | |
| 2746 | RegisterID* BytecodeGenerator::emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value) |
| 2747 | { |
| 2748 | OpPutByVal::emit(this, base, property, value); |
| 2749 | return value; |
| 2750 | } |
| 2751 | |
| 2752 | RegisterID* BytecodeGenerator::emitPutByVal(RegisterID* base, RegisterID* thisValue, RegisterID* property, RegisterID* value) |
| 2753 | { |
| 2754 | OpPutByValWithThis::emit(this, base, thisValue, property, value); |
| 2755 | return value; |
| 2756 | } |
| 2757 | |
| 2758 | RegisterID* BytecodeGenerator::emitDirectPutByVal(RegisterID* base, RegisterID* property, RegisterID* value) |
| 2759 | { |
| 2760 | OpPutByValDirect::emit(this, base, property, value); |
| 2761 | return value; |
| 2762 | } |
| 2763 | |
| 2764 | RegisterID* BytecodeGenerator::emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property) |
| 2765 | { |
| 2766 | OpDelByVal::emit(this, dst, base, property); |
| 2767 | return dst; |
| 2768 | } |
| 2769 | |
| 2770 | void BytecodeGenerator::emitSuperSamplerBegin() |
| 2771 | { |
| 2772 | OpSuperSamplerBegin::emit(this); |
| 2773 | } |
| 2774 | |
| 2775 | void BytecodeGenerator::emitSuperSamplerEnd() |
| 2776 | { |
| 2777 | OpSuperSamplerEnd::emit(this); |
| 2778 | } |
| 2779 | |
| 2780 | RegisterID* BytecodeGenerator::emitIdWithProfile(RegisterID* src, SpeculatedType profile) |
| 2781 | { |
| 2782 | OpIdentityWithProfile::emit(this, src, static_cast<uint32_t>(profile >> 32), static_cast<uint32_t>(profile)); |
| 2783 | return src; |
| 2784 | } |
| 2785 | |
| 2786 | void BytecodeGenerator::emitUnreachable() |
| 2787 | { |
| 2788 | OpUnreachable::emit(this); |
| 2789 | } |
| 2790 | |
| 2791 | RegisterID* BytecodeGenerator::emitGetArgument(RegisterID* dst, int32_t index) |
| 2792 | { |
| 2793 | OpGetArgument::emit(this, dst, index + 1 /* Including |this| */); |
| 2794 | return dst; |
| 2795 | } |
| 2796 | |
| 2797 | RegisterID* BytecodeGenerator::emitCreateThis(RegisterID* dst) |
| 2798 | { |
| 2799 | OpCreateThis::emit(this, dst, dst, 0); |
| 2800 | m_staticPropertyAnalyzer.createThis(dst, m_lastInstruction); |
| 2801 | |
| 2802 | m_codeBlock->addPropertyAccessInstruction(m_lastInstruction.offset()); |
| 2803 | return dst; |
| 2804 | } |
| 2805 | |
| 2806 | void BytecodeGenerator::emitTDZCheck(RegisterID* target) |
| 2807 | { |
| 2808 | OpCheckTdz::emit(this, target); |
| 2809 | } |
| 2810 | |
| 2811 | bool BytecodeGenerator::needsTDZCheck(const Variable& variable) |
| 2812 | { |
| 2813 | for (unsigned i = m_TDZStack.size(); i--;) { |
| 2814 | auto iter = m_TDZStack[i].find(variable.ident().impl()); |
| 2815 | if (iter == m_TDZStack[i].end()) |
| 2816 | continue; |
| 2817 | return iter->value != TDZNecessityLevel::NotNeeded; |
| 2818 | } |
| 2819 | |
| 2820 | return false; |
| 2821 | } |
| 2822 | |
| 2823 | void BytecodeGenerator::emitTDZCheckIfNecessary(const Variable& variable, RegisterID* target, RegisterID* scope) |
| 2824 | { |
| 2825 | if (needsTDZCheck(variable)) { |
| 2826 | if (target) |
| 2827 | emitTDZCheck(target); |
| 2828 | else { |
| 2829 | RELEASE_ASSERT(!variable.isLocal() && scope); |
| 2830 | RefPtr<RegisterID> result = emitGetFromScope(newTemporary(), scope, variable, DoNotThrowIfNotFound); |
| 2831 | emitTDZCheck(result.get()); |
| 2832 | } |
| 2833 | } |
| 2834 | } |
| 2835 | |
| 2836 | void BytecodeGenerator::liftTDZCheckIfPossible(const Variable& variable) |
| 2837 | { |
| 2838 | RefPtr<UniquedStringImpl> identifier(variable.ident().impl()); |
| 2839 | for (unsigned i = m_TDZStack.size(); i--;) { |
| 2840 | auto iter = m_TDZStack[i].find(identifier); |
| 2841 | if (iter != m_TDZStack[i].end()) { |
| 2842 | if (iter->value == TDZNecessityLevel::Optimize) { |
| 2843 | m_cachedVariablesUnderTDZ = { }; |
| 2844 | iter->value = TDZNecessityLevel::NotNeeded; |
| 2845 | } |
| 2846 | break; |
| 2847 | } |
| 2848 | } |
| 2849 | } |
| 2850 | |
| 2851 | void BytecodeGenerator::pushTDZVariables(const VariableEnvironment& environment, TDZCheckOptimization optimization, TDZRequirement requirement) |
| 2852 | { |
| 2853 | if (!environment.size()) |
| 2854 | return; |
| 2855 | |
| 2856 | TDZNecessityLevel level; |
| 2857 | if (requirement == TDZRequirement::UnderTDZ) { |
| 2858 | if (optimization == TDZCheckOptimization::Optimize) |
| 2859 | level = TDZNecessityLevel::Optimize; |
| 2860 | else |
| 2861 | level = TDZNecessityLevel::DoNotOptimize; |
| 2862 | } else |
| 2863 | level = TDZNecessityLevel::NotNeeded; |
| 2864 | |
| 2865 | TDZMap map; |
| 2866 | for (const auto& entry : environment) |
| 2867 | map.add(entry.key, entry.value.isFunction() ? TDZNecessityLevel::NotNeeded : level); |
| 2868 | |
| 2869 | m_TDZStack.append(WTFMove(map)); |
| 2870 | m_cachedVariablesUnderTDZ = { }; |
| 2871 | } |
| 2872 | |
| 2873 | Optional<CompactVariableMap::Handle> BytecodeGenerator::getVariablesUnderTDZ() |
| 2874 | { |
| 2875 | if (m_cachedVariablesUnderTDZ) { |
| 2876 | if (!m_hasCachedVariablesUnderTDZ) { |
| 2877 | ASSERT(m_cachedVariablesUnderTDZ.environment().toVariableEnvironment().isEmpty()); |
| 2878 | return WTF::nullopt; |
| 2879 | } |
| 2880 | return m_cachedVariablesUnderTDZ; |
| 2881 | } |
| 2882 | |
| 2883 | // We keep track of variablesThatDontNeedTDZ in this algorithm to prevent |
| 2884 | // reporting that "x" is under TDZ if this function is called at "...". |
| 2885 | // |
| 2886 | // { |
| 2887 | // { |
| 2888 | // let x; |
| 2889 | // ... |
| 2890 | // } |
| 2891 | // let x; |
| 2892 | // } |
| 2893 | SmallPtrSet<UniquedStringImpl*, 16> variablesThatDontNeedTDZ; |
| 2894 | VariableEnvironment environment; |
| 2895 | for (unsigned i = m_TDZStack.size(); i--; ) { |
| 2896 | auto& map = m_TDZStack[i]; |
| 2897 | for (auto& entry : map) { |
| 2898 | if (entry.value != TDZNecessityLevel::NotNeeded) { |
| 2899 | if (!variablesThatDontNeedTDZ.contains(entry.key.get())) |
| 2900 | environment.add(entry.key.get()); |
| 2901 | } else |
| 2902 | variablesThatDontNeedTDZ.add(entry.key.get()); |
| 2903 | } |
| 2904 | } |
| 2905 | |
| 2906 | m_cachedVariablesUnderTDZ = m_vm->m_compactVariableMap->get(environment); |
| 2907 | m_hasCachedVariablesUnderTDZ = !environment.isEmpty(); |
| 2908 | if (!m_hasCachedVariablesUnderTDZ) |
| 2909 | return WTF::nullopt; |
| 2910 | |
| 2911 | return m_cachedVariablesUnderTDZ; |
| 2912 | } |
| 2913 | |
| 2914 | void BytecodeGenerator::preserveTDZStack(BytecodeGenerator::PreservedTDZStack& preservedStack) |
| 2915 | { |
| 2916 | preservedStack.m_preservedTDZStack = m_TDZStack; |
| 2917 | } |
| 2918 | |
| 2919 | void BytecodeGenerator::restoreTDZStack(const BytecodeGenerator::PreservedTDZStack& preservedStack) |
| 2920 | { |
| 2921 | m_TDZStack = preservedStack.m_preservedTDZStack; |
| 2922 | m_cachedVariablesUnderTDZ = { }; |
| 2923 | } |
| 2924 | |
| 2925 | RegisterID* BytecodeGenerator::emitNewObject(RegisterID* dst) |
| 2926 | { |
| 2927 | OpNewObject::emit(this, dst, 0); |
| 2928 | m_staticPropertyAnalyzer.newObject(dst, m_lastInstruction); |
| 2929 | |
| 2930 | return dst; |
| 2931 | } |
| 2932 | |
| 2933 | JSValue BytecodeGenerator::addBigIntConstant(const Identifier& identifier, uint8_t radix, bool sign) |
| 2934 | { |
| 2935 | return m_bigIntMap.ensure(BigIntMapEntry(identifier.impl(), radix, sign), [&] { |
| 2936 | auto scope = DECLARE_CATCH_SCOPE(*vm()); |
| 2937 | auto parseIntSign = sign ? JSBigInt::ParseIntSign::Signed : JSBigInt::ParseIntSign::Unsigned; |
| 2938 | JSBigInt* bigIntInMap = JSBigInt::parseInt(nullptr, *vm(), identifier.string(), radix, JSBigInt::ErrorParseMode::ThrowExceptions, parseIntSign); |
| 2939 | // FIXME: [ESNext] Enables a way to throw an error on ByteCodeGenerator step |
| 2940 | // https://bugs.webkit.org/show_bug.cgi?id=180139 |
| 2941 | scope.assertNoException(); |
| 2942 | RELEASE_ASSERT(bigIntInMap); |
| 2943 | addConstantValue(bigIntInMap); |
| 2944 | |
| 2945 | return bigIntInMap; |
| 2946 | }).iterator->value; |
| 2947 | } |
| 2948 | |
| 2949 | JSString* BytecodeGenerator::addStringConstant(const Identifier& identifier) |
| 2950 | { |
| 2951 | JSString*& stringInMap = m_stringMap.add(identifier.impl(), nullptr).iterator->value; |
| 2952 | if (!stringInMap) { |
| 2953 | stringInMap = jsString(vm(), identifier.string()); |
| 2954 | addConstantValue(stringInMap); |
| 2955 | } |
| 2956 | return stringInMap; |
| 2957 | } |
| 2958 | |
| 2959 | RegisterID* BytecodeGenerator::addTemplateObjectConstant(Ref<TemplateObjectDescriptor>&& descriptor, int endOffset) |
| 2960 | { |
| 2961 | auto result = m_templateObjectDescriptorSet.add(WTFMove(descriptor)); |
| 2962 | JSTemplateObjectDescriptor* descriptorValue = m_templateDescriptorMap.ensure(endOffset, [&] { |
| 2963 | return JSTemplateObjectDescriptor::create(*vm(), result.iterator->copyRef(), endOffset); |
| 2964 | }).iterator->value; |
| 2965 | int index = addConstantIndex(); |
| 2966 | m_codeBlock->addConstant(descriptorValue); |
| 2967 | return &m_constantPoolRegisters[index]; |
| 2968 | } |
| 2969 | |
| 2970 | RegisterID* BytecodeGenerator::emitNewArrayBuffer(RegisterID* dst, JSImmutableButterfly* array, IndexingType recommendedIndexingType) |
| 2971 | { |
| 2972 | OpNewArrayBuffer::emit(this, dst, addConstantValue(array), recommendedIndexingType); |
| 2973 | return dst; |
| 2974 | } |
| 2975 | |
| 2976 | RegisterID* BytecodeGenerator::emitNewArray(RegisterID* dst, ElementNode* elements, unsigned length, IndexingType recommendedIndexingType) |
| 2977 | { |
| 2978 | Vector<RefPtr<RegisterID>, 16, UnsafeVectorOverflow> argv; |
| 2979 | for (ElementNode* n = elements; n; n = n->next()) { |
| 2980 | if (!length) |
| 2981 | break; |
| 2982 | length--; |
| 2983 | ASSERT(!n->value()->isSpreadExpression()); |
| 2984 | argv.append(newTemporary()); |
| 2985 | // op_new_array requires the initial values to be a sequential range of registers |
| 2986 | ASSERT(argv.size() == 1 || argv[argv.size() - 1]->index() == argv[argv.size() - 2]->index() - 1); |
| 2987 | emitNode(argv.last().get(), n->value()); |
| 2988 | } |
| 2989 | ASSERT(!length); |
| 2990 | OpNewArray::emit(this, dst, argv.size() ? argv[0].get() : VirtualRegister { 0 }, argv.size(), recommendedIndexingType); |
| 2991 | return dst; |
| 2992 | } |
| 2993 | |
| 2994 | RegisterID* BytecodeGenerator::emitNewArrayWithSpread(RegisterID* dst, ElementNode* elements) |
| 2995 | { |
| 2996 | BitVector bitVector; |
| 2997 | Vector<RefPtr<RegisterID>, 16> argv; |
| 2998 | for (ElementNode* node = elements; node; node = node->next()) { |
| 2999 | bitVector.set(argv.size(), node->value()->isSpreadExpression()); |
| 3000 | |
| 3001 | argv.append(newTemporary()); |
| 3002 | // op_new_array_with_spread requires the initial values to be a sequential range of registers. |
| 3003 | RELEASE_ASSERT(argv.size() == 1 || argv[argv.size() - 1]->index() == argv[argv.size() - 2]->index() - 1); |
| 3004 | } |
| 3005 | |
| 3006 | RELEASE_ASSERT(argv.size()); |
| 3007 | |
| 3008 | { |
| 3009 | unsigned i = 0; |
| 3010 | for (ElementNode* node = elements; node; node = node->next()) { |
| 3011 | if (node->value()->isSpreadExpression()) { |
| 3012 | ExpressionNode* expression = static_cast<SpreadExpressionNode*>(node->value())->expression(); |
| 3013 | RefPtr<RegisterID> tmp = newTemporary(); |
| 3014 | emitNode(tmp.get(), expression); |
| 3015 | |
| 3016 | OpSpread::emit(this, argv[i].get(), tmp.get()); |
| 3017 | } else { |
| 3018 | ExpressionNode* expression = node->value(); |
| 3019 | emitNode(argv[i].get(), expression); |
| 3020 | } |
| 3021 | i++; |
| 3022 | } |
| 3023 | } |
| 3024 | |
| 3025 | unsigned bitVectorIndex = m_codeBlock->addBitVector(WTFMove(bitVector)); |
| 3026 | OpNewArrayWithSpread::emit(this, dst, argv[0].get(), argv.size(), bitVectorIndex); |
| 3027 | return dst; |
| 3028 | } |
| 3029 | |
| 3030 | RegisterID* BytecodeGenerator::emitNewArrayWithSize(RegisterID* dst, RegisterID* length) |
| 3031 | { |
| 3032 | OpNewArrayWithSize::emit(this, dst, length); |
| 3033 | return dst; |
| 3034 | } |
| 3035 | |
| 3036 | RegisterID* BytecodeGenerator::emitNewRegExp(RegisterID* dst, RegExp* regExp) |
| 3037 | { |
| 3038 | OpNewRegexp::emit(this, dst, addConstantValue(regExp)); |
| 3039 | return dst; |
| 3040 | } |
| 3041 | |
| 3042 | void BytecodeGenerator::emitNewFunctionExpressionCommon(RegisterID* dst, FunctionMetadataNode* function) |
| 3043 | { |
| 3044 | unsigned index = m_codeBlock->addFunctionExpr(makeFunction(function)); |
| 3045 | |
| 3046 | switch (function->parseMode()) { |
| 3047 | case SourceParseMode::GeneratorWrapperFunctionMode: |
| 3048 | case SourceParseMode::GeneratorWrapperMethodMode: |
| 3049 | OpNewGeneratorFuncExp::emit(this, dst, scopeRegister(), index); |
| 3050 | break; |
| 3051 | case SourceParseMode::AsyncFunctionMode: |
| 3052 | case SourceParseMode::AsyncMethodMode: |
| 3053 | case SourceParseMode::AsyncArrowFunctionMode: |
| 3054 | OpNewAsyncFuncExp::emit(this, dst, scopeRegister(), index); |
| 3055 | break; |
| 3056 | case SourceParseMode::AsyncGeneratorWrapperFunctionMode: |
| 3057 | case SourceParseMode::AsyncGeneratorWrapperMethodMode: |
| 3058 | OpNewAsyncGeneratorFuncExp::emit(this, dst, scopeRegister(), index); |
| 3059 | break; |
| 3060 | default: |
| 3061 | OpNewFuncExp::emit(this, dst, scopeRegister(), index); |
| 3062 | break; |
| 3063 | } |
| 3064 | } |
| 3065 | |
| 3066 | RegisterID* BytecodeGenerator::emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func) |
| 3067 | { |
| 3068 | emitNewFunctionExpressionCommon(dst, func->metadata()); |
| 3069 | return dst; |
| 3070 | } |
| 3071 | |
| 3072 | RegisterID* BytecodeGenerator::emitNewArrowFunctionExpression(RegisterID* dst, ArrowFuncExprNode* func) |
