| 1 | /* |
| 2 | * Copyright (C) 2006, 2007 Eric Seidel <eric@webkit.org> |
| 3 | * Copyright (C) 2015 Apple Inc. All rights reserved. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Library General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Library General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Library General Public License |
| 16 | * along with this library; see the file COPYING.LIB. If not, write to |
| 17 | * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| 18 | * Boston, MA 02110-1301, USA. |
| 19 | */ |
| 20 | |
| 21 | #include "config.h" |
| 22 | #include "PathTraversalState.h" |
| 23 | |
| 24 | #include <wtf/MathExtras.h> |
| 25 | #include <wtf/Vector.h> |
| 26 | |
| 27 | namespace WebCore { |
| 28 | |
| 29 | static const float kPathSegmentLengthTolerance = 0.00001f; |
| 30 | |
| 31 | static inline FloatPoint midPoint(const FloatPoint& first, const FloatPoint& second) |
| 32 | { |
| 33 | return FloatPoint((first.x() + second.x()) / 2.0f, (first.y() + second.y()) / 2.0f); |
| 34 | } |
| 35 | |
| 36 | static inline float distanceLine(const FloatPoint& start, const FloatPoint& end) |
| 37 | { |
| 38 | float dx = end.x() - start.x(); |
| 39 | float dy = end.y() - start.y(); |
| 40 | return sqrtf(dx * dx + dy * dy); |
| 41 | } |
| 42 | |
| 43 | struct QuadraticBezier { |
| 44 | QuadraticBezier() { } |
| 45 | QuadraticBezier(const FloatPoint& s, const FloatPoint& c, const FloatPoint& e) |
| 46 | : start(s) |
| 47 | , control(c) |
| 48 | , end(e) |
| 49 | { |
| 50 | } |
| 51 | |
| 52 | bool operator==(const QuadraticBezier& rhs) const |
| 53 | { |
| 54 | return start == rhs.start |
| 55 | && control == rhs.control |
| 56 | && end == rhs.end; |
| 57 | } |
| 58 | |
| 59 | float approximateDistance() const |
| 60 | { |
| 61 | return distanceLine(start, control) + distanceLine(control, end); |
| 62 | } |
| 63 | |
| 64 | bool split(QuadraticBezier& left, QuadraticBezier& right) const |
| 65 | { |
| 66 | left.control = midPoint(start, control); |
| 67 | right.control = midPoint(control, end); |
| 68 | |
| 69 | FloatPoint leftControlToRightControl = midPoint(left.control, right.control); |
| 70 | left.end = leftControlToRightControl; |
| 71 | right.start = leftControlToRightControl; |
| 72 | |
| 73 | left.start = start; |
| 74 | right.end = end; |
| 75 | |
| 76 | return !(left == *this) && !(right == *this); |
| 77 | } |
| 78 | |
| 79 | FloatPoint start; |
| 80 | FloatPoint control; |
| 81 | FloatPoint end; |
| 82 | }; |
| 83 | |
| 84 | struct CubicBezier { |
| 85 | CubicBezier() { } |
| 86 | CubicBezier(const FloatPoint& s, const FloatPoint& c1, const FloatPoint& c2, const FloatPoint& e) |
| 87 | : start(s) |
| 88 | , control1(c1) |
| 89 | , control2(c2) |
| 90 | , end(e) |
| 91 | { |
| 92 | } |
| 93 | |
| 94 | bool operator==(const CubicBezier& rhs) const |
| 95 | { |
| 96 | return start == rhs.start |
| 97 | && control1 == rhs.control1 |
| 98 | && control2 == rhs.control2 |
| 99 | && end == rhs.end; |
| 100 | } |
| 101 | |
| 102 | float approximateDistance() const |
| 103 | { |
| 104 | return distanceLine(start, control1) + distanceLine(control1, control2) + distanceLine(control2, end); |
| 105 | } |
| 106 | |
| 107 | bool split(CubicBezier& left, CubicBezier& right) const |
| 108 | { |
