| 1 | /* |
| 2 | * Copyright (C) 2005, 2006, 2013 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2009 Torch Mobile, Inc. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 15 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 16 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 17 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 18 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 22 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | */ |
| 26 | |
| 27 | #include "config.h" |
| 28 | #include "TransformationMatrix.h" |
| 29 | |
| 30 | #include "AffineTransform.h" |
| 31 | #include "FloatQuad.h" |
| 32 | #include "FloatRect.h" |
| 33 | #include "IntRect.h" |
| 34 | #include "LayoutRect.h" |
| 35 | #include <cmath> |
| 36 | #include <wtf/Assertions.h> |
| 37 | #include <wtf/MathExtras.h> |
| 38 | #include <wtf/Optional.h> |
| 39 | #include <wtf/text/TextStream.h> |
| 40 | |
| 41 | #if CPU(X86_64) |
| 42 | #include <emmintrin.h> |
| 43 | #endif |
| 44 | |
| 45 | namespace WebCore { |
| 46 | |
| 47 | // |
| 48 | // Adapted from Matrix Inversion by Richard Carling, Graphics Gems <http://tog.acm.org/GraphicsGems/index.html>. |
| 49 | |
| 50 | // EULA: The Graphics Gems code is copyright-protected. In other words, you cannot claim the text of the code |
| 51 | // as your own and resell it. Using the code is permitted in any program, product, or library, non-commercial |
| 52 | // or commercial. Giving credit is not required, though is a nice gesture. The code comes as-is, and if there |
| 53 | // are any flaws or problems with any Gems code, nobody involved with Gems - authors, editors, publishers, or |
| 54 | // webmasters - are to be held responsible. Basically, don't be a jerk, and remember that anything free comes |
| 55 | // with no guarantee. |
| 56 | |
| 57 | // A clarification about the storage of matrix elements |
| 58 | // |
| 59 | // This class uses a 2 dimensional array internally to store the elements of the matrix. The first index into |
| 60 | // the array refers to the column that the element lies in; the second index refers to the row. |
| 61 | // |
| 62 | // In other words, this is the layout of the matrix: |
| 63 | // |
| 64 | // | m_matrix[0][0] m_matrix[1][0] m_matrix[2][0] m_matrix[3][0] | |
| 65 | // | m_matrix[0][1] m_matrix[1][1] m_matrix[2][1] m_matrix[3][1] | |
| 66 | // | m_matrix[0][2] m_matrix[1][2] m_matrix[2][2] m_matrix[3][2] | |
| 67 | // | m_matrix[0][3] m_matrix[1][3] m_matrix[2][3] m_matrix[3][3] | |
| 68 | |
| 69 | typedef double Vector4[4]; |
| 70 | typedef double Vector3[3]; |
| 71 | |
| 72 | const double SMALL_NUMBER = 1.e-8; |
| 73 | |
| 74 | const TransformationMatrix TransformationMatrix::identity { }; |
| 75 | |
| 76 | // inverse(original_matrix, inverse_matrix) |
| 77 | // |
| 78 | // calculate the inverse of a 4x4 matrix |
| 79 | // |
| 80 | // -1 |
| 81 | // A = ___1__ adjoint A |
| 82 | // det A |
| 83 | |
| 84 | // double = determinant2x2(double a, double b, double c, double d) |
| 85 | // |
| 86 | // calculate the determinant of a 2x2 matrix. |
| 87 | |
| 88 | static double determinant2x2(double a, double b, double c, double d) |
| 89 | { |
| 90 | return a * d - b * c; |
| 91 | } |
| 92 | |
| 93 | // double = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3) |
| 94 | // |
| 95 | // Calculate the determinant of a 3x3 matrix |
| 96 | // in the form |
| 97 | // |
| 98 | // | a1, b1, c1 | |
| 99 | // | a2, b2, c2 | |
| 100 | // | a3, b3, c3 | |
| 101 | |
| 102 | static double determinant3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3) |
| 103 | { |
| 104 | return a1 * determinant2x2(b2, b3, c2, c3) |
| 105 | - b1 * determinant2x2(a2, a3, c2, c3) |
| 106 | + c1 * determinant2x2(a2, a3, b2, b3); |
| 107 | } |
| 108 | |
| 109 | // double = determinant4x4(matrix) |
| 110 | // |
| 111 | // calculate the determinant of a 4x4 matrix. |
| 112 | |
| 113 | static double determinant4x4(const TransformationMatrix::Matrix4& m) |
| 114 | { |
| 115 | // Assign to individual variable names to aid selecting |
| 116 | // correct elements |
| 117 | |
| 118 | double a1 = m[0][0]; |
| 119 | double b1 = m[0][1]; |
| 120 | double c1 = m[0][2]; |
| 121 | double d1 = m[0][3]; |
| 122 | |
| 123 | double a2 = m[1][0]; |
| 124 | double b2 = m[1][1]; |
| 125 | double c2 = m[1][2]; |
| 126 | double d2 = m[1][3]; |
| 127 | |
| 128 | double a3 = m[2][0]; |
| 129 | double b3 = m[2][1]; |
| 130 | double c3 = m[2][2]; |
| 131 | double d3 = m[2][3]; |
| 132 | |
| 133 | double a4 = m[3][0]; |
| 134 | double b4 = m[3][1]; |
| 135 | double c4 = m[3][2]; |
| 136 | double d4 = m[3][3]; |
| 137 | |
| 138 | return a1 * determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4) |
| 139 | - b1 * determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4) |
| 140 | + c1 * determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4) |
| 141 | - d1 * determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4); |
| 142 | } |
| 143 | |
| 144 | // adjoint( original_matrix, inverse_matrix ) |
| 145 | // |
| 146 | // calculate the adjoint of a 4x4 matrix |
| 147 | // |
| 148 | // Let a denote the minor determinant of matrix A obtained by |
| 149 | // ij |
| 150 | // |
| 151 | // deleting the ith row and jth column from A. |
| 152 | // |
| 153 | // i+j |
| 154 | // Let b = (-1) a |
| 155 | // ij ji |
| 156 | // |
| 157 | // The matrix B = (b ) is the adjoint of A |
| 158 | // ij |
| 159 | |
| 160 | static void adjoint(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result) |
| 161 | { |
| 162 | // Assign to individual variable names to aid |
| 163 | // selecting correct values |
| 164 | double a1 = matrix[0][0]; |
| 165 | double b1 = matrix[0][1]; |
| 166 | double c1 = matrix[0][2]; |
| 167 | double d1 = matrix[0][3]; |
| 168 | |
| 169 | double a2 = matrix[1][0]; |
| 170 | double b2 = matrix[1][1]; |
| 171 | double c2 = matrix[1][2]; |
| 172 | double d2 = matrix[1][3]; |
| 173 | |
| 174 | double a3 = matrix[2][0]; |
| 175 | double b3 = matrix[2][1]; |
| 176 | double c3 = matrix[2][2]; |
| 177 | double d3 = matrix[2][3]; |
| 178 | |
| 179 | double a4 = matrix[3][0]; |
| 180 | double b4 = matrix[3][1]; |
| 181 | double c4 = matrix[3][2]; |
| 182 | double d4 = matrix[3][3]; |
| 183 | |
| 184 | // Row column labeling reversed since we transpose rows & columns |
| 185 | result[0][0] = determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4); |
| 186 | result[1][0] = - determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4); |
| 187 | result[2][0] = determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4); |
| 188 | result[3][0] = - determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4); |
| 189 | |
| 190 | result[0][1] = - determinant3x3(b1, b3, b4, c1, c3, c4, d1, d3, d4); |
| 191 | result[1][1] = determinant3x3(a1, a3, a4, c1, c3, c4, d1, d3, d4); |
| 192 | result[2][1] = - determinant3x3(a1, a3, a4, b1, b3, b4, d1, d3, d4); |
| 193 | result[3][1] = determinant3x3(a1, a3, a4, b1, b3, b4, c1, c3, c4); |
| 194 | |
| 195 | result[0][2] = determinant3x3(b1, b2, b4, c1, c2, c4, d1, d2, d4); |
| 196 | result[1][2] = - determinant3x3(a1, a2, a4, c1, c2, c4, d1, d2, d4); |
| 197 | result[2][2] = determinant3x3(a1, a2, a4, b1, b2, b4, d1, d2, d4); |
| 198 | result[3][2] = - determinant3x3(a1, a2, a4, b1, b2, b4, c1, c2, c4); |
| 199 | |
| 200 | result[0][3] = - determinant3x3(b1, b2, b3, c1, c2, c3, d1, d2, d3); |
| 201 | result[1][3] = determinant3x3(a1, a2, a3, c1, c2, c3, d1, d2, d3); |
| 202 | result[2][3] = - determinant3x3(a1, a2, a3, b1, b2, b3, d1, d2, d3); |
| 203 | result[3][3] = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3); |
| 204 | } |
| 205 | |
| 206 | // Returns false if the matrix is not invertible |
| 207 | static bool inverse(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result) |
| 208 | { |
| 209 | // Calculate the adjoint matrix |
| 210 | adjoint(matrix, result); |
| 211 | |
| 212 | // Calculate the 4x4 determinant |
| 213 | // If the determinant is zero, |
| 214 | // then the inverse matrix is not unique. |
| 215 | double det = determinant4x4(matrix); |
| 216 | |
| 217 | if (fabs(det) < SMALL_NUMBER) |
| 218 | return false; |
| 219 | |
| 220 | // Scale the adjoint matrix to get the inverse |
| 221 | |
| 222 | for (int i = 0; i < 4; i++) |
| 223 | for (int j = 0; j < 4; j++) |
| 224 | result[i][j] = result[i][j] / det; |
| 225 | |
| 226 | return true; |
| 227 | } |
| 228 | |
| 229 | // End of code adapted from Matrix Inversion by Richard Carling |
| 230 | |
| 231 | // Perform a decomposition on the passed matrix, return false if unsuccessful |
| 232 | // From Graphics Gems: unmatrix.c |
| 233 | |
| 234 | // Transpose rotation portion of matrix a, return b |
| 235 | static void transposeMatrix4(const TransformationMatrix::Matrix4& a, TransformationMatrix::Matrix4& b) |
| 236 | { |
| 237 | for (int i = 0; i < 4; i++) |
| 238 | for (int j = 0; j < 4; j++) |
| 239 | b[i][j] = a[j][i]; |
| 240 | } |
| 241 | |
| 242 | // Multiply a homogeneous point by a matrix and return the transformed point |
| 243 | static void v4MulPointByMatrix(const Vector4 p, const TransformationMatrix::Matrix4& m, Vector4 result) |
