| 1 | /* |
| 2 | * Copyright (C) 2008-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #include "AbortReason.h" |
| 29 | #include "AssemblerBuffer.h" |
| 30 | #include "AssemblerCommon.h" |
| 31 | #include "CPU.h" |
| 32 | #include "CodeLocation.h" |
| 33 | #include "JSCJSValue.h" |
| 34 | #include "JSCPtrTag.h" |
| 35 | #include "MacroAssemblerCodeRef.h" |
| 36 | #include "MacroAssemblerHelpers.h" |
| 37 | #include "Options.h" |
| 38 | #include <wtf/CryptographicallyRandomNumber.h> |
| 39 | #include <wtf/Noncopyable.h> |
| 40 | #include <wtf/SharedTask.h> |
| 41 | #include <wtf/Vector.h> |
| 42 | #include <wtf/WeakRandom.h> |
| 43 | |
| 44 | namespace JSC { |
| 45 | |
| 46 | #if ENABLE(ASSEMBLER) |
| 47 | |
| 48 | class AllowMacroScratchRegisterUsage; |
| 49 | class DisallowMacroScratchRegisterUsage; |
| 50 | class LinkBuffer; |
| 51 | class Watchpoint; |
| 52 | namespace DFG { |
| 53 | struct OSRExit; |
| 54 | } |
| 55 | |
| 56 | class AbstractMacroAssemblerBase { |
| 57 | public: |
| 58 | enum StatusCondition { |
| 59 | Success, |
| 60 | Failure |
| 61 | }; |
| 62 | |
| 63 | static StatusCondition invert(StatusCondition condition) |
| 64 | { |
| 65 | switch (condition) { |
| 66 | case Success: |
| 67 | return Failure; |
| 68 | case Failure: |
| 69 | return Success; |
| 70 | } |
| 71 | RELEASE_ASSERT_NOT_REACHED(); |
| 72 | return Success; |
| 73 | } |
| 74 | }; |
| 75 | |
| 76 | template <class AssemblerType> |
| 77 | class AbstractMacroAssembler : public AbstractMacroAssemblerBase { |
| 78 | public: |
| 79 | typedef AbstractMacroAssembler<AssemblerType> AbstractMacroAssemblerType; |
| 80 | typedef AssemblerType AssemblerType_T; |
| 81 | |
| 82 | template<PtrTag tag> using CodePtr = MacroAssemblerCodePtr<tag>; |
| 83 | template<PtrTag tag> using CodeRef = MacroAssemblerCodeRef<tag>; |
| 84 | |
| 85 | enum class CPUIDCheckState { |
| 86 | NotChecked, |
| 87 | Clear, |
| 88 | Set |
| 89 | }; |
| 90 | |
| 91 | class Jump; |
| 92 | |
| 93 | typedef typename AssemblerType::RegisterID RegisterID; |
| 94 | typedef typename AssemblerType::SPRegisterID SPRegisterID; |
| 95 | typedef typename AssemblerType::FPRegisterID FPRegisterID; |
| 96 | |
| 97 | static constexpr RegisterID firstRegister() { return AssemblerType::firstRegister(); } |
| 98 | static constexpr RegisterID lastRegister() { return AssemblerType::lastRegister(); } |
| 99 | static constexpr unsigned numberOfRegisters() { return AssemblerType::numberOfRegisters(); } |
| 100 | static const char* gprName(RegisterID id) { return AssemblerType::gprName(id); } |
| 101 | |
| 102 | static constexpr SPRegisterID firstSPRegister() { return AssemblerType::firstSPRegister(); } |
| 103 | static constexpr SPRegisterID lastSPRegister() { return AssemblerType::lastSPRegister(); } |
| 104 | static constexpr unsigned numberOfSPRegisters() { return AssemblerType::numberOfSPRegisters(); } |
| 105 | static const char* sprName(SPRegisterID id) { return AssemblerType::sprName(id); } |
| 106 | |
| 107 | static constexpr FPRegisterID firstFPRegister() { return AssemblerType::firstFPRegister(); } |
| 108 | static constexpr FPRegisterID lastFPRegister() { return AssemblerType::lastFPRegister(); } |
| 109 | static constexpr unsigned numberOfFPRegisters() { return AssemblerType::numberOfFPRegisters(); } |
| 110 | static const char* fprName(FPRegisterID id) { return AssemblerType::fprName(id); } |
| 111 | |
| 112 | // Section 1: MacroAssembler operand types |
| 113 | // |
| 114 | // The following types are used as operands to MacroAssembler operations, |
| 115 | // describing immediate and memory operands to the instructions to be planted. |
| 116 | |
| 117 | enum Scale { |
| 118 | TimesOne, |
| 119 | TimesTwo, |
| 120 | TimesFour, |
| 121 | TimesEight, |
| 122 | }; |
| 123 | |
| 124 | static Scale timesPtr() |
| 125 | { |
| 126 | if (sizeof(void*) == 4) |
| 127 | return TimesFour; |
| 128 | return TimesEight; |
| 129 | } |
| 130 | |
| 131 | struct BaseIndex; |
| 132 | |
| 133 | static RegisterID withSwappedRegister(RegisterID original, RegisterID left, RegisterID right) |
| 134 | { |
| 135 | if (original == left) |
| 136 | return right; |
| 137 | if (original == right) |
| 138 | return left; |
| 139 | return original; |
| 140 | } |
| 141 | |
| 142 | // Address: |
| 143 | // |
| 144 | // Describes a simple base-offset address. |
| 145 | struct Address { |
| 146 | explicit Address(RegisterID base, int32_t offset = 0) |
| 147 | : base(base) |
| 148 | , offset(offset) |
| 149 | { |
| 150 | } |
| 151 | |
| 152 | Address withOffset(int32_t additionalOffset) |