| 109 | FloatPoint startToControl1 = midPoint(control1, control2); |
| 110 | |
| 111 | left.start = start; |
| 112 | left.control1 = midPoint(start, control1); |
| 113 | left.control2 = midPoint(left.control1, startToControl1); |
| 114 | |
| 115 | right.control2 = midPoint(control2, end); |
| 116 | right.control1 = midPoint(right.control2, startToControl1); |
| 117 | right.end = end; |
| 118 | |
| 119 | FloatPoint leftControl2ToRightControl1 = midPoint(left.control2, right.control1); |
| 120 | left.end = leftControl2ToRightControl1; |
| 121 | right.start = leftControl2ToRightControl1; |
| 122 | |
| 123 | return !(left == *this) && !(right == *this); |
| 124 | } |
| 125 | |
| 126 | FloatPoint start; |
| 127 | FloatPoint control1; |
| 128 | FloatPoint control2; |
| 129 | FloatPoint end; |
| 130 | }; |
| 131 | |
| 132 | // FIXME: This function is possibly very slow due to the ifs required for proper path measuring |
| 133 | // A simple speed-up would be to use an additional boolean template parameter to control whether |
| 134 | // to use the "fast" version of this function with no PathTraversalState updating, vs. the slow |
| 135 | // version which does update the PathTraversalState. We'll have to shark it to see if that's necessary. |
| 136 | // Another check which is possible up-front (to send us down the fast path) would be to check if |
| 137 | // approximateDistance() + current total distance > desired distance |
| 138 | template<class CurveType> |
| 139 | static float curveLength(const PathTraversalState& traversalState, const CurveType& originalCurve, FloatPoint& previous, FloatPoint& current) |
| 140 | { |
| 141 | static const unsigned curveStackDepthLimit = 20; |
| 142 | CurveType curve = originalCurve; |
| 143 | Vector<CurveType, curveStackDepthLimit> curveStack; |
| 144 | float totalLength = 0; |
| 145 | |
| 146 | while (true) { |
| 147 | float length = curve.approximateDistance(); |
| 148 | |
| 149 | CurveType leftCurve; |
| 150 | CurveType rightCurve; |
| 151 | |
| 152 | if ((length - distanceLine(curve.start, curve.end)) > kPathSegmentLengthTolerance && curveStack.size() < curveStackDepthLimit && curve.split(leftCurve, rightCurve)) { |
| 153 | curve = leftCurve; |
| 154 | curveStack.append(rightCurve); |
| 155 | continue; |
| 156 | } |
| 157 | |
| 158 | totalLength += length; |
| 159 | if (traversalState.action() == PathTraversalState::Action::VectorAtLength) { |
| 160 | previous = curve.start; |
| 161 | current = curve.end; |
| 162 | if (traversalState.totalLength() + totalLength > traversalState.desiredLength()) |
| 163 | break; |
| 164 | } |
| 165 | |
| 166 | if (curveStack.isEmpty()) |
| 167 | break; |
| 168 | |
| 169 | curve = curveStack.last(); |
| 170 | curveStack.removeLast(); |
| 171 | } |
| 172 | |
| 173 | if (traversalState.action() != PathTraversalState::Action::VectorAtLength) { |
| 174 | ASSERT(curve.end == originalCurve.end); |
| 175 | previous = curve.start; |
| 176 | current = curve.end; |
| 177 | } |
| 178 | |
| 179 | return totalLength; |
| 180 | } |
| 181 | |
| 182 | PathTraversalState::PathTraversalState(Action action, float desiredLength) |
| 183 | : m_action(action) |
| 184 | , m_desiredLength(desiredLength) |
| 185 | { |
| 186 | ASSERT(action != Action::TotalLength || !desiredLength); |
| 187 | } |
| 188 | |
| 189 | void PathTraversalState::closeSubpath() |
