| 1 | /* |
| 2 | * Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * |
| 8 | * 1. Redistributions of source code must retain the above |
| 9 | * copyright notice, this list of conditions and the following |
| 10 | * disclaimer. |
| 11 | * 2. Redistributions in binary form must reproduce the above |
| 12 | * copyright notice, this list of conditions and the following |
| 13 | * disclaimer in the documentation and/or other materials |
| 14 | * provided with the distribution. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 19 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 20 | * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
| 21 | * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 23 | * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 24 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 25 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 27 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 | */ |
| 29 | |
| 30 | #include "config.h" |
| 31 | #include "FloatPolygon.h" |
| 32 | |
| 33 | #include <wtf/HexNumber.h> |
| 34 | #include <wtf/MathExtras.h> |
| 35 | #include <wtf/text/StringConcatenateNumbers.h> |
| 36 | |
| 37 | namespace WebCore { |
| 38 | |
| 39 | namespace FloatPolygonInternal { |
| 40 | static inline float determinant(const FloatSize& a, const FloatSize& b) |
| 41 | { |
| 42 | return a.width() * b.height() - a.height() * b.width(); |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | static inline bool areCollinearPoints(const FloatPoint& p0, const FloatPoint& p1, const FloatPoint& p2) |
| 47 | { |
| 48 | return !FloatPolygonInternal::determinant(p1 - p0, p2 - p0); |
| 49 | } |
| 50 | |
| 51 | static inline bool areCoincidentPoints(const FloatPoint& p0, const FloatPoint& p1) |
| 52 | { |
| 53 | return p0.x() == p1.x() && p0.y() == p1.y(); |
| 54 | } |
| 55 | |
| 56 | static inline bool isPointOnLineSegment(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point) |
| 57 | { |
| 58 | return point.x() >= std::min(vertex1.x(), vertex2.x()) |
| 59 | && point.x() <= std::max(vertex1.x(), vertex2.x()) |
| 60 | && areCollinearPoints(vertex1, vertex2, point); |
| 61 | } |
| 62 | |
| 63 | static inline unsigned nextVertexIndex(unsigned vertexIndex, unsigned nVertices, bool clockwise) |
| 64 | { |
| 65 | return ((clockwise) ? vertexIndex + 1 : vertexIndex - 1 + nVertices) % nVertices; |
| 66 | } |
| 67 | |
| 68 | static unsigned findNextEdgeVertexIndex(const FloatPolygon& polygon, unsigned vertexIndex1, bool clockwise) |
| 69 | { |
| 70 | unsigned nVertices = polygon.numberOfVertices(); |
| 71 | unsigned vertexIndex2 = nextVertexIndex(vertexIndex1, nVertices, clockwise); |
| 72 | |
| 73 | while (vertexIndex2 && areCoincidentPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2))) |
| 74 | vertexIndex2 = nextVertexIndex(vertexIndex2, nVertices, clockwise); |
| 75 | |
| 76 | while (vertexIndex2) { |
| 77 | unsigned vertexIndex3 = nextVertexIndex(vertexIndex2, nVertices, clockwise); |
| 78 | if (!areCollinearPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2), polygon.vertexAt(vertexIndex3))) |
| 79 | break; |
| 80 | vertexIndex2 = vertexIndex3; |
| 81 | } |
| 82 | |
| 83 | return vertexIndex2; |
| 84 | } |
| 85 | |
| 86 | FloatPolygon::FloatPolygon(std::unique_ptr<Vector<FloatPoint>> vertices, WindRule fillRule) |
| 87 | : m_vertices(WTFMove(vertices)) |
| 88 | , m_fillRule(fillRule) |
| 89 | { |
| 90 | unsigned nVertices = numberOfVertices(); |
| 91 | m_edges.resize(nVertices); |
| 92 | m_empty = nVertices < 3; |
| 93 | |
| 94 | if (nVertices) |
| 95 | m_boundingBox.setLocation(vertexAt(0)); |
| 96 | |
| 97 | if (m_empty) |
| 98 | return; |
| 99 | |
| 100 | unsigned minVertexIndex = 0; |
| 101 | for (unsigned i = 1; i < nVertices; ++i) { |