| 3073 | { |
| 3074 | ASSERT(SourceParseModeSet(SourceParseMode::ArrowFunctionMode, SourceParseMode::AsyncArrowFunctionMode).contains(func->metadata()->parseMode())); |
| 3075 | emitNewFunctionExpressionCommon(dst, func->metadata()); |
| 3076 | return dst; |
| 3077 | } |
| 3078 | |
| 3079 | RegisterID* BytecodeGenerator::emitNewMethodDefinition(RegisterID* dst, MethodDefinitionNode* func) |
| 3080 | { |
| 3081 | ASSERT(isMethodParseMode(func->metadata()->parseMode())); |
| 3082 | emitNewFunctionExpressionCommon(dst, func->metadata()); |
| 3083 | return dst; |
| 3084 | } |
| 3085 | |
| 3086 | RegisterID* BytecodeGenerator::emitNewDefaultConstructor(RegisterID* dst, ConstructorKind constructorKind, const Identifier& name, |
| 3087 | const Identifier& ecmaName, const SourceCode& classSource) |
| 3088 | { |
| 3089 | UnlinkedFunctionExecutable* executable = m_vm->builtinExecutables()->createDefaultConstructor(constructorKind, name); |
| 3090 | executable->setInvalidTypeProfilingOffsets(); |
| 3091 | executable->setEcmaName(ecmaName); |
| 3092 | executable->setClassSource(classSource); |
| 3093 | |
| 3094 | unsigned index = m_codeBlock->addFunctionExpr(executable); |
| 3095 | |
| 3096 | OpNewFuncExp::emit(this, dst, scopeRegister(), index); |
| 3097 | return dst; |
| 3098 | } |
| 3099 | |
| 3100 | RegisterID* BytecodeGenerator::emitNewFunction(RegisterID* dst, FunctionMetadataNode* function) |
| 3101 | { |
| 3102 | unsigned index = m_codeBlock->addFunctionDecl(makeFunction(function)); |
| 3103 | if (isGeneratorWrapperParseMode(function->parseMode())) |
| 3104 | OpNewGeneratorFunc::emit(this, dst, scopeRegister(), index); |
| 3105 | else if (function->parseMode() == SourceParseMode::AsyncFunctionMode) |
| 3106 | OpNewAsyncFunc::emit(this, dst, scopeRegister(), index); |
| 3107 | else if (isAsyncGeneratorWrapperParseMode(function->parseMode())) |
| 3108 | OpNewAsyncGeneratorFunc::emit(this, dst, scopeRegister(), index); |
| 3109 | else |
| 3110 | OpNewFunc::emit(this, dst, scopeRegister(), index); |
| 3111 | return dst; |
| 3112 | } |
| 3113 | |
| 3114 | void BytecodeGenerator::emitSetFunctionNameIfNeeded(ExpressionNode* valueNode, RegisterID* value, RegisterID* name) |
| 3115 | { |
| 3116 | if (valueNode->isBaseFuncExprNode()) { |
| 3117 | FunctionMetadataNode* metadata = static_cast<BaseFuncExprNode*>(valueNode)->metadata(); |
| 3118 | if (!metadata->ecmaName().isNull()) |
| 3119 | return; |
| 3120 | } else if (valueNode->isClassExprNode()) { |
| 3121 | ClassExprNode* classExprNode = static_cast<ClassExprNode*>(valueNode); |
| 3122 | if (!classExprNode->ecmaName().isNull()) |
| 3123 | return; |
| 3124 | if (classExprNode->hasStaticProperty(m_vm->propertyNames->name)) |
| 3125 | return; |
| 3126 | } else |
| 3127 | return; |
| 3128 | |
| 3129 | // FIXME: We should use an op_call to an internal function here instead. |
| 3130 | // https://bugs.webkit.org/show_bug.cgi?id=155547 |
| 3131 | OpSetFunctionName::emit(this, value, name); |
| 3132 | } |
| 3133 | |
| 3134 | RegisterID* BytecodeGenerator::emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| 3135 | { |
| 3136 | return emitCall<OpCall>(dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd, debuggableCall); |
| 3137 | } |
| 3138 | |
| 3139 | RegisterID* BytecodeGenerator::emitCallInTailPosition(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| 3140 | { |
| 3141 | if (m_inTailPosition) { |
| 3142 | m_codeBlock->setHasTailCalls(); |
| 3143 | return emitCall<OpTailCall>(dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd, debuggableCall); |
| 3144 | } |
| 3145 | return emitCall<OpCall>(dst, func, expectedFunction, callArguments, divot, divotStart, divotEnd, debuggableCall); |
| 3146 | } |
| 3147 | |
| 3148 | RegisterID* BytecodeGenerator::emitCallEval(RegisterID* dst, RegisterID* func, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| 3149 | { |
| 3150 | return emitCall<OpCallEval>(dst, func, NoExpectedFunction, callArguments, divot, divotStart, divotEnd, debuggableCall); |
| 3151 | } |
| 3152 | |
| 3153 | ExpectedFunction BytecodeGenerator::expectedFunctionForIdentifier(const Identifier& identifier) |
| 3154 | { |
| 3155 | if (identifier == propertyNames().Object || identifier == propertyNames().builtinNames().ObjectPrivateName()) |
| 3156 | return ExpectObjectConstructor; |
| 3157 | if (identifier == propertyNames().Array || identifier == propertyNames().builtinNames().ArrayPrivateName()) |
| 3158 | return ExpectArrayConstructor; |
| 3159 | return NoExpectedFunction; |
| 3160 | } |
| 3161 | |
| 3162 | ExpectedFunction BytecodeGenerator::emitExpectedFunctionSnippet(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, Label& done) |
| 3163 | { |
| 3164 | Ref<Label> realCall = newLabel(); |
| 3165 | switch (expectedFunction) { |
| 3166 | case ExpectObjectConstructor: { |
| 3167 | // If the number of arguments is non-zero, then we can't do anything interesting. |
| 3168 | if (callArguments.argumentCountIncludingThis() >= 2) |
| 3169 | return NoExpectedFunction; |
| 3170 | |
| 3171 | OpJneqPtr::emit(this, func, Special::ObjectConstructor, realCall->bind(this)); |
| 3172 | |
| 3173 | if (dst != ignoredResult()) |
| 3174 | emitNewObject(dst); |
| 3175 | break; |
| 3176 | } |
| 3177 | |
| 3178 | case ExpectArrayConstructor: { |
| 3179 | // If you're doing anything other than "new Array()" or "new Array(foo)" then we |
| 3180 | // don't do inline it, for now. The only reason is that call arguments are in |
| 3181 | // the opposite order of what op_new_array expects, so we'd either need to change |
| 3182 | // how op_new_array works or we'd need an op_new_array_reverse. Neither of these |
| 3183 | // things sounds like it's worth it. |
| 3184 | if (callArguments.argumentCountIncludingThis() > 2) |
| 3185 | return NoExpectedFunction; |
| 3186 | |
| 3187 | OpJneqPtr::emit(this, func, Special::ArrayConstructor, realCall->bind(this)); |
| 3188 | |
| 3189 | if (dst != ignoredResult()) { |
| 3190 | if (callArguments.argumentCountIncludingThis() == 2) |
| 3191 | emitNewArrayWithSize(dst, callArguments.argumentRegister(0)); |
| 3192 | else { |
| 3193 | ASSERT(callArguments.argumentCountIncludingThis() == 1); |
| 3194 | OpNewArray::emit(this, dst, VirtualRegister { 0 }, 0, ArrayWithUndecided); |
| 3195 | } |
| 3196 | } |
| 3197 | break; |
| 3198 | } |
| 3199 | |
| 3200 | default: |
| 3201 | ASSERT(expectedFunction == NoExpectedFunction); |
| 3202 | return NoExpectedFunction; |
| 3203 | } |
| 3204 | |
| 3205 | OpJmp::emit(this, done.bind(this)); |
| 3206 | emitLabel(realCall.get()); |
| 3207 | |
| 3208 | return expectedFunction; |
| 3209 | } |
| 3210 | |
| 3211 | template<typename CallOp> |
| 3212 | RegisterID* BytecodeGenerator::emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| 3213 | { |
| 3214 | constexpr auto opcodeID = CallOp::opcodeID; |
| 3215 | ASSERT(opcodeID == op_call || opcodeID == op_call_eval || opcodeID == op_tail_call); |
| 3216 | ASSERT(func->refCount()); |
| 3217 | |
| 3218 | // Generate code for arguments. |
| 3219 | unsigned argument = 0; |
| 3220 | if (callArguments.argumentsNode()) { |
| 3221 | ArgumentListNode* n = callArguments.argumentsNode()->m_listNode; |
| 3222 | if (n && n->m_expr->isSpreadExpression()) { |
| 3223 | RELEASE_ASSERT(!n->m_next); |
| 3224 | auto expression = static_cast<SpreadExpressionNode*>(n->m_expr)->expression(); |
| 3225 | if (expression->isArrayLiteral()) { |
| 3226 | auto* elements = static_cast<ArrayNode*>(expression)->elements(); |
| 3227 | if (elements && !elements->next() && elements->value()->isSpreadExpression()) { |
| 3228 | ExpressionNode* expression = static_cast<SpreadExpressionNode*>(elements->value())->expression(); |
| 3229 | RefPtr<RegisterID> argumentRegister = emitNode(callArguments.argumentRegister(0), expression); |
| 3230 | OpSpread::emit(this, argumentRegister.get(), argumentRegister.get()); |
| 3231 | |
| 3232 | return emitCallVarargs<typename VarArgsOp<CallOp>::type>(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, divot, divotStart, divotEnd, debuggableCall); |
| 3233 | } |
| 3234 | } |
| 3235 | RefPtr<RegisterID> argumentRegister; |
| 3236 | argumentRegister = expression->emitBytecode(*this, callArguments.argumentRegister(0)); |
| 3237 | RefPtr<RegisterID> thisRegister = move(newTemporary(), callArguments.thisRegister()); |
| 3238 | return emitCallVarargs<typename VarArgsOp<CallOp>::type>(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, divot, divotStart, divotEnd, debuggableCall); |
| 3239 | } |
| 3240 | for (; n; n = n->m_next) |
| 3241 | emitNode(callArguments.argumentRegister(argument++), n); |
| 3242 | } |
| 3243 | |
| 3244 | // Reserve space for call frame. |
| 3245 | Vector<RefPtr<RegisterID>, CallFrame::headerSizeInRegisters, UnsafeVectorOverflow> callFrame; |
| 3246 | for (int i = 0; i < CallFrame::headerSizeInRegisters; ++i) |
| 3247 | callFrame.append(newTemporary()); |
| 3248 | |
| 3249 | if (shouldEmitDebugHooks() && debuggableCall == DebuggableCall::Yes) |
| 3250 | emitDebugHook(WillExecuteExpression, divotStart); |
| 3251 | |
| 3252 | emitExpressionInfo(divot, divotStart, divotEnd); |
| 3253 | |
| 3254 | Ref<Label> done = newLabel(); |
| 3255 | expectedFunction = emitExpectedFunctionSnippet(dst, func, expectedFunction, callArguments, done.get()); |
| 3256 | |
| 3257 | if (opcodeID == op_tail_call) |
| 3258 | emitLogShadowChickenTailIfNecessary(); |
| 3259 | |
| 3260 | // Emit call. |
| 3261 | ASSERT(dst); |
| 3262 | ASSERT(dst != ignoredResult()); |
| 3263 | CallOp::emit(this, dst, func, callArguments.argumentCountIncludingThis(), callArguments.stackOffset()); |
| 3264 | |
| 3265 | if (expectedFunction != NoExpectedFunction) |
| 3266 | emitLabel(done.get()); |
| 3267 | |
| 3268 | return dst; |
| 3269 | } |
| 3270 | |
| 3271 | RegisterID* BytecodeGenerator::emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| 3272 | { |
| 3273 | return emitCallVarargs<OpCallVarargs>(dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| 3274 | } |
| 3275 | |
| 3276 | RegisterID* BytecodeGenerator::emitCallVarargsInTailPosition(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| 3277 | { |
| 3278 | if (m_inTailPosition) |
| 3279 | return emitCallVarargs<OpTailCallVarargs>(dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| 3280 | return emitCallVarargs<OpCallVarargs>(dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| 3281 | } |
| 3282 | |
| 3283 | RegisterID* BytecodeGenerator::emitConstructVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| 3284 | { |
| 3285 | return emitCallVarargs<OpConstructVarargs>(dst, func, thisRegister, arguments, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| 3286 | } |
| 3287 | |
| 3288 | RegisterID* BytecodeGenerator::emitCallForwardArgumentsInTailPosition(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| 3289 | { |
| 3290 | // We must emit a tail call here because we did not allocate an arguments object thus we would otherwise have no way to correctly make this call. |
| 3291 | ASSERT(m_inTailPosition || !Options::useTailCalls()); |
| 3292 | return emitCallVarargs<OpTailCallForwardArguments>(dst, func, thisRegister, nullptr, firstFreeRegister, firstVarArgOffset, divot, divotStart, divotEnd, debuggableCall); |
| 3293 | } |
| 3294 | |
| 3295 | template<typename VarargsOp> |
| 3296 | RegisterID* BytecodeGenerator::emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd, DebuggableCall debuggableCall) |
| 3297 | { |
| 3298 | if (shouldEmitDebugHooks() && debuggableCall == DebuggableCall::Yes) |
| 3299 | emitDebugHook(WillExecuteExpression, divotStart); |
| 3300 | |
| 3301 | emitExpressionInfo(divot, divotStart, divotEnd); |
| 3302 | |
| 3303 | if (VarargsOp::opcodeID == op_tail_call_varargs) |
| 3304 | emitLogShadowChickenTailIfNecessary(); |
| 3305 | |
| 3306 | // Emit call. |
| 3307 | ASSERT(dst != ignoredResult()); |
| 3308 | VarargsOp::emit(this, dst, func, thisRegister, arguments ? arguments : VirtualRegister(0), firstFreeRegister, firstVarArgOffset); |
| 3309 | return dst; |
| 3310 | } |
| 3311 | |
| 3312 | void BytecodeGenerator::emitLogShadowChickenPrologueIfNecessary() |
| 3313 | { |
| 3314 | if (!shouldEmitDebugHooks() && !Options::alwaysUseShadowChicken()) |
| 3315 | return; |
| 3316 | OpLogShadowChickenPrologue::emit(this, scopeRegister()); |
| 3317 | } |
| 3318 | |
| 3319 | void BytecodeGenerator::emitLogShadowChickenTailIfNecessary() |
| 3320 | { |
| 3321 | if (!shouldEmitDebugHooks() && !Options::alwaysUseShadowChicken()) |
| 3322 | return; |
| 3323 | OpLogShadowChickenTail::emit(this, thisRegister(), scopeRegister()); |
| 3324 | } |
| 3325 | |
| 3326 | void BytecodeGenerator::emitCallDefineProperty(RegisterID* newObj, RegisterID* propertyNameRegister, |
| 3327 | RegisterID* valueRegister, RegisterID* getterRegister, RegisterID* setterRegister, unsigned options, const JSTextPosition& position) |
| 3328 | { |
| 3329 | DefinePropertyAttributes attributes; |
| 3330 | if (options & PropertyConfigurable) |
| 3331 | attributes.setConfigurable(true); |
| 3332 | |
| 3333 | if (options & PropertyWritable) |
| 3334 | attributes.setWritable(true); |
| 3335 | else if (valueRegister) |
| 3336 | attributes.setWritable(false); |
| 3337 | |
| 3338 | if (options & PropertyEnumerable) |
| 3339 | attributes.setEnumerable(true); |
| 3340 | |
| 3341 | if (valueRegister) |
| 3342 | attributes.setValue(); |
| 3343 | if (getterRegister) |
| 3344 | attributes.setGet(); |
| 3345 | if (setterRegister) |
| 3346 | attributes.setSet(); |
| 3347 | |
| 3348 | ASSERT(!valueRegister || (!getterRegister && !setterRegister)); |