| 244 | { |
| 245 | result[0] = (p[0] * m[0][0]) + (p[1] * m[1][0]) + |
| 246 | (p[2] * m[2][0]) + (p[3] * m[3][0]); |
| 247 | result[1] = (p[0] * m[0][1]) + (p[1] * m[1][1]) + |
| 248 | (p[2] * m[2][1]) + (p[3] * m[3][1]); |
| 249 | result[2] = (p[0] * m[0][2]) + (p[1] * m[1][2]) + |
| 250 | (p[2] * m[2][2]) + (p[3] * m[3][2]); |
| 251 | result[3] = (p[0] * m[0][3]) + (p[1] * m[1][3]) + |
| 252 | (p[2] * m[2][3]) + (p[3] * m[3][3]); |
| 253 | } |
| 254 | |
| 255 | static double v3Length(Vector3 a) |
| 256 | { |
| 257 | return sqrt((a[0] * a[0]) + (a[1] * a[1]) + (a[2] * a[2])); |
| 258 | } |
| 259 | |
| 260 | static void v3Scale(Vector3 v, double desiredLength) |
| 261 | { |
| 262 | double len = v3Length(v); |
| 263 | if (len != 0) { |
| 264 | double l = desiredLength / len; |
| 265 | v[0] *= l; |
| 266 | v[1] *= l; |
| 267 | v[2] *= l; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | static double v3Dot(const Vector3 a, const Vector3 b) |
| 272 | { |
| 273 | return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]); |
| 274 | } |
| 275 | |
| 276 | // Make a linear combination of two vectors and return the result. |
| 277 | // result = (a * ascl) + (b * bscl) |
| 278 | static void v3Combine(const Vector3 a, const Vector3 b, Vector3 result, double ascl, double bscl) |
| 279 | { |
| 280 | result[0] = (ascl * a[0]) + (bscl * b[0]); |
| 281 | result[1] = (ascl * a[1]) + (bscl * b[1]); |
| 282 | result[2] = (ascl * a[2]) + (bscl * b[2]); |
| 283 | } |
| 284 | |
| 285 | // Return the cross product result = a cross b */ |
| 286 | static void v3Cross(const Vector3 a, const Vector3 b, Vector3 result) |
| 287 | { |
| 288 | result[0] = (a[1] * b[2]) - (a[2] * b[1]); |
| 289 | result[1] = (a[2] * b[0]) - (a[0] * b[2]); |
| 290 | result[2] = (a[0] * b[1]) - (a[1] * b[0]); |
| 291 | } |
| 292 | |
| 293 | static bool decompose2(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Decomposed2Type& result) |
| 294 | { |
| 295 | double row0x = matrix[0][0]; |
| 296 | double row0y = matrix[0][1]; |
| 297 | double row1x = matrix[1][0]; |
| 298 | double row1y = matrix[1][1]; |
| 299 | result.translateX = matrix[3][0]; |
| 300 | result.translateY = matrix[3][1]; |
| 301 | |
| 302 | // Compute scaling factors. |
| 303 | result.scaleX = sqrt(row0x * row0x + row0y * row0y); |
| 304 | result.scaleY = sqrt(row1x * row1x + row1y * row1y); |
| 305 | |
| 306 | // If determinant is negative, one axis was flipped. |
| 307 | double determinant = row0x * row1y - row0y * row1x; |
| 308 | if (determinant < 0) { |
| 309 | // Flip axis with minimum unit vector dot product. |
| 310 | if (row0x < row1y) |
| 311 | result.scaleX = -result.scaleX; |
| 312 | else |
| 313 | result.scaleY = -result.scaleY; |
| 314 | } |
| 315 | |
| 316 | // Renormalize matrix to remove scale. |
| 317 | if (result.scaleX) { |
| 318 | row0x *= 1 / result.scaleX; |
| 319 | row0y *= 1 / result.scaleX; |
| 320 | } |
| 321 | if (result.scaleY) { |
| 322 | row1x *= 1 / result.scaleY; |
| 323 | row1y *= 1 / result.scaleY; |
| 324 | } |
| 325 | |
| 326 | // Compute rotation and renormalize matrix. |
| 327 | result.angle = atan2(row0y, row0x); |
| 328 | |
| 329 | if (result.angle) { |
| 330 | // Rotate(-angle) = [cos(angle), sin(angle), -sin(angle), cos(angle)] |
| 331 | // = [row0x, -row0y, row0y, row0x] |
| 332 | // Thanks to the normalization above. |
| 333 | double sn = -row0y; |
| 334 | double cs = row0x; |
| 335 | double m11 = row0x, m12 = row0y; |
| 336 | double m21 = row1x, m22 = row1y; |
| 337 | |
| 338 | row0x = cs * m11 + sn * m21; |
| 339 | row0y = cs * m12 + sn * m22; |
| 340 | row1x = -sn * m11 + cs * m21; |
| 341 | row1y = -sn * m12 + cs * m22; |
| 342 | } |
| 343 | |
| 344 | result.m11 = row0x; |
| 345 | result.m12 = row0y; |
| 346 | result.m21 = row1x; |
| 347 | result.m22 = row1y; |
| 348 | |
| 349 | // Convert into degrees because our rotation functions expect it. |
| 350 | result.angle = rad2deg(result.angle); |
| 351 | |
| 352 | return true; |
| 353 | } |
| 354 | |
| 355 | static bool decompose4(const TransformationMatrix::Matrix4& mat, TransformationMatrix::Decomposed4Type& result) |
| 356 | { |
| 357 | TransformationMatrix::Matrix4 localMatrix; |
| 358 | memcpy(localMatrix, mat, sizeof(TransformationMatrix::Matrix4)); |
| 359 | |
| 360 | // Normalize the matrix. |
| 361 | if (localMatrix[3][3] == 0) |
| 362 | return false; |
| 363 | |
| 364 | int i, j; |
| 365 | for (i = 0; i < 4; i++) |
| 366 | for (j = 0; j < 4; j++) |
| 367 | localMatrix[i][j] /= localMatrix[3][3]; |
| 368 | |
| 369 | // perspectiveMatrix is used to solve for perspective, but it also provides |
| 370 | // an easy way to test for singularity of the upper 3x3 component. |
| 371 | TransformationMatrix::Matrix4 perspectiveMatrix; |
| 372 | memcpy(perspectiveMatrix, localMatrix, sizeof(TransformationMatrix::Matrix4)); |
| 373 | for (i = 0; i < 3; i++) |
| 374 | perspectiveMatrix[i][3] = 0; |
| 375 | perspectiveMatrix[3][3] = 1; |
| 376 | |
| 377 | if (determinant4x4(perspectiveMatrix) == 0) |
| 378 | return false; |
| 379 | |
| 380 | // First, isolate perspective. This is the messiest. |
| 381 | if (localMatrix[0][3] != 0 || localMatrix[1][3] != 0 || localMatrix[2][3] != 0) { |
| 382 | // rightHandSide is the right hand side of the equation. |
| 383 | Vector4 rightHandSide; |
| 384 | rightHandSide[0] = localMatrix[0][3]; |
| 385 | rightHandSide[1] = localMatrix[1][3]; |
| 386 | rightHandSide[2] = localMatrix[2][3]; |
| 387 | rightHandSide[3] = localMatrix[3][3]; |
| 388 | |
| 389 | // Solve the equation by inverting perspectiveMatrix and multiplying |
| 390 | // rightHandSide by the inverse. (This is the easiest way, not |
| 391 | // necessarily the best.) |
| 392 | TransformationMatrix::Matrix4 inversePerspectiveMatrix, transposedInversePerspectiveMatrix; |
| 393 | inverse(perspectiveMatrix, inversePerspectiveMatrix); |
| 394 | transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix); |
| 395 | |
| 396 | Vector4 perspectivePoint; |
| 397 | v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint); |
| 398 | |
| 399 | result.perspectiveX = perspectivePoint[0]; |
| 400 | result.perspectiveY = perspectivePoint[1]; |
| 401 | result.perspectiveZ = perspectivePoint[2]; |
| 402 | result.perspectiveW = perspectivePoint[3]; |
| 403 | |
| 404 | // Clear the perspective partition |
| 405 | localMatrix[0][3] = localMatrix[1][3] = localMatrix[2][3] = 0; |
| 406 | localMatrix[3][3] = 1; |
| 407 | } else { |
| 408 | // No perspective. |
| 409 | result.perspectiveX = result.perspectiveY = result.perspectiveZ = 0; |
| 410 | result.perspectiveW = 1; |
| 411 | } |
| 412 | |
| 413 | // Next take care of translation (easy). |
| 414 | result.translateX = localMatrix[3][0]; |
| 415 | localMatrix[3][0] = 0; |
| 416 | result.translateY = localMatrix[3][1]; |
| 417 | localMatrix[3][1] = 0; |
| 418 | result.translateZ = localMatrix[3][2]; |
| 419 | localMatrix[3][2] = 0; |
| 420 | |
| 421 | // Vector4 type and functions need to be added to the common set. |
| 422 | Vector3 row[3], pdum3; |
| 423 | |
| 424 | // Now get scale and shear. |
| 425 | for (i = 0; i < 3; i++) { |
| 426 | row[i][0] = localMatrix[i][0]; |
| 427 | row[i][1] = localMatrix[i][1]; |
| 428 | row[i][2] = localMatrix[i][2]; |
| 429 | } |
| 430 | |
| 431 | // Compute X scale factor and normalize first row. |
| 432 | result.scaleX = v3Length(row[0]); |
| 433 | v3Scale(row[0], 1.0); |
| 434 | |
| 435 | // Compute XY shear factor and make 2nd row orthogonal to 1st. |
| 436 | result.skewXY = v3Dot(row[0], row[1]); |
| 437 | v3Combine(row[1], row[0], row[1], 1.0, -result.skewXY); |
| 438 | |
| 439 | // Now, compute Y scale and normalize 2nd row. |
| 440 | result.scaleY = v3Length(row[1]); |
| 441 | v3Scale(row[1], 1.0); |
| 442 | result.skewXY /= result.scaleY; |
| 443 | |
| 444 | // Compute XZ and YZ shears, orthogonalize 3rd row. |
| 445 | result.skewXZ = v3Dot(row[0], row[2]); |
| 446 | v3Combine(row[2], row[0], row[2], 1.0, -result.skewXZ); |
| 447 | result.skewYZ = v3Dot(row[1], row[2]); |
| 448 | v3Combine(row[2], row[1], row[2], 1.0, -result.skewYZ); |
| 449 | |
| 450 | // Next, get Z scale and normalize 3rd row. |
| 451 | result.scaleZ = v3Length(row[2]); |
| 452 | v3Scale(row[2], 1.0); |
| 453 | result.skewXZ /= result.scaleZ; |
| 454 | result.skewYZ /= result.scaleZ; |
| 455 | |
| 456 | // At this point, the matrix (in rows[]) is orthonormal. |
| 457 | // Check for a coordinate system flip. If the determinant |
| 458 | // is -1, then negate the matrix and the scaling factors. |
| 459 | v3Cross(row[1], row[2], pdum3); |
| 460 | if (v3Dot(row[0], pdum3) < 0) { |
| 461 | |
| 462 | result.scaleX *= -1; |
| 463 | result.scaleY *= -1; |
| 464 | result.scaleZ *= -1; |
| 465 | |
| 466 | for (i = 0; i < 3; i++) { |
| 467 | row[i][0] *= -1; |
| 468 | row[i][1] *= -1; |
| 469 | row[i][2] *= -1; |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | // Now, get the rotations out, as described in the gem. |
| 474 | |
| 475 | // FIXME - Add the ability to return either quaternions (which are |
| 476 | // easier to recompose with) or Euler angles (rx, ry, rz), which |