| 102 | const FloatPoint& vertex = vertexAt(i); |
| 103 | if (vertex.y() < vertexAt(minVertexIndex).y() || (vertex.y() == vertexAt(minVertexIndex).y() && vertex.x() < vertexAt(minVertexIndex).x())) |
| 104 | minVertexIndex = i; |
| 105 | } |
| 106 | FloatPoint nextVertex = vertexAt((minVertexIndex + 1) % nVertices); |
| 107 | FloatPoint prevVertex = vertexAt((minVertexIndex + nVertices - 1) % nVertices); |
| 108 | bool clockwise = FloatPolygonInternal::determinant(vertexAt(minVertexIndex) - prevVertex, nextVertex - prevVertex) > 0; |
| 109 | |
| 110 | unsigned edgeIndex = 0; |
| 111 | unsigned vertexIndex1 = 0; |
| 112 | do { |
| 113 | m_boundingBox.extend(vertexAt(vertexIndex1)); |
| 114 | unsigned vertexIndex2 = findNextEdgeVertexIndex(*this, vertexIndex1, clockwise); |
| 115 | m_edges[edgeIndex].m_polygon = this; |
| 116 | m_edges[edgeIndex].m_vertexIndex1 = vertexIndex1; |
| 117 | m_edges[edgeIndex].m_vertexIndex2 = vertexIndex2; |
| 118 | m_edges[edgeIndex].m_edgeIndex = edgeIndex; |
| 119 | ++edgeIndex; |
| 120 | vertexIndex1 = vertexIndex2; |
| 121 | } while (vertexIndex1); |
| 122 | |
| 123 | if (edgeIndex > 3) { |
| 124 | const FloatPolygonEdge& firstEdge = m_edges[0]; |
| 125 | const FloatPolygonEdge& lastEdge = m_edges[edgeIndex - 1]; |
| 126 | if (areCollinearPoints(lastEdge.vertex1(), lastEdge.vertex2(), firstEdge.vertex2())) { |
| 127 | m_edges[0].m_vertexIndex1 = lastEdge.m_vertexIndex1; |
| 128 | edgeIndex--; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | m_edges.resize(edgeIndex); |
| 133 | m_empty = m_edges.size() < 3; |
| 134 | |
| 135 | if (m_empty) |
| 136 | return; |
| 137 | |
| 138 | for (unsigned i = 0; i < m_edges.size(); ++i) { |
| 139 | FloatPolygonEdge* edge = &m_edges[i]; |
| 140 | m_edgeTree.add(EdgeInterval(edge->minY(), edge->maxY(), edge)); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | bool FloatPolygon::overlappingEdges(float minY, float maxY, Vector<const FloatPolygonEdge*>& result) const |
| 145 | { |
| 146 | Vector<FloatPolygon::EdgeInterval> overlappingEdgeIntervals; |
| 147 | m_edgeTree.allOverlaps(FloatPolygon::EdgeInterval(minY, maxY, 0), overlappingEdgeIntervals); |
| 148 | unsigned overlappingEdgeIntervalsSize = overlappingEdgeIntervals.size(); |
| 149 | result.resize(overlappingEdgeIntervalsSize); |
| 150 | for (unsigned i = 0; i < overlappingEdgeIntervalsSize; ++i) { |
| 151 | const FloatPolygonEdge* edge = static_cast<const FloatPolygonEdge*>(overlappingEdgeIntervals[i].data()); |
| 152 | ASSERT(edge); |
| 153 | result[i] = edge; |
| 154 | } |
| 155 | return overlappingEdgeIntervalsSize > 0; |
| 156 | } |
| 157 | |
| 158 | static inline float leftSide(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point) |
| 159 | { |
| 160 | return ((point.x() - vertex1.x()) * (vertex2.y() - vertex1.y())) - ((vertex2.x() - vertex1.x()) * (point.y() - vertex1.y())); |
| 161 | } |
| 162 | |
| 163 | bool FloatPolygon::containsEvenOdd(const FloatPoint& point) const |
| 164 | { |
| 165 | unsigned crossingCount = 0; |
| 166 | for (unsigned i = 0; i < numberOfEdges(); ++i) { |
| 167 | const FloatPoint& vertex1 = edgeAt(i).vertex1(); |
| 168 | const FloatPoint& vertex2 = edgeAt(i).vertex2(); |
| 169 | if (isPointOnLineSegment(vertex1, vertex2, point)) |
| 170 | return true; |
| 171 | if ((vertex1.y() <= point.y() && vertex2.y() > point.y()) || (vertex1.y() > point.y() && vertex2.y() <= point.y())) { |
| 172 | float vt = (point.y() - vertex1.y()) / (vertex2.y() - vertex1.y()); |
| 173 | if (point.x() < vertex1.x() + vt * (vertex2.x() - vertex1.x())) |
| 174 | ++crossingCount; |
| 175 | } |
| 176 | } |
| 177 | return crossingCount & 1; |
| 178 | } |
| 179 | |
| 180 | bool FloatPolygon::containsNonZero(const FloatPoint& point) const |
| 181 | { |
| 182 | int windingNumber = 0; |