| 153 | { |
| 154 | return Address(base, offset + additionalOffset); |
| 155 | } |
| 156 | |
| 157 | Address withSwappedRegister(RegisterID left, RegisterID right) |
| 158 | { |
| 159 | return Address(AbstractMacroAssembler::withSwappedRegister(base, left, right), offset); |
| 160 | } |
| 161 | |
| 162 | BaseIndex indexedBy(RegisterID index, Scale) const; |
| 163 | |
| 164 | RegisterID base; |
| 165 | int32_t offset; |
| 166 | }; |
| 167 | |
| 168 | struct ExtendedAddress { |
| 169 | explicit ExtendedAddress(RegisterID base, intptr_t offset = 0) |
| 170 | : base(base) |
| 171 | , offset(offset) |
| 172 | { |
| 173 | } |
| 174 | |
| 175 | RegisterID base; |
| 176 | intptr_t offset; |
| 177 | }; |
| 178 | |
| 179 | // ImplicitAddress: |
| 180 | // |
| 181 | // This class is used for explicit 'load' and 'store' operations |
| 182 | // (as opposed to situations in which a memory operand is provided |
| 183 | // to a generic operation, such as an integer arithmetic instruction). |
| 184 | // |
| 185 | // In the case of a load (or store) operation we want to permit |
| 186 | // addresses to be implicitly constructed, e.g. the two calls: |
| 187 | // |
| 188 | // load32(Address(addrReg), destReg); |
| 189 | // load32(addrReg, destReg); |
| 190 | // |
| 191 | // Are equivalent, and the explicit wrapping of the Address in the former |
| 192 | // is unnecessary. |
| 193 | struct ImplicitAddress { |
| 194 | ImplicitAddress(RegisterID base) |
| 195 | : base(base) |
| 196 | , offset(0) |
| 197 | { |
| 198 | } |
| 199 | |
| 200 | ImplicitAddress(Address address) |
| 201 | : base(address.base) |
| 202 | , offset(address.offset) |
| 203 | { |
| 204 | } |
| 205 | |
| 206 | RegisterID base; |
| 207 | int32_t offset; |
| 208 | }; |
| 209 | |
| 210 | // BaseIndex: |
| 211 | // |
| 212 | // Describes a complex addressing mode. |
| 213 | struct BaseIndex { |
| 214 | BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) |
| 215 | : base(base) |
| 216 | , index(index) |
| 217 | , scale(scale) |
| 218 | , offset(offset) |
| 219 | { |
| 220 | } |
| 221 | |
| 222 | RegisterID base; |
| 223 | RegisterID index; |
| 224 | Scale scale; |
| 225 | int32_t offset; |
| 226 | |
| 227 | BaseIndex withOffset(int32_t additionalOffset) |
| 228 | { |
| 229 | return BaseIndex(base, index, scale, offset + additionalOffset); |
| 230 | } |
| 231 | |
| 232 | BaseIndex withSwappedRegister(RegisterID left, RegisterID right) |
| 233 | { |
| 234 | return BaseIndex(AbstractMacroAssembler::withSwappedRegister(base, left, right), AbstractMacroAssembler::withSwappedRegister(index, left, right), scale, offset); |
| 235 | } |
| 236 | }; |
| 237 | |
| 238 | // AbsoluteAddress: |
| 239 | // |
| 240 | // Describes an memory operand given by a pointer. For regular load & store |
| 241 | // operations an unwrapped void* will be used, rather than using this. |
| 242 | struct AbsoluteAddress { |
| 243 | explicit AbsoluteAddress(const void* ptr) |
| 244 | : m_ptr(ptr) |
| 245 | { |
| 246 | } |
| 247 | |
| 248 | const void* m_ptr; |
| 249 | }; |
| 250 | |
| 251 | // TrustedImm: |
| 252 | // |
| 253 | // An empty super class of each of the TrustedImm types. This class is used for template overloads |
| 254 | // on a TrustedImm type via std::is_base_of. |
| 255 | struct TrustedImm { }; |
| 256 | |
| 257 | // TrustedImmPtr: |
| 258 | // |
| 259 | // A pointer sized immediate operand to an instruction - this is wrapped |
| 260 | // in a class requiring explicit construction in order to differentiate |
| 261 | // from pointers used as absolute addresses to memory operations |
| 262 | struct TrustedImmPtr : public TrustedImm { |
| 263 | TrustedImmPtr() { } |
| 264 | |
| 265 | explicit TrustedImmPtr(const void* value) |
| 266 | : m_value(value) |
| 267 | { |
| 268 | } |
| 269 | |
| 270 | template<typename ReturnType, typename... Arguments> |
| 271 | explicit TrustedImmPtr(ReturnType(*value)(Arguments...)) |
| 272 | : m_value(reinterpret_cast<void*>(value)) |
| 273 | { |
| 274 | } |
| 275 | |
| 276 | explicit TrustedImmPtr(std::nullptr_t) |
| 277 | { |
| 278 | } |
| 279 | |
| 280 | explicit TrustedImmPtr(size_t value) |
| 281 | : m_value(reinterpret_cast<void*>(value)) |
| 282 | { |
| 283 | } |
| 284 | |
| 285 | intptr_t asIntptr() |
| 286 | { |
| 287 | return reinterpret_cast<intptr_t>(m_value); |
| 288 | } |
| 289 | |
| 290 | void* asPtr() |
| 291 | { |
| 292 | return const_cast<void*>(m_value); |
| 293 | } |
| 294 | |
| 295 | const void* m_value { 0 }; |
| 296 | }; |
| 297 | |
| 298 | struct ImmPtr : private TrustedImmPtr |