| 477 | // are easier for authors to deal with. The latter will only be useful |
| 478 | // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I |
| 479 | // will leave the Euler angle code here for now. |
| 480 | |
| 481 | // ret.rotateY = asin(-row[0][2]); |
| 482 | // if (cos(ret.rotateY) != 0) { |
| 483 | // ret.rotateX = atan2(row[1][2], row[2][2]); |
| 484 | // ret.rotateZ = atan2(row[0][1], row[0][0]); |
| 485 | // } else { |
| 486 | // ret.rotateX = atan2(-row[2][0], row[1][1]); |
| 487 | // ret.rotateZ = 0; |
| 488 | // } |
| 489 | |
| 490 | double s, t, x, y, z, w; |
| 491 | |
| 492 | t = row[0][0] + row[1][1] + row[2][2] + 1.0; |
| 493 | |
| 494 | if (t > 1e-4) { |
| 495 | s = 0.5 / sqrt(t); |
| 496 | w = 0.25 / s; |
| 497 | x = (row[2][1] - row[1][2]) * s; |
| 498 | y = (row[0][2] - row[2][0]) * s; |
| 499 | z = (row[1][0] - row[0][1]) * s; |
| 500 | } else if (row[0][0] > row[1][1] && row[0][0] > row[2][2]) { |
| 501 | s = sqrt(1.0 + row[0][0] - row[1][1] - row[2][2]) * 2.0; // S = 4 * qx. |
| 502 | x = 0.25 * s; |
| 503 | y = (row[0][1] + row[1][0]) / s; |
| 504 | z = (row[0][2] + row[2][0]) / s; |
| 505 | w = (row[2][1] - row[1][2]) / s; |
| 506 | } else if (row[1][1] > row[2][2]) { |
| 507 | s = sqrt(1.0 + row[1][1] - row[0][0] - row[2][2]) * 2.0; // S = 4 * qy. |
| 508 | x = (row[0][1] + row[1][0]) / s; |
| 509 | y = 0.25 * s; |
| 510 | z = (row[1][2] + row[2][1]) / s; |
| 511 | w = (row[0][2] - row[2][0]) / s; |
| 512 | } else { |
| 513 | s = sqrt(1.0 + row[2][2] - row[0][0] - row[1][1]) * 2.0; // S = 4 * qz. |
| 514 | x = (row[0][2] + row[2][0]) / s; |
| 515 | y = (row[1][2] + row[2][1]) / s; |
| 516 | z = 0.25 * s; |
| 517 | w = (row[1][0] - row[0][1]) / s; |
| 518 | } |
| 519 | |
| 520 | result.quaternionX = x; |
| 521 | result.quaternionY = y; |
| 522 | result.quaternionZ = z; |
| 523 | result.quaternionW = w; |
| 524 | |
| 525 | return true; |
| 526 | } |
| 527 | |
| 528 | // Perform a spherical linear interpolation between the two |
| 529 | // passed quaternions with 0 <= t <= 1. |
| 530 | static void slerp(double qa[4], const double qb[4], double t) |
| 531 | { |
| 532 | double ax, ay, az, aw; |
| 533 | double bx, by, bz, bw; |
| 534 | double cx, cy, cz, cw; |
| 535 | double angle; |
| 536 | double th, invth, scale, invscale; |
| 537 | |
| 538 | ax = qa[0]; ay = qa[1]; az = qa[2]; aw = qa[3]; |
| 539 | bx = qb[0]; by = qb[1]; bz = qb[2]; bw = qb[3]; |
| 540 | |
| 541 | angle = ax * bx + ay * by + az * bz + aw * bw; |
| 542 | |
| 543 | if (angle < 0.0) { |
| 544 | ax = -ax; ay = -ay; |
| 545 | az = -az; aw = -aw; |
| 546 | angle = -angle; |
| 547 | } |
| 548 | |
| 549 | if (angle + 1.0 > .05) { |
| 550 | if (1.0 - angle >= .05) { |
| 551 | th = acos (angle); |
| 552 | invth = 1.0 / sin (th); |
| 553 | scale = sin (th * (1.0 - t)) * invth; |
| 554 | invscale = sin (th * t) * invth; |
| 555 | } else { |
| 556 | scale = 1.0 - t; |
| 557 | invscale = t; |
| 558 | } |
| 559 | } else { |
| 560 | bx = -ay; |
| 561 | by = ax; |
| 562 | bz = -aw; |
| 563 | bw = az; |
| 564 | scale = sin(piDouble * (.5 - t)); |
| 565 | invscale = sin (piDouble * t); |
| 566 | } |
| 567 | |
| 568 | cx = ax * scale + bx * invscale; |
| 569 | cy = ay * scale + by * invscale; |
| 570 | cz = az * scale + bz * invscale; |
| 571 | cw = aw * scale + bw * invscale; |
| 572 | |
| 573 | qa[0] = cx; qa[1] = cy; qa[2] = cz; qa[3] = cw; |
| 574 | } |
| 575 | |
| 576 | // End of Supporting Math Functions |
| 577 | |
| 578 | TransformationMatrix::TransformationMatrix(const AffineTransform& t) |
| 579 | { |
| 580 | setMatrix(t.a(), t.b(), t.c(), t.d(), t.e(), t.f()); |
| 581 | } |
| 582 | |
| 583 | TransformationMatrix& TransformationMatrix::scale(double s) |
| 584 | { |
| 585 | return scaleNonUniform(s, s); |
| 586 | } |
| 587 | |
| 588 | TransformationMatrix& TransformationMatrix::rotateFromVector(double x, double y) |
| 589 | { |
| 590 | return rotate(rad2deg(atan2(y, x))); |
| 591 | } |
| 592 | |
| 593 | TransformationMatrix& TransformationMatrix::flipX() |
| 594 | { |
| 595 | return scaleNonUniform(-1.0, 1.0); |
| 596 | } |
| 597 | |
| 598 | TransformationMatrix& TransformationMatrix::flipY() |
| 599 | { |
| 600 | return scaleNonUniform(1.0, -1.0); |
| 601 | } |
| 602 | |
| 603 | FloatPoint TransformationMatrix::projectPoint(const FloatPoint& p, bool* clamped) const |
| 604 | { |
| 605 | // This is basically raytracing. We have a point in the destination |
| 606 | // plane with z=0, and we cast a ray parallel to the z-axis from that |
| 607 | // point to find the z-position at which it intersects the z=0 plane |
| 608 | // with the transform applied. Once we have that point we apply the |
| 609 | // inverse transform to find the corresponding point in the source |
| 610 | // space. |
| 611 | // |
| 612 | // Given a plane with normal Pn, and a ray starting at point R0 and |
| 613 | // with direction defined by the vector Rd, we can find the |
| 614 | // intersection point as a distance d from R0 in units of Rd by: |
| 615 | // |
| 616 | // d = -dot (Pn', R0) / dot (Pn', Rd) |
| 617 | if (clamped) |
| 618 | *clamped = false; |
| 619 | |
| 620 | if (m33() == 0) { |
| 621 | // In this case, the projection plane is parallel to the ray we are trying to |
| 622 | // trace, and there is no well-defined value for the projection. |
| 623 | return FloatPoint(); |
| 624 | } |
| 625 | |
| 626 | double x = p.x(); |
| 627 | double y = p.y(); |
| 628 | double z = -(m13() * x + m23() * y + m43()) / m33(); |
| 629 | |
| 630 | // FIXME: use multVecMatrix() |
| 631 | double outX = x * m11() + y * m21() + z * m31() + m41(); |
| 632 | double outY = x * m12() + y * m22() + z * m32() + m42(); |
| 633 | |
| 634 | double w = x * m14() + y * m24() + z * m34() + m44(); |
| 635 | if (w <= 0) { |
| 636 | // Using int max causes overflow when other code uses the projected point. To |
| 637 | // represent infinity yet reduce the risk of overflow, we use a large but |
| 638 | // not-too-large number here when clamping. |
| 639 | const int largeNumber = 100000000 / kFixedPointDenominator; |
| 640 | outX = copysign(largeNumber, outX); |
| 641 | outY = copysign(largeNumber, outY); |
| 642 | if (clamped) |
| 643 | *clamped = true; |
| 644 | } else if (w != 1) { |
| 645 | outX /= w; |
| 646 | outY /= w; |
| 647 | } |
| 648 | |
| 649 | return FloatPoint(static_cast<float>(outX), static_cast<float>(outY)); |
| 650 | } |
| 651 | |
| 652 | FloatQuad TransformationMatrix::projectQuad(const FloatQuad& q, bool* clamped) const |
| 653 | { |
| 654 | FloatQuad projectedQuad; |
| 655 | |
| 656 | bool clamped1 = false; |
| 657 | bool clamped2 = false; |
| 658 | bool clamped3 = false; |
| 659 | bool clamped4 = false; |
| 660 | |
| 661 | projectedQuad.setP1(projectPoint(q.p1(), &clamped1)); |
| 662 | projectedQuad.setP2(projectPoint(q.p2(), &clamped2)); |
| 663 | projectedQuad.setP3(projectPoint(q.p3(), &clamped3)); |
| 664 | projectedQuad.setP4(projectPoint(q.p4(), &clamped4)); |
| 665 | |
| 666 | if (clamped) |
| 667 | *clamped = clamped1 || clamped2 || clamped3 || clamped4; |
| 668 | |
| 669 | // If all points on the quad had w < 0, then the entire quad would not be visible to the projected surface. |
| 670 | bool everythingWasClipped = clamped1 && clamped2 && clamped3 && clamped4; |
| 671 | if (everythingWasClipped) |
| 672 | return FloatQuad(); |
| 673 | |
| 674 | return projectedQuad; |
| 675 | } |
| 676 | |
| 677 | static float clampEdgeValue(float f) |
| 678 | { |
| 679 | ASSERT(!std::isnan(f)); |
| 680 | return std::min<float>(std::max<float>(f, -LayoutUnit::max() / 2), LayoutUnit::max() / 2); |
| 681 | } |
| 682 | |
| 683 | LayoutRect TransformationMatrix::clampedBoundsOfProjectedQuad(const FloatQuad& q) const |
| 684 | { |
| 685 | FloatRect mappedQuadBounds = projectQuad(q).boundingBox(); |
| 686 | |
| 687 | float left = clampEdgeValue(floorf(mappedQuadBounds.x())); |
| 688 | float top = clampEdgeValue(floorf(mappedQuadBounds.y())); |
| 689 | |
| 690 | float right; |
| 691 | if (std::isinf(mappedQuadBounds.x()) && std::isinf(mappedQuadBounds.width())) |
| 692 | right = LayoutUnit::max() / 2; |
| 693 | else |
| 694 | right = clampEdgeValue(ceilf(mappedQuadBounds.maxX())); |
| 695 | |
| 696 | float bottom; |
| 697 | if (std::isinf(mappedQuadBounds.y()) && std::isinf(mappedQuadBounds.height())) |
| 698 | bottom = LayoutUnit::max() / 2; |
| 699 | else |
| 700 | bottom = clampEdgeValue(ceilf(mappedQuadBounds.maxY())); |
| 701 | |
| 702 | return LayoutRect(LayoutUnit::clamp(left), LayoutUnit::clamp(top), LayoutUnit::clamp(right - left), LayoutUnit::clamp(bottom - top)); |
| 703 | } |
| 704 | |
| 705 | void TransformationMatrix::map4ComponentPoint(double& x, double& y, double& z, double& w) const |
| 706 | { |
| 707 | if (isIdentityOrTranslation()) { |
| 708 | x += m_matrix[3][0]; |
| 709 | y += m_matrix[3][1]; |
| 710 | z += m_matrix[3][2]; |
| 711 | return; |
| 712 | } |
| 713 | |
| 714 | Vector4 input = { x, y, z, w }; |
| 715 | Vector4 result; |
| 716 | v4MulPointByMatrix(input, m_matrix, result); |
| 717 | |
| 718 | x = result[0]; |
| 719 | y = result[1]; |
| 720 | z = result[2]; |
| 721 | w = result[3]; |