| 3349 | |
| 3350 | emitExpressionInfo(position, position, position); |
| 3351 | |
| 3352 | if (attributes.hasGet() || attributes.hasSet()) { |
| 3353 | RefPtr<RegisterID> throwTypeErrorFunction; |
| 3354 | if (!attributes.hasGet() || !attributes.hasSet()) |
| 3355 | throwTypeErrorFunction = moveLinkTimeConstant(nullptr, LinkTimeConstant::ThrowTypeErrorFunction); |
| 3356 | |
| 3357 | RefPtr<RegisterID> getter; |
| 3358 | if (attributes.hasGet()) |
| 3359 | getter = getterRegister; |
| 3360 | else |
| 3361 | getter = throwTypeErrorFunction; |
| 3362 | |
| 3363 | RefPtr<RegisterID> setter; |
| 3364 | if (attributes.hasSet()) |
| 3365 | setter = setterRegister; |
| 3366 | else |
| 3367 | setter = throwTypeErrorFunction; |
| 3368 | |
| 3369 | OpDefineAccessorProperty::emit(this, newObj, propertyNameRegister, getter.get(), setter.get(), emitLoad(nullptr, jsNumber(attributes.rawRepresentation()))); |
| 3370 | } else { |
| 3371 | OpDefineDataProperty::emit(this, newObj, propertyNameRegister, valueRegister, emitLoad(nullptr, jsNumber(attributes.rawRepresentation()))); |
| 3372 | } |
| 3373 | } |
| 3374 | |
| 3375 | RegisterID* BytecodeGenerator::emitReturn(RegisterID* src, ReturnFrom from) |
| 3376 | { |
| 3377 | if (isConstructor()) { |
| 3378 | bool isDerived = constructorKind() == ConstructorKind::Extends; |
| 3379 | bool srcIsThis = src->index() == m_thisRegister.index(); |
| 3380 | |
| 3381 | if (isDerived && (srcIsThis || from == ReturnFrom::Finally)) |
| 3382 | emitTDZCheck(src); |
| 3383 | |
| 3384 | if (!srcIsThis || from == ReturnFrom::Finally) { |
| 3385 | Ref<Label> isObjectLabel = newLabel(); |
| 3386 | emitJumpIfTrue(emitIsObject(newTemporary(), src), isObjectLabel.get()); |
| 3387 | |
| 3388 | if (isDerived) { |
| 3389 | Ref<Label> isUndefinedLabel = newLabel(); |
| 3390 | emitJumpIfTrue(emitIsUndefined(newTemporary(), src), isUndefinedLabel.get()); |
| 3391 | emitThrowTypeError("Cannot return a non-object type in the constructor of a derived class." ); |
| 3392 | emitLabel(isUndefinedLabel.get()); |
| 3393 | emitTDZCheck(&m_thisRegister); |
| 3394 | } |
| 3395 | OpRet::emit(this, &m_thisRegister); |
| 3396 | emitLabel(isObjectLabel.get()); |
| 3397 | } |
| 3398 | } |
| 3399 | |
| 3400 | OpRet::emit(this, src); |
| 3401 | return src; |
| 3402 | } |
| 3403 | |
| 3404 | RegisterID* BytecodeGenerator::emitEnd(RegisterID* src) |
| 3405 | { |
| 3406 | OpEnd::emit(this, src); |
| 3407 | return src; |
| 3408 | } |
| 3409 | |
| 3410 | |
| 3411 | RegisterID* BytecodeGenerator::emitConstruct(RegisterID* dst, RegisterID* func, RegisterID* lazyThis, ExpectedFunction expectedFunction, CallArguments& callArguments, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd) |
| 3412 | { |
| 3413 | ASSERT(func->refCount()); |
| 3414 | |
| 3415 | // Generate code for arguments. |
| 3416 | unsigned argument = 0; |
| 3417 | if (ArgumentsNode* argumentsNode = callArguments.argumentsNode()) { |
| 3418 | |
| 3419 | ArgumentListNode* n = callArguments.argumentsNode()->m_listNode; |
| 3420 | if (n && n->m_expr->isSpreadExpression()) { |
| 3421 | RELEASE_ASSERT(!n->m_next); |
| 3422 | auto expression = static_cast<SpreadExpressionNode*>(n->m_expr)->expression(); |
| 3423 | if (expression->isArrayLiteral()) { |
| 3424 | auto* elements = static_cast<ArrayNode*>(expression)->elements(); |
| 3425 | if (elements && !elements->next() && elements->value()->isSpreadExpression()) { |
| 3426 | ExpressionNode* expression = static_cast<SpreadExpressionNode*>(elements->value())->expression(); |
| 3427 | RefPtr<RegisterID> argumentRegister = emitNode(callArguments.argumentRegister(0), expression); |
| 3428 | OpSpread::emit(this, argumentRegister.get(), argumentRegister.get()); |
| 3429 | |
| 3430 | move(callArguments.thisRegister(), lazyThis); |
| 3431 | RefPtr<RegisterID> thisRegister = move(newTemporary(), callArguments.thisRegister()); |
| 3432 | return emitConstructVarargs(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, divot, divotStart, divotEnd, DebuggableCall::No); |
| 3433 | } |
| 3434 | } |
| 3435 | RefPtr<RegisterID> argumentRegister; |
| 3436 | argumentRegister = expression->emitBytecode(*this, callArguments.argumentRegister(0)); |
| 3437 | move(callArguments.thisRegister(), lazyThis); |
| 3438 | return emitConstructVarargs(dst, func, callArguments.thisRegister(), argumentRegister.get(), newTemporary(), 0, divot, divotStart, divotEnd, DebuggableCall::No); |
| 3439 | } |
| 3440 | |
| 3441 | for (ArgumentListNode* n = argumentsNode->m_listNode; n; n = n->m_next) |
| 3442 | emitNode(callArguments.argumentRegister(argument++), n); |
| 3443 | } |
| 3444 | |
| 3445 | move(callArguments.thisRegister(), lazyThis); |
| 3446 | |
| 3447 | // Reserve space for call frame. |
| 3448 | Vector<RefPtr<RegisterID>, CallFrame::headerSizeInRegisters, UnsafeVectorOverflow> callFrame; |
| 3449 | for (int i = 0; i < CallFrame::headerSizeInRegisters; ++i) |
| 3450 | callFrame.append(newTemporary()); |
| 3451 | |
| 3452 | emitExpressionInfo(divot, divotStart, divotEnd); |
| 3453 | |
| 3454 | Ref<Label> done = newLabel(); |
| 3455 | expectedFunction = emitExpectedFunctionSnippet(dst, func, expectedFunction, callArguments, done.get()); |
| 3456 | |
| 3457 | OpConstruct::emit(this, dst, func, callArguments.argumentCountIncludingThis(), callArguments.stackOffset()); |
| 3458 | |
| 3459 | if (expectedFunction != NoExpectedFunction) |
| 3460 | emitLabel(done.get()); |
| 3461 | |
| 3462 | return dst; |
| 3463 | } |
| 3464 | |
| 3465 | RegisterID* BytecodeGenerator::emitStrcat(RegisterID* dst, RegisterID* src, int count) |
| 3466 | { |
| 3467 | OpStrcat::emit(this, dst, src, count); |
| 3468 | return dst; |
| 3469 | } |
| 3470 | |
| 3471 | void BytecodeGenerator::emitToPrimitive(RegisterID* dst, RegisterID* src) |
| 3472 | { |
| 3473 | OpToPrimitive::emit(this, dst, src); |
| 3474 | } |
| 3475 | |
| 3476 | void BytecodeGenerator::emitGetScope() |
| 3477 | { |
| 3478 | OpGetScope::emit(this, scopeRegister()); |
| 3479 | } |
| 3480 | |
| 3481 | RegisterID* BytecodeGenerator::emitPushWithScope(RegisterID* objectScope) |
| 3482 | { |
| 3483 | pushLocalControlFlowScope(); |
| 3484 | RegisterID* newScope = newBlockScopeVariable(); |
| 3485 | newScope->ref(); |
| 3486 | |
| 3487 | OpPushWithScope::emit(this, newScope, scopeRegister(), objectScope); |
| 3488 | |
| 3489 | move(scopeRegister(), newScope); |
| 3490 | m_lexicalScopeStack.append({ nullptr, newScope, true, 0 }); |
| 3491 | |
| 3492 | return newScope; |
| 3493 | } |
| 3494 | |
| 3495 | RegisterID* BytecodeGenerator::emitGetParentScope(RegisterID* dst, RegisterID* scope) |
| 3496 | { |
| 3497 | OpGetParentScope::emit(this, dst, scope); |
| 3498 | return dst; |
| 3499 | } |
| 3500 | |
| 3501 | void BytecodeGenerator::emitPopScope(RegisterID* dst, RegisterID* scope) |
| 3502 | { |
| 3503 | RefPtr<RegisterID> parentScope = emitGetParentScope(newTemporary(), scope); |
| 3504 | move(dst, parentScope.get()); |
| 3505 | } |
| 3506 | |
| 3507 | void BytecodeGenerator::emitPopWithScope() |
| 3508 | { |
| 3509 | emitPopScope(scopeRegister(), scopeRegister()); |
| 3510 | popLocalControlFlowScope(); |
| 3511 | auto stackEntry = m_lexicalScopeStack.takeLast(); |
| 3512 | stackEntry.m_scope->deref(); |
| 3513 | RELEASE_ASSERT(stackEntry.m_isWithScope); |
| 3514 | } |
| 3515 | |
| 3516 | void BytecodeGenerator::emitDebugHook(DebugHookType debugHookType, const JSTextPosition& divot) |
| 3517 | { |
| 3518 | if (!shouldEmitDebugHooks()) |
| 3519 | return; |
| 3520 | |
| 3521 | emitExpressionInfo(divot, divot, divot); |
| 3522 | OpDebug::emit(this, debugHookType, false); |
| 3523 | } |
| 3524 | |
| 3525 | void BytecodeGenerator::emitDebugHook(DebugHookType debugHookType, unsigned line, unsigned charOffset, unsigned lineStart) |
| 3526 | { |
| 3527 | emitDebugHook(debugHookType, JSTextPosition(line, charOffset, lineStart)); |
| 3528 | } |
| 3529 | |
| 3530 | void BytecodeGenerator::emitDebugHook(StatementNode* statement) |
| 3531 | { |
| 3532 | // DebuggerStatementNode will output its own special debug hook. |
| 3533 | if (statement->isDebuggerStatement()) |
| 3534 | return; |
| 3535 | |
| 3536 | emitDebugHook(WillExecuteStatement, statement->position()); |
| 3537 | } |
| 3538 | |
| 3539 | void BytecodeGenerator::emitDebugHook(ExpressionNode* expr) |
| 3540 | { |
| 3541 | emitDebugHook(WillExecuteStatement, expr->position()); |
| 3542 | } |
| 3543 | |
| 3544 | void BytecodeGenerator::emitWillLeaveCallFrameDebugHook() |
| 3545 | { |
| 3546 | RELEASE_ASSERT(m_scopeNode->isFunctionNode()); |
| 3547 | emitDebugHook(WillLeaveCallFrame, m_scopeNode->lastLine(), m_scopeNode->startOffset(), m_scopeNode->lineStartOffset()); |
| 3548 | } |
| 3549 | |
| 3550 | void BytecodeGenerator::pushFinallyControlFlowScope(FinallyContext& finallyContext) |
| 3551 | { |
| 3552 | ControlFlowScope scope(ControlFlowScope::Finally, currentLexicalScopeIndex(), &finallyContext); |
| 3553 | m_controlFlowScopeStack.append(WTFMove(scope)); |
| 3554 | |
| 3555 | m_finallyDepth++; |
| 3556 | m_currentFinallyContext = &finallyContext; |
| 3557 | } |
| 3558 | |
| 3559 | void BytecodeGenerator::popFinallyControlFlowScope() |
| 3560 | { |
| 3561 | ASSERT(m_controlFlowScopeStack.size()); |
| 3562 | ASSERT(m_controlFlowScopeStack.last().isFinallyScope()); |
| 3563 | ASSERT(m_finallyDepth > 0); |
| 3564 | ASSERT(m_currentFinallyContext); |
| 3565 | m_currentFinallyContext = m_currentFinallyContext->outerContext(); |
| 3566 | m_finallyDepth--; |
| 3567 | m_controlFlowScopeStack.removeLast(); |
| 3568 | } |
| 3569 | |
| 3570 | LabelScope* BytecodeGenerator::breakTarget(const Identifier& name) |
| 3571 | { |
| 3572 | shrinkToFit(m_labelScopes); |
| 3573 | |
| 3574 | if (!m_labelScopes.size()) |
| 3575 | return nullptr; |
| 3576 | |
| 3577 | // We special-case the following, which is a syntax error in Firefox: |
| 3578 | // label: |
| 3579 | // break; |
| 3580 | if (name.isEmpty()) { |
| 3581 | for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| 3582 | LabelScope& scope = m_labelScopes[i]; |
| 3583 | if (scope.type() != LabelScope::NamedLabel) |
| 3584 | return &scope; |
| 3585 | } |
| 3586 | return nullptr; |
| 3587 | } |
| 3588 | |
| 3589 | for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| 3590 | LabelScope& scope = m_labelScopes[i]; |
| 3591 | if (scope.name() && *scope.name() == name) |
| 3592 | return &scope; |
| 3593 | } |
| 3594 | return nullptr; |
| 3595 | } |
| 3596 | |
| 3597 | LabelScope* BytecodeGenerator::continueTarget(const Identifier& name) |
| 3598 | { |
| 3599 | shrinkToFit(m_labelScopes); |
| 3600 | |
| 3601 | if (!m_labelScopes.size()) |
| 3602 | return nullptr; |
| 3603 | |
| 3604 | if (name.isEmpty()) { |
| 3605 | for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| 3606 | LabelScope& scope = m_labelScopes[i]; |
| 3607 | if (scope.type() == LabelScope::Loop) { |
| 3608 | ASSERT(scope.continueTarget()); |
| 3609 | return &scope; |
| 3610 | } |
| 3611 | } |
| 3612 | return nullptr; |
| 3613 | } |
| 3614 | |
| 3615 | // Continue to the loop nested nearest to the label scope that matches |
| 3616 | // 'name'. |
| 3617 | LabelScope* result = nullptr; |
| 3618 | for (int i = m_labelScopes.size() - 1; i >= 0; --i) { |
| 3619 | LabelScope& scope = m_labelScopes[i]; |
| 3620 | if (scope.type() == LabelScope::Loop) { |
| 3621 | ASSERT(scope.continueTarget()); |
| 3622 | result = &scope; |
| 3623 | } |
| 3624 | if (scope.name() && *scope.name() == name) |
| 3625 | return result; // may be null. |
| 3626 | } |
| 3627 | return nullptr; |
| 3628 | } |
| 3629 | |
| 3630 | void BytecodeGenerator::allocateCalleeSaveSpace() |
| 3631 | { |
| 3632 | size_t virtualRegisterCountForCalleeSaves = CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters(); |
| 3633 | |
| 3634 | for (size_t i = 0; i < virtualRegisterCountForCalleeSaves; i++) { |
| 3635 | RegisterID* localRegister = addVar(); |
| 3636 | localRegister->ref(); |
| 3637 | m_localRegistersForCalleeSaveRegisters.append(localRegister); |
| 3638 | } |
| 3639 | } |
| 3640 | |
| 3641 | void BytecodeGenerator::allocateAndEmitScope() |
| 3642 | { |
| 3643 | m_scopeRegister = addVar(); |
| 3644 | m_scopeRegister->ref(); |
| 3645 | m_codeBlock->setScopeRegister(scopeRegister()->virtualRegister()); |
| 3646 | emitGetScope(); |
| 3647 | m_topMostScope = addVar(); |
| 3648 | move(m_topMostScope, scopeRegister()); |
| 3649 | } |
| 3650 | |
| 3651 | TryData* BytecodeGenerator::pushTry(Label& start, Label& handlerLabel, HandlerType handlerType) |
| 3652 | { |
| 3653 | m_tryData.append(TryData { handlerLabel, handlerType }); |
| 3654 | TryData* result = &m_tryData.last(); |
| 3655 | |
| 3656 | m_tryContextStack.append(TryContext { |
| 3657 | start, |
| 3658 | result |
| 3659 | }); |
| 3660 | |
| 3661 | return result; |
| 3662 | } |
| 3663 | |
| 3664 | void BytecodeGenerator::popTry(TryData* tryData, Label& end) |
| 3665 | { |
| 3666 | m_usesExceptions = true; |
| 3667 | |
| 3668 | ASSERT_UNUSED(tryData, m_tryContextStack.last().tryData == tryData); |
| 3669 | |
| 3670 | m_tryRanges.append(TryRange { |
| 3671 | m_tryContextStack.last().start.copyRef(), |
| 3672 | end, |
| 3673 | m_tryContextStack.last().tryData |
| 3674 | }); |
| 3675 | m_tryContextStack.removeLast(); |
| 3676 | } |
| 3677 | |
| 3678 | void BytecodeGenerator::emitOutOfLineCatchHandler(RegisterID* thrownValueRegister, RegisterID* completionTypeRegister, TryData* data) |
| 3679 | { |
| 3680 | RegisterID* unused = newTemporary(); |
| 3681 | emitOutOfLineExceptionHandler(unused, thrownValueRegister, completionTypeRegister, data); |