| 299 | { |
| 300 | explicit ImmPtr(const void* value) |
| 301 | : TrustedImmPtr(value) |
| 302 | { |
| 303 | } |
| 304 | |
| 305 | TrustedImmPtr asTrustedImmPtr() { return *this; } |
| 306 | }; |
| 307 | |
| 308 | // TrustedImm32: |
| 309 | // |
| 310 | // A 32bit immediate operand to an instruction - this is wrapped in a |
| 311 | // class requiring explicit construction in order to prevent RegisterIDs |
| 312 | // (which are implemented as an enum) from accidentally being passed as |
| 313 | // immediate values. |
| 314 | struct TrustedImm32 : public TrustedImm { |
| 315 | TrustedImm32() { } |
| 316 | |
| 317 | explicit TrustedImm32(int32_t value) |
| 318 | : m_value(value) |
| 319 | { |
| 320 | } |
| 321 | |
| 322 | #if !CPU(X86_64) |
| 323 | explicit TrustedImm32(TrustedImmPtr ptr) |
| 324 | : m_value(ptr.asIntptr()) |
| 325 | { |
| 326 | } |
| 327 | #endif |
| 328 | |
| 329 | int32_t m_value; |
| 330 | }; |
| 331 | |
| 332 | |
| 333 | struct Imm32 : private TrustedImm32 { |
| 334 | explicit Imm32(int32_t value) |
| 335 | : TrustedImm32(value) |
| 336 | { |
| 337 | } |
| 338 | #if !CPU(X86_64) |
| 339 | explicit Imm32(TrustedImmPtr ptr) |
| 340 | : TrustedImm32(ptr) |
| 341 | { |
| 342 | } |
| 343 | #endif |
| 344 | const TrustedImm32& asTrustedImm32() const { return *this; } |
| 345 | |
| 346 | }; |
| 347 | |
| 348 | // TrustedImm64: |
| 349 | // |
| 350 | // A 64bit immediate operand to an instruction - this is wrapped in a |
| 351 | // class requiring explicit construction in order to prevent RegisterIDs |
| 352 | // (which are implemented as an enum) from accidentally being passed as |
| 353 | // immediate values. |
| 354 | struct TrustedImm64 : TrustedImm { |
| 355 | TrustedImm64() { } |
| 356 | |
| 357 | explicit TrustedImm64(int64_t value) |
| 358 | : m_value(value) |
| 359 | { |
| 360 | } |
| 361 | |
| 362 | #if CPU(X86_64) || CPU(ARM64) |
| 363 | explicit TrustedImm64(TrustedImmPtr ptr) |
| 364 | : m_value(ptr.asIntptr()) |
| 365 | { |
| 366 | } |
| 367 | #endif |
| 368 | |
| 369 | int64_t m_value; |
| 370 | }; |
| 371 | |
| 372 | struct Imm64 : private TrustedImm64 |
| 373 | { |
| 374 | explicit Imm64(int64_t value) |
| 375 | : TrustedImm64(value) |
| 376 | { |
| 377 | } |
| 378 | #if CPU(X86_64) || CPU(ARM64) |
| 379 | explicit Imm64(TrustedImmPtr ptr) |
| 380 | : TrustedImm64(ptr) |
| 381 | { |
| 382 | } |
| 383 | #endif |
| 384 | const TrustedImm64& asTrustedImm64() const { return *this; } |
| 385 | }; |
| 386 | |
| 387 | // Section 2: MacroAssembler code buffer handles |
| 388 | // |
| 389 | // The following types are used to reference items in the code buffer |
| 390 | // during JIT code generation. For example, the type Jump is used to |
| 391 | // track the location of a jump instruction so that it may later be |
| 392 | // linked to a label marking its destination. |
| 393 | |
| 394 | |
| 395 | // Label: |
| 396 | // |
| 397 | // A Label records a point in the generated instruction stream, typically such that |
| 398 | // it may be used as a destination for a jump. |
| 399 | class Label { |
| 400 | friend class AbstractMacroAssembler<AssemblerType>; |
| 401 | friend struct DFG::OSRExit; |
| 402 | friend class Jump; |
| 403 | template<PtrTag> friend class MacroAssemblerCodeRef; |
| 404 | friend class LinkBuffer; |
| 405 | friend class Watchpoint; |
| 406 | |
| 407 | public: |
| 408 | Label() |
| 409 | { |
| 410 | } |
| 411 | |
| 412 | Label(AbstractMacroAssemblerType* masm) |
| 413 | : m_label(masm->m_assembler.label()) |
| 414 | { |
| 415 | masm->invalidateAllTempRegisters(); |
| 416 | } |
| 417 | |
| 418 | bool operator==(const Label& other) const { return m_label == other.m_label; } |
| 419 | |
| 420 | bool isSet() const { return m_label.isSet(); } |
| 421 | private: |
| 422 | AssemblerLabel m_label; |
| 423 | }; |
| 424 | |
| 425 | // ConvertibleLoadLabel: |
| 426 | // |
| 427 | // A ConvertibleLoadLabel records a loadPtr instruction that can be patched to an addPtr |
| 428 | // so that: |
| 429 | // |
| 430 | // loadPtr(Address(a, i), b) |
| 431 | // |
| 432 | // becomes: |
| 433 | // |
| 434 | // addPtr(TrustedImmPtr(i), a, b) |
| 435 | class ConvertibleLoadLabel { |
| 436 | friend class AbstractMacroAssembler<AssemblerType>; |
| 437 | friend class LinkBuffer; |
| 438 | |
| 439 | public: |
| 440 | ConvertibleLoadLabel() |
| 441 | { |
| 442 | } |
| 443 | |
| 444 | ConvertibleLoadLabel(AbstractMacroAssemblerType* masm) |
| 445 | : m_label(masm->m_assembler.labelIgnoringWatchpoints()) |
| 446 | { |
| 447 | } |
| 448 | |