| 722 | } |
| 723 | |
| 724 | FloatPoint TransformationMatrix::mapPoint(const FloatPoint& p) const |
| 725 | { |
| 726 | if (isIdentityOrTranslation()) |
| 727 | return FloatPoint(p.x() + static_cast<float>(m_matrix[3][0]), p.y() + static_cast<float>(m_matrix[3][1])); |
| 728 | |
| 729 | return internalMapPoint(p); |
| 730 | } |
| 731 | |
| 732 | FloatPoint3D TransformationMatrix::mapPoint(const FloatPoint3D& p) const |
| 733 | { |
| 734 | if (isIdentityOrTranslation()) |
| 735 | return FloatPoint3D(p.x() + static_cast<float>(m_matrix[3][0]), |
| 736 | p.y() + static_cast<float>(m_matrix[3][1]), |
| 737 | p.z() + static_cast<float>(m_matrix[3][2])); |
| 738 | |
| 739 | return internalMapPoint(p); |
| 740 | } |
| 741 | |
| 742 | IntRect TransformationMatrix::mapRect(const IntRect &rect) const |
| 743 | { |
| 744 | return enclosingIntRect(mapRect(FloatRect(rect))); |
| 745 | } |
| 746 | |
| 747 | LayoutRect TransformationMatrix::mapRect(const LayoutRect& r) const |
| 748 | { |
| 749 | return enclosingLayoutRect(mapRect(FloatRect(r))); |
| 750 | } |
| 751 | |
| 752 | FloatRect TransformationMatrix::mapRect(const FloatRect& r) const |
| 753 | { |
| 754 | if (isIdentityOrTranslation()) { |
| 755 | FloatRect mappedRect(r); |
| 756 | mappedRect.move(static_cast<float>(m_matrix[3][0]), static_cast<float>(m_matrix[3][1])); |
| 757 | return mappedRect; |
| 758 | } |
| 759 | |
| 760 | FloatQuad result; |
| 761 | |
| 762 | float maxX = r.maxX(); |
| 763 | float maxY = r.maxY(); |
| 764 | result.setP1(internalMapPoint(FloatPoint(r.x(), r.y()))); |
| 765 | result.setP2(internalMapPoint(FloatPoint(maxX, r.y()))); |
| 766 | result.setP3(internalMapPoint(FloatPoint(maxX, maxY))); |
| 767 | result.setP4(internalMapPoint(FloatPoint(r.x(), maxY))); |
| 768 | |
| 769 | return result.boundingBox(); |
| 770 | } |
| 771 | |
| 772 | FloatQuad TransformationMatrix::mapQuad(const FloatQuad& q) const |
| 773 | { |
| 774 | if (isIdentityOrTranslation()) { |
| 775 | FloatQuad mappedQuad(q); |
| 776 | mappedQuad.move(static_cast<float>(m_matrix[3][0]), static_cast<float>(m_matrix[3][1])); |
| 777 | return mappedQuad; |
| 778 | } |
| 779 | |
| 780 | FloatQuad result; |
| 781 | result.setP1(internalMapPoint(q.p1())); |
| 782 | result.setP2(internalMapPoint(q.p2())); |
| 783 | result.setP3(internalMapPoint(q.p3())); |
| 784 | result.setP4(internalMapPoint(q.p4())); |
| 785 | return result; |
| 786 | } |
| 787 | |
| 788 | TransformationMatrix& TransformationMatrix::scaleNonUniform(double sx, double sy) |
| 789 | { |
| 790 | m_matrix[0][0] *= sx; |
| 791 | m_matrix[0][1] *= sx; |
| 792 | m_matrix[0][2] *= sx; |
| 793 | m_matrix[0][3] *= sx; |
| 794 | |
| 795 | m_matrix[1][0] *= sy; |
| 796 | m_matrix[1][1] *= sy; |
| 797 | m_matrix[1][2] *= sy; |
| 798 | m_matrix[1][3] *= sy; |
| 799 | return *this; |
| 800 | } |
| 801 | |
| 802 | TransformationMatrix& TransformationMatrix::scale3d(double sx, double sy, double sz) |
| 803 | { |
| 804 | scaleNonUniform(sx, sy); |
| 805 | |
| 806 | m_matrix[2][0] *= sz; |
| 807 | m_matrix[2][1] *= sz; |
| 808 | m_matrix[2][2] *= sz; |
| 809 | m_matrix[2][3] *= sz; |
| 810 | return *this; |
| 811 | } |
| 812 | |
| 813 | TransformationMatrix& TransformationMatrix::rotate3d(double x, double y, double z, double angle) |
| 814 | { |
| 815 | // Normalize the axis of rotation |
| 816 | double length = sqrt(x * x + y * y + z * z); |
| 817 | if (length == 0) { |
| 818 | // A direction vector that cannot be normalized, such as [0, 0, 0], will cause the rotation to not be applied. |
| 819 | return *this; |
| 820 | } else if (length != 1) { |
| 821 | x /= length; |
| 822 | y /= length; |
| 823 | z /= length; |
| 824 | } |
| 825 | |
| 826 | // Angles are in degrees. Switch to radians. |
| 827 | angle = deg2rad(angle); |
| 828 | |
| 829 | double sinTheta = sin(angle); |
| 830 | double cosTheta = cos(angle); |
| 831 | |
| 832 | TransformationMatrix mat; |
| 833 | |
| 834 | // Optimize cases where the axis is along a major axis |
| 835 | if (x == 1.0 && y == 0.0 && z == 0.0) { |
| 836 | mat.m_matrix[0][0] = 1.0; |
| 837 | mat.m_matrix[0][1] = 0.0; |
| 838 | mat.m_matrix[0][2] = 0.0; |
| 839 | mat.m_matrix[1][0] = 0.0; |
| 840 | mat.m_matrix[1][1] = cosTheta; |
| 841 | mat.m_matrix[1][2] = sinTheta; |
| 842 | mat.m_matrix[2][0] = 0.0; |
| 843 | mat.m_matrix[2][1] = -sinTheta; |
| 844 | mat.m_matrix[2][2] = cosTheta; |
| 845 | mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0; |
| 846 | mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0; |
| 847 | mat.m_matrix[3][3] = 1.0; |
| 848 | } else if (x == 0.0 && y == 1.0 && z == 0.0) { |
| 849 | mat.m_matrix[0][0] = cosTheta; |
| 850 | mat.m_matrix[0][1] = 0.0; |
| 851 | mat.m_matrix[0][2] = -sinTheta; |
| 852 | mat.m_matrix[1][0] = 0.0; |
| 853 | mat.m_matrix[1][1] = 1.0; |
| 854 | mat.m_matrix[1][2] = 0.0; |
| 855 | mat.m_matrix[2][0] = sinTheta; |
| 856 | mat.m_matrix[2][1] = 0.0; |
| 857 | mat.m_matrix[2][2] = cosTheta; |
| 858 | mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0; |
| 859 | mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0; |
| 860 | mat.m_matrix[3][3] = 1.0; |
| 861 | } else if (x == 0.0 && y == 0.0 && z == 1.0) { |
| 862 | mat.m_matrix[0][0] = cosTheta; |
| 863 | mat.m_matrix[0][1] = sinTheta; |
| 864 | mat.m_matrix[0][2] = 0.0; |
| 865 | mat.m_matrix[1][0] = -sinTheta; |
| 866 | mat.m_matrix[1][1] = cosTheta; |
| 867 | mat.m_matrix[1][2] = 0.0; |
| 868 | mat.m_matrix[2][0] = 0.0; |
| 869 | mat.m_matrix[2][1] = 0.0; |
| 870 | mat.m_matrix[2][2] = 1.0; |
| 871 | mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0; |
| 872 | mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0; |
| 873 | mat.m_matrix[3][3] = 1.0; |
| 874 | } else { |
| 875 | // This case is the rotation about an arbitrary unit vector. |
| 876 | // |
| 877 | // Formula is adapted from Wikipedia article on Rotation matrix, |
| 878 | // http://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle |
| 879 | // |
| 880 | // An alternate resource with the same matrix: http://www.fastgraph.com/makegames/3drotation/ |
| 881 | // |
| 882 | double oneMinusCosTheta = 1 - cosTheta; |
| 883 | mat.m_matrix[0][0] = cosTheta + x * x * oneMinusCosTheta; |
| 884 | mat.m_matrix[0][1] = y * x * oneMinusCosTheta + z * sinTheta; |
| 885 | mat.m_matrix[0][2] = z * x * oneMinusCosTheta - y * sinTheta; |
| 886 | mat.m_matrix[1][0] = x * y * oneMinusCosTheta - z * sinTheta; |
| 887 | mat.m_matrix[1][1] = cosTheta + y * y * oneMinusCosTheta; |
| 888 | mat.m_matrix[1][2] = z * y * oneMinusCosTheta + x * sinTheta; |
| 889 | mat.m_matrix[2][0] = x * z * oneMinusCosTheta + y * sinTheta; |
| 890 | mat.m_matrix[2][1] = y * z * oneMinusCosTheta - x * sinTheta; |
| 891 | mat.m_matrix[2][2] = cosTheta + z * z * oneMinusCosTheta; |
| 892 | mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0; |
| 893 | mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0; |
| 894 | mat.m_matrix[3][3] = 1.0; |
| 895 | } |
| 896 | multiply(mat); |
| 897 | return *this; |
| 898 | } |
| 899 | |
| 900 | TransformationMatrix& TransformationMatrix::rotate3d(double rx, double ry, double rz) |
| 901 | { |
| 902 | // Angles are in degrees. Switch to radians. |
| 903 | rx = deg2rad(rx); |
| 904 | ry = deg2rad(ry); |
| 905 | rz = deg2rad(rz); |
| 906 | |
| 907 | TransformationMatrix mat; |
| 908 | |
| 909 | double sinTheta = sin(rz); |
| 910 | double cosTheta = cos(rz); |
| 911 | |
| 912 | mat.m_matrix[0][0] = cosTheta; |
| 913 | mat.m_matrix[0][1] = sinTheta; |
| 914 | mat.m_matrix[0][2] = 0.0; |
| 915 | mat.m_matrix[1][0] = -sinTheta; |
| 916 | mat.m_matrix[1][1] = cosTheta; |
| 917 | mat.m_matrix[1][2] = 0.0; |
| 918 | mat.m_matrix[2][0] = 0.0; |
| 919 | mat.m_matrix[2][1] = 0.0; |
| 920 | mat.m_matrix[2][2] = 1.0; |
| 921 | mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0; |
| 922 | mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0; |
| 923 | mat.m_matrix[3][3] = 1.0; |
| 924 | |
| 925 | TransformationMatrix rmat(mat); |
| 926 | |
| 927 | sinTheta = sin(ry); |
| 928 | cosTheta = cos(ry); |
| 929 | |
| 930 | mat.m_matrix[0][0] = cosTheta; |
| 931 | mat.m_matrix[0][1] = 0.0; |
| 932 | mat.m_matrix[0][2] = -sinTheta; |
| 933 | mat.m_matrix[1][0] = 0.0; |
| 934 | mat.m_matrix[1][1] = 1.0; |
| 935 | mat.m_matrix[1][2] = 0.0; |
| 936 | mat.m_matrix[2][0] = sinTheta; |
| 937 | mat.m_matrix[2][1] = 0.0; |
| 938 | mat.m_matrix[2][2] = cosTheta; |
| 939 | mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0; |
| 940 | mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0; |
| 941 | mat.m_matrix[3][3] = 1.0; |
| 942 | |
| 943 | rmat.multiply(mat); |
| 944 | |
| 945 | sinTheta = sin(rx); |
| 946 | cosTheta = cos(rx); |
| 947 | |
| 948 | mat.m_matrix[0][0] = 1.0; |
| 949 | mat.m_matrix[0][1] = 0.0; |
| 950 | mat.m_matrix[0][2] = 0.0; |
| 951 | mat.m_matrix[1][0] = 0.0; |
| 952 | mat.m_matrix[1][1] = cosTheta; |
| 953 | mat.m_matrix[1][2] = sinTheta; |
| 954 | mat.m_matrix[2][0] = 0.0; |
| 955 | mat.m_matrix[2][1] = -sinTheta; |
| 956 | mat.m_matrix[2][2] = cosTheta; |
| 957 | mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0; |
