| 1 | /* |
| 2 | * Copyright (C) 2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #include <wtf/DataLog.h> |
| 29 | #include <wtf/LockAlgorithm.h> |
| 30 | |
| 31 | namespace WTF { |
| 32 | |
| 33 | // This is mostly just a word-sized WTF::Lock. It supports basically everything that lock supports. But as |
| 34 | // a bonus, it atomically counts lock() calls and allows you to perform an optimistic read transaction by |
| 35 | // comparing the count before and after the transaction. If at the start of the transaction the lock is |
| 36 | // not held and the count remains the same throughout the transaction, then you know that nobody could |
| 37 | // have modified your data structure while you ran. You can even use this to optimistically read pointers |
| 38 | // that could become dangling under concurrent writes, if you just revalidate the count every time you're |
| 39 | // about to do something dangerous. |
| 40 | // |
| 41 | // This is largely inspired by StampedLock from Java: |
| 42 | // https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/CountingLock.html |
| 43 | // |
| 44 | // This is simplified a lot compared to StampedLock. Unlike StampedLock, it uses an exclusive lock as a |
| 45 | // fallback. There is no way to acquire a CountingLock for read. The only read access is via optimistic |
| 46 | // read transactions. |
| 47 | // |
| 48 | // CountingLock provides two ways of doing optimistic reads: |
| 49 | // |
| 50 | // - The easy way, where CountingLock does all of the fencing for you. That fencing is free on x86 but |
| 51 | // somewhat expensive on ARM. |
| 52 | // - The hard way, where you do fencing yourself using Dependency. This allows you to be fenceless on both |
| 53 | // x86 and ARM. |
| 54 | // |
| 55 | // The latter is important for us because some GC paths are known to be sensitive to fences on ARM. |
| 56 | |
| 57 | class CountingLock { |
| 58 | WTF_MAKE_NONCOPYABLE(CountingLock); |
| 59 | WTF_MAKE_FAST_ALLOCATED; |
| 60 | |
| 61 | typedef unsigned LockType; |
| 62 | |
| 63 | static constexpr LockType isHeldBit = 1; |
| 64 | static constexpr LockType hasParkedBit = 2; |
| 65 | static constexpr LockType mask = isHeldBit | hasParkedBit; |
| 66 | static constexpr LockType shift = 2; |
| 67 | static constexpr LockType countUnit = 4; |
| 68 | |
| 69 | struct LockHooks { |
| 70 | static LockType lockHook(LockType value) |
| 71 | { |
| 72 | return value + countUnit; |
| 73 | } |
| 74 | |
| 75 | static LockType unlockHook(LockType value) { return value; } |
| 76 | static LockType parkHook(LockType value) { return value; } |
| 77 | static LockType handoffHook(LockType value) { return value; } |
| 78 | }; |
| 79 | |
| 80 | typedef LockAlgorithm<LockType, isHeldBit, hasParkedBit, LockHooks> ExclusiveAlgorithm; |
| 81 | |
| 82 | public: |
| 83 | CountingLock() = default; |
| 84 | |
| 85 | bool tryLock() |
| 86 | { |
| 87 | return ExclusiveAlgorithm::tryLock(m_word); |
| 88 | } |
| 89 | |
| 90 | void lock() |
| 91 | { |
| 92 | if (UNLIKELY(!ExclusiveAlgorithm::lockFast(m_word))) |
| 93 | lockSlow(); |
| 94 | } |
| 95 | |
| 96 | void unlock() |
| 97 | { |
| 98 | if (UNLIKELY(!ExclusiveAlgorithm::unlockFast(m_word))) |
| 99 | unlockSlow(); |
| 100 | } |
| 101 | |
| 102 | bool isHeld() const |
| 103 | { |
| 104 | return ExclusiveAlgorithm::isLocked(m_word); |
| 105 | } |
| 106 | |
| 107 | bool isLocked() const |
| 108 | { |
| 109 | return isHeld(); |
| 110 | } |
| 111 | |
| 112 | // The only thing you're allowed to infer from this value is that if it's zero, then you didn't get |
| 113 | // a real count. |
| 114 | class Count { |
| 115 | public: |
| 116 | explicit operator bool() const { return !!m_value; } |
| 117 | |
| 118 | bool operator==(const Count& other) const { return m_value == other.m_value; } |
| 119 | bool operator!=(const Count& other) const { return m_value != other.m_value; } |
| 120 | |
| 121 | private: |
| 122 | friend class CountingLock; |
| 123 | |
| 124 | LockType m_value { 0 }; |
| 125 | }; |
| 126 | |
| 127 | // Example of how to use this: |
| 128 | // |
| 129 | // int read() |
| 130 | // { |
| 131 | // if (CountingLock::Count count = m_lock.tryOptimisticRead()) { |
| 132 | // int value = m_things; |
| 133 | // if (m_lock.validate(count)) |
| 134 | // return value; // success! |
| 135 | // } |
| 136 | // auto locker = holdLock(m_lock); |
| 137 | // int value = m_things; |
| 138 | // return value; |
| 139 | // } |
| 140 | // |
| 141 | // If tryOptimisitcRead() runs when the lock is not held, this thread will run a critical section |
| 142 | // without ever writing to memory. However, on ARM, this requires fencing. We use a load-acquire for |
| 143 | // tryOptimisticRead(). We have no choice but to use the more expensive `dmb ish` in validate(). If |
| 144 | // you want to avoid that, you could try to use tryOptimisticFencelessRead(). |
| 145 | Count tryOptimisticRead() |
| 146 | { |
| 147 | LockType currentValue = m_word.load(); |
| 148 | // FIXME: We could eliminate this check, if we think it's OK to proceed with the optimistic read |