| 3682 | } |
| 3683 | |
| 3684 | void BytecodeGenerator::emitOutOfLineFinallyHandler(RegisterID* exceptionRegister, RegisterID* completionTypeRegister, TryData* data) |
| 3685 | { |
| 3686 | RegisterID* unused = newTemporary(); |
| 3687 | ASSERT(completionTypeRegister); |
| 3688 | emitOutOfLineExceptionHandler(exceptionRegister, unused, completionTypeRegister, data); |
| 3689 | } |
| 3690 | |
| 3691 | void BytecodeGenerator::emitOutOfLineExceptionHandler(RegisterID* exceptionRegister, RegisterID* thrownValueRegister, RegisterID* completionTypeRegister, TryData* data) |
| 3692 | { |
| 3693 | VirtualRegister completionTypeVirtualRegister = completionTypeRegister ? completionTypeRegister : VirtualRegister(); |
| 3694 | m_exceptionHandlersToEmit.append({ data, exceptionRegister, thrownValueRegister, completionTypeVirtualRegister }); |
| 3695 | } |
| 3696 | |
| 3697 | void BytecodeGenerator::restoreScopeRegister(int lexicalScopeIndex) |
| 3698 | { |
| 3699 | if (lexicalScopeIndex == CurrentLexicalScopeIndex) |
| 3700 | return; // No change needed. |
| 3701 | |
| 3702 | if (lexicalScopeIndex != OutermostLexicalScopeIndex) { |
| 3703 | ASSERT(lexicalScopeIndex < static_cast<int>(m_lexicalScopeStack.size())); |
| 3704 | int endIndex = lexicalScopeIndex + 1; |
| 3705 | for (size_t i = endIndex; i--; ) { |
| 3706 | if (m_lexicalScopeStack[i].m_scope) { |
| 3707 | move(scopeRegister(), m_lexicalScopeStack[i].m_scope); |
| 3708 | return; |
| 3709 | } |
| 3710 | } |
| 3711 | } |
| 3712 | // Note that if we don't find a local scope in the current function/program, |
| 3713 | // we must grab the outer-most scope of this bytecode generation. |
| 3714 | move(scopeRegister(), m_topMostScope); |
| 3715 | } |
| 3716 | |
| 3717 | void BytecodeGenerator::restoreScopeRegister() |
| 3718 | { |
| 3719 | restoreScopeRegister(currentLexicalScopeIndex()); |
| 3720 | } |
| 3721 | |
| 3722 | int BytecodeGenerator::labelScopeDepthToLexicalScopeIndex(int targetLabelScopeDepth) |
| 3723 | { |
| 3724 | ASSERT(labelScopeDepth() - targetLabelScopeDepth >= 0); |
| 3725 | size_t scopeDelta = labelScopeDepth() - targetLabelScopeDepth; |
| 3726 | ASSERT(scopeDelta <= m_controlFlowScopeStack.size()); |
| 3727 | if (!scopeDelta) |
| 3728 | return CurrentLexicalScopeIndex; |
| 3729 | |
| 3730 | ControlFlowScope& targetScope = m_controlFlowScopeStack[targetLabelScopeDepth]; |
| 3731 | return targetScope.lexicalScopeIndex; |
| 3732 | } |
| 3733 | |
| 3734 | void BytecodeGenerator::emitThrow(RegisterID* exc) |
| 3735 | { |
| 3736 | m_usesExceptions = true; |
| 3737 | OpThrow::emit(this, exc); |
| 3738 | } |
| 3739 | |
| 3740 | RegisterID* BytecodeGenerator::emitArgumentCount(RegisterID* dst) |
| 3741 | { |
| 3742 | OpArgumentCount::emit(this, dst); |
| 3743 | return dst; |
| 3744 | } |
| 3745 | |
| 3746 | unsigned BytecodeGenerator::localScopeDepth() const |
| 3747 | { |
| 3748 | return m_localScopeDepth; |
| 3749 | } |
| 3750 | |
| 3751 | int BytecodeGenerator::labelScopeDepth() const |
| 3752 | { |
| 3753 | unsigned depth = localScopeDepth() + m_finallyDepth; |
| 3754 | ASSERT(depth == m_controlFlowScopeStack.size()); |
| 3755 | return depth; |
| 3756 | } |
| 3757 | |
| 3758 | void BytecodeGenerator::emitThrowStaticError(ErrorType errorType, RegisterID* raw) |
| 3759 | { |
| 3760 | RefPtr<RegisterID> message = newTemporary(); |
| 3761 | emitToString(message.get(), raw); |
| 3762 | OpThrowStaticError::emit(this, message.get(), errorType); |
| 3763 | } |
| 3764 | |
| 3765 | void BytecodeGenerator::emitThrowStaticError(ErrorType errorType, const Identifier& message) |
| 3766 | { |
| 3767 | OpThrowStaticError::emit(this, addConstantValue(addStringConstant(message)), errorType); |
| 3768 | } |
| 3769 | |
| 3770 | void BytecodeGenerator::emitThrowReferenceError(const String& message) |
| 3771 | { |
| 3772 | emitThrowStaticError(ErrorType::ReferenceError, Identifier::fromString(m_vm, message)); |
| 3773 | } |
| 3774 | |
| 3775 | void BytecodeGenerator::emitThrowTypeError(const String& message) |
| 3776 | { |
| 3777 | emitThrowStaticError(ErrorType::TypeError, Identifier::fromString(m_vm, message)); |
| 3778 | } |
| 3779 | |
| 3780 | void BytecodeGenerator::emitThrowTypeError(const Identifier& message) |
| 3781 | { |
| 3782 | emitThrowStaticError(ErrorType::TypeError, message); |
| 3783 | } |
| 3784 | |
| 3785 | void BytecodeGenerator::emitThrowRangeError(const Identifier& message) |
| 3786 | { |
| 3787 | emitThrowStaticError(ErrorType::RangeError, message); |
| 3788 | } |
| 3789 | |
| 3790 | void BytecodeGenerator::emitThrowOutOfMemoryError() |
| 3791 | { |
| 3792 | emitThrowStaticError(ErrorType::Error, Identifier::fromString(m_vm, "Out of memory" )); |
| 3793 | } |
| 3794 | |
| 3795 | void BytecodeGenerator::emitPushFunctionNameScope(const Identifier& property, RegisterID* callee, bool isCaptured) |
| 3796 | { |
| 3797 | // There is some nuance here: |
| 3798 | // If we're in strict mode code, the function name scope variable acts exactly like a "const" variable. |
| 3799 | // If we're not in strict mode code, we want to allow bogus assignments to the name scoped variable. |
| 3800 | // This means any assignment to the variable won't throw, but it won't actually assign a new value to it. |
| 3801 | // To accomplish this, we don't report that this scope is a lexical scope. This will prevent |
| 3802 | // any throws when trying to assign to the variable (while still ensuring it keeps its original |
| 3803 | // value). There is some ugliness and exploitation of a leaky abstraction here, but it's better than |
| 3804 | // having a completely new op code and a class to handle name scopes which are so close in functionality |
| 3805 | // to lexical environments. |
| 3806 | VariableEnvironment nameScopeEnvironment; |
| 3807 | auto addResult = nameScopeEnvironment.add(property); |
| 3808 | if (isCaptured) |
| 3809 | addResult.iterator->value.setIsCaptured(); |
| 3810 | addResult.iterator->value.setIsConst(); // The function name scope name acts like a const variable. |
| 3811 | unsigned numVars = m_codeBlock->m_numVars; |
| 3812 | pushLexicalScopeInternal(nameScopeEnvironment, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, TDZRequirement::NotUnderTDZ, ScopeType::FunctionNameScope, ScopeRegisterType::Var); |
| 3813 | ASSERT_UNUSED(numVars, m_codeBlock->m_numVars == static_cast<int>(numVars + 1)); // Should have only created one new "var" for the function name scope. |
| 3814 | bool shouldTreatAsLexicalVariable = isStrictMode(); |
| 3815 | Variable functionVar = variableForLocalEntry(property, m_lexicalScopeStack.last().m_symbolTable->get(NoLockingNecessary, property.impl()), m_lexicalScopeStack.last().m_symbolTableConstantIndex, shouldTreatAsLexicalVariable); |
| 3816 | emitPutToScope(m_lexicalScopeStack.last().m_scope, functionVar, callee, ThrowIfNotFound, InitializationMode::NotInitialization); |
| 3817 | } |
| 3818 | |
| 3819 | void BytecodeGenerator::pushLocalControlFlowScope() |
| 3820 | { |
| 3821 | ControlFlowScope scope(ControlFlowScope::Label, currentLexicalScopeIndex()); |
| 3822 | m_controlFlowScopeStack.append(WTFMove(scope)); |
| 3823 | m_localScopeDepth++; |
| 3824 | } |
| 3825 | |
| 3826 | void BytecodeGenerator::popLocalControlFlowScope() |
| 3827 | { |
| 3828 | ASSERT(m_controlFlowScopeStack.size()); |
| 3829 | ASSERT(!m_controlFlowScopeStack.last().isFinallyScope()); |
| 3830 | m_controlFlowScopeStack.removeLast(); |
| 3831 | m_localScopeDepth--; |
| 3832 | } |
| 3833 | |
| 3834 | void BytecodeGenerator::emitPushCatchScope(VariableEnvironment& environment) |
| 3835 | { |
| 3836 | pushLexicalScopeInternal(environment, TDZCheckOptimization::Optimize, NestedScopeType::IsNotNested, nullptr, TDZRequirement::UnderTDZ, ScopeType::CatchScope, ScopeRegisterType::Block); |
| 3837 | } |
| 3838 | |
| 3839 | void BytecodeGenerator::emitPopCatchScope(VariableEnvironment& environment) |
| 3840 | { |
| 3841 | popLexicalScopeInternal(environment); |
| 3842 | } |
| 3843 | |
| 3844 | void BytecodeGenerator::beginSwitch(RegisterID* scrutineeRegister, SwitchInfo::SwitchType type) |
| 3845 | { |
| 3846 | switch (type) { |
| 3847 | case SwitchInfo::SwitchImmediate: { |
| 3848 | size_t tableIndex = m_codeBlock->numberOfSwitchJumpTables(); |
| 3849 | m_codeBlock->addSwitchJumpTable(); |
| 3850 | OpSwitchImm::emit(this, tableIndex, BoundLabel(), scrutineeRegister); |
| 3851 | break; |
| 3852 | } |
| 3853 | case SwitchInfo::SwitchCharacter: { |
| 3854 | size_t tableIndex = m_codeBlock->numberOfSwitchJumpTables(); |
| 3855 | m_codeBlock->addSwitchJumpTable(); |
| 3856 | OpSwitchChar::emit(this, tableIndex, BoundLabel(), scrutineeRegister); |
| 3857 | break; |
| 3858 | } |
| 3859 | case SwitchInfo::SwitchString: { |
| 3860 | size_t tableIndex = m_codeBlock->numberOfStringSwitchJumpTables(); |
| 3861 | m_codeBlock->addStringSwitchJumpTable(); |
| 3862 | OpSwitchString::emit(this, tableIndex, BoundLabel(), scrutineeRegister); |
| 3863 | break; |
| 3864 | } |
| 3865 | default: |
| 3866 | RELEASE_ASSERT_NOT_REACHED(); |
| 3867 | } |
| 3868 | |
| 3869 | SwitchInfo info = { m_lastInstruction.offset(), type }; |
| 3870 | m_switchContextStack.append(info); |
| 3871 | } |
| 3872 | |
| 3873 | static int32_t keyForImmediateSwitch(ExpressionNode* node, int32_t min, int32_t max) |
| 3874 | { |
| 3875 | UNUSED_PARAM(max); |
| 3876 | ASSERT(node->isNumber()); |
| 3877 | double value = static_cast<NumberNode*>(node)->value(); |
| 3878 | int32_t key = static_cast<int32_t>(value); |
| 3879 | ASSERT(key == value); |
| 3880 | ASSERT(key >= min); |
| 3881 | ASSERT(key <= max); |
| 3882 | return key - min; |
| 3883 | } |
| 3884 | |
| 3885 | static int32_t keyForCharacterSwitch(ExpressionNode* node, int32_t min, int32_t max) |
| 3886 | { |
| 3887 | UNUSED_PARAM(max); |
| 3888 | ASSERT(node->isString()); |
| 3889 | StringImpl* clause = static_cast<StringNode*>(node)->value().impl(); |
| 3890 | ASSERT(clause->length() == 1); |
| 3891 | |
| 3892 | int32_t key = (*clause)[0]; |
| 3893 | ASSERT(key >= min); |
| 3894 | ASSERT(key <= max); |
| 3895 | return key - min; |
| 3896 | } |
| 3897 | |
| 3898 | static void prepareJumpTableForSwitch( |
| 3899 | UnlinkedSimpleJumpTable& jumpTable, int32_t switchAddress, uint32_t clauseCount, |
| 3900 | const Vector<Ref<Label>, 8>& labels, ExpressionNode** nodes, int32_t min, int32_t max, |
| 3901 | int32_t (*keyGetter)(ExpressionNode*, int32_t min, int32_t max)) |
| 3902 | { |
| 3903 | jumpTable.min = min; |
| 3904 | jumpTable.branchOffsets.resize(max - min + 1); |
| 3905 | jumpTable.branchOffsets.fill(0); |
| 3906 | for (uint32_t i = 0; i < clauseCount; ++i) { |
| 3907 | // We're emitting this after the clause labels should have been fixed, so |
| 3908 | // the labels should not be "forward" references |
| 3909 | ASSERT(!labels[i]->isForward()); |
| 3910 | jumpTable.add(keyGetter(nodes[i], min, max), labels[i]->bind(switchAddress)); |
| 3911 | } |
| 3912 | } |
| 3913 | |
| 3914 | static void prepareJumpTableForStringSwitch(UnlinkedStringJumpTable& jumpTable, int32_t switchAddress, uint32_t clauseCount, const Vector<Ref<Label>, 8>& labels, ExpressionNode** nodes) |
| 3915 | { |
| 3916 | for (uint32_t i = 0; i < clauseCount; ++i) { |
| 3917 | // We're emitting this after the clause labels should have been fixed, so |
| 3918 | // the labels should not be "forward" references |
| 3919 | ASSERT(!labels[i]->isForward()); |
| 3920 | |
| 3921 | ASSERT(nodes[i]->isString()); |
| 3922 | StringImpl* clause = static_cast<StringNode*>(nodes[i])->value().impl(); |
| 3923 | jumpTable.offsetTable.add(clause, UnlinkedStringJumpTable::OffsetLocation { labels[i]->bind(switchAddress) }); |
| 3924 | } |
| 3925 | } |
| 3926 | |
| 3927 | void BytecodeGenerator::endSwitch(uint32_t clauseCount, const Vector<Ref<Label>, 8>& labels, ExpressionNode** nodes, Label& defaultLabel, int32_t min, int32_t max) |
| 3928 | { |
| 3929 | SwitchInfo switchInfo = m_switchContextStack.last(); |
| 3930 | m_switchContextStack.removeLast(); |
| 3931 | |
| 3932 | BoundLabel defaultTarget = defaultLabel.bind(switchInfo.bytecodeOffset); |
| 3933 | auto handleSwitch = [&](auto* op, auto bytecode) { |
| 3934 | op->setDefaultOffset(defaultTarget, [&]() { |
| 3935 | m_codeBlock->addOutOfLineJumpTarget(switchInfo.bytecodeOffset, defaultTarget); |
| 3936 | return BoundLabel(); |
| 3937 | }); |
| 3938 | |
| 3939 | UnlinkedSimpleJumpTable& jumpTable = m_codeBlock->switchJumpTable(bytecode.m_tableIndex); |
| 3940 | prepareJumpTableForSwitch( |
| 3941 | jumpTable, switchInfo.bytecodeOffset, clauseCount, labels, nodes, min, max, |
| 3942 | switchInfo.switchType == SwitchInfo::SwitchImmediate |
| 3943 | ? keyForImmediateSwitch |
| 3944 | : keyForCharacterSwitch); |
| 3945 | }; |
| 3946 | |
| 3947 | auto ref = m_writer.ref(switchInfo.bytecodeOffset); |
| 3948 | switch (switchInfo.switchType) { |
| 3949 | case SwitchInfo::SwitchImmediate: { |
| 3950 | handleSwitch(ref->cast<OpSwitchImm>(), ref->as<OpSwitchImm>()); |
| 3951 | break; |
| 3952 | } |
| 3953 | case SwitchInfo::SwitchCharacter: { |
| 3954 | handleSwitch(ref->cast<OpSwitchChar>(), ref->as<OpSwitchChar>()); |
| 3955 | break; |
| 3956 | } |
| 3957 | |
| 3958 | case SwitchInfo::SwitchString: { |
| 3959 | ref->cast<OpSwitchString>()->setDefaultOffset(defaultTarget, [&]() { |
| 3960 | m_codeBlock->addOutOfLineJumpTarget(switchInfo.bytecodeOffset, defaultTarget); |
| 3961 | return BoundLabel(); |
| 3962 | }); |
| 3963 | |
| 3964 | UnlinkedStringJumpTable& jumpTable = m_codeBlock->stringSwitchJumpTable(ref->as<OpSwitchString>().m_tableIndex); |