| 449 | bool isSet() const { return m_label.isSet(); } |
| 450 | private: |
| 451 | AssemblerLabel m_label; |
| 452 | }; |
| 453 | |
| 454 | // DataLabelPtr: |
| 455 | // |
| 456 | // A DataLabelPtr is used to refer to a location in the code containing a pointer to be |
| 457 | // patched after the code has been generated. |
| 458 | class DataLabelPtr { |
| 459 | friend class AbstractMacroAssembler<AssemblerType>; |
| 460 | friend class LinkBuffer; |
| 461 | public: |
| 462 | DataLabelPtr() |
| 463 | { |
| 464 | } |
| 465 | |
| 466 | DataLabelPtr(AbstractMacroAssemblerType* masm) |
| 467 | : m_label(masm->m_assembler.label()) |
| 468 | { |
| 469 | } |
| 470 | |
| 471 | bool isSet() const { return m_label.isSet(); } |
| 472 | |
| 473 | private: |
| 474 | AssemblerLabel m_label; |
| 475 | }; |
| 476 | |
| 477 | // DataLabel32: |
| 478 | // |
| 479 | // A DataLabel32 is used to refer to a location in the code containing a 32-bit constant to be |
| 480 | // patched after the code has been generated. |
| 481 | class DataLabel32 { |
| 482 | friend class AbstractMacroAssembler<AssemblerType>; |
| 483 | friend class LinkBuffer; |
| 484 | public: |
| 485 | DataLabel32() |
| 486 | { |
| 487 | } |
| 488 | |
| 489 | DataLabel32(AbstractMacroAssemblerType* masm) |
| 490 | : m_label(masm->m_assembler.label()) |
| 491 | { |
| 492 | } |
| 493 | |
| 494 | AssemblerLabel label() const { return m_label; } |
| 495 | |
| 496 | private: |
| 497 | AssemblerLabel m_label; |
| 498 | }; |
| 499 | |
| 500 | // DataLabelCompact: |
| 501 | // |
| 502 | // A DataLabelCompact is used to refer to a location in the code containing a |
| 503 | // compact immediate to be patched after the code has been generated. |
| 504 | class DataLabelCompact { |
| 505 | friend class AbstractMacroAssembler<AssemblerType>; |
| 506 | friend class LinkBuffer; |
| 507 | public: |
| 508 | DataLabelCompact() |
| 509 | { |
| 510 | } |
| 511 | |
| 512 | DataLabelCompact(AbstractMacroAssemblerType* masm) |
| 513 | : m_label(masm->m_assembler.label()) |
| 514 | { |
| 515 | } |
| 516 | |
| 517 | DataLabelCompact(AssemblerLabel label) |
| 518 | : m_label(label) |
| 519 | { |
| 520 | } |
| 521 | |
| 522 | AssemblerLabel label() const { return m_label; } |
| 523 | |
| 524 | private: |
| 525 | AssemblerLabel m_label; |
| 526 | }; |
| 527 | |
| 528 | // Call: |
| 529 | // |
| 530 | // A Call object is a reference to a call instruction that has been planted |
| 531 | // into the code buffer - it is typically used to link the call, setting the |
| 532 | // relative offset such that when executed it will call to the desired |
| 533 | // destination. |
| 534 | class Call { |
| 535 | friend class AbstractMacroAssembler<AssemblerType>; |
| 536 | |
| 537 | public: |
| 538 | enum Flags { |
| 539 | None = 0x0, |
| 540 | Linkable = 0x1, |
| 541 | Near = 0x2, |
| 542 | Tail = 0x4, |
| 543 | LinkableNear = 0x3, |
| 544 | LinkableNearTail = 0x7, |
| 545 | }; |
| 546 | |
| 547 | Call() |
| 548 | : m_flags(None) |
| 549 | { |
| 550 | } |
| 551 | |
| 552 | Call(AssemblerLabel jmp, Flags flags) |
| 553 | : m_label(jmp) |
| 554 | , m_flags(flags) |
| 555 | { |
| 556 | } |
| 557 | |
| 558 | bool isFlagSet(Flags flag) |
| 559 | { |
| 560 | return m_flags & flag; |
| 561 | } |
| 562 | |
| 563 | static Call fromTailJump(Jump jump) |
| 564 | { |
| 565 | return Call(jump.m_label, Linkable); |
| 566 | } |
| 567 | |
| 568 | AssemblerLabel m_label; |
| 569 | private: |
| 570 | Flags m_flags; |
| 571 | }; |
| 572 | |
| 573 | // Jump: |
| 574 | // |
| 575 | // A jump object is a reference to a jump instruction that has been planted |
| 576 | // into the code buffer - it is typically used to link the jump, setting the |
| 577 | // relative offset such that when executed it will jump to the desired |
| 578 | // destination. |
| 579 | class Jump { |
| 580 | friend class AbstractMacroAssembler<AssemblerType>; |
| 581 | friend class Call; |
| 582 | friend struct DFG::OSRExit; |
| 583 | friend class LinkBuffer; |
| 584 | public: |
| 585 | Jump() |
| 586 | { |
| 587 | } |
| 588 | |
| 589 | #if CPU(ARM_THUMB2) |
| 590 | // Fixme: this information should be stored in the instruction stream, not in the Jump object. |
| 591 | Jump(AssemblerLabel jmp, ARMv7Assembler::JumpType type = ARMv7Assembler::JumpNoCondition, ARMv7Assembler::Condition condition = ARMv7Assembler::ConditionInvalid) |
| 592 | : m_label(jmp) |
| 593 | , m_type(type) |
| 594 | , m_condition(condition) |
| 595 | { |
| 596 | } |
| 597 | #elif CPU(ARM64) |