| 190 | { |
| 191 | m_totalLength += distanceLine(m_current, m_start); |
| 192 | m_current = m_start; |
| 193 | } |
| 194 | |
| 195 | void PathTraversalState::moveTo(const FloatPoint& point) |
| 196 | { |
| 197 | m_previous = m_current = m_start = point; |
| 198 | } |
| 199 | |
| 200 | void PathTraversalState::lineTo(const FloatPoint& point) |
| 201 | { |
| 202 | m_totalLength += distanceLine(m_current, point); |
| 203 | m_current = point; |
| 204 | } |
| 205 | |
| 206 | void PathTraversalState::quadraticBezierTo(const FloatPoint& newControl, const FloatPoint& newEnd) |
| 207 | { |
| 208 | m_totalLength += curveLength<QuadraticBezier>(*this, QuadraticBezier(m_current, newControl, newEnd), m_previous, m_current); |
| 209 | } |
| 210 | |
| 211 | void PathTraversalState::cubicBezierTo(const FloatPoint& newControl1, const FloatPoint& newControl2, const FloatPoint& newEnd) |
| 212 | { |
| 213 | m_totalLength += curveLength<CubicBezier>(*this, CubicBezier(m_current, newControl1, newControl2, newEnd), m_previous, m_current); |
| 214 | } |
| 215 | |
| 216 | bool PathTraversalState::finalizeAppendPathElement() |
| 217 | { |
| 218 | if (m_action == Action::TotalLength) |
| 219 | return false; |
| 220 | |
| 221 | if (m_action == Action::SegmentAtLength) { |
| 222 | if (m_totalLength >= m_desiredLength) |
| 223 | m_success = true; |
| 224 | return m_success; |
| 225 | } |
| 226 | |
| 227 | ASSERT(m_action == Action::VectorAtLength); |
| 228 | |
| 229 | if (m_totalLength >= m_desiredLength) { |
| 230 | float slope = FloatPoint(m_current - m_previous).slopeAngleRadians(); |
| 231 | float offset = m_desiredLength - m_totalLength; |
| 232 | m_current.move(offset * cosf(slope), offset * sinf(slope)); |
| 233 | |
| 234 | if (!m_isZeroVector && !m_desiredLength) |
| 235 | m_isZeroVector = true; |
| 236 | else { |
| 237 | m_success = true; |
| 238 | m_normalAngle = rad2deg(slope); |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | m_previous = m_current; |
| 243 | return m_success; |
| 244 | } |
| 245 | |
| 246 | bool PathTraversalState::appendPathElement(PathElementType type, const FloatPoint* points) |
| 247 | { |
| 248 | switch (type) { |
| 249 | case PathElementMoveToPoint: |
| 250 | moveTo(points[0]); |
| 251 | break; |
| 252 | case PathElementAddLineToPoint: |
| 253 | lineTo(points[0]); |
| 254 | break; |
| 255 | case PathElementAddQuadCurveToPoint: |
| 256 | quadraticBezierTo(points[0], points[1]); |
| 257 | break; |
| 258 | case PathElementAddCurveToPoint: |
| 259 | cubicBezierTo(points[0], points[1], points[2]); |
| 260 | break; |
| 261 | case PathElementCloseSubpath: |
| 262 | closeSubpath(); |
| 263 | break; |
| 264 | } |
| 265 | |
| 266 | return finalizeAppendPathElement(); |
| 267 | } |
| 268 | |
| 269 | bool PathTraversalState::processPathElement(PathElementType type, const FloatPoint* points) |
| 270 | { |
| 271 | if (m_success) |
| 272 | return true; |
| 273 | |
| 274 | if (m_isZeroVector) { |
| 275 | PathTraversalState traversalState(*this); |
| 276 | m_success = traversalState.appendPathElement(type, points); |
| 277 | m_normalAngle = traversalState.m_normalAngle; |
| 278 | return m_success; |
| 279 | } |
| 280 | |
| 281 | return appendPathElement(type, points); |
| 282 | } |
| 283 | |
| 284 | } |
| 285 | |
| 286 | |