| 3965 | prepareJumpTableForStringSwitch(jumpTable, switchInfo.bytecodeOffset, clauseCount, labels, nodes); |
| 3966 | break; |
| 3967 | } |
| 3968 | |
| 3969 | default: |
| 3970 | RELEASE_ASSERT_NOT_REACHED(); |
| 3971 | break; |
| 3972 | } |
| 3973 | } |
| 3974 | |
| 3975 | RegisterID* BytecodeGenerator::emitThrowExpressionTooDeepException() |
| 3976 | { |
| 3977 | // It would be nice to do an even better job of identifying exactly where the expression is. |
| 3978 | // And we could make the caller pass the node pointer in, if there was some way of getting |
| 3979 | // that from an arbitrary node. However, calling emitExpressionInfo without any useful data |
| 3980 | // is still good enough to get us an accurate line number. |
| 3981 | m_expressionTooDeep = true; |
| 3982 | return newTemporary(); |
| 3983 | } |
| 3984 | |
| 3985 | bool BytecodeGenerator::isArgumentNumber(const Identifier& ident, int argumentNumber) |
| 3986 | { |
| 3987 | RegisterID* registerID = variable(ident).local(); |
| 3988 | if (!registerID) |
| 3989 | return false; |
| 3990 | return registerID->index() == CallFrame::argumentOffset(argumentNumber); |
| 3991 | } |
| 3992 | |
| 3993 | bool BytecodeGenerator::emitReadOnlyExceptionIfNeeded(const Variable& variable) |
| 3994 | { |
| 3995 | // If we're in strict mode, we always throw. |
| 3996 | // If we're not in strict mode, we throw for "const" variables but not the function callee. |
| 3997 | if (isStrictMode() || variable.isConst()) { |
| 3998 | emitThrowTypeError(Identifier::fromString(m_vm, ReadonlyPropertyWriteError)); |
| 3999 | return true; |
| 4000 | } |
| 4001 | return false; |
| 4002 | } |
| 4003 | |
| 4004 | void BytecodeGenerator::emitEnumeration(ThrowableExpressionData* node, ExpressionNode* subjectNode, const ScopedLambda<void(BytecodeGenerator&, RegisterID*)>& callBack, ForOfNode* forLoopNode, RegisterID* forLoopSymbolTable) |
| 4005 | { |
| 4006 | bool isForAwait = forLoopNode ? forLoopNode->isForAwait() : false; |
| 4007 | ASSERT(!isForAwait || (isForAwait && isAsyncFunctionParseMode(parseMode()))); |
| 4008 | |
| 4009 | RefPtr<RegisterID> subject = newTemporary(); |
| 4010 | emitNode(subject.get(), subjectNode); |
| 4011 | RefPtr<RegisterID> iterator = isForAwait ? emitGetAsyncIterator(subject.get(), node) : emitGetIterator(subject.get(), node); |
| 4012 | RefPtr<RegisterID> nextMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().next); |
| 4013 | |
| 4014 | Ref<Label> loopDone = newLabel(); |
| 4015 | Ref<Label> tryStartLabel = newLabel(); |
| 4016 | Ref<Label> finallyViaThrowLabel = newLabel(); |
| 4017 | Ref<Label> finallyLabel = newLabel(); |
| 4018 | Ref<Label> catchLabel = newLabel(); |
| 4019 | Ref<Label> endCatchLabel = newLabel(); |
| 4020 | |
| 4021 | // RefPtr<Register> iterator's lifetime must be longer than IteratorCloseContext. |
| 4022 | FinallyContext finallyContext(*this, finallyLabel.get()); |
| 4023 | pushFinallyControlFlowScope(finallyContext); |
| 4024 | |
| 4025 | { |
| 4026 | Ref<LabelScope> scope = newLabelScope(LabelScope::Loop); |
| 4027 | RefPtr<RegisterID> value = newTemporary(); |
| 4028 | emitLoad(value.get(), jsUndefined()); |
| 4029 | |
| 4030 | emitJump(*scope->continueTarget()); |
| 4031 | |
| 4032 | Ref<Label> loopStart = newLabel(); |
| 4033 | emitLabel(loopStart.get()); |
| 4034 | emitLoopHint(); |
| 4035 | |
| 4036 | emitLabel(tryStartLabel.get()); |
| 4037 | TryData* tryData = pushTry(tryStartLabel.get(), finallyViaThrowLabel.get(), HandlerType::SynthesizedFinally); |
| 4038 | callBack(*this, value.get()); |
| 4039 | emitJump(*scope->continueTarget()); |
| 4040 | |
| 4041 | // IteratorClose sequence for abrupt completions. |
| 4042 | { |
| 4043 | // Finally block for the enumeration. |
| 4044 | emitLabel(finallyViaThrowLabel.get()); |
| 4045 | popTry(tryData, finallyViaThrowLabel.get()); |
| 4046 | |
| 4047 | Ref<Label> finallyBodyLabel = newLabel(); |
| 4048 | RefPtr<RegisterID> finallyExceptionRegister = newTemporary(); |
| 4049 | |
| 4050 | emitOutOfLineFinallyHandler(finallyContext.completionValueRegister(), finallyContext.completionTypeRegister(), tryData); |
| 4051 | move(finallyExceptionRegister.get(), finallyContext.completionValueRegister()); |
| 4052 | emitJump(finallyBodyLabel.get()); |
| 4053 | |
| 4054 | emitLabel(finallyLabel.get()); |
| 4055 | moveEmptyValue(finallyExceptionRegister.get()); |
| 4056 | |
| 4057 | // Finally fall through case. |
| 4058 | emitLabel(finallyBodyLabel.get()); |
| 4059 | restoreScopeRegister(); |
| 4060 | |
| 4061 | Ref<Label> finallyDone = newLabel(); |
| 4062 | |
| 4063 | RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().returnKeyword); |
| 4064 | emitJumpIfTrue(emitIsUndefined(newTemporary(), returnMethod.get()), finallyDone.get()); |
| 4065 | |
| 4066 | Ref<Label> returnCallTryStart = newLabel(); |
| 4067 | emitLabel(returnCallTryStart.get()); |
| 4068 | TryData* returnCallTryData = pushTry(returnCallTryStart.get(), catchLabel.get(), HandlerType::SynthesizedCatch); |
| 4069 | |
| 4070 | CallArguments returnArguments(*this, nullptr); |
| 4071 | move(returnArguments.thisRegister(), iterator.get()); |
| 4072 | emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| 4073 | |
| 4074 | if (isForAwait) |
| 4075 | emitAwait(value.get()); |
| 4076 | |
| 4077 | emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), finallyDone.get()); |
| 4078 | emitThrowTypeError("Iterator result interface is not an object."_s ); |
| 4079 | |
| 4080 | emitLabel(finallyDone.get()); |
| 4081 | emitFinallyCompletion(finallyContext, endCatchLabel.get()); |
| 4082 | |
| 4083 | popTry(returnCallTryData, finallyDone.get()); |
| 4084 | |
| 4085 | // Catch block for exceptions that may be thrown while calling the return |
| 4086 | // handler in the enumeration finally block. The only reason we need this |
| 4087 | // catch block is because if entered the above finally block due to a thrown |
| 4088 | // exception, then we want to re-throw the original exception on exiting |
| 4089 | // the finally block. Otherwise, we'll let any new exception pass through. |
| 4090 | { |
| 4091 | emitLabel(catchLabel.get()); |
| 4092 | |
| 4093 | RefPtr<RegisterID> exceptionRegister = newTemporary(); |
| 4094 | emitOutOfLineFinallyHandler(exceptionRegister.get(), finallyContext.completionTypeRegister(), returnCallTryData); |
| 4095 | // Since this is a synthesized catch block and we're guaranteed to never need |
| 4096 | // to resolve any symbols from the scope, we can skip restoring the scope |
| 4097 | // register here. |
| 4098 | |
| 4099 | Ref<Label> throwLabel = newLabel(); |
| 4100 | emitJumpIfTrue(emitIsEmpty(newTemporary(), finallyExceptionRegister.get()), throwLabel.get()); |
| 4101 | move(exceptionRegister.get(), finallyExceptionRegister.get()); |
| 4102 | |
| 4103 | emitLabel(throwLabel.get()); |
| 4104 | emitThrow(exceptionRegister.get()); |
| 4105 | |
| 4106 | emitLabel(endCatchLabel.get()); |
| 4107 | } |
| 4108 | } |
| 4109 | |
| 4110 | emitLabel(*scope->continueTarget()); |
| 4111 | if (forLoopNode) { |
| 4112 | RELEASE_ASSERT(forLoopNode->isForOfNode()); |
| 4113 | prepareLexicalScopeForNextForLoopIteration(forLoopNode, forLoopSymbolTable); |
| 4114 | emitDebugHook(forLoopNode->lexpr()); |
| 4115 | } |
| 4116 | |
| 4117 | { |
| 4118 | emitIteratorNext(value.get(), nextMethod.get(), iterator.get(), node, isForAwait ? EmitAwait::Yes : EmitAwait::No); |
| 4119 | |
| 4120 | emitJumpIfTrue(emitGetById(newTemporary(), value.get(), propertyNames().done), loopDone.get()); |
| 4121 | emitGetById(value.get(), value.get(), propertyNames().value); |
| 4122 | emitJump(loopStart.get()); |
| 4123 | } |
| 4124 | |
| 4125 | bool breakLabelIsBound = scope->breakTargetMayBeBound(); |
| 4126 | if (breakLabelIsBound) |
| 4127 | emitLabel(scope->breakTarget()); |
| 4128 | popFinallyControlFlowScope(); |
| 4129 | if (breakLabelIsBound) { |
| 4130 | // IteratorClose sequence for break-ed control flow. |
| 4131 | emitIteratorClose(iterator.get(), node, isForAwait ? EmitAwait::Yes : EmitAwait::No); |
| 4132 | } |
| 4133 | } |
| 4134 | emitLabel(loopDone.get()); |
| 4135 | } |
| 4136 | |
| 4137 | RegisterID* BytecodeGenerator::emitGetTemplateObject(RegisterID* dst, TaggedTemplateNode* taggedTemplate) |
| 4138 | { |
| 4139 | TemplateObjectDescriptor::StringVector rawStrings; |
| 4140 | TemplateObjectDescriptor::OptionalStringVector cookedStrings; |
| 4141 | |
| 4142 | TemplateStringListNode* templateString = taggedTemplate->templateLiteral()->templateStrings(); |
| 4143 | for (; templateString; templateString = templateString->next()) { |
| 4144 | auto* string = templateString->value(); |
| 4145 | ASSERT(string->raw()); |
| 4146 | rawStrings.append(string->raw()->impl()); |
| 4147 | if (!string->cooked()) |
| 4148 | cookedStrings.append(WTF::nullopt); |
| 4149 | else |
| 4150 | cookedStrings.append(string->cooked()->impl()); |
| 4151 | } |
| 4152 | RefPtr<RegisterID> constant = addTemplateObjectConstant(TemplateObjectDescriptor::create(WTFMove(rawStrings), WTFMove(cookedStrings)), taggedTemplate->endOffset()); |
| 4153 | if (!dst) |
| 4154 | return constant.get(); |
| 4155 | return move(dst, constant.get()); |
| 4156 | } |
| 4157 | |
| 4158 | RegisterID* BytecodeGenerator::emitGetGlobalPrivate(RegisterID* dst, const Identifier& property) |
| 4159 | { |
| 4160 | dst = tempDestination(dst); |
| 4161 | Variable var = variable(property); |
| 4162 | if (RegisterID* local = var.local()) |
| 4163 | return move(dst, local); |
| 4164 | |
| 4165 | RefPtr<RegisterID> scope = newTemporary(); |
| 4166 | move(scope.get(), emitResolveScope(scope.get(), var)); |
| 4167 | return emitGetFromScope(dst, scope.get(), var, ThrowIfNotFound); |
| 4168 | } |
| 4169 | |
| 4170 | RegisterID* BytecodeGenerator::emitGetEnumerableLength(RegisterID* dst, RegisterID* base) |
| 4171 | { |
| 4172 | OpGetEnumerableLength::emit(this, dst, base); |
| 4173 | return dst; |
| 4174 | } |
| 4175 | |
| 4176 | RegisterID* BytecodeGenerator::emitHasGenericProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName) |
| 4177 | { |
| 4178 | OpHasGenericProperty::emit(this, dst, base, propertyName); |
| 4179 | return dst; |
| 4180 | } |
| 4181 | |
| 4182 | RegisterID* BytecodeGenerator::emitHasIndexedProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName) |
| 4183 | { |
| 4184 | OpHasIndexedProperty::emit(this, dst, base, propertyName); |
| 4185 | return dst; |
| 4186 | } |
| 4187 | |
| 4188 | RegisterID* BytecodeGenerator::emitHasStructureProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName, RegisterID* enumerator) |
| 4189 | { |
| 4190 | OpHasStructureProperty::emit(this, dst, base, propertyName, enumerator); |
| 4191 | return dst; |
| 4192 | } |
| 4193 | |
| 4194 | RegisterID* BytecodeGenerator::emitGetPropertyEnumerator(RegisterID* dst, RegisterID* base) |
| 4195 | { |
| 4196 | OpGetPropertyEnumerator::emit(this, dst, base); |
| 4197 | return dst; |
| 4198 | } |
| 4199 | |
| 4200 | RegisterID* BytecodeGenerator::emitEnumeratorStructurePropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index) |
| 4201 | { |
| 4202 | OpEnumeratorStructurePname::emit(this, dst, enumerator, index); |
| 4203 | return dst; |
| 4204 | } |
| 4205 | |
| 4206 | RegisterID* BytecodeGenerator::emitEnumeratorGenericPropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index) |
| 4207 | { |
| 4208 | OpEnumeratorGenericPname::emit(this, dst, enumerator, index); |
| 4209 | return dst; |
| 4210 | } |
| 4211 | |
| 4212 | RegisterID* BytecodeGenerator::emitToIndexString(RegisterID* dst, RegisterID* index) |
| 4213 | { |
| 4214 | OpToIndexString::emit(this, dst, index); |
| 4215 | return dst; |
| 4216 | } |
| 4217 | |
| 4218 | RegisterID* BytecodeGenerator::emitIsCellWithType(RegisterID* dst, RegisterID* src, JSType type) |
| 4219 | { |
| 4220 | OpIsCellWithType::emit(this, dst, src, type); |
| 4221 | return dst; |
| 4222 | } |
| 4223 | |
| 4224 | RegisterID* BytecodeGenerator::emitIsObject(RegisterID* dst, RegisterID* src) |
| 4225 | { |
| 4226 | OpIsObject::emit(this, dst, src); |
| 4227 | return dst; |
| 4228 | } |
| 4229 | |
| 4230 | RegisterID* BytecodeGenerator::emitIsNumber(RegisterID* dst, RegisterID* src) |
| 4231 | { |
| 4232 | OpIsNumber::emit(this, dst, src); |
| 4233 | return dst; |
| 4234 | } |
| 4235 | |
| 4236 | RegisterID* BytecodeGenerator::emitIsUndefined(RegisterID* dst, RegisterID* src) |
| 4237 | { |
| 4238 | OpIsUndefined::emit(this, dst, src); |
| 4239 | return dst; |
| 4240 | } |
| 4241 | |
| 4242 | RegisterID* BytecodeGenerator::emitIsUndefinedOrNull(RegisterID* dst, RegisterID* src) |
| 4243 | { |
| 4244 | OpIsUndefinedOrNull::emit(this, dst, src); |
| 4245 | return dst; |
| 4246 | } |
| 4247 | |
| 4248 | RegisterID* BytecodeGenerator::emitIsEmpty(RegisterID* dst, RegisterID* src) |
| 4249 | { |
| 4250 | OpIsEmpty::emit(this, dst, src); |
| 4251 | return dst; |
| 4252 | } |
| 4253 | |
| 4254 | RegisterID* BytecodeGenerator::emitIteratorNext(RegisterID* dst, RegisterID* nextMethod, RegisterID* iterator, const ThrowableExpressionData* node, EmitAwait doEmitAwait) |
| 4255 | { |
| 4256 | { |
| 4257 | CallArguments nextArguments(*this, nullptr); |
| 4258 | move(nextArguments.thisRegister(), iterator); |
| 4259 | emitCall(dst, nextMethod, NoExpectedFunction, nextArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| 4260 | |
| 4261 | if (doEmitAwait == EmitAwait::Yes) |
| 4262 | emitAwait(dst); |
| 4263 | } |
| 4264 | { |
| 4265 | Ref<Label> typeIsObject = newLabel(); |
| 4266 | emitJumpIfTrue(emitIsObject(newTemporary(), dst), typeIsObject.get()); |
| 4267 | emitThrowTypeError("Iterator result interface is not an object."_s ); |