| 598 | Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type = ARM64Assembler::JumpNoCondition, ARM64Assembler::Condition condition = ARM64Assembler::ConditionInvalid) |
| 599 | : m_label(jmp) |
| 600 | , m_type(type) |
| 601 | , m_condition(condition) |
| 602 | { |
| 603 | } |
| 604 | |
| 605 | Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, bool is64Bit, ARM64Assembler::RegisterID compareRegister) |
| 606 | : m_label(jmp) |
| 607 | , m_type(type) |
| 608 | , m_condition(condition) |
| 609 | , m_is64Bit(is64Bit) |
| 610 | , m_compareRegister(compareRegister) |
| 611 | { |
| 612 | ASSERT((type == ARM64Assembler::JumpCompareAndBranch) || (type == ARM64Assembler::JumpCompareAndBranchFixedSize)); |
| 613 | } |
| 614 | |
| 615 | Jump(AssemblerLabel jmp, ARM64Assembler::JumpType type, ARM64Assembler::Condition condition, unsigned bitNumber, ARM64Assembler::RegisterID compareRegister) |
| 616 | : m_label(jmp) |
| 617 | , m_type(type) |
| 618 | , m_condition(condition) |
| 619 | , m_bitNumber(bitNumber) |
| 620 | , m_compareRegister(compareRegister) |
| 621 | { |
| 622 | ASSERT((type == ARM64Assembler::JumpTestBit) || (type == ARM64Assembler::JumpTestBitFixedSize)); |
| 623 | } |
| 624 | #else |
| 625 | Jump(AssemblerLabel jmp) |
| 626 | : m_label(jmp) |
| 627 | { |
| 628 | } |
| 629 | #endif |
| 630 | |
| 631 | Label label() const |
| 632 | { |
| 633 | Label result; |
| 634 | result.m_label = m_label; |
| 635 | return result; |
| 636 | } |
| 637 | |
| 638 | void link(AbstractMacroAssemblerType* masm) const |
| 639 | { |
| 640 | masm->invalidateAllTempRegisters(); |
| 641 | |
| 642 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| 643 | masm->checkRegisterAllocationAgainstBranchRange(m_label.m_offset, masm->debugOffset()); |
| 644 | #endif |
| 645 | |
| 646 | #if CPU(ARM_THUMB2) |
| 647 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); |
| 648 | #elif CPU(ARM64) |
| 649 | if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) |
| 650 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_is64Bit, m_compareRegister); |
| 651 | else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) |
| 652 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition, m_bitNumber, m_compareRegister); |
| 653 | else |
| 654 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label(), m_type, m_condition); |
| 655 | #else |
| 656 | masm->m_assembler.linkJump(m_label, masm->m_assembler.label()); |
| 657 | #endif |
| 658 | } |
| 659 | |
| 660 | void linkTo(Label label, AbstractMacroAssemblerType* masm) const |
| 661 | { |
| 662 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| 663 | masm->checkRegisterAllocationAgainstBranchRange(label.m_label.m_offset, m_label.m_offset); |
| 664 | #endif |
| 665 | |
| 666 | #if CPU(ARM_THUMB2) |
| 667 | masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); |
| 668 | #elif CPU(ARM64) |
| 669 | if ((m_type == ARM64Assembler::JumpCompareAndBranch) || (m_type == ARM64Assembler::JumpCompareAndBranchFixedSize)) |
| 670 | masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_is64Bit, m_compareRegister); |
| 671 | else if ((m_type == ARM64Assembler::JumpTestBit) || (m_type == ARM64Assembler::JumpTestBitFixedSize)) |
| 672 | masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition, m_bitNumber, m_compareRegister); |
| 673 | else |
| 674 | masm->m_assembler.linkJump(m_label, label.m_label, m_type, m_condition); |
| 675 | #else |
| 676 | masm->m_assembler.linkJump(m_label, label.m_label); |
| 677 | #endif |
| 678 | } |
| 679 | |
| 680 | bool isSet() const { return m_label.isSet(); } |
| 681 | |
| 682 | private: |
| 683 | AssemblerLabel m_label; |
| 684 | #if CPU(ARM_THUMB2) |
| 685 | ARMv7Assembler::JumpType m_type; |
| 686 | ARMv7Assembler::Condition m_condition; |
| 687 | #elif CPU(ARM64) |
| 688 | ARM64Assembler::JumpType m_type; |
| 689 | ARM64Assembler::Condition m_condition; |
| 690 | bool m_is64Bit; |
| 691 | unsigned m_bitNumber; |
| 692 | ARM64Assembler::RegisterID m_compareRegister; |
| 693 | #endif |
| 694 | }; |
| 695 | |
| 696 | struct PatchableJump { |
| 697 | PatchableJump() |
| 698 | { |
| 699 | } |
| 700 | |
| 701 | explicit PatchableJump(Jump jump) |
| 702 | : m_jump(jump) |
| 703 | { |
| 704 | } |
| 705 | |
| 706 | operator Jump&() { return m_jump; } |
| 707 | |
| 708 | Jump m_jump; |
| 709 | }; |
| 710 | |
| 711 | // JumpList: |
| 712 | // |
| 713 | // A JumpList is a set of Jump objects. |
| 714 | // All jumps in the set will be linked to the same destination. |
| 715 | class JumpList { |
| 716 | public: |
| 717 | typedef Vector<Jump, 2> JumpVector; |
| 718 | |
| 719 | JumpList() { } |
| 720 | |