| 958 | mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0; |
| 959 | mat.m_matrix[3][3] = 1.0; |
| 960 | |
| 961 | rmat.multiply(mat); |
| 962 | |
| 963 | multiply(rmat); |
| 964 | return *this; |
| 965 | } |
| 966 | |
| 967 | TransformationMatrix& TransformationMatrix::translate(double tx, double ty) |
| 968 | { |
| 969 | m_matrix[3][0] += tx * m_matrix[0][0] + ty * m_matrix[1][0]; |
| 970 | m_matrix[3][1] += tx * m_matrix[0][1] + ty * m_matrix[1][1]; |
| 971 | m_matrix[3][2] += tx * m_matrix[0][2] + ty * m_matrix[1][2]; |
| 972 | m_matrix[3][3] += tx * m_matrix[0][3] + ty * m_matrix[1][3]; |
| 973 | return *this; |
| 974 | } |
| 975 | |
| 976 | TransformationMatrix& TransformationMatrix::translate3d(double tx, double ty, double tz) |
| 977 | { |
| 978 | m_matrix[3][0] += tx * m_matrix[0][0] + ty * m_matrix[1][0] + tz * m_matrix[2][0]; |
| 979 | m_matrix[3][1] += tx * m_matrix[0][1] + ty * m_matrix[1][1] + tz * m_matrix[2][1]; |
| 980 | m_matrix[3][2] += tx * m_matrix[0][2] + ty * m_matrix[1][2] + tz * m_matrix[2][2]; |
| 981 | m_matrix[3][3] += tx * m_matrix[0][3] + ty * m_matrix[1][3] + tz * m_matrix[2][3]; |
| 982 | return *this; |
| 983 | } |
| 984 | |
| 985 | TransformationMatrix& TransformationMatrix::translateRight(double tx, double ty) |
| 986 | { |
| 987 | if (tx != 0) { |
| 988 | m_matrix[0][0] += m_matrix[0][3] * tx; |
| 989 | m_matrix[1][0] += m_matrix[1][3] * tx; |
| 990 | m_matrix[2][0] += m_matrix[2][3] * tx; |
| 991 | m_matrix[3][0] += m_matrix[3][3] * tx; |
| 992 | } |
| 993 | |
| 994 | if (ty != 0) { |
| 995 | m_matrix[0][1] += m_matrix[0][3] * ty; |
| 996 | m_matrix[1][1] += m_matrix[1][3] * ty; |
| 997 | m_matrix[2][1] += m_matrix[2][3] * ty; |
| 998 | m_matrix[3][1] += m_matrix[3][3] * ty; |
| 999 | } |
| 1000 | |
| 1001 | return *this; |
| 1002 | } |
| 1003 | |
| 1004 | TransformationMatrix& TransformationMatrix::translateRight3d(double tx, double ty, double tz) |
| 1005 | { |
| 1006 | translateRight(tx, ty); |
| 1007 | if (tz != 0) { |
| 1008 | m_matrix[0][2] += m_matrix[0][3] * tz; |
| 1009 | m_matrix[1][2] += m_matrix[1][3] * tz; |
| 1010 | m_matrix[2][2] += m_matrix[2][3] * tz; |
| 1011 | m_matrix[3][2] += m_matrix[3][3] * tz; |
| 1012 | } |
| 1013 | |
| 1014 | return *this; |
| 1015 | } |
| 1016 | |
| 1017 | TransformationMatrix& TransformationMatrix::skew(double sx, double sy) |
| 1018 | { |
| 1019 | // angles are in degrees. Switch to radians |
| 1020 | sx = deg2rad(sx); |
| 1021 | sy = deg2rad(sy); |
| 1022 | |
| 1023 | TransformationMatrix mat; |
| 1024 | mat.m_matrix[0][1] = tan(sy); // note that the y shear goes in the first row |
| 1025 | mat.m_matrix[1][0] = tan(sx); // and the x shear in the second row |
| 1026 | |
| 1027 | multiply(mat); |
| 1028 | return *this; |
| 1029 | } |
| 1030 | |
| 1031 | TransformationMatrix& TransformationMatrix::applyPerspective(double p) |
| 1032 | { |
| 1033 | TransformationMatrix mat; |
| 1034 | if (p != 0) |
| 1035 | mat.m_matrix[2][3] = -1/p; |
| 1036 | |
| 1037 | multiply(mat); |
| 1038 | return *this; |
| 1039 | } |
| 1040 | |
| 1041 | TransformationMatrix TransformationMatrix::rectToRect(const FloatRect& from, const FloatRect& to) |
| 1042 | { |
| 1043 | ASSERT(!from.isEmpty()); |
| 1044 | return TransformationMatrix(to.width() / from.width(), |
| 1045 | 0, 0, |
| 1046 | to.height() / from.height(), |
| 1047 | to.x() - from.x(), |
| 1048 | to.y() - from.y()); |
| 1049 | } |
| 1050 | |
| 1051 | // this = mat * this. |
| 1052 | TransformationMatrix& TransformationMatrix::multiply(const TransformationMatrix& mat) |
| 1053 | { |
| 1054 | #if CPU(ARM64) && defined(_LP64) |
| 1055 | double* leftMatrix = &(m_matrix[0][0]); |
| 1056 | const double* rightMatrix = &(mat.m_matrix[0][0]); |
| 1057 | asm volatile ( |
| 1058 | // First, load the leftMatrix completely in memory. The leftMatrix is in v16-v23. |
| 1059 | "mov x4, %[leftMatrix]\n\t" |
| 1060 | "ld1 {v16.2d, v17.2d, v18.2d, v19.2d}, [%[leftMatrix]], #64\n\t" |
| 1061 | "ld1 {v20.2d, v21.2d, v22.2d, v23.2d}, [%[leftMatrix]]\n\t" |
| 1062 | |
| 1063 | // First row. |
| 1064 | "ld4r {v24.2d, v25.2d, v26.2d, v27.2d}, [%[rightMatrix]], #32\n\t" |
| 1065 | "fmul v28.2d, v24.2d, v16.2d\n\t" |
| 1066 | "fmul v29.2d, v24.2d, v17.2d\n\t" |
| 1067 | "fmla v28.2d, v25.2d, v18.2d\n\t" |
| 1068 | "fmla v29.2d, v25.2d, v19.2d\n\t" |
| 1069 | "fmla v28.2d, v26.2d, v20.2d\n\t" |
| 1070 | "fmla v29.2d, v26.2d, v21.2d\n\t" |
| 1071 | "fmla v28.2d, v27.2d, v22.2d\n\t" |
| 1072 | "fmla v29.2d, v27.2d, v23.2d\n\t" |
| 1073 | |
| 1074 | "ld4r {v0.2d, v1.2d, v2.2d, v3.2d}, [%[rightMatrix]], #32\n\t" |
| 1075 | "st1 {v28.2d, v29.2d}, [x4], #32\n\t" |
| 1076 | |
| 1077 | // Second row. |
| 1078 | "fmul v30.2d, v0.2d, v16.2d\n\t" |
| 1079 | "fmul v31.2d, v0.2d, v17.2d\n\t" |
| 1080 | "fmla v30.2d, v1.2d, v18.2d\n\t" |
| 1081 | "fmla v31.2d, v1.2d, v19.2d\n\t" |
| 1082 | "fmla v30.2d, v2.2d, v20.2d\n\t" |
| 1083 | "fmla v31.2d, v2.2d, v21.2d\n\t" |
| 1084 | "fmla v30.2d, v3.2d, v22.2d\n\t" |
| 1085 | "fmla v31.2d, v3.2d, v23.2d\n\t" |
| 1086 | |
| 1087 | "ld4r {v24.2d, v25.2d, v26.2d, v27.2d}, [%[rightMatrix]], #32\n\t" |
| 1088 | "st1 {v30.2d, v31.2d}, [x4], #32\n\t" |
| 1089 | |
| 1090 | // Third row. |
| 1091 | "fmul v28.2d, v24.2d, v16.2d\n\t" |
| 1092 | "fmul v29.2d, v24.2d, v17.2d\n\t" |
| 1093 | "fmla v28.2d, v25.2d, v18.2d\n\t" |
| 1094 | "fmla v29.2d, v25.2d, v19.2d\n\t" |
| 1095 | "fmla v28.2d, v26.2d, v20.2d\n\t" |
| 1096 | "fmla v29.2d, v26.2d, v21.2d\n\t" |
| 1097 | "fmla v28.2d, v27.2d, v22.2d\n\t" |
| 1098 | "fmla v29.2d, v27.2d, v23.2d\n\t" |
| 1099 | |
| 1100 | "ld4r {v0.2d, v1.2d, v2.2d, v3.2d}, [%[rightMatrix]], #32\n\t" |
| 1101 | "st1 {v28.2d, v29.2d}, [x4], #32\n\t" |
| 1102 | |
| 1103 | // Fourth row. |
| 1104 | "fmul v30.2d, v0.2d, v16.2d\n\t" |
| 1105 | "fmul v31.2d, v0.2d, v17.2d\n\t" |
| 1106 | "fmla v30.2d, v1.2d, v18.2d\n\t" |
| 1107 | "fmla v31.2d, v1.2d, v19.2d\n\t" |
| 1108 | "fmla v30.2d, v2.2d, v20.2d\n\t" |
| 1109 | "fmla v31.2d, v2.2d, v21.2d\n\t" |
| 1110 | "fmla v30.2d, v3.2d, v22.2d\n\t" |
| 1111 | "fmla v31.2d, v3.2d, v23.2d\n\t" |
| 1112 | |
| 1113 | "st1 {v30.2d, v31.2d}, [x4]\n\t" |
| 1114 | |
| 1115 | : [leftMatrix]"+r" (leftMatrix), [rightMatrix]"+r" (rightMatrix) |
| 1116 | : |
| 1117 | : "memory" , "x4" , "v0" , "v1" , "v2" , "v3" , "v16" , "v17" , "v18" , "v19" , "v20" , "v21" , "v22" , "v23" , "v24" , "v25" , "v26" , "v27" , "v28" , "v29" , "v30" , "v31" ); |
| 1118 | #elif CPU(APPLE_ARMV7S) |
| 1119 | double* leftMatrix = &(m_matrix[0][0]); |
| 1120 | const double* rightMatrix = &(mat.m_matrix[0][0]); |
| 1121 | asm volatile (// First row of leftMatrix. |
| 1122 | "mov r3, %[leftMatrix]\n\t" |
| 1123 | "vld1.64 { d16-d19 }, [%[leftMatrix], :128]!\n\t" |
| 1124 | "vld1.64 { d0-d3}, [%[rightMatrix], :128]!\n\t" |
| 1125 | "vmul.f64 d4, d0, d16\n\t" |
| 1126 | "vld1.64 { d20-d23 }, [%[leftMatrix], :128]!\n\t" |
| 1127 | "vmla.f64 d4, d1, d20\n\t" |
| 1128 | "vld1.64 { d24-d27 }, [%[leftMatrix], :128]!\n\t" |
| 1129 | "vmla.f64 d4, d2, d24\n\t" |
| 1130 | "vld1.64 { d28-d31 }, [%[leftMatrix], :128]!\n\t" |
| 1131 | "vmla.f64 d4, d3, d28\n\t" |
| 1132 | |
| 1133 | "vmul.f64 d5, d0, d17\n\t" |
| 1134 | "vmla.f64 d5, d1, d21\n\t" |
| 1135 | "vmla.f64 d5, d2, d25\n\t" |
| 1136 | "vmla.f64 d5, d3, d29\n\t" |
| 1137 | |
| 1138 | "vmul.f64 d6, d0, d18\n\t" |
| 1139 | "vmla.f64 d6, d1, d22\n\t" |
| 1140 | "vmla.f64 d6, d2, d26\n\t" |
| 1141 | "vmla.f64 d6, d3, d30\n\t" |
| 1142 | |
| 1143 | "vmul.f64 d7, d0, d19\n\t" |
| 1144 | "vmla.f64 d7, d1, d23\n\t" |
| 1145 | "vmla.f64 d7, d2, d27\n\t" |
| 1146 | "vmla.f64 d7, d3, d31\n\t" |
| 1147 | "vld1.64 { d0-d3}, [%[rightMatrix], :128]!\n\t" |
| 1148 | "vst1.64 { d4-d7 }, [r3, :128]!\n\t" |
| 1149 | |
| 1150 | // Second row of leftMatrix. |
| 1151 | "vmul.f64 d4, d0, d16\n\t" |
| 1152 | "vmla.f64 d4, d1, d20\n\t" |
| 1153 | "vmla.f64 d4, d2, d24\n\t" |
| 1154 | "vmla.f64 d4, d3, d28\n\t" |
| 1155 | |
| 1156 | "vmul.f64 d5, d0, d17\n\t" |
| 1157 | "vmla.f64 d5, d1, d21\n\t" |
| 1158 | "vmla.f64 d5, d2, d25\n\t" |
| 1159 | "vmla.f64 d5, d3, d29\n\t" |
| 1160 | |
| 1161 | "vmul.f64 d6, d0, d18\n\t" |
| 1162 | "vmla.f64 d6, d1, d22\n\t" |
| 1163 | "vmla.f64 d6, d2, d26\n\t" |
| 1164 | "vmla.f64 d6, d3, d30\n\t" |
| 1165 | |
| 1166 | "vmul.f64 d7, d0, d19\n\t" |
| 1167 | "vmla.f64 d7, d1, d23\n\t" |
| 1168 | "vmla.f64 d7, d2, d27\n\t" |
| 1169 | "vmla.f64 d7, d3, d31\n\t" |
| 1170 | "vld1.64 { d0-d3}, [%[rightMatrix], :128]!\n\t" |
| 1171 | "vst1.64 { d4-d7 }, [r3, :128]!\n\t" |
| 1172 | |
| 1173 | // Third row of leftMatrix. |
| 1174 | "vmul.f64 d4, d0, d16\n\t" |
| 1175 | "vmla.f64 d4, d1, d20\n\t" |
| 1176 | "vmla.f64 d4, d2, d24\n\t" |
| 1177 | "vmla.f64 d4, d3, d28\n\t" |
| 1178 | |
| 1179 | "vmul.f64 d5, d0, d17\n\t" |
| 1180 | "vmla.f64 d5, d1, d21\n\t" |
| 1181 | "vmla.f64 d5, d2, d25\n\t" |
| 1182 | "vmla.f64 d5, d3, d29\n\t" |
| 1183 | |
| 1184 | "vmul.f64 d6, d0, d18\n\t" |
| 1185 | "vmla.f64 d6, d1, d22\n\t" |
| 1186 | "vmla.f64 d6, d2, d26\n\t" |
| 1187 | "vmla.f64 d6, d3, d30\n\t" |
| 1188 | |
| 1189 | "vmul.f64 d7, d0, d19\n\t" |
| 1190 | "vmla.f64 d7, d1, d23\n\t" |