| 4268 | emitLabel(typeIsObject.get()); |
| 4269 | } |
| 4270 | return dst; |
| 4271 | } |
| 4272 | |
| 4273 | RegisterID* BytecodeGenerator::emitIteratorNextWithValue(RegisterID* dst, RegisterID* nextMethod, RegisterID* iterator, RegisterID* value, const ThrowableExpressionData* node) |
| 4274 | { |
| 4275 | { |
| 4276 | CallArguments nextArguments(*this, nullptr, 1); |
| 4277 | move(nextArguments.thisRegister(), iterator); |
| 4278 | move(nextArguments.argumentRegister(0), value); |
| 4279 | emitCall(dst, nextMethod, NoExpectedFunction, nextArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| 4280 | } |
| 4281 | |
| 4282 | return dst; |
| 4283 | } |
| 4284 | |
| 4285 | void BytecodeGenerator::emitIteratorClose(RegisterID* iterator, const ThrowableExpressionData* node, EmitAwait doEmitAwait) |
| 4286 | { |
| 4287 | Ref<Label> done = newLabel(); |
| 4288 | RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator, propertyNames().returnKeyword); |
| 4289 | emitJumpIfTrue(emitIsUndefined(newTemporary(), returnMethod.get()), done.get()); |
| 4290 | |
| 4291 | RefPtr<RegisterID> value = newTemporary(); |
| 4292 | CallArguments returnArguments(*this, nullptr); |
| 4293 | move(returnArguments.thisRegister(), iterator); |
| 4294 | emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| 4295 | |
| 4296 | if (doEmitAwait == EmitAwait::Yes) |
| 4297 | emitAwait(value.get()); |
| 4298 | |
| 4299 | emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), done.get()); |
| 4300 | emitThrowTypeError("Iterator result interface is not an object."_s ); |
| 4301 | emitLabel(done.get()); |
| 4302 | } |
| 4303 | |
| 4304 | void BytecodeGenerator::pushIndexedForInScope(RegisterID* localRegister, RegisterID* indexRegister) |
| 4305 | { |
| 4306 | if (!localRegister) |
| 4307 | return; |
| 4308 | unsigned bodyBytecodeStartOffset = instructions().size(); |
| 4309 | m_forInContextStack.append(adoptRef(*new IndexedForInContext(localRegister, indexRegister, bodyBytecodeStartOffset))); |
| 4310 | } |
| 4311 | |
| 4312 | void BytecodeGenerator::popIndexedForInScope(RegisterID* localRegister) |
| 4313 | { |
| 4314 | if (!localRegister) |
| 4315 | return; |
| 4316 | unsigned bodyBytecodeEndOffset = instructions().size(); |
| 4317 | m_forInContextStack.last()->asIndexedForInContext().finalize(*this, m_codeBlock.get(), bodyBytecodeEndOffset); |
| 4318 | m_forInContextStack.removeLast(); |
| 4319 | } |
| 4320 | |
| 4321 | RegisterID* BytecodeGenerator::emitLoadArrowFunctionLexicalEnvironment(const Identifier& identifier) |
| 4322 | { |
| 4323 | ASSERT(m_codeBlock->isArrowFunction() || m_codeBlock->isArrowFunctionContext() || constructorKind() == ConstructorKind::Extends || m_codeType == EvalCode); |
| 4324 | |
| 4325 | return emitResolveScope(nullptr, variable(identifier, ThisResolutionType::Scoped)); |
| 4326 | } |
| 4327 | |
| 4328 | void BytecodeGenerator::emitLoadThisFromArrowFunctionLexicalEnvironment() |
| 4329 | { |
| 4330 | emitGetFromScope(thisRegister(), emitLoadArrowFunctionLexicalEnvironment(propertyNames().thisIdentifier), variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped), DoNotThrowIfNotFound); |
| 4331 | } |
| 4332 | |
| 4333 | RegisterID* BytecodeGenerator::emitLoadNewTargetFromArrowFunctionLexicalEnvironment() |
| 4334 | { |
| 4335 | Variable newTargetVar = variable(propertyNames().builtinNames().newTargetLocalPrivateName()); |
| 4336 | |
| 4337 | return emitGetFromScope(m_newTargetRegister, emitLoadArrowFunctionLexicalEnvironment(propertyNames().builtinNames().newTargetLocalPrivateName()), newTargetVar, ThrowIfNotFound); |
| 4338 | |
| 4339 | } |
| 4340 | |
| 4341 | RegisterID* BytecodeGenerator::emitLoadDerivedConstructorFromArrowFunctionLexicalEnvironment() |
| 4342 | { |
| 4343 | Variable protoScopeVar = variable(propertyNames().builtinNames().derivedConstructorPrivateName()); |
| 4344 | return emitGetFromScope(newTemporary(), emitLoadArrowFunctionLexicalEnvironment(propertyNames().builtinNames().derivedConstructorPrivateName()), protoScopeVar, ThrowIfNotFound); |
| 4345 | } |
| 4346 | |
| 4347 | RegisterID* BytecodeGenerator::ensureThis() |
| 4348 | { |
| 4349 | if (constructorKind() == ConstructorKind::Extends || isDerivedConstructorContext()) { |
| 4350 | if ((needsToUpdateArrowFunctionContext() && isSuperCallUsedInInnerArrowFunction()) || m_codeBlock->parseMode() == SourceParseMode::AsyncArrowFunctionBodyMode) |
| 4351 | emitLoadThisFromArrowFunctionLexicalEnvironment(); |
| 4352 | |
| 4353 | emitTDZCheck(thisRegister()); |
| 4354 | } |
| 4355 | |
| 4356 | return thisRegister(); |
| 4357 | } |
| 4358 | |
| 4359 | bool BytecodeGenerator::isThisUsedInInnerArrowFunction() |
| 4360 | { |
| 4361 | return m_scopeNode->doAnyInnerArrowFunctionsUseThis() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperProperty() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperCall() || m_scopeNode->doAnyInnerArrowFunctionsUseEval() || m_codeBlock->usesEval(); |
| 4362 | } |
| 4363 | |
| 4364 | bool BytecodeGenerator::isArgumentsUsedInInnerArrowFunction() |
| 4365 | { |
| 4366 | return m_scopeNode->doAnyInnerArrowFunctionsUseArguments() || m_scopeNode->doAnyInnerArrowFunctionsUseEval(); |
| 4367 | } |
| 4368 | |
| 4369 | bool BytecodeGenerator::isNewTargetUsedInInnerArrowFunction() |
| 4370 | { |
| 4371 | return m_scopeNode->doAnyInnerArrowFunctionsUseNewTarget() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperCall() || m_scopeNode->doAnyInnerArrowFunctionsUseEval() || m_codeBlock->usesEval(); |
| 4372 | } |
| 4373 | |
| 4374 | bool BytecodeGenerator::isSuperUsedInInnerArrowFunction() |
| 4375 | { |
| 4376 | return m_scopeNode->doAnyInnerArrowFunctionsUseSuperCall() || m_scopeNode->doAnyInnerArrowFunctionsUseSuperProperty() || m_scopeNode->doAnyInnerArrowFunctionsUseEval() || m_codeBlock->usesEval(); |
| 4377 | } |
| 4378 | |
| 4379 | bool BytecodeGenerator::isSuperCallUsedInInnerArrowFunction() |
| 4380 | { |
| 4381 | return m_scopeNode->doAnyInnerArrowFunctionsUseSuperCall() || m_scopeNode->doAnyInnerArrowFunctionsUseEval() || m_codeBlock->usesEval(); |
| 4382 | } |
| 4383 | |
| 4384 | void BytecodeGenerator::emitPutNewTargetToArrowFunctionContextScope() |
| 4385 | { |
| 4386 | if (isNewTargetUsedInInnerArrowFunction()) { |
| 4387 | ASSERT(m_arrowFunctionContextLexicalEnvironmentRegister); |
| 4388 | |
| 4389 | Variable newTargetVar = variable(propertyNames().builtinNames().newTargetLocalPrivateName()); |
| 4390 | emitPutToScope(m_arrowFunctionContextLexicalEnvironmentRegister, newTargetVar, newTarget(), DoNotThrowIfNotFound, InitializationMode::Initialization); |
| 4391 | } |
| 4392 | } |
| 4393 | |
| 4394 | void BytecodeGenerator::emitPutDerivedConstructorToArrowFunctionContextScope() |
| 4395 | { |
| 4396 | if (needsDerivedConstructorInArrowFunctionLexicalEnvironment()) { |
| 4397 | ASSERT(m_arrowFunctionContextLexicalEnvironmentRegister); |
| 4398 | |
| 4399 | Variable protoScope = variable(propertyNames().builtinNames().derivedConstructorPrivateName()); |
| 4400 | emitPutToScope(m_arrowFunctionContextLexicalEnvironmentRegister, protoScope, &m_calleeRegister, DoNotThrowIfNotFound, InitializationMode::Initialization); |
| 4401 | } |
| 4402 | } |
| 4403 | |
| 4404 | void BytecodeGenerator::emitPutThisToArrowFunctionContextScope() |
| 4405 | { |
| 4406 | if (isThisUsedInInnerArrowFunction() || (m_scopeNode->usesSuperCall() && m_codeType == EvalCode)) { |
| 4407 | ASSERT(isDerivedConstructorContext() || m_arrowFunctionContextLexicalEnvironmentRegister != nullptr); |
| 4408 | |
| 4409 | Variable thisVar = variable(propertyNames().thisIdentifier, ThisResolutionType::Scoped); |
| 4410 | RegisterID* scope = isDerivedConstructorContext() ? emitLoadArrowFunctionLexicalEnvironment(propertyNames().thisIdentifier) : m_arrowFunctionContextLexicalEnvironmentRegister; |
| 4411 | |
| 4412 | emitPutToScope(scope, thisVar, thisRegister(), ThrowIfNotFound, InitializationMode::NotInitialization); |
| 4413 | } |
| 4414 | } |
| 4415 | |
| 4416 | void BytecodeGenerator::pushStructureForInScope(RegisterID* localRegister, RegisterID* indexRegister, RegisterID* propertyRegister, RegisterID* enumeratorRegister) |
| 4417 | { |
| 4418 | if (!localRegister) |
| 4419 | return; |
| 4420 | unsigned bodyBytecodeStartOffset = instructions().size(); |
| 4421 | m_forInContextStack.append(adoptRef(*new StructureForInContext(localRegister, indexRegister, propertyRegister, enumeratorRegister, bodyBytecodeStartOffset))); |
| 4422 | } |
| 4423 | |
| 4424 | void BytecodeGenerator::popStructureForInScope(RegisterID* localRegister) |
| 4425 | { |
| 4426 | if (!localRegister) |
| 4427 | return; |
| 4428 | unsigned bodyBytecodeEndOffset = instructions().size(); |
| 4429 | m_forInContextStack.last()->asStructureForInContext().finalize(*this, m_codeBlock.get(), bodyBytecodeEndOffset); |
| 4430 | m_forInContextStack.removeLast(); |
| 4431 | } |
| 4432 | |
| 4433 | RegisterID* BytecodeGenerator::emitRestParameter(RegisterID* result, unsigned numParametersToSkip) |
| 4434 | { |
| 4435 | RefPtr<RegisterID> restArrayLength = newTemporary(); |
| 4436 | OpGetRestLength::emit(this, restArrayLength.get(), numParametersToSkip); |
| 4437 | |
| 4438 | OpCreateRest::emit(this, result, restArrayLength.get(), numParametersToSkip); |
| 4439 | |
| 4440 | return result; |
| 4441 | } |
| 4442 | |
| 4443 | void BytecodeGenerator::emitRequireObjectCoercible(RegisterID* value, const String& error) |
| 4444 | { |
| 4445 | // FIXME: op_jneq_null treats "undetectable" objects as null/undefined. RequireObjectCoercible |
| 4446 | // thus incorrectly throws a TypeError for interfaces like HTMLAllCollection. |
| 4447 | Ref<Label> target = newLabel(); |
| 4448 | OpJneqNull::emit(this, value, target->bind(this)); |
| 4449 | emitThrowTypeError(error); |
| 4450 | emitLabel(target.get()); |
| 4451 | } |
| 4452 | |
| 4453 | void BytecodeGenerator::emitYieldPoint(RegisterID* argument, JSAsyncGeneratorFunction::AsyncGeneratorSuspendReason result) |
| 4454 | { |
| 4455 | Ref<Label> mergePoint = newLabel(); |
| 4456 | unsigned yieldPointIndex = m_yieldPoints++; |
| 4457 | emitGeneratorStateChange(yieldPointIndex + 1); |
| 4458 | |
| 4459 | if (parseMode() == SourceParseMode::AsyncGeneratorBodyMode) { |
| 4460 | int suspendReason = static_cast<int32_t>(result); |
| 4461 | emitPutById(generatorRegister(), propertyNames().builtinNames().asyncGeneratorSuspendReasonPrivateName(), emitLoad(nullptr, jsNumber(suspendReason))); |
| 4462 | } |
| 4463 | |
| 4464 | // Split the try range here. |
| 4465 | Ref<Label> savePoint = newEmittedLabel(); |
| 4466 | for (unsigned i = m_tryContextStack.size(); i--;) { |
| 4467 | TryContext& context = m_tryContextStack[i]; |
| 4468 | m_tryRanges.append(TryRange { |
| 4469 | context.start.copyRef(), |
| 4470 | savePoint.copyRef(), |
| 4471 | context.tryData |
| 4472 | }); |
| 4473 | // Try range will be restared at the merge point. |
| 4474 | context.start = mergePoint.get(); |
| 4475 | } |
| 4476 | Vector<TryContext> savedTryContextStack; |
| 4477 | m_tryContextStack.swap(savedTryContextStack); |
| 4478 | |
| 4479 | |
| 4480 | #if CPU(NEEDS_ALIGNED_ACCESS) |
| 4481 | // conservatively align for the bytecode rewriter: it will delete this yield and |
| 4482 | // append a fragment, so we make sure that the start of the fragments is aligned |
| 4483 | while (m_writer.position() % OpcodeSize::Wide) |
| 4484 | OpNop::emit<OpcodeSize::Narrow>(this); |
| 4485 | #endif |
| 4486 | OpYield::emit(this, generatorFrameRegister(), yieldPointIndex, argument); |
| 4487 | |
| 4488 | // Restore the try contexts, which start offset is updated to the merge point. |
| 4489 | m_tryContextStack.swap(savedTryContextStack); |
| 4490 | emitLabel(mergePoint.get()); |
| 4491 | } |
| 4492 | |
| 4493 | RegisterID* BytecodeGenerator::emitYield(RegisterID* argument, JSAsyncGeneratorFunction::AsyncGeneratorSuspendReason result) |
| 4494 | { |
| 4495 | emitYieldPoint(argument, result); |
| 4496 | |
| 4497 | Ref<Label> normalLabel = newLabel(); |
| 4498 | RefPtr<RegisterID> condition = newTemporary(); |
| 4499 | emitEqualityOp<OpStricteq>(condition.get(), generatorResumeModeRegister(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSGeneratorFunction::GeneratorResumeMode::NormalMode)))); |
| 4500 | emitJumpIfTrue(condition.get(), normalLabel.get()); |
| 4501 | |
| 4502 | Ref<Label> throwLabel = newLabel(); |
| 4503 | emitEqualityOp<OpStricteq>(condition.get(), generatorResumeModeRegister(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSGeneratorFunction::GeneratorResumeMode::ThrowMode)))); |
| 4504 | emitJumpIfTrue(condition.get(), throwLabel.get()); |
| 4505 | // Return. |
| 4506 | { |
| 4507 | RefPtr<RegisterID> returnRegister = generatorValueRegister(); |
| 4508 | bool hasFinally = emitReturnViaFinallyIfNeeded(returnRegister.get()); |
| 4509 | if (!hasFinally) |
| 4510 | emitReturn(returnRegister.get()); |
| 4511 | } |
| 4512 | |
| 4513 | // Throw. |
| 4514 | emitLabel(throwLabel.get()); |
| 4515 | emitThrow(generatorValueRegister()); |
| 4516 | |
| 4517 | // Normal. |
| 4518 | emitLabel(normalLabel.get()); |
| 4519 | return generatorValueRegister(); |
| 4520 | } |
| 4521 | |
| 4522 | RegisterID* BytecodeGenerator::emitCallIterator(RegisterID* iterator, RegisterID* argument, ThrowableExpressionData* node) |
| 4523 | { |
| 4524 | CallArguments args(*this, nullptr); |
| 4525 | move(args.thisRegister(), argument); |
| 4526 | emitCall(iterator, iterator, NoExpectedFunction, args, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| 4527 | |