| 721 | JumpList(Jump jump) |
| 722 | { |
| 723 | if (jump.isSet()) |
| 724 | append(jump); |
| 725 | } |
| 726 | |
| 727 | void link(AbstractMacroAssemblerType* masm) const |
| 728 | { |
| 729 | size_t size = m_jumps.size(); |
| 730 | for (size_t i = 0; i < size; ++i) |
| 731 | m_jumps[i].link(masm); |
| 732 | } |
| 733 | |
| 734 | void linkTo(Label label, AbstractMacroAssemblerType* masm) const |
| 735 | { |
| 736 | size_t size = m_jumps.size(); |
| 737 | for (size_t i = 0; i < size; ++i) |
| 738 | m_jumps[i].linkTo(label, masm); |
| 739 | } |
| 740 | |
| 741 | void append(Jump jump) |
| 742 | { |
| 743 | if (jump.isSet()) |
| 744 | m_jumps.append(jump); |
| 745 | } |
| 746 | |
| 747 | void append(const JumpList& other) |
| 748 | { |
| 749 | m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); |
| 750 | } |
| 751 | |
| 752 | bool empty() const |
| 753 | { |
| 754 | return !m_jumps.size(); |
| 755 | } |
| 756 | |
| 757 | void clear() |
| 758 | { |
| 759 | m_jumps.clear(); |
| 760 | } |
| 761 | |
| 762 | const JumpVector& jumps() const { return m_jumps; } |
| 763 | |
| 764 | private: |
| 765 | JumpVector m_jumps; |
| 766 | }; |
| 767 | |
| 768 | |
| 769 | // Section 3: Misc admin methods |
| 770 | #if ENABLE(DFG_JIT) |
| 771 | Label labelIgnoringWatchpoints() |
| 772 | { |
| 773 | Label result; |
| 774 | result.m_label = m_assembler.labelIgnoringWatchpoints(); |
| 775 | return result; |
| 776 | } |
| 777 | #else |
| 778 | Label labelIgnoringWatchpoints() |
| 779 | { |
| 780 | return label(); |
| 781 | } |
| 782 | #endif |
| 783 | |
| 784 | Label label() |
| 785 | { |
| 786 | return Label(this); |
| 787 | } |
| 788 | |
| 789 | void padBeforePatch() |
| 790 | { |
| 791 | // Rely on the fact that asking for a label already does the padding. |
| 792 | (void)label(); |
| 793 | } |
| 794 | |
| 795 | Label watchpointLabel() |
| 796 | { |
| 797 | Label result; |
| 798 | result.m_label = m_assembler.labelForWatchpoint(); |
| 799 | return result; |
| 800 | } |
| 801 | |
| 802 | Label align() |
| 803 | { |
| 804 | m_assembler.align(16); |
| 805 | return Label(this); |
| 806 | } |
| 807 | |
| 808 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| 809 | class RegisterAllocationOffset { |
| 810 | public: |
| 811 | RegisterAllocationOffset(unsigned offset) |
| 812 | : m_offset(offset) |
| 813 | { |
| 814 | } |
| 815 | |
| 816 | void checkOffsets(unsigned low, unsigned high) |
| 817 | { |
| 818 | RELEASE_ASSERT_WITH_MESSAGE(!(low <= m_offset && m_offset <= high), "Unsafe branch over register allocation at instruction offset %u in jump offset range %u..%u" , m_offset, low, high); |
| 819 | } |
| 820 | |
| 821 | private: |
| 822 | unsigned m_offset; |
| 823 | }; |
| 824 | |
| 825 | void addRegisterAllocationAtOffset(unsigned offset) |
| 826 | { |
| 827 | m_registerAllocationForOffsets.append(RegisterAllocationOffset(offset)); |
| 828 | } |
| 829 | |
| 830 | void clearRegisterAllocationOffsets() |
| 831 | { |
| 832 | m_registerAllocationForOffsets.clear(); |
| 833 | } |
| 834 | |
| 835 | void checkRegisterAllocationAgainstBranchRange(unsigned offset1, unsigned offset2) |
| 836 | { |
| 837 | if (offset1 > offset2) |
| 838 | std::swap(offset1, offset2); |
| 839 | |
| 840 | size_t size = m_registerAllocationForOffsets.size(); |
| 841 | for (size_t i = 0; i < size; ++i) |
| 842 | m_registerAllocationForOffsets[i].checkOffsets(offset1, offset2); |
| 843 | } |
| 844 | #endif |
| 845 | |
| 846 | template<typename T, typename U> |
| 847 | static ptrdiff_t differenceBetween(T from, U to) |
| 848 | { |
| 849 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| 850 | } |
| 851 | |
| 852 | template<PtrTag aTag, PtrTag bTag> |
| 853 | static ptrdiff_t differenceBetweenCodePtr(const MacroAssemblerCodePtr<aTag>& a, const MacroAssemblerCodePtr<bTag>& b) |
| 854 | { |
| 855 | return b.template dataLocation<ptrdiff_t>() - a.template dataLocation<ptrdiff_t>(); |
| 856 | } |
| 857 | |
| 858 | unsigned debugOffset() { return m_assembler.debugOffset(); } |
| 859 | |
| 860 | ALWAYS_INLINE static void cacheFlush(void* code, size_t size) |
| 861 | { |
| 862 | AssemblerType::cacheFlush(code, size); |
| 863 | } |
| 864 | |
| 865 | template<PtrTag tag> |
| 866 | static void linkJump(void* code, Jump jump, CodeLocationLabel<tag> target) |
| 867 | { |
| 868 | AssemblerType::linkJump(code, jump.m_label, target.dataLocation()); |
| 869 | } |
| 870 | |
| 871 | static void linkPointer(void* code, AssemblerLabel label, void* value) |
| 872 | { |
| 873 | AssemblerType::linkPointer(code, label, value); |
| 874 | } |
| 875 | |
| 876 | template<PtrTag tag> |
| 877 | static void linkPointer(void* code, AssemblerLabel label, MacroAssemblerCodePtr<tag> value) |
| 878 | { |
| 879 | AssemblerType::linkPointer(code, label, value.executableAddress()); |
| 880 | } |
| 881 | |
| 882 | template<PtrTag tag> |
| 883 | static void* getLinkerAddress(void* code, AssemblerLabel label) |
| 884 | { |
| 885 | return tagCodePtr(AssemblerType::getRelocatedAddress(code, label), tag); |
| 886 | } |
| 887 | |
| 888 | static unsigned getLinkerCallReturnOffset(Call call) |
| 889 | { |
| 890 | return AssemblerType::getCallReturnOffset(call.m_label); |
| 891 | } |
| 892 | |
| 893 | template<PtrTag jumpTag, PtrTag destTag> |
| 894 | static void repatchJump(CodeLocationJump<jumpTag> jump, CodeLocationLabel<destTag> destination) |
| 895 | { |
| 896 | AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); |
| 897 | } |
| 898 | |
| 899 | template<PtrTag jumpTag> |
| 900 | static void repatchJumpToNop(CodeLocationJump<jumpTag> jump) |
| 901 | { |
| 902 | AssemblerType::relinkJumpToNop(jump.dataLocation()); |
| 903 | } |
| 904 | |
| 905 | template<PtrTag callTag, PtrTag destTag> |
| 906 | static void repatchNearCall(CodeLocationNearCall<callTag> nearCall, CodeLocationLabel<destTag> destination) |
| 907 | { |
| 908 | switch (nearCall.callMode()) { |
| 909 | case NearCallMode::Tail: |
| 910 | AssemblerType::relinkJump(nearCall.dataLocation(), destination.dataLocation()); |
| 911 | return; |
| 912 | case NearCallMode::Regular: |
| 913 | AssemblerType::relinkCall(nearCall.dataLocation(), destination.untaggedExecutableAddress()); |
| 914 | return; |
| 915 | } |
| 916 | RELEASE_ASSERT_NOT_REACHED(); |
| 917 | } |
| 918 | |
| 919 | template<PtrTag tag> |
| 920 | static void repatchCompact(CodeLocationDataLabelCompact<tag> dataLabelCompact, int32_t value) |
| 921 | { |
| 922 | AssemblerType::repatchCompact(dataLabelCompact.template dataLocation(), value); |
| 923 | } |
| 924 | |
| 925 | template<PtrTag tag> |
| 926 | static void repatchInt32(CodeLocationDataLabel32<tag> dataLabel32, int32_t value) |
| 927 | { |
| 928 | AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); |
| 929 | } |
| 930 | |
| 931 | template<PtrTag tag> |
| 932 | static void repatchPointer(CodeLocationDataLabelPtr<tag> dataLabelPtr, void* value) |
| 933 | { |
| 934 | AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); |
| 935 | } |
| 936 | |
| 937 | template<PtrTag tag> |
| 938 | static void* readPointer(CodeLocationDataLabelPtr<tag> dataLabelPtr) |
| 939 | { |
| 940 | return AssemblerType::readPointer(dataLabelPtr.dataLocation()); |
| 941 | } |
| 942 | |
| 943 | template<PtrTag tag> |
| 944 | static void replaceWithLoad(CodeLocationConvertibleLoad<tag> label) |
| 945 | { |
| 946 | AssemblerType::replaceWithLoad(label.dataLocation()); |
| 947 | } |
| 948 | |
| 949 | template<PtrTag tag> |
| 950 | static void replaceWithAddressComputation(CodeLocationConvertibleLoad<tag> label) |
| 951 | { |
| 952 | AssemblerType::replaceWithAddressComputation(label.dataLocation()); |
| 953 | } |
| 954 | |
| 955 | template<typename Functor> |
| 956 | void addLinkTask(const Functor& functor) |
| 957 | { |
| 958 | m_linkTasks.append(createSharedTask<void(LinkBuffer&)>(functor)); |
| 959 | } |
| 960 | |
| 961 | void emitNops(size_t memoryToFillWithNopsInBytes) |
| 962 | { |
| 963 | #if CPU(ARM64) |
| 964 | RELEASE_ASSERT(memoryToFillWithNopsInBytes % 4 == 0); |
| 965 | for (unsigned i = 0; i < memoryToFillWithNopsInBytes / 4; ++i) |
| 966 | m_assembler.nop(); |
| 967 | #else |
| 968 | AssemblerBuffer& buffer = m_assembler.buffer(); |
| 969 | size_t startCodeSize = buffer.codeSize(); |
| 970 | size_t targetCodeSize = startCodeSize + memoryToFillWithNopsInBytes; |
| 971 | buffer.ensureSpace(memoryToFillWithNopsInBytes); |
| 972 | AssemblerType::fillNops(static_cast<char*>(buffer.data()) + startCodeSize, memoryToFillWithNopsInBytes, memcpy); |
| 973 | buffer.setCodeSize(targetCodeSize); |
| 974 | #endif |
| 975 | } |
| 976 | |
| 977 | ALWAYS_INLINE void tagReturnAddress() { } |
| 978 | ALWAYS_INLINE void untagReturnAddress() { } |
| 979 | |
| 980 | ALWAYS_INLINE void tagPtr(PtrTag, RegisterID) { } |
| 981 | ALWAYS_INLINE void tagPtr(RegisterID, RegisterID) { } |
| 982 | ALWAYS_INLINE void untagPtr(PtrTag, RegisterID) { } |
| 983 | ALWAYS_INLINE void untagPtr(RegisterID, RegisterID) { } |
| 984 | ALWAYS_INLINE void removePtrTag(RegisterID) { } |
| 985 | |
| 986 | protected: |
| 987 | AbstractMacroAssembler() |
| 988 | : m_randomSource(0) |
| 989 | , m_assembler() |
| 990 | { |
| 991 | invalidateAllTempRegisters(); |
| 992 | } |
| 993 | |
| 994 | uint32_t random() |
| 995 | { |
| 996 | if (!m_randomSourceIsInitialized) { |
| 997 | m_randomSourceIsInitialized = true; |
| 998 | m_randomSource.setSeed(cryptographicallyRandomNumber()); |
| 999 | } |
| 1000 | return m_randomSource.getUint32(); |
| 1001 | } |
| 1002 | |
| 1003 | bool m_randomSourceIsInitialized { false }; |
| 1004 | WeakRandom m_randomSource; |
| 1005 | public: |
| 1006 | AssemblerType m_assembler; |
| 1007 | protected: |
| 1008 | |
| 1009 | #if ENABLE(DFG_REGISTER_ALLOCATION_VALIDATION) |
| 1010 | Vector<RegisterAllocationOffset, 10> m_registerAllocationForOffsets; |
| 1011 | #endif |
| 1012 | |
| 1013 | static bool haveScratchRegisterForBlinding() |
| 1014 | { |
| 1015 | return false; |
| 1016 | } |
| 1017 | static RegisterID scratchRegisterForBlinding() |
| 1018 | { |
| 1019 | UNREACHABLE_FOR_PLATFORM(); |
| 1020 | return firstRegister(); |
| 1021 | } |
| 1022 | static bool canBlind() { return false; } |
| 1023 | static bool shouldBlindForSpecificArch(uint32_t) { return false; } |
| 1024 | static bool shouldBlindForSpecificArch(uint64_t) { return false; } |
| 1025 | |
| 1026 | class CachedTempRegister { |
| 1027 | friend class DataLabelPtr; |
| 1028 | friend class DataLabel32; |
| 1029 | friend class DataLabelCompact; |
| 1030 | friend class Jump; |
| 1031 | friend class Label; |
| 1032 | |
| 1033 | public: |
| 1034 | CachedTempRegister(AbstractMacroAssemblerType* masm, RegisterID registerID) |
| 1035 | : m_masm(masm) |
| 1036 | , m_registerID(registerID) |
| 1037 | , m_value(0) |
| 1038 | , m_validBit(1 << static_cast<unsigned>(registerID)) |
| 1039 | { |
| 1040 | ASSERT(static_cast<unsigned>(registerID) < (sizeof(unsigned) * 8)); |
| 1041 | } |
| 1042 | |
| 1043 | ALWAYS_INLINE RegisterID registerIDInvalidate() { invalidate(); return m_registerID; } |
| 1044 | |
| 1045 | ALWAYS_INLINE RegisterID registerIDNoInvalidate() { return m_registerID; } |
| 1046 | |
| 1047 | bool value(intptr_t& value) |
| 1048 | { |
| 1049 | value = m_value; |
| 1050 | return m_masm->isTempRegisterValid(m_validBit); |
| 1051 | } |
| 1052 | |
| 1053 | void setValue(intptr_t value) |
| 1054 | { |
| 1055 | m_value = value; |
| 1056 | m_masm->setTempRegisterValid(m_validBit); |
| 1057 | } |
| 1058 | |
| 1059 | ALWAYS_INLINE void invalidate() { m_masm->clearTempRegisterValid(m_validBit); } |
| 1060 | |
| 1061 | private: |
| 1062 | AbstractMacroAssemblerType* m_masm; |
| 1063 | RegisterID m_registerID; |
| 1064 | intptr_t m_value; |
| 1065 | unsigned m_validBit; |
| 1066 | }; |
| 1067 | |
| 1068 | ALWAYS_INLINE void invalidateAllTempRegisters() |
| 1069 | { |
| 1070 | m_tempRegistersValidBits = 0; |
| 1071 | } |
| 1072 | |
| 1073 | ALWAYS_INLINE bool isTempRegisterValid(unsigned registerMask) |
| 1074 | { |
| 1075 | return (m_tempRegistersValidBits & registerMask); |
| 1076 | } |
| 1077 | |
| 1078 | ALWAYS_INLINE void clearTempRegisterValid(unsigned registerMask) |
| 1079 | { |
| 1080 | m_tempRegistersValidBits &= ~registerMask; |
| 1081 | } |
| 1082 | |
| 1083 | ALWAYS_INLINE void setTempRegisterValid(unsigned registerMask) |
| 1084 | { |
| 1085 | m_tempRegistersValidBits |= registerMask; |
| 1086 | } |
| 1087 | |
| 1088 | friend class AllowMacroScratchRegisterUsage; |
| 1089 | friend class AllowMacroScratchRegisterUsageIf; |
| 1090 | friend class DisallowMacroScratchRegisterUsage; |
| 1091 | unsigned m_tempRegistersValidBits; |
| 1092 | bool m_allowScratchRegister { true }; |
| 1093 | |
| 1094 | Vector<RefPtr<SharedTask<void(LinkBuffer&)>>> m_linkTasks; |
| 1095 | |
| 1096 | friend class LinkBuffer; |
| 1097 | }; // class AbstractMacroAssembler |
| 1098 | |
| 1099 | template <class AssemblerType> |
| 1100 | inline typename AbstractMacroAssembler<AssemblerType>::BaseIndex |
| 1101 | AbstractMacroAssembler<AssemblerType>::Address::indexedBy( |
| 1102 | typename AbstractMacroAssembler<AssemblerType>::RegisterID index, |
| 1103 | typename AbstractMacroAssembler<AssemblerType>::Scale scale) const |
| 1104 | { |
| 1105 | return BaseIndex(base, index, scale, offset); |
| 1106 | } |
| 1107 | |
| 1108 | #endif // ENABLE(ASSEMBLER) |
| 1109 | |
| 1110 | } // namespace JSC |
| 1111 | |
| 1112 | #if ENABLE(ASSEMBLER) |
| 1113 | |
| 1114 | namespace WTF { |
| 1115 | |
| 1116 | class PrintStream; |
| 1117 | |
| 1118 | void printInternal(PrintStream& out, JSC::AbstractMacroAssemblerBase::StatusCondition); |
| 1119 | |
| 1120 | } // namespace WTF |
| 1121 | |
| 1122 | #endif // ENABLE(ASSEMBLER) |
| 1123 | |
| 1124 | |