| 1 | /* |
| 2 | * Copyright (C) 2010, Google Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 15 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 16 | * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 17 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 18 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 19 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| 20 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 21 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 22 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 23 | */ |
| 24 | |
| 25 | #include "config.h" |
| 26 | |
| 27 | #if ENABLE(WEB_AUDIO) |
| 28 | |
| 29 | #include "VectorMath.h" |
| 30 | |
| 31 | #if USE(ACCELERATE) |
| 32 | #include <Accelerate/Accelerate.h> |
| 33 | #endif |
| 34 | |
| 35 | #if CPU(X86_SSE2) |
| 36 | #include <emmintrin.h> |
| 37 | #endif |
| 38 | |
| 39 | #if HAVE(ARM_NEON_INTRINSICS) |
| 40 | #include <arm_neon.h> |
| 41 | #endif |
| 42 | |
| 43 | #include <algorithm> |
| 44 | #include <math.h> |
| 45 | |
| 46 | namespace WebCore { |
| 47 | |
| 48 | namespace VectorMath { |
| 49 | |
| 50 | #if USE(ACCELERATE) |
| 51 | // On the Mac we use the highly optimized versions in Accelerate.framework |
| 52 | |
| 53 | void vsmul(const float* sourceP, int sourceStride, const float* scale, float* destP, int destStride, size_t framesToProcess) |
| 54 | { |
| 55 | vDSP_vsmul(sourceP, sourceStride, scale, destP, destStride, framesToProcess); |
| 56 | } |
| 57 | |
| 58 | void vadd(const float* source1P, int sourceStride1, const float* source2P, int sourceStride2, float* destP, int destStride, size_t framesToProcess) |
| 59 | { |
| 60 | vDSP_vadd(source1P, sourceStride1, source2P, sourceStride2, destP, destStride, framesToProcess); |
| 61 | } |
| 62 | |
| 63 | void vmul(const float* source1P, int sourceStride1, const float* source2P, int sourceStride2, float* destP, int destStride, size_t framesToProcess) |
| 64 | { |
| 65 | vDSP_vmul(source1P, sourceStride1, source2P, sourceStride2, destP, destStride, framesToProcess); |
| 66 | } |
| 67 | |
| 68 | void zvmul(const float* real1P, const float* imag1P, const float* real2P, const float* imag2P, float* realDestP, float* imagDestP, size_t framesToProcess) |
| 69 | { |
| 70 | DSPSplitComplex sc1; |
| 71 | DSPSplitComplex sc2; |
| 72 | DSPSplitComplex dest; |
| 73 | sc1.realp = const_cast<float*>(real1P); |
| 74 | sc1.imagp = const_cast<float*>(imag1P); |
| 75 | sc2.realp = const_cast<float*>(real2P); |
| 76 | sc2.imagp = const_cast<float*>(imag2P); |
| 77 | dest.realp = realDestP; |
| 78 | dest.imagp = imagDestP; |
| 79 | vDSP_zvmul(&sc1, 1, &sc2, 1, &dest, 1, framesToProcess, 1); |
| 80 | } |
| 81 | |
| 82 | void vsma(const float* sourceP, int sourceStride, const float* scale, float* destP, int destStride, size_t framesToProcess) |
| 83 | { |
| 84 | vDSP_vsma(sourceP, sourceStride, scale, destP, destStride, destP, destStride, framesToProcess); |
| 85 | } |
| 86 | |
| 87 | void vmaxmgv(const float* sourceP, int sourceStride, float* maxP, size_t framesToProcess) |
| 88 | { |
| 89 | vDSP_maxmgv(sourceP, sourceStride, maxP, framesToProcess); |
| 90 | } |
| 91 | |
| 92 | void vsvesq(const float* sourceP, int sourceStride, float* sumP, size_t framesToProcess) |
| 93 | { |
| 94 | vDSP_svesq(const_cast<float*>(sourceP), sourceStride, sumP, framesToProcess); |
| 95 | } |
| 96 | |
| 97 | void vclip(const float* sourceP, int sourceStride, const float* lowThresholdP, const float* highThresholdP, float* destP, int destStride, size_t framesToProcess) |
| 98 | { |
| 99 | vDSP_vclip(const_cast<float*>(sourceP), sourceStride, const_cast<float*>(lowThresholdP), const_cast<float*>(highThresholdP), destP, destStride, framesToProcess); |
| 100 | } |
| 101 | #else |
| 102 | |
| 103 | void vsma(const float* sourceP, int sourceStride, const float* scale, float* destP, int destStride, size_t framesToProcess) |
| 104 | { |
| 105 | int n = framesToProcess; |
| 106 | |
| 107 | #if CPU(X86_SSE2) |
| 108 | if ((sourceStride == 1) && (destStride == 1)) { |
| 109 | float k = *scale; |
| 110