| 1191 | "vmla.f64 d7, d2, d27\n\t" |
| 1192 | "vmla.f64 d7, d3, d31\n\t" |
| 1193 | "vld1.64 { d0-d3}, [%[rightMatrix], :128]\n\t" |
| 1194 | "vst1.64 { d4-d7 }, [r3, :128]!\n\t" |
| 1195 | |
| 1196 | // Fourth and last row of leftMatrix. |
| 1197 | "vmul.f64 d4, d0, d16\n\t" |
| 1198 | "vmla.f64 d4, d1, d20\n\t" |
| 1199 | "vmla.f64 d4, d2, d24\n\t" |
| 1200 | "vmla.f64 d4, d3, d28\n\t" |
| 1201 | |
| 1202 | "vmul.f64 d5, d0, d17\n\t" |
| 1203 | "vmla.f64 d5, d1, d21\n\t" |
| 1204 | "vmla.f64 d5, d2, d25\n\t" |
| 1205 | "vmla.f64 d5, d3, d29\n\t" |
| 1206 | |
| 1207 | "vmul.f64 d6, d0, d18\n\t" |
| 1208 | "vmla.f64 d6, d1, d22\n\t" |
| 1209 | "vmla.f64 d6, d2, d26\n\t" |
| 1210 | "vmla.f64 d6, d3, d30\n\t" |
| 1211 | |
| 1212 | "vmul.f64 d7, d0, d19\n\t" |
| 1213 | "vmla.f64 d7, d1, d23\n\t" |
| 1214 | "vmla.f64 d7, d2, d27\n\t" |
| 1215 | "vmla.f64 d7, d3, d31\n\t" |
| 1216 | "vst1.64 { d4-d7 }, [r3, :128]\n\t" |
| 1217 | : [leftMatrix]"+r" (leftMatrix), [rightMatrix]"+r" (rightMatrix) |
| 1218 | : |
| 1219 | : "memory" , "r3" , "d0" , "d1" , "d2" , "d3" , "d4" , "d5" , "d6" , "d7" , "d16" , "d17" , "d18" , "d19" , "d20" , "d21" , "d22" , "d23" , "d24" , "d25" , "d26" , "d27" , "d28" , "d29" , "d30" , "d31" ); |
| 1220 | #elif CPU(ARM_VFP) && PLATFORM(IOS_FAMILY) |
| 1221 | |
| 1222 | #define MATRIX_MULTIPLY_ONE_LINE \ |
| 1223 | "vldmia.64 %[rightMatrix]!, { d0-d3}\n\t" \ |
| 1224 | "vmul.f64 d4, d0, d16\n\t" \ |
| 1225 | "vmla.f64 d4, d1, d20\n\t" \ |
| 1226 | "vmla.f64 d4, d2, d24\n\t" \ |
| 1227 | "vmla.f64 d4, d3, d28\n\t" \ |
| 1228 | \ |
| 1229 | "vmul.f64 d5, d0, d17\n\t" \ |
| 1230 | "vmla.f64 d5, d1, d21\n\t" \ |
| 1231 | "vmla.f64 d5, d2, d25\n\t" \ |
| 1232 | "vmla.f64 d5, d3, d29\n\t" \ |
| 1233 | \ |
| 1234 | "vmul.f64 d6, d0, d18\n\t" \ |
| 1235 | "vmla.f64 d6, d1, d22\n\t" \ |
| 1236 | "vmla.f64 d6, d2, d26\n\t" \ |
| 1237 | "vmla.f64 d6, d3, d30\n\t" \ |
| 1238 | \ |
| 1239 | "vmul.f64 d7, d0, d19\n\t" \ |
| 1240 | "vmla.f64 d7, d1, d23\n\t" \ |
| 1241 | "vmla.f64 d7, d2, d27\n\t" \ |
| 1242 | "vmla.f64 d7, d3, d31\n\t" \ |
| 1243 | "vstmia.64 %[leftMatrix]!, { d4-d7 }\n\t" |
| 1244 | |
| 1245 | double* leftMatrix = &(m_matrix[0][0]); |
| 1246 | const double* rightMatrix = &(mat.m_matrix[0][0]); |
| 1247 | // We load the full m_matrix at once in d16-d31. |
| 1248 | asm volatile("vldmia.64 %[leftMatrix], { d16-d31 }\n\t" |
| 1249 | : |
| 1250 | : [leftMatrix]"r" (leftMatrix) |
| 1251 | : "d16" , "d17" , "d18" , "d19" , "d20" , "d21" , "d22" , "d23" , "d24" , "d25" , "d26" , "d27" , "d28" , "d29" , "d30" , "d31" ); |
| 1252 | for (unsigned i = 0; i < 4; ++i) { |
| 1253 | asm volatile(MATRIX_MULTIPLY_ONE_LINE |
| 1254 | : [leftMatrix]"+r" (leftMatrix), [rightMatrix]"+r" (rightMatrix) |
| 1255 | : |
| 1256 | : "memory" , "d0" , "d1" , "d2" , "d3" , "d4" , "d5" , "d6" , "d7" ); |
| 1257 | } |
| 1258 | #undef MATRIX_MULTIPLY_ONE_LINE |
| 1259 | |
| 1260 | #elif defined(TRANSFORMATION_MATRIX_USE_X86_64_SSE2) |
| 1261 | // x86_64 has 16 XMM registers which is enough to do the multiplication fully in registers. |
| 1262 | __m128d matrixBlockA = _mm_load_pd(&(m_matrix[0][0])); |
| 1263 | __m128d matrixBlockC = _mm_load_pd(&(m_matrix[1][0])); |
| 1264 | __m128d matrixBlockE = _mm_load_pd(&(m_matrix[2][0])); |
| 1265 | __m128d matrixBlockG = _mm_load_pd(&(m_matrix[3][0])); |
| 1266 | |
| 1267 | // First row. |
| 1268 | __m128d otherMatrixFirstParam = _mm_set1_pd(mat.m_matrix[0][0]); |
| 1269 | __m128d otherMatrixSecondParam = _mm_set1_pd(mat.m_matrix[0][1]); |
| 1270 | __m128d otherMatrixThirdParam = _mm_set1_pd(mat.m_matrix[0][2]); |
| 1271 | __m128d otherMatrixFourthParam = _mm_set1_pd(mat.m_matrix[0][3]); |
| 1272 | |
| 1273 | // output00 and output01. |
| 1274 | __m128d accumulator = _mm_mul_pd(matrixBlockA, otherMatrixFirstParam); |
| 1275 | __m128d temp1 = _mm_mul_pd(matrixBlockC, otherMatrixSecondParam); |
| 1276 | __m128d temp2 = _mm_mul_pd(matrixBlockE, otherMatrixThirdParam); |
| 1277 | __m128d temp3 = _mm_mul_pd(matrixBlockG, otherMatrixFourthParam); |
| 1278 | |
| 1279 | __m128d matrixBlockB = _mm_load_pd(&(m_matrix[0][2])); |
| 1280 | __m128d matrixBlockD = _mm_load_pd(&(m_matrix[1][2])); |
| 1281 | __m128d matrixBlockF = _mm_load_pd(&(m_matrix[2][2])); |
| 1282 | __m128d matrixBlockH = _mm_load_pd(&(m_matrix[3][2])); |
| 1283 | |
| 1284 | accumulator = _mm_add_pd(accumulator, temp1); |
| 1285 | accumulator = _mm_add_pd(accumulator, temp2); |
| 1286 | accumulator = _mm_add_pd(accumulator, temp3); |
| 1287 | _mm_store_pd(&m_matrix[0][0], accumulator); |
| 1288 | |
| 1289 | // output02 and output03. |
| 1290 | accumulator = _mm_mul_pd(matrixBlockB, otherMatrixFirstParam); |
| 1291 | temp1 = _mm_mul_pd(matrixBlockD, otherMatrixSecondParam); |
| 1292 | temp2 = _mm_mul_pd(matrixBlockF, otherMatrixThirdParam); |
| 1293 | temp3 = _mm_mul_pd(matrixBlockH, otherMatrixFourthParam); |
| 1294 | |
| 1295 | accumulator = _mm_add_pd(accumulator, temp1); |
| 1296 | accumulator = _mm_add_pd(accumulator, temp2); |
| 1297 | accumulator = _mm_add_pd(accumulator, temp3); |
| 1298 | _mm_store_pd(&m_matrix[0][2], accumulator); |
| 1299 | |
| 1300 | // Second row. |
| 1301 | otherMatrixFirstParam = _mm_set1_pd(mat.m_matrix[1][0]); |
| 1302 | otherMatrixSecondParam = _mm_set1_pd(mat.m_matrix[1][1]); |
| 1303 | otherMatrixThirdParam = _mm_set1_pd(mat.m_matrix[1][2]); |
| 1304 | otherMatrixFourthParam = _mm_set1_pd(mat.m_matrix[1][3]); |
| 1305 | |
| 1306 | // output10 and output11. |
| 1307 | accumulator = _mm_mul_pd(matrixBlockA, otherMatrixFirstParam); |
| 1308 | temp1 = _mm_mul_pd(matrixBlockC, otherMatrixSecondParam); |
| 1309 | temp2 = _mm_mul_pd(matrixBlockE, otherMatrixThirdParam); |
| 1310 | temp3 = _mm_mul_pd(matrixBlockG, otherMatrixFourthParam); |
| 1311 | |
| 1312 | accumulator = _mm_add_pd(accumulator, temp1); |
| 1313 | accumulator = _mm_add_pd(accumulator, temp2); |
| 1314 | accumulator = _mm_add_pd(accumulator, temp3); |
| 1315 | _mm_store_pd(&m_matrix[1][0], accumulator); |
| 1316 | |
| 1317 | // output12 and output13. |
| 1318 | accumulator = _mm_mul_pd(matrixBlockB, otherMatrixFirstParam); |
| 1319 | temp1 = _mm_mul_pd(matrixBlockD, otherMatrixSecondParam); |
| 1320 | temp2 = _mm_mul_pd(matrixBlockF, otherMatrixThirdParam); |
| 1321 | temp3 = _mm_mul_pd(matrixBlockH, otherMatrixFourthParam); |
| 1322 | |
| 1323 | accumulator = _mm_add_pd(accumulator, temp1); |
| 1324 | accumulator = _mm_add_pd(accumulator, temp2); |
| 1325 | accumulator = _mm_add_pd(accumulator, temp3); |
| 1326 | _mm_store_pd(&m_matrix[1][2], accumulator); |
| 1327 | |
| 1328 | // Third row. |
| 1329 | otherMatrixFirstParam = _mm_set1_pd(mat.m_matrix[2][0]); |
| 1330 | otherMatrixSecondParam = _mm_set1_pd(mat.m_matrix[2][1]); |
| 1331 | otherMatrixThirdParam = _mm_set1_pd(mat.m_matrix[2][2]); |
| 1332 | otherMatrixFourthParam = _mm_set1_pd(mat.m_matrix[2][3]); |
| 1333 | |
| 1334 | // output20 and output21. |
| 1335 | accumulator = _mm_mul_pd(matrixBlockA, otherMatrixFirstParam); |
| 1336 | temp1 = _mm_mul_pd(matrixBlockC, otherMatrixSecondParam); |
| 1337 | temp2 = _mm_mul_pd(matrixBlockE, otherMatrixThirdParam); |
| 1338 | temp3 = _mm_mul_pd(matrixBlockG, otherMatrixFourthParam); |
| 1339 | |
| 1340 | accumulator = _mm_add_pd(accumulator, temp1); |
| 1341 | accumulator = _mm_add_pd(accumulator, temp2); |
| 1342 | accumulator = _mm_add_pd(accumulator, temp3); |
| 1343 | _mm_store_pd(&m_matrix[2][0], accumulator); |
| 1344 | |
| 1345 | // output22 and output23. |
| 1346 | accumulator = _mm_mul_pd(matrixBlockB, otherMatrixFirstParam); |
| 1347 | temp1 = _mm_mul_pd(matrixBlockD, otherMatrixSecondParam); |
| 1348 | temp2 = _mm_mul_pd(matrixBlockF, otherMatrixThirdParam); |
| 1349 | temp3 = _mm_mul_pd(matrixBlockH, otherMatrixFourthParam); |
| 1350 | |
| 1351 | accumulator = _mm_add_pd(accumulator, temp1); |
| 1352 | accumulator = _mm_add_pd(accumulator, temp2); |
| 1353 | accumulator = _mm_add_pd(accumulator, temp3); |
| 1354 | _mm_store_pd(&m_matrix[2][2], accumulator); |
| 1355 | |
| 1356 | // Fourth row. |
| 1357 | otherMatrixFirstParam = _mm_set1_pd(mat.m_matrix[3][0]); |
| 1358 | otherMatrixSecondParam = _mm_set1_pd(mat.m_matrix[3][1]); |
| 1359 | otherMatrixThirdParam = _mm_set1_pd(mat.m_matrix[3][2]); |
| 1360 | otherMatrixFourthParam = _mm_set1_pd(mat.m_matrix[3][3]); |
| 1361 | |
| 1362 | // output30 and output31. |
| 1363 | accumulator = _mm_mul_pd(matrixBlockA, otherMatrixFirstParam); |
| 1364 | temp1 = _mm_mul_pd(matrixBlockC, otherMatrixSecondParam); |
| 1365 | temp2 = _mm_mul_pd(matrixBlockE, otherMatrixThirdParam); |
| 1366 | temp3 = _mm_mul_pd(matrixBlockG, otherMatrixFourthParam); |
| 1367 | |
| 1368 | accumulator = _mm_add_pd(accumulator, temp1); |
| 1369 | accumulator = _mm_add_pd(accumulator, temp2); |
| 1370 | accumulator = _mm_add_pd(accumulator, temp3); |
| 1371 | _mm_store_pd(&m_matrix[3][0], accumulator); |
| 1372 | |
| 1373 | // output32 and output33. |
| 1374 | accumulator = _mm_mul_pd(matrixBlockB, otherMatrixFirstParam); |
| 1375 | temp1 = _mm_mul_pd(matrixBlockD, otherMatrixSecondParam); |
| 1376 | temp2 = _mm_mul_pd(matrixBlockF, otherMatrixThirdParam); |