| 149 | // path even after knowing that it must fail. That's probably good for perf since we expect |
| 150 | // failure to be super rare. We would get rid of this check and instead of calling getCount below, |
| 151 | // we would return currentValue ^ mask. If the lock state was empty to begin with, the result |
| 152 | // would be a properly blessed count (both low bits set). If the lock state was anything else, we |
| 153 | // would get an improperly blessed count that would not possibly succeed in validate. We could |
| 154 | // actually do something like "return (currentValue | hasParkedBit) ^ isHeldBit", which would mean |
| 155 | // that we allow parked-but-not-held-locks through. |
| 156 | // https://bugs.webkit.org/show_bug.cgi?id=180394 |
| 157 | if (currentValue & isHeldBit) |
| 158 | return Count(); |
| 159 | return getCount(currentValue); |
| 160 | } |
| 161 | |
| 162 | bool validate(Count count) |
| 163 | { |
| 164 | WTF::loadLoadFence(); |
| 165 | LockType currentValue = m_word.loadRelaxed(); |
| 166 | return getCount(currentValue) == count; |
| 167 | } |
| 168 | |
| 169 | // Example of how to use this: |
| 170 | // |
| 171 | // int read() |
| 172 | // { |
| 173 | // return m_lock.doOptimizedRead( |
| 174 | // [&] () -> int { |
| 175 | // int value = m_things; |
| 176 | // return value; |
| 177 | // }); |
| 178 | // } |
| 179 | template<typename Func> |
| 180 | auto doOptimizedRead(const Func& func) |
| 181 | { |
| 182 | Count count = tryOptimisticRead(); |
| 183 | if (count) { |
| 184 | auto result = func(); |
| 185 | if (validate(count)) |
| 186 | return result; |
| 187 | } |
| 188 | lock(); |
| 189 | auto result = func(); |
| 190 | unlock(); |
| 191 | return result; |
| 192 | } |
| 193 | |
| 194 | // Example of how to use this: |
| 195 | // |
| 196 | // int read() |
| 197 | // { |
| 198 | // auto result = m_lock.tryOptimisticFencelessRead(); |
| 199 | // if (CountingLock::Count count = result.value) { |
| 200 | // Dependency fenceBefore = Dependency::fence(result.input); |
| 201 | // auto* fencedThis = fenceBefore.consume(this); |
| 202 | // int value = fencedThis->m_things; |
| 203 | // if (m_lock.fencelessValidate(count, Dependency::fence(value))) |
| 204 | // return value; // success! |
| 205 | // } |
| 206 | // auto locker = holdLock(m_lock); |
| 207 | // int value = m_things; |
| 208 | // return value; |
| 209 | // } |
| 210 | // |
| 211 | // Use this to create a read transaction using dependency chains only. You have to be careful to |
| 212 | // thread the dependency input (the `input` field that the returns) through a Dependency, and then |
| 213 | // thread that Dependency into every load (except for loads that are chasing pointers loaded from |
| 214 | // loads that already uses that dependency). Then, to validate the read transaction, you have to pass |
| 215 | // both the count and another Dependency that is based on whatever loads you used to produce the |
| 216 | // output. |
| 217 | // |
| 218 | // On non-ARM platforms, the Dependency objects don't do anything except for Dependency::fence, which |
| 219 | // is a load-load fence. The idiom above does the right thing on both ARM and TSO. |
| 220 | // |
| 221 | // WARNING: This can be hard to get right. Please only use this for very short critical sections that |
| 222 | // are known to be sufficiently perf-critical to justify the risk. |
| 223 | InputAndValue<LockType, Count> tryOptimisticFencelessRead() |
| 224 | { |
| 225 | LockType currentValue = m_word.loadRelaxed(); |
| 226 | if (currentValue & isHeldBit) |
| 227 | return inputAndValue(currentValue, Count()); |
| 228 | return inputAndValue(currentValue, getCount(currentValue)); |
| 229 | } |
| 230 | |
| 231 | bool fencelessValidate(Count count, Dependency dependency) |
| 232 | { |
| 233 | LockType currentValue = dependency.consume(this)->m_word.loadRelaxed(); |
| 234 | return getCount(currentValue) == count; |
| 235 | } |
| 236 | |
| 237 | template<typename OptimisticFunc, typename Func> |
| 238 | auto doOptimizedFencelessRead(const OptimisticFunc& optimisticFunc, const Func& func) |
| 239 | { |
| 240 | auto count = tryOptimisticFencelessRead(); |
| 241 | if (count.value) { |
| 242 | Dependency dependency = Dependency::fence(count.input); |
| 243 | auto result = optimisticFunc(dependency, count.value); |
| 244 | if (fencelessValidate(count.value, dependency)) |
| 245 | return result; |
| 246 | } |
| 247 | lock(); |
| 248 | auto result = func(); |
| 249 | unlock(); |
| 250 | return result; |
| 251 | } |
| 252 | |
| 253 | private: |
| 254 | WTF_EXPORT_PRIVATE void lockSlow(); |
| 255 | WTF_EXPORT_PRIVATE void unlockSlow(); |
| 256 | |
| 257 | Count getCount(LockType value) |
| 258 | { |
| 259 | Count result; |
| 260 | result.m_value = value | mask; |
| 261 | return result; |
| 262 | } |
| 263 | |
| 264 | Atomic<LockType> m_word { 0 }; |
| 265 | }; |
| 266 | |
| 267 | } // namespace WTF |
| 268 | |
| 269 | using WTF::CountingLock; |
| 270 | |
| 271 | |