| 183 | for (unsigned i = 0; i < numberOfEdges(); ++i) { |
| 184 | const FloatPoint& vertex1 = edgeAt(i).vertex1(); |
| 185 | const FloatPoint& vertex2 = edgeAt(i).vertex2(); |
| 186 | if (isPointOnLineSegment(vertex1, vertex2, point)) |
| 187 | return true; |
| 188 | if (vertex2.y() < point.y()) { |
| 189 | if ((vertex1.y() > point.y()) && (leftSide(vertex1, vertex2, point) > 0)) |
| 190 | ++windingNumber; |
| 191 | } else if (vertex2.y() > point.y()) { |
| 192 | if ((vertex1.y() <= point.y()) && (leftSide(vertex1, vertex2, point) < 0)) |
| 193 | --windingNumber; |
| 194 | } |
| 195 | } |
| 196 | return windingNumber; |
| 197 | } |
| 198 | |
| 199 | bool FloatPolygon::contains(const FloatPoint& point) const |
| 200 | { |
| 201 | if (!m_boundingBox.contains(point)) |
| 202 | return false; |
| 203 | return fillRule() == WindRule::NonZero ? containsNonZero(point) : containsEvenOdd(point); |
| 204 | } |
| 205 | |
| 206 | bool VertexPair::overlapsRect(const FloatRect& rect) const |
| 207 | { |
| 208 | bool boundsOverlap = (minX() < rect.maxX()) && (maxX() > rect.x()) && (minY() < rect.maxY()) && (maxY() > rect.y()); |
| 209 | if (!boundsOverlap) |
| 210 | return false; |
| 211 | |
| 212 | float leftSideValues[4] = { |
| 213 | leftSide(vertex1(), vertex2(), rect.minXMinYCorner()), |
| 214 | leftSide(vertex1(), vertex2(), rect.maxXMinYCorner()), |
| 215 | leftSide(vertex1(), vertex2(), rect.minXMaxYCorner()), |
| 216 | leftSide(vertex1(), vertex2(), rect.maxXMaxYCorner()) |
| 217 | }; |
| 218 | |
| 219 | int currentLeftSideSign = 0; |
| 220 | for (unsigned i = 0; i < 4; ++i) { |
| 221 | if (!leftSideValues[i]) |
| 222 | continue; |
| 223 | int leftSideSign = leftSideValues[i] > 0 ? 1 : -1; |
| 224 | if (!currentLeftSideSign) |
| 225 | currentLeftSideSign = leftSideSign; |
| 226 | else if (currentLeftSideSign != leftSideSign) |
| 227 | return true; |
| 228 | } |
| 229 | |
| 230 | return false; |
| 231 | } |
| 232 | |
| 233 | bool VertexPair::intersection(const VertexPair& other, FloatPoint& point) const |
| 234 | { |
| 235 | // See: http://paulbourke.net/geometry/pointlineplane/, "Intersection point of two lines in 2 dimensions" |
| 236 | |
| 237 | const FloatSize& thisDelta = vertex2() - vertex1(); |
| 238 | const FloatSize& otherDelta = other.vertex2() - other.vertex1(); |
| 239 | float denominator = FloatPolygonInternal::determinant(thisDelta, otherDelta); |
| 240 | if (!denominator) |
| 241 | return false; |
| 242 | |
| 243 | // The two line segments: "this" vertex1,vertex2 and "other" vertex1,vertex2, have been defined |
| 244 | // in parametric form. Each point on the line segment is: vertex1 + u * (vertex2 - vertex1), |
| 245 | // when 0 <= u <= 1. We're computing the values of u for each line at their intersection point. |
| 246 | |
| 247 | const FloatSize& vertex1Delta = vertex1() - other.vertex1(); |
| 248 | float uThisLine = FloatPolygonInternal::determinant(otherDelta, vertex1Delta) / denominator; |
| 249 | float uOtherLine = FloatPolygonInternal::determinant(thisDelta, vertex1Delta) / denominator; |
| 250 | |
| 251 | if (uThisLine < 0 || uOtherLine < 0 || uThisLine > 1 || uOtherLine > 1) |
| 252 | return false; |
| 253 | |
| 254 | point = vertex1() + uThisLine * thisDelta; |
| 255 | return true; |
| 256 | } |
| 257 | |
| 258 | #ifndef NDEBUG |
| 259 | |
| 260 | String FloatPolygonEdge::debugString() const |
| 261 | { |
| 262 | return makeString("0x" , hex(reinterpret_cast<uintptr_t>(this)), " (" , FormattedNumber::fixedPrecision(vertex1().x()), ',', FormattedNumber::fixedPrecision(vertex1().y()), ' ', FormattedNumber::fixedPrecision(vertex2().x()), ',', FormattedNumber::fixedPrecision(vertex2().y()), ')'); |
| 263 | } |
| 264 | |
| 265 | #endif |
| 266 | |
| 267 | } // namespace WebCore |
| 268 | |