| 1377 | temp3 = _mm_mul_pd(matrixBlockH, otherMatrixFourthParam); |
| 1378 | |
| 1379 | accumulator = _mm_add_pd(accumulator, temp1); |
| 1380 | accumulator = _mm_add_pd(accumulator, temp2); |
| 1381 | accumulator = _mm_add_pd(accumulator, temp3); |
| 1382 | _mm_store_pd(&m_matrix[3][2], accumulator); |
| 1383 | #else |
| 1384 | Matrix4 tmp; |
| 1385 | |
| 1386 | tmp[0][0] = (mat.m_matrix[0][0] * m_matrix[0][0] + mat.m_matrix[0][1] * m_matrix[1][0] |
| 1387 | + mat.m_matrix[0][2] * m_matrix[2][0] + mat.m_matrix[0][3] * m_matrix[3][0]); |
| 1388 | tmp[0][1] = (mat.m_matrix[0][0] * m_matrix[0][1] + mat.m_matrix[0][1] * m_matrix[1][1] |
| 1389 | + mat.m_matrix[0][2] * m_matrix[2][1] + mat.m_matrix[0][3] * m_matrix[3][1]); |
| 1390 | tmp[0][2] = (mat.m_matrix[0][0] * m_matrix[0][2] + mat.m_matrix[0][1] * m_matrix[1][2] |
| 1391 | + mat.m_matrix[0][2] * m_matrix[2][2] + mat.m_matrix[0][3] * m_matrix[3][2]); |
| 1392 | tmp[0][3] = (mat.m_matrix[0][0] * m_matrix[0][3] + mat.m_matrix[0][1] * m_matrix[1][3] |
| 1393 | + mat.m_matrix[0][2] * m_matrix[2][3] + mat.m_matrix[0][3] * m_matrix[3][3]); |
| 1394 | |
| 1395 | tmp[1][0] = (mat.m_matrix[1][0] * m_matrix[0][0] + mat.m_matrix[1][1] * m_matrix[1][0] |
| 1396 | + mat.m_matrix[1][2] * m_matrix[2][0] + mat.m_matrix[1][3] * m_matrix[3][0]); |
| 1397 | tmp[1][1] = (mat.m_matrix[1][0] * m_matrix[0][1] + mat.m_matrix[1][1] * m_matrix[1][1] |
| 1398 | + mat.m_matrix[1][2] * m_matrix[2][1] + mat.m_matrix[1][3] * m_matrix[3][1]); |
| 1399 | tmp[1][2] = (mat.m_matrix[1][0] * m_matrix[0][2] + mat.m_matrix[1][1] * m_matrix[1][2] |
| 1400 | + mat.m_matrix[1][2] * m_matrix[2][2] + mat.m_matrix[1][3] * m_matrix[3][2]); |
| 1401 | tmp[1][3] = (mat.m_matrix[1][0] * m_matrix[0][3] + mat.m_matrix[1][1] * m_matrix[1][3] |
| 1402 | + mat.m_matrix[1][2] * m_matrix[2][3] + mat.m_matrix[1][3] * m_matrix[3][3]); |
| 1403 | |
| 1404 | tmp[2][0] = (mat.m_matrix[2][0] * m_matrix[0][0] + mat.m_matrix[2][1] * m_matrix[1][0] |
| 1405 | + mat.m_matrix[2][2] * m_matrix[2][0] + mat.m_matrix[2][3] * m_matrix[3][0]); |
| 1406 | tmp[2][1] = (mat.m_matrix[2][0] * m_matrix[0][1] + mat.m_matrix[2][1] * m_matrix[1][1] |
| 1407 | + mat.m_matrix[2][2] * m_matrix[2][1] + mat.m_matrix[2][3] * m_matrix[3][1]); |
| 1408 | tmp[2][2] = (mat.m_matrix[2][0] * m_matrix[0][2] + mat.m_matrix[2][1] * m_matrix[1][2] |
| 1409 | + mat.m_matrix[2][2] * m_matrix[2][2] + mat.m_matrix[2][3] * m_matrix[3][2]); |
| 1410 | tmp[2][3] = (mat.m_matrix[2][0] * m_matrix[0][3] + mat.m_matrix[2][1] * m_matrix[1][3] |
| 1411 | + mat.m_matrix[2][2] * m_matrix[2][3] + mat.m_matrix[2][3] * m_matrix[3][3]); |
| 1412 | |
| 1413 | tmp[3][0] = (mat.m_matrix[3][0] * m_matrix[0][0] + mat.m_matrix[3][1] * m_matrix[1][0] |
| 1414 | + mat.m_matrix[3][2] * m_matrix[2][0] + mat.m_matrix[3][3] * m_matrix[3][0]); |
| 1415 | tmp[3][1] = (mat.m_matrix[3][0] * m_matrix[0][1] + mat.m_matrix[3][1] * m_matrix[1][1] |
| 1416 | + mat.m_matrix[3][2] * m_matrix[2][1] + mat.m_matrix[3][3] * m_matrix[3][1]); |
| 1417 | tmp[3][2] = (mat.m_matrix[3][0] * m_matrix[0][2] + mat.m_matrix[3][1] * m_matrix[1][2] |
| 1418 | + mat.m_matrix[3][2] * m_matrix[2][2] + mat.m_matrix[3][3] * m_matrix[3][2]); |
| 1419 | tmp[3][3] = (mat.m_matrix[3][0] * m_matrix[0][3] + mat.m_matrix[3][1] * m_matrix[1][3] |
| 1420 | + mat.m_matrix[3][2] * m_matrix[2][3] + mat.m_matrix[3][3] * m_matrix[3][3]); |
| 1421 | |
| 1422 | memcpy(&m_matrix[0][0], &tmp[0][0], sizeof(Matrix4)); |
| 1423 | #endif |
| 1424 | return *this; |
| 1425 | } |
| 1426 | |
| 1427 | void TransformationMatrix::multVecMatrix(double x, double y, double& resultX, double& resultY) const |
| 1428 | { |
| 1429 | resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0]; |
| 1430 | resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1]; |
| 1431 | double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3]; |
| 1432 | if (w != 1 && w != 0) { |
| 1433 | resultX /= w; |
| 1434 | resultY /= w; |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | void TransformationMatrix::multVecMatrix(double x, double y, double z, double& resultX, double& resultY, double& resultZ) const |
| 1439 | { |
| 1440 | resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; |
| 1441 | resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; |
| 1442 | resultZ = m_matrix[3][2] + x * m_matrix[0][2] + y * m_matrix[1][2] + z * m_matrix[2][2]; |
| 1443 | double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3] + z * m_matrix[2][3]; |
| 1444 | if (w != 1 && w != 0) { |
| 1445 | resultX /= w; |
| 1446 | resultY /= w; |
| 1447 | resultZ /= w; |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | bool TransformationMatrix::isInvertible() const |
| 1452 | { |
| 1453 | if (isIdentityOrTranslation()) |
| 1454 | return true; |
| 1455 | |
| 1456 | double det = WebCore::determinant4x4(m_matrix); |
| 1457 | |
| 1458 | if (fabs(det) < SMALL_NUMBER) |
| 1459 | return false; |
| 1460 | |
| 1461 | return true; |
| 1462 | } |
| 1463 | |
| 1464 | Optional<TransformationMatrix> TransformationMatrix::inverse() const |
| 1465 | { |
| 1466 | if (isIdentityOrTranslation()) { |
| 1467 | // identity matrix |
| 1468 | if (m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0) |
| 1469 | return TransformationMatrix(); |
| 1470 | |
| 1471 | // translation |
| 1472 | return TransformationMatrix(1, 0, 0, 0, |
| 1473 | 0, 1, 0, 0, |
| 1474 | 0, 0, 1, 0, |
| 1475 | -m_matrix[3][0], -m_matrix[3][1], -m_matrix[3][2], 1); |
| 1476 | } |
| 1477 | |
| 1478 | TransformationMatrix invMat; |
| 1479 | // FIXME: Use LU decomposition to apply the inverse instead of calculating the inverse explicitly. |
| 1480 | // Calculating the inverse of a 4x4 matrix using cofactors is numerically unstable and unnecessary to apply the inverse transformation to a point. |
| 1481 | if (!WebCore::inverse(m_matrix, invMat.m_matrix)) |
| 1482 | return WTF::nullopt; |
| 1483 | |
| 1484 | return invMat; |
| 1485 | } |
| 1486 | |
| 1487 | void TransformationMatrix::makeAffine() |
| 1488 | { |
| 1489 | m_matrix[0][2] = 0; |
| 1490 | m_matrix[0][3] = 0; |
| 1491 | |
| 1492 | m_matrix[1][2] = 0; |
| 1493 | m_matrix[1][3] = 0; |
| 1494 | |
| 1495 | m_matrix[2][0] = 0; |
| 1496 | m_matrix[2][1] = 0; |
| 1497 | m_matrix[2][2] = 1; |
| 1498 | m_matrix[2][3] = 0; |
| 1499 | |
| 1500 | m_matrix[3][2] = 0; |
| 1501 | m_matrix[3][3] = 1; |
| 1502 | } |
| 1503 | |
| 1504 | AffineTransform TransformationMatrix::toAffineTransform() const |
| 1505 | { |
| 1506 | return AffineTransform(m_matrix[0][0], m_matrix[0][1], m_matrix[1][0], |
| 1507 | m_matrix[1][1], m_matrix[3][0], m_matrix[3][1]); |
| 1508 | } |
| 1509 | |
| 1510 | static inline void blendFloat(double& from, double to, double progress) |
| 1511 | { |
| 1512 | if (from != to) |
| 1513 | from = from + (to - from) * progress; |
| 1514 | } |
| 1515 | |
| 1516 | void TransformationMatrix::blend2(const TransformationMatrix& from, double progress) |
| 1517 | { |
| 1518 | Decomposed2Type fromDecomp; |
| 1519 | Decomposed2Type toDecomp; |
| 1520 | if (!from.decompose2(fromDecomp) || !decompose2(toDecomp)) { |
| 1521 | if (progress < 0.5) |
| 1522 | *this = from; |
| 1523 | return; |
| 1524 | } |
| 1525 | |
| 1526 | // If x-axis of one is flipped, and y-axis of the other, convert to an unflipped rotation. |
| 1527 | if ((fromDecomp.scaleX < 0 && toDecomp.scaleY < 0) || (fromDecomp.scaleY < 0 && toDecomp.scaleX < 0)) { |
| 1528 | fromDecomp.scaleX = -fromDecomp.scaleX; |
| 1529 | fromDecomp.scaleY = -fromDecomp.scaleY; |
| 1530 | fromDecomp.angle += fromDecomp.angle < 0 ? 180 : -180; |
| 1531 | } |
| 1532 | |
| 1533 | // Don't rotate the long way around. |
| 1534 | if (!fromDecomp.angle) |
| 1535 | fromDecomp.angle = 360; |
| 1536 | if (!toDecomp.angle) |
| 1537 | toDecomp.angle = 360; |
| 1538 | |
| 1539 | if (fabs(fromDecomp.angle - toDecomp.angle) > 180) { |
| 1540 | if (fromDecomp.angle > toDecomp.angle) |
| 1541 | fromDecomp.angle -= 360; |
| 1542 | else |
| 1543 | toDecomp.angle -= 360; |
| 1544 | } |
| 1545 | |
| 1546 | blendFloat(fromDecomp.m11, toDecomp.m11, progress); |
| 1547 | blendFloat(fromDecomp.m12, toDecomp.m12, progress); |
| 1548 | blendFloat(fromDecomp.m21, toDecomp.m21, progress); |
| 1549 | blendFloat(fromDecomp.m22, toDecomp.m22, progress); |
| 1550 | blendFloat(fromDecomp.translateX, toDecomp.translateX, progress); |
| 1551 | blendFloat(fromDecomp.translateY, toDecomp.translateY, progress); |
| 1552 | blendFloat(fromDecomp.scaleX, toDecomp.scaleX, progress); |
| 1553 | blendFloat(fromDecomp.scaleY, toDecomp.scaleY, progress); |
| 1554 | blendFloat(fromDecomp.angle, toDecomp.angle, progress); |
| 1555 | |
| 1556 | recompose2(fromDecomp); |
| 1557 | } |
| 1558 | |
| 1559 | void TransformationMatrix::blend4(const TransformationMatrix& from, double progress) |
| 1560 | { |
| 1561 | Decomposed4Type fromDecomp; |
| 1562 | Decomposed4Type toDecomp; |
| 1563 | if (!from.decompose4(fromDecomp) || !decompose4(toDecomp)) { |
| 1564 | if (progress < 0.5) |
| 1565 | *this = from; |
| 1566 | return; |
| 1567 | } |
| 1568 | |
| 1569 | blendFloat(fromDecomp.scaleX, toDecomp.scaleX, progress); |