| 4528 | return iterator; |
| 4529 | } |
| 4530 | |
| 4531 | void BytecodeGenerator::emitAwait(RegisterID* value) |
| 4532 | { |
| 4533 | emitYield(value, JSAsyncGeneratorFunction::AsyncGeneratorSuspendReason::Await); |
| 4534 | move(value, generatorValueRegister()); |
| 4535 | } |
| 4536 | |
| 4537 | RegisterID* BytecodeGenerator::emitGetIterator(RegisterID* argument, ThrowableExpressionData* node) |
| 4538 | { |
| 4539 | RefPtr<RegisterID> iterator = emitGetById(newTemporary(), argument, propertyNames().iteratorSymbol); |
| 4540 | emitCallIterator(iterator.get(), argument, node); |
| 4541 | |
| 4542 | return iterator.get(); |
| 4543 | } |
| 4544 | |
| 4545 | RegisterID* BytecodeGenerator::emitGetAsyncIterator(RegisterID* argument, ThrowableExpressionData* node) |
| 4546 | { |
| 4547 | RefPtr<RegisterID> iterator = emitGetById(newTemporary(), argument, propertyNames().asyncIteratorSymbol); |
| 4548 | Ref<Label> asyncIteratorNotFound = newLabel(); |
| 4549 | Ref<Label> asyncIteratorFound = newLabel(); |
| 4550 | Ref<Label> iteratorReceived = newLabel(); |
| 4551 | |
| 4552 | emitJumpIfTrue(emitUnaryOp<OpEqNull>(newTemporary(), iterator.get()), asyncIteratorNotFound.get()); |
| 4553 | |
| 4554 | emitJump(asyncIteratorFound.get()); |
| 4555 | emitLabel(asyncIteratorNotFound.get()); |
| 4556 | |
| 4557 | RefPtr<RegisterID> commonIterator = emitGetIterator(argument, node); |
| 4558 | move(iterator.get(), commonIterator.get()); |
| 4559 | |
| 4560 | RefPtr<RegisterID> nextMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().next); |
| 4561 | |
| 4562 | auto varCreateAsyncFromSyncIterator = variable(propertyNames().builtinNames().createAsyncFromSyncIteratorPrivateName()); |
| 4563 | RefPtr<RegisterID> scope = newTemporary(); |
| 4564 | move(scope.get(), emitResolveScope(scope.get(), varCreateAsyncFromSyncIterator)); |
| 4565 | RefPtr<RegisterID> createAsyncFromSyncIterator = emitGetFromScope(newTemporary(), scope.get(), varCreateAsyncFromSyncIterator, ThrowIfNotFound); |
| 4566 | |
| 4567 | CallArguments args(*this, nullptr, 2); |
| 4568 | emitLoad(args.thisRegister(), jsUndefined()); |
| 4569 | |
| 4570 | move(args.argumentRegister(0), iterator.get()); |
| 4571 | move(args.argumentRegister(1), nextMethod.get()); |
| 4572 | |
| 4573 | JSTextPosition divot(m_scopeNode->firstLine(), m_scopeNode->startOffset(), m_scopeNode->lineStartOffset()); |
| 4574 | emitCall(iterator.get(), createAsyncFromSyncIterator.get(), NoExpectedFunction, args, divot, divot, divot, DebuggableCall::No); |
| 4575 | |
| 4576 | emitJump(iteratorReceived.get()); |
| 4577 | |
| 4578 | emitLabel(asyncIteratorFound.get()); |
| 4579 | emitCallIterator(iterator.get(), argument, node); |
| 4580 | emitLabel(iteratorReceived.get()); |
| 4581 | |
| 4582 | return iterator.get(); |
| 4583 | } |
| 4584 | |
| 4585 | RegisterID* BytecodeGenerator::emitDelegateYield(RegisterID* argument, ThrowableExpressionData* node) |
| 4586 | { |
| 4587 | RefPtr<RegisterID> value = newTemporary(); |
| 4588 | { |
| 4589 | RefPtr<RegisterID> iterator = parseMode() == SourceParseMode::AsyncGeneratorBodyMode ? emitGetAsyncIterator(argument, node) : emitGetIterator(argument, node); |
| 4590 | RefPtr<RegisterID> nextMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().next); |
| 4591 | |
| 4592 | Ref<Label> loopDone = newLabel(); |
| 4593 | { |
| 4594 | Ref<Label> nextElement = newLabel(); |
| 4595 | emitLoad(value.get(), jsUndefined()); |
| 4596 | |
| 4597 | emitJump(nextElement.get()); |
| 4598 | |
| 4599 | Ref<Label> loopStart = newLabel(); |
| 4600 | emitLabel(loopStart.get()); |
| 4601 | emitLoopHint(); |
| 4602 | |
| 4603 | Ref<Label> branchOnResult = newLabel(); |
| 4604 | { |
| 4605 | emitYieldPoint(value.get(), JSAsyncGeneratorFunction::AsyncGeneratorSuspendReason::Yield); |
| 4606 | |
| 4607 | Ref<Label> normalLabel = newLabel(); |
| 4608 | Ref<Label> returnLabel = newLabel(); |
| 4609 | { |
| 4610 | RefPtr<RegisterID> condition = newTemporary(); |
| 4611 | emitEqualityOp<OpStricteq>(condition.get(), generatorResumeModeRegister(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSGeneratorFunction::GeneratorResumeMode::NormalMode)))); |
| 4612 | emitJumpIfTrue(condition.get(), normalLabel.get()); |
| 4613 | |
| 4614 | emitEqualityOp<OpStricteq>(condition.get(), generatorResumeModeRegister(), emitLoad(nullptr, jsNumber(static_cast<int32_t>(JSGeneratorFunction::GeneratorResumeMode::ReturnMode)))); |
| 4615 | emitJumpIfTrue(condition.get(), returnLabel.get()); |
| 4616 | |
| 4617 | // Fallthrough to ThrowMode. |
| 4618 | } |
| 4619 | |
| 4620 | // Throw. |
| 4621 | { |
| 4622 | Ref<Label> throwMethodFound = newLabel(); |
| 4623 | RefPtr<RegisterID> throwMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().throwKeyword); |
| 4624 | emitJumpIfFalse(emitIsUndefined(newTemporary(), throwMethod.get()), throwMethodFound.get()); |
| 4625 | |
| 4626 | EmitAwait emitAwaitInIteratorClose = parseMode() == SourceParseMode::AsyncGeneratorBodyMode ? EmitAwait::Yes : EmitAwait::No; |
| 4627 | emitIteratorClose(iterator.get(), node, emitAwaitInIteratorClose); |
| 4628 | |
| 4629 | emitThrowTypeError("Delegated generator does not have a 'throw' method."_s ); |
| 4630 | |
| 4631 | emitLabel(throwMethodFound.get()); |
| 4632 | CallArguments throwArguments(*this, nullptr, 1); |
| 4633 | move(throwArguments.thisRegister(), iterator.get()); |
| 4634 | move(throwArguments.argumentRegister(0), generatorValueRegister()); |
| 4635 | emitCall(value.get(), throwMethod.get(), NoExpectedFunction, throwArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| 4636 | |
| 4637 | emitJump(branchOnResult.get()); |
| 4638 | } |
| 4639 | |
| 4640 | // Return. |
| 4641 | emitLabel(returnLabel.get()); |
| 4642 | { |
| 4643 | Ref<Label> returnMethodFound = newLabel(); |
| 4644 | RefPtr<RegisterID> returnMethod = emitGetById(newTemporary(), iterator.get(), propertyNames().returnKeyword); |
| 4645 | emitJumpIfFalse(emitIsUndefined(newTemporary(), returnMethod.get()), returnMethodFound.get()); |
| 4646 | |
| 4647 | move(value.get(), generatorValueRegister()); |
| 4648 | |
| 4649 | Ref<Label> returnSequence = newLabel(); |
| 4650 | emitJump(returnSequence.get()); |
| 4651 | |
| 4652 | emitLabel(returnMethodFound.get()); |
| 4653 | CallArguments returnArguments(*this, nullptr, 1); |
| 4654 | move(returnArguments.thisRegister(), iterator.get()); |
| 4655 | move(returnArguments.argumentRegister(0), generatorValueRegister()); |
| 4656 | emitCall(value.get(), returnMethod.get(), NoExpectedFunction, returnArguments, node->divot(), node->divotStart(), node->divotEnd(), DebuggableCall::No); |
| 4657 | |
| 4658 | if (parseMode() == SourceParseMode::AsyncGeneratorBodyMode) |
| 4659 | emitAwait(value.get()); |
| 4660 | |
| 4661 | Ref<Label> returnIteratorResultIsObject = newLabel(); |
| 4662 | emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), returnIteratorResultIsObject.get()); |
| 4663 | emitThrowTypeError("Iterator result interface is not an object."_s ); |
| 4664 | |
| 4665 | emitLabel(returnIteratorResultIsObject.get()); |
| 4666 | |
| 4667 | Ref<Label> returnFromGenerator = newLabel(); |
| 4668 | emitJumpIfTrue(emitGetById(newTemporary(), value.get(), propertyNames().done), returnFromGenerator.get()); |
| 4669 | |
| 4670 | emitGetById(value.get(), value.get(), propertyNames().value); |
| 4671 | emitJump(loopStart.get()); |
| 4672 | |
| 4673 | emitLabel(returnFromGenerator.get()); |
| 4674 | emitGetById(value.get(), value.get(), propertyNames().value); |
| 4675 | |
| 4676 | emitLabel(returnSequence.get()); |
| 4677 | bool hasFinally = emitReturnViaFinallyIfNeeded(value.get()); |
| 4678 | if (!hasFinally) |
| 4679 | emitReturn(value.get()); |
| 4680 | } |
| 4681 | |
| 4682 | // Normal. |
| 4683 | emitLabel(normalLabel.get()); |
| 4684 | move(value.get(), generatorValueRegister()); |
| 4685 | } |
| 4686 | |
| 4687 | emitLabel(nextElement.get()); |
| 4688 | emitIteratorNextWithValue(value.get(), nextMethod.get(), iterator.get(), value.get(), node); |
| 4689 | |
| 4690 | emitLabel(branchOnResult.get()); |
| 4691 | |
| 4692 | if (parseMode() == SourceParseMode::AsyncGeneratorBodyMode) |
| 4693 | emitAwait(value.get()); |
| 4694 | |
| 4695 | Ref<Label> iteratorValueIsObject = newLabel(); |
| 4696 | emitJumpIfTrue(emitIsObject(newTemporary(), value.get()), iteratorValueIsObject.get()); |
| 4697 | emitThrowTypeError("Iterator result interface is not an object."_s ); |
| 4698 | emitLabel(iteratorValueIsObject.get()); |
| 4699 | |
| 4700 | emitJumpIfTrue(emitGetById(newTemporary(), value.get(), propertyNames().done), loopDone.get()); |
| 4701 | emitGetById(value.get(), value.get(), propertyNames().value); |
| 4702 | |
| 4703 | emitJump(loopStart.get()); |
| 4704 | } |
| 4705 | emitLabel(loopDone.get()); |
| 4706 | } |
| 4707 | |
| 4708 | emitGetById(value.get(), value.get(), propertyNames().value); |
| 4709 | return value.get(); |
| 4710 | } |
| 4711 | |
| 4712 | |
| 4713 | void BytecodeGenerator::emitGeneratorStateChange(int32_t state) |
| 4714 | { |
| 4715 | RegisterID* completedState = emitLoad(nullptr, jsNumber(state)); |
| 4716 | emitPutById(generatorRegister(), propertyNames().builtinNames().generatorStatePrivateName(), completedState); |
| 4717 | } |
| 4718 | |
| 4719 | bool BytecodeGenerator::emitJumpViaFinallyIfNeeded(int targetLabelScopeDepth, Label& jumpTarget) |
| 4720 | { |
| 4721 | ASSERT(labelScopeDepth() - targetLabelScopeDepth >= 0); |
| 4722 | size_t numberOfScopesToCheckForFinally = labelScopeDepth() - targetLabelScopeDepth; |
| 4723 | ASSERT(numberOfScopesToCheckForFinally <= m_controlFlowScopeStack.size()); |
| 4724 | if (!numberOfScopesToCheckForFinally) |
| 4725 | return false; |
| 4726 | |
| 4727 | FinallyContext* innermostFinallyContext = nullptr; |
| 4728 | FinallyContext* outermostFinallyContext = nullptr; |
| 4729 | size_t scopeIndex = m_controlFlowScopeStack.size() - 1; |
| 4730 | while (numberOfScopesToCheckForFinally--) { |
| 4731 | ControlFlowScope* scope = &m_controlFlowScopeStack[scopeIndex--]; |
| 4732 | if (scope->isFinallyScope()) { |
| 4733 | FinallyContext* finallyContext = scope->finallyContext; |
| 4734 | if (!innermostFinallyContext) |
| 4735 | innermostFinallyContext = finallyContext; |
| 4736 | outermostFinallyContext = finallyContext; |
| 4737 | finallyContext->incNumberOfBreaksOrContinues(); |
| 4738 | } |
| 4739 | } |
| 4740 | if (!outermostFinallyContext) |
| 4741 | return false; // No finallys to thread through. |
| 4742 | |
| 4743 | auto jumpID = bytecodeOffsetToJumpID(instructions().size()); |
| 4744 | int lexicalScopeIndex = labelScopeDepthToLexicalScopeIndex(targetLabelScopeDepth); |
| 4745 | outermostFinallyContext->registerJump(jumpID, lexicalScopeIndex, jumpTarget); |
| 4746 | |
| 4747 | emitLoad(innermostFinallyContext->completionTypeRegister(), jumpID); |
| 4748 | emitJump(*innermostFinallyContext->finallyLabel()); |
| 4749 | return true; // We'll be jumping to a finally block. |
| 4750 | } |
| 4751 | |
| 4752 | bool BytecodeGenerator::emitReturnViaFinallyIfNeeded(RegisterID* returnRegister) |
| 4753 | { |
| 4754 | size_t numberOfScopesToCheckForFinally = m_controlFlowScopeStack.size(); |
| 4755 | if (!numberOfScopesToCheckForFinally) |
| 4756 | return false; |
| 4757 | |
| 4758 | FinallyContext* innermostFinallyContext = nullptr; |
| 4759 | while (numberOfScopesToCheckForFinally) { |
| 4760 | size_t scopeIndex = --numberOfScopesToCheckForFinally; |
| 4761 | ControlFlowScope* scope = &m_controlFlowScopeStack[scopeIndex]; |
| 4762 | if (scope->isFinallyScope()) { |
| 4763 | FinallyContext* finallyContext = scope->finallyContext; |
| 4764 | if (!innermostFinallyContext) |
| 4765 | innermostFinallyContext = finallyContext; |
| 4766 | finallyContext->setHandlesReturns(); |
| 4767 | } |
| 4768 | } |
| 4769 | if (!innermostFinallyContext) |
| 4770 | return false; // No finallys to thread through. |
| 4771 | |
| 4772 | emitLoad(innermostFinallyContext->completionTypeRegister(), CompletionType::Return); |
| 4773 | move(innermostFinallyContext->completionValueRegister(), returnRegister); |
| 4774 | emitJump(*innermostFinallyContext->finallyLabel()); |
| 4775 | return true; // We'll be jumping to a finally block. |
| 4776 | } |
| 4777 | |
| 4778 | void BytecodeGenerator::emitFinallyCompletion(FinallyContext& context, Label& normalCompletionLabel) |
| 4779 | { |
| 4780 | if (context.numberOfBreaksOrContinues() || context.handlesReturns()) { |
| 4781 | emitJumpIf<OpStricteq>(context.completionTypeRegister(), CompletionType::Normal, normalCompletionLabel); |
| 4782 | |
| 4783 | FinallyContext* outerContext = context.outerContext(); |
| 4784 | |
| 4785 | size_t numberOfJumps = context.numberOfJumps(); |
| 4786 | ASSERT(outerContext || numberOfJumps == context.numberOfBreaksOrContinues()); |
| 4787 | |
| 4788 | // Handle Break or Continue completions that jumps into this FinallyContext. |
| 4789 | for (size_t i = 0; i < numberOfJumps; i++) { |
| 4790 | Ref<Label> nextLabel = newLabel(); |
| 4791 | auto& jump = context.jumps(i); |
| 4792 | emitJumpIf<OpNstricteq>(context.completionTypeRegister(), jump.jumpID, nextLabel.get()); |
| 4793 | |
| 4794 | // This case is for Break / Continue completions from an inner finally context |
| 4795 | // with a jump target that is not beyond the next outer finally context: |
| 4796 | // |
| 4797 | // try { |
| 4798 | // for (... stuff ...) { |
| 4799 | // try { |
| 4800 | // continue; // Sets completionType to jumpID of top of the for loop. |
| 4801 | // } finally { |
| 4802 | // } // Jump to top of the for loop on completion. |
| 4803 | // } |