| 1570 | blendFloat(fromDecomp.scaleY, toDecomp.scaleY, progress); |
| 1571 | blendFloat(fromDecomp.scaleZ, toDecomp.scaleZ, progress); |
| 1572 | blendFloat(fromDecomp.skewXY, toDecomp.skewXY, progress); |
| 1573 | blendFloat(fromDecomp.skewXZ, toDecomp.skewXZ, progress); |
| 1574 | blendFloat(fromDecomp.skewYZ, toDecomp.skewYZ, progress); |
| 1575 | blendFloat(fromDecomp.translateX, toDecomp.translateX, progress); |
| 1576 | blendFloat(fromDecomp.translateY, toDecomp.translateY, progress); |
| 1577 | blendFloat(fromDecomp.translateZ, toDecomp.translateZ, progress); |
| 1578 | blendFloat(fromDecomp.perspectiveX, toDecomp.perspectiveX, progress); |
| 1579 | blendFloat(fromDecomp.perspectiveY, toDecomp.perspectiveY, progress); |
| 1580 | blendFloat(fromDecomp.perspectiveZ, toDecomp.perspectiveZ, progress); |
| 1581 | blendFloat(fromDecomp.perspectiveW, toDecomp.perspectiveW, progress); |
| 1582 | |
| 1583 | slerp(&fromDecomp.quaternionX, &toDecomp.quaternionX, progress); |
| 1584 | |
| 1585 | recompose4(fromDecomp); |
| 1586 | } |
| 1587 | |
| 1588 | void TransformationMatrix::blend(const TransformationMatrix& from, double progress) |
| 1589 | { |
| 1590 | if (from.isIdentity() && isIdentity()) |
| 1591 | return; |
| 1592 | |
| 1593 | if (from.isAffine() && isAffine()) |
| 1594 | blend2(from, progress); |
| 1595 | else |
| 1596 | blend4(from, progress); |
| 1597 | } |
| 1598 | |
| 1599 | bool TransformationMatrix::decompose2(Decomposed2Type& decomp) const |
| 1600 | { |
| 1601 | if (isIdentity()) { |
| 1602 | memset(&decomp, 0, sizeof(decomp)); |
| 1603 | decomp.scaleX = 1; |
| 1604 | decomp.scaleY = 1; |
| 1605 | decomp.m11 = 1; |
| 1606 | decomp.m22 = 1; |
| 1607 | return true; |
| 1608 | } |
| 1609 | |
| 1610 | return WebCore::decompose2(m_matrix, decomp); |
| 1611 | } |
| 1612 | |
| 1613 | bool TransformationMatrix::decompose4(Decomposed4Type& decomp) const |
| 1614 | { |
| 1615 | if (isIdentity()) { |
| 1616 | memset(&decomp, 0, sizeof(decomp)); |
| 1617 | decomp.perspectiveW = 1; |
| 1618 | decomp.scaleX = 1; |
| 1619 | decomp.scaleY = 1; |
| 1620 | decomp.scaleZ = 1; |
| 1621 | return true; |
| 1622 | } |
| 1623 | |
| 1624 | return WebCore::decompose4(m_matrix, decomp); |
| 1625 | } |
| 1626 | |
| 1627 | void TransformationMatrix::recompose2(const Decomposed2Type& decomp) |
| 1628 | { |
| 1629 | makeIdentity(); |
| 1630 | |
| 1631 | m_matrix[0][0] = decomp.m11; |
| 1632 | m_matrix[0][1] = decomp.m12; |
| 1633 | m_matrix[1][0] = decomp.m21; |
| 1634 | m_matrix[1][1] = decomp.m22; |
| 1635 | |
| 1636 | translate3d(decomp.translateX, decomp.translateY, 0); |
| 1637 | rotate(decomp.angle); |
| 1638 | scale3d(decomp.scaleX, decomp.scaleY, 1); |
| 1639 | } |
| 1640 | |
| 1641 | void TransformationMatrix::recompose4(const Decomposed4Type& decomp) |
| 1642 | { |
| 1643 | makeIdentity(); |
| 1644 | |
| 1645 | // First apply perspective. |
| 1646 | m_matrix[0][3] = decomp.perspectiveX; |
| 1647 | m_matrix[1][3] = decomp.perspectiveY; |
| 1648 | m_matrix[2][3] = decomp.perspectiveZ; |
| 1649 | m_matrix[3][3] = decomp.perspectiveW; |
| 1650 | |
| 1651 | // Next, translate. |
| 1652 | translate3d(decomp.translateX, decomp.translateY, decomp.translateZ); |
| 1653 | |
| 1654 | // Apply rotation. |
| 1655 | double xx = decomp.quaternionX * decomp.quaternionX; |
| 1656 | double xy = decomp.quaternionX * decomp.quaternionY; |
| 1657 | double xz = decomp.quaternionX * decomp.quaternionZ; |
| 1658 | double xw = decomp.quaternionX * decomp.quaternionW; |
| 1659 | double yy = decomp.quaternionY * decomp.quaternionY; |
| 1660 | double yz = decomp.quaternionY * decomp.quaternionZ; |
| 1661 | double yw = decomp.quaternionY * decomp.quaternionW; |
| 1662 | double zz = decomp.quaternionZ * decomp.quaternionZ; |
| 1663 | double zw = decomp.quaternionZ * decomp.quaternionW; |
| 1664 | |
| 1665 | // Construct a composite rotation matrix from the quaternion values. |
| 1666 | TransformationMatrix rotationMatrix(1 - 2 * (yy + zz), 2 * (xy - zw), 2 * (xz + yw), 0, |
| 1667 | 2 * (xy + zw), 1 - 2 * (xx + zz), 2 * (yz - xw), 0, |
| 1668 | 2 * (xz - yw), 2 * (yz + xw), 1 - 2 * (xx + yy), 0, |
| 1669 | 0, 0, 0, 1); |
| 1670 | |
| 1671 | multiply(rotationMatrix); |
| 1672 | |
| 1673 | // Apply skew. |
| 1674 | if (decomp.skewYZ) { |
| 1675 | TransformationMatrix tmp; |
| 1676 | tmp.setM32(decomp.skewYZ); |
| 1677 | multiply(tmp); |
| 1678 | } |
| 1679 | |
| 1680 | if (decomp.skewXZ) { |
| 1681 | TransformationMatrix tmp; |
| 1682 | tmp.setM31(decomp.skewXZ); |
| 1683 | multiply(tmp); |
| 1684 | } |
| 1685 | |
| 1686 | if (decomp.skewXY) { |
| 1687 | TransformationMatrix tmp; |
| 1688 | tmp.setM21(decomp.skewXY); |
| 1689 | multiply(tmp); |
| 1690 | } |
| 1691 | |
| 1692 | // Finally, apply scale. |
| 1693 | scale3d(decomp.scaleX, decomp.scaleY, decomp.scaleZ); |
| 1694 | } |
| 1695 | |
| 1696 | bool TransformationMatrix::isIntegerTranslation() const |
| 1697 | { |
| 1698 | if (!isIdentityOrTranslation()) |
| 1699 | return false; |
| 1700 | |
| 1701 | // Check for translate Z. |
| 1702 | if (m_matrix[3][2]) |
| 1703 | return false; |
| 1704 | |
| 1705 | // Check for non-integer translate X/Y. |
| 1706 | if (static_cast<int>(m_matrix[3][0]) != m_matrix[3][0] || static_cast<int>(m_matrix[3][1]) != m_matrix[3][1]) |
| 1707 | return false; |
| 1708 | |
| 1709 | return true; |
| 1710 | } |
| 1711 | |
| 1712 | bool TransformationMatrix::containsOnlyFiniteValues() const |
| 1713 | { |
| 1714 | return std::isfinite(m_matrix[0][0]) && std::isfinite(m_matrix[0][1]) && std::isfinite(m_matrix[0][2]) && std::isfinite(m_matrix[0][3]) |
| 1715 | && std::isfinite(m_matrix[1][0]) && std::isfinite(m_matrix[1][1]) && std::isfinite(m_matrix[1][2]) && std::isfinite(m_matrix[1][3]) |
| 1716 | && std::isfinite(m_matrix[2][0]) && std::isfinite(m_matrix[2][1]) && std::isfinite(m_matrix[2][2]) && std::isfinite(m_matrix[2][3]) |
| 1717 | && std::isfinite(m_matrix[3][0]) && std::isfinite(m_matrix[3][1]) && std::isfinite(m_matrix[3][2]) && std::isfinite(m_matrix[3][3]); |
| 1718 | } |
| 1719 | |
| 1720 | TransformationMatrix TransformationMatrix::to2dTransform() const |
| 1721 | { |
| 1722 | return TransformationMatrix(m_matrix[0][0], m_matrix[0][1], 0, m_matrix[0][3], |
| 1723 | m_matrix[1][0], m_matrix[1][1], 0, m_matrix[1][3], |
| 1724 | 0, 0, 1, 0, |
| 1725 | m_matrix[3][0], m_matrix[3][1], 0, m_matrix[3][3]); |
| 1726 | } |
| 1727 | |
| 1728 | auto TransformationMatrix::toColumnMajorFloatArray() const -> FloatMatrix4 |
| 1729 | { |
| 1730 | return { { |
| 1731 | float(m11()), float(m12()), float(m13()), float(m14()), |
| 1732 | float(m21()), float(m22()), float(m23()), float(m24()), |
| 1733 | float(m31()), float(m32()), float(m33()), float(m34()), |
| 1734 | float(m41()), float(m42()), float(m43()), float(m44()) } }; |
| 1735 | } |
| 1736 | |
| 1737 | bool TransformationMatrix::isBackFaceVisible() const |
| 1738 | { |
| 1739 | // Back-face visibility is determined by transforming the normal vector (0, 0, 1) and |
| 1740 | // checking the sign of the resulting z component. However, normals cannot be |
| 1741 | // transformed by the original matrix, they require being transformed by the |
| 1742 | // inverse-transpose. |
| 1743 | // |
| 1744 | // Since we know we will be using (0, 0, 1), and we only care about the z-component of |
| 1745 | // the transformed normal, then we only need the m33() element of the |
| 1746 | // inverse-transpose. Therefore we do not need the transpose. |
| 1747 | // |
| 1748 | // Additionally, if we only need the m33() element, we do not need to compute a full |
| 1749 | // inverse. Instead, knowing the inverse of a matrix is adjoint(matrix) / determinant, |
| 1750 | // we can simply compute the m33() of the adjoint (adjugate) matrix, without computing |
| 1751 | // the full adjoint. |
| 1752 | |
| 1753 | double determinant = WebCore::determinant4x4(m_matrix); |
| 1754 | |
| 1755 | // If the matrix is not invertible, then we assume its backface is not visible. |
| 1756 | if (fabs(determinant) < SMALL_NUMBER) |
| 1757 | return false; |
| 1758 | |
| 1759 | double cofactor33 = determinant3x3(m11(), m12(), m14(), m21(), m22(), m24(), m41(), m42(), m44()); |
| 1760 | double zComponentOfTransformedNormal = cofactor33 / determinant; |
| 1761 | |
| 1762 | return zComponentOfTransformedNormal < 0; |
| 1763 | } |
| 1764 | |
| 1765 | TextStream& operator<<(TextStream& ts, const TransformationMatrix& transform) |
| 1766 | { |
| 1767 | TextStream::IndentScope indentScope(ts); |
| 1768 | ts << "\n" ; |
| 1769 | ts << indent << "[" << transform.m11() << " " << transform.m12() << " " << transform.m13() << " " << transform.m14() << "]\n" ; |
| 1770 | ts << indent << "[" << transform.m21() << " " << transform.m22() << " " << transform.m23() << " " << transform.m24() << "]\n" ; |
| 1771 | ts << indent << "[" << transform.m31() << " " << transform.m32() << " " << transform.m33() << " " << transform.m34() << "]\n" ; |
| 1772 | ts << indent << "[" << transform.m41() << " " << transform.m42() << " " << transform.m43() << " " << transform.m44() << "]" ; |
| 1773 | return ts; |
| 1774 | } |
| 1775 | |
| 1776 | } |
| 1777 | |