| 4804 | // } finally { |
| 4805 | // } |
| 4806 | // |
| 4807 | // Since the jumpID is targetting a label that is inside the outer finally context, |
| 4808 | // we can jump to it directly on completion of this finally context: there is no intermediate |
| 4809 | // finally blocks to run. After the Break / Continue, we will contnue execution as normal. |
| 4810 | // So, we'll set the completionType to Normal (on behalf of the target) before we jump. |
| 4811 | // We can also set the completion value to undefined, but it will never be used for normal |
| 4812 | // completion anyway. So, we'll skip setting it. |
| 4813 | |
| 4814 | restoreScopeRegister(jump.targetLexicalScopeIndex); |
| 4815 | emitLoad(context.completionTypeRegister(), CompletionType::Normal); |
| 4816 | emitJump(jump.targetLabel.get()); |
| 4817 | |
| 4818 | emitLabel(nextLabel.get()); |
| 4819 | } |
| 4820 | |
| 4821 | // Handle completions that take us out of this FinallyContext. |
| 4822 | if (outerContext) { |
| 4823 | if (context.handlesReturns()) { |
| 4824 | Ref<Label> isNotReturnLabel = newLabel(); |
| 4825 | emitJumpIf<OpNstricteq>(context.completionTypeRegister(), CompletionType::Return, isNotReturnLabel.get()); |
| 4826 | |
| 4827 | // This case is for Return completion from an inner finally context: |
| 4828 | // |
| 4829 | // try { |
| 4830 | // try { |
| 4831 | // return result; // Sets completionType to Return, and completionValue to result. |
| 4832 | // } finally { |
| 4833 | // } // Jump to outer finally on completion. |
| 4834 | // } finally { |
| 4835 | // } |
| 4836 | // |
| 4837 | // Since we know there's at least one outer finally context (beyond the current context), |
| 4838 | // we cannot actually return from here. Instead, we pass the completionType and completionValue |
| 4839 | // on to the next outer finally, and let it decide what to do next on its completion. The |
| 4840 | // outer finally may or may not actual return depending on whether it encounters an abrupt |
| 4841 | // completion in its body that overrrides this Return completion. |
| 4842 | |
| 4843 | move(outerContext->completionTypeRegister(), context.completionTypeRegister()); |
| 4844 | move(outerContext->completionValueRegister(), context.completionValueRegister()); |
| 4845 | emitJump(*outerContext->finallyLabel()); |
| 4846 | |
| 4847 | emitLabel(isNotReturnLabel.get()); |
| 4848 | } |
| 4849 | |
| 4850 | bool hasBreaksOrContinuesThatEscapeCurrentFinally = context.numberOfBreaksOrContinues() > numberOfJumps; |
| 4851 | if (hasBreaksOrContinuesThatEscapeCurrentFinally) { |
| 4852 | Ref<Label> isThrowOrNormalLabel = newLabel(); |
| 4853 | emitJumpIf<OpBeloweq>(context.completionTypeRegister(), CompletionType::Throw, isThrowOrNormalLabel.get()); |
| 4854 | |
| 4855 | // A completionType above Throw means we have a Break or Continue encoded as a jumpID. |
| 4856 | // We already ruled out Return above. |
| 4857 | static_assert(CompletionType::Throw < CompletionType::Return && CompletionType::Throw < CompletionType::Return, "jumpIDs are above CompletionType::Return" ); |
| 4858 | |
| 4859 | // This case is for Break / Continue completions in an inner finally context: |
| 4860 | // |
| 4861 | // 10: label: |
| 4862 | // 11: try { |
| 4863 | // 12: try { |
| 4864 | // 13: for (... stuff ...) |
| 4865 | // 14: break label; // Sets completionType to jumpID of label. |
| 4866 | // 15: } finally { |
| 4867 | // 16: } // Jumps to outer finally on completion. |
| 4868 | // 17: } finally { |
| 4869 | // 18: } |
| 4870 | // |
| 4871 | // The break (line 14) says to continue execution at the label at line 10. Before we can |
| 4872 | // goto line 10, the inner context's finally (line 15) needs to be run, followed by the |
| 4873 | // outer context's finally (line 17). 'outerContext' being non-null above tells us that |
| 4874 | // there is at least one outer finally context that we need to run after we complete the |
| 4875 | // current finally. Note that unless the body of the outer finally abruptly completes in a |
| 4876 | // different way, that outer finally also needs to complete with a Break / Continue to |
| 4877 | // the same target label. Hence, we need to pass the jumpID in this finally's completionTypeRegister |
| 4878 | // to the outer finally. The completion value for Break and Continue according to the spec |
| 4879 | // is undefined, but it won't ever be used. So, we'll skip setting it. |
| 4880 | // |
| 4881 | // Note that all we're doing here is passing the Break / Continue completion to the next |
| 4882 | // outer finally context. We don't worry about finally contexts beyond that. It is the |
| 4883 | // responsibility of the next outer finally to determine what to do next at its completion, |
| 4884 | // and pass on to the next outer context if present and needed. |
| 4885 | |
| 4886 | move(outerContext->completionTypeRegister(), context.completionTypeRegister()); |
| 4887 | emitJump(*outerContext->finallyLabel()); |
| 4888 | |
| 4889 | emitLabel(isThrowOrNormalLabel.get()); |
| 4890 | } |
| 4891 | |
| 4892 | } else { |
| 4893 | // We are the outermost finally. |
| 4894 | if (context.handlesReturns()) { |
| 4895 | Ref<Label> notReturnLabel = newLabel(); |
| 4896 | emitJumpIf<OpNstricteq>(context.completionTypeRegister(), CompletionType::Return, notReturnLabel.get()); |
| 4897 | |
| 4898 | // This case is for Return completion from the outermost finally context: |
| 4899 | // |
| 4900 | // try { |
| 4901 | // return result; // Sets completionType to Return, and completionValue to result. |
| 4902 | // } finally { |
| 4903 | // } // Executes the return of the completionValue. |
| 4904 | // |
| 4905 | // Since we know there's no outer finally context (beyond the current context) to run, |
| 4906 | // we can actually execute a return for this Return completion. The value to return |
| 4907 | // is whatever is in the completionValueRegister. |
| 4908 | |
| 4909 | emitWillLeaveCallFrameDebugHook(); |
| 4910 | emitReturn(context.completionValueRegister(), ReturnFrom::Finally); |
| 4911 | |
| 4912 | emitLabel(notReturnLabel.get()); |
| 4913 | } |
| 4914 | } |
| 4915 | } |
| 4916 | |
| 4917 | // By now, we've rule out all Break / Continue / Return completions above. The only remaining |
| 4918 | // possibilities are Normal or Throw. |
| 4919 | |
| 4920 | emitJumpIf<OpNstricteq>(context.completionTypeRegister(), CompletionType::Throw, normalCompletionLabel); |
| 4921 | |
| 4922 | // We get here because we entered this finally context with Throw completionType (i.e. we have |
| 4923 | // an exception that we need to rethrow), and we didn't encounter a different abrupt completion |
| 4924 | // that overrides that incoming completionType. All we have to do here is re-throw the exception |
| 4925 | // captured in the completionValue. |
| 4926 | // |
| 4927 | // Note that unlike for Break / Continue / Return, we don't need to worry about outer finally |
| 4928 | // contexts. This is because any outer finally context (if present) will have its own exception |
| 4929 | // handler, which will take care of receiving the Throw completion, and re-capturing the exception |
| 4930 | // in its completionValue. |
| 4931 | |
| 4932 | emitThrow(context.completionValueRegister()); |
| 4933 | } |
| 4934 | |
| 4935 | template<typename CompareOp> |
| 4936 | void BytecodeGenerator::emitJumpIf(RegisterID* completionTypeRegister, CompletionType type, Label& jumpTarget) |
| 4937 | { |
| 4938 | RefPtr<RegisterID> tempRegister = newTemporary(); |
| 4939 | RegisterID* valueConstant = addConstantValue(jsNumber(static_cast<int>(type))); |
| 4940 | OperandTypes operandTypes = OperandTypes(ResultType::numberTypeIsInt32(), ResultType::unknownType()); |
| 4941 | |
| 4942 | auto equivalenceResult = emitBinaryOp<CompareOp>(tempRegister.get(), completionTypeRegister, valueConstant, operandTypes); |
| 4943 | emitJumpIfTrue(equivalenceResult, jumpTarget); |
| 4944 | } |
| 4945 | |
| 4946 | void ForInContext::finalize(BytecodeGenerator& generator, UnlinkedCodeBlock* codeBlock, unsigned bodyBytecodeEndOffset) |
| 4947 | { |
| 4948 | // Lexically invalidating ForInContexts is kind of weak sauce, but it only occurs if |
| 4949 | // either of the following conditions is true: |
| 4950 | // |
| 4951 | // (1) The loop iteration variable is re-assigned within the body of the loop. |
| 4952 | // (2) The loop iteration variable is captured in the lexical scope of the function. |
| 4953 | // |
| 4954 | // These two situations occur sufficiently rarely that it's okay to use this style of |
| 4955 | // "analysis" to make iteration faster. If we didn't want to do this, we would either have |
| 4956 | // to perform some flow-sensitive analysis to see if/when the loop iteration variable was |
| 4957 | // reassigned, or we'd have to resort to runtime checks to see if the variable had been |
| 4958 | // reassigned from its original value. |
| 4959 | |
| 4960 | for (unsigned offset = bodyBytecodeStartOffset(); isValid() && offset < bodyBytecodeEndOffset;) { |
| 4961 | auto instruction = generator.instructions().at(offset); |
| 4962 | OpcodeID opcodeID = instruction->opcodeID(); |
| 4963 | |
| 4964 | ASSERT(opcodeID != op_enter); |
| 4965 | computeDefsForBytecodeOffset(codeBlock, opcodeID, instruction.ptr(), [&] (VirtualRegister operand) { |
| 4966 | if (local()->virtualRegister() == operand) |
| 4967 | invalidate(); |
| 4968 | }); |
| 4969 | offset += instruction->size(); |
| 4970 | } |
| 4971 | } |
| 4972 | |
| 4973 | void StructureForInContext::finalize(BytecodeGenerator& generator, UnlinkedCodeBlock* codeBlock, unsigned bodyBytecodeEndOffset) |
| 4974 | { |
| 4975 | Base::finalize(generator, codeBlock, bodyBytecodeEndOffset); |
| 4976 | if (isValid()) |
| 4977 | return; |
| 4978 | |
| 4979 | OpcodeID lastOpcodeID = generator.m_lastOpcodeID; |
| 4980 | InstructionStream::MutableRef lastInstruction = generator.m_lastInstruction; |
| 4981 | for (const auto& instTuple : m_getInsts) { |
| 4982 | unsigned instIndex = std::get<0>(instTuple); |
| 4983 | int propertyRegIndex = std::get<1>(instTuple); |
| 4984 | auto instruction = generator.m_writer.ref(instIndex); |
| 4985 | auto end = instIndex + instruction->size(); |
| 4986 | ASSERT(instruction->isWide()); |
| 4987 | |
| 4988 | generator.m_writer.seek(instIndex); |
| 4989 | |
| 4990 | auto bytecode = instruction->as<OpGetDirectPname>(); |
| 4991 | |
| 4992 | // disable peephole optimizations |
| 4993 | generator.m_lastOpcodeID = op_end; |
| 4994 | |
| 4995 | // Change the opcode to get_by_val. |
| 4996 | // 1. dst stays the same. |
| 4997 | // 2. base stays the same. |
| 4998 | // 3. property gets switched to the original property. |
| 4999 | OpGetByVal::emit<OpcodeSize::Wide>(&generator, bytecode.m_dst, bytecode.m_base, VirtualRegister(propertyRegIndex)); |
| 5000 | |
| 5001 | // 4. nop out the remaining bytes |
| 5002 | while (generator.m_writer.position() < end) |
| 5003 | OpNop::emit<OpcodeSize::Narrow>(&generator); |
| 5004 | } |
| 5005 | generator.m_writer.seek(generator.m_writer.size()); |
| 5006 | if (generator.m_lastInstruction.offset() + generator.m_lastInstruction->size() != generator.m_writer.size()) { |
| 5007 | generator.m_lastOpcodeID = lastOpcodeID; |
| 5008 | generator.m_lastInstruction = lastInstruction; |
| 5009 | } |
| 5010 | } |
| 5011 | |
| 5012 | void IndexedForInContext::finalize(BytecodeGenerator& generator, UnlinkedCodeBlock* codeBlock, unsigned bodyBytecodeEndOffset) |
| 5013 | { |
| 5014 | Base::finalize(generator, codeBlock, bodyBytecodeEndOffset); |
| 5015 | if (isValid()) |
| 5016 | return; |
| 5017 | |
| 5018 | for (const auto& instPair : m_getInsts) { |
| 5019 | unsigned instIndex = instPair.first; |
| 5020 | int propertyRegIndex = instPair.second; |
| 5021 | // FIXME: we should not have to force this get_by_val to be wide, just guarantee that propertyRegIndex fits |
| 5022 | // https://bugs.webkit.org/show_bug.cgi?id=190929 |
| 5023 | generator.m_writer.ref(instIndex)->cast<OpGetByVal>()->setProperty(VirtualRegister(propertyRegIndex), []() { |
| 5024 | ASSERT_NOT_REACHED(); |
| 5025 | return VirtualRegister(); |
| 5026 | }); |
| 5027 | } |
| 5028 | } |
| 5029 | |
| 5030 | void StaticPropertyAnalysis::record() |
| 5031 | { |
| 5032 | auto* instruction = m_instructionRef.ptr(); |
| 5033 | auto size = m_propertyIndexes.size(); |
| 5034 | switch (instruction->opcodeID()) { |
| 5035 | case OpNewObject::opcodeID: |
| 5036 | instruction->cast<OpNewObject>()->setInlineCapacity(size, []() { |
| 5037 | return 255; |
| 5038 | }); |
| 5039 | return; |
| 5040 | case OpCreateThis::opcodeID: |
| 5041 | instruction->cast<OpCreateThis>()->setInlineCapacity(size, []() { |
| 5042 | return 255; |
| 5043 | }); |
| 5044 | return; |
| 5045 | default: |
| 5046 | ASSERT_NOT_REACHED(); |
| 5047 | } |
| 5048 | } |
| 5049 | |
| 5050 | void BytecodeGenerator::emitToThis() |
| 5051 | { |
| 5052 | OpToThis::emit(this, kill(&m_thisRegister)); |
| 5053 | m_codeBlock->addPropertyAccessInstruction(m_lastInstruction.offset()); |
| 5054 | } |
| 5055 | |
| 5056 | } // namespace JSC |
| 5057 | |
| 5058 | namespace WTF { |
| 5059 | |
| 5060 | void printInternal(PrintStream& out, JSC::Variable::VariableKind kind) |
| 5061 | { |
| 5062 | switch (kind) { |
| 5063 | case JSC::Variable::NormalVariable: |
| 5064 | out.print("Normal" ); |
| 5065 | return; |
| 5066 | case JSC::Variable::SpecialVariable: |
| 5067 | out.print("Special" ); |
| 5068 | return; |
| 5069 | } |
| 5070 | RELEASE_ASSERT_NOT_REACHED(); |
| 5071 | } |
| 5072 | |
| 5073 | } // namespace WTF |
| 5074 | |
| 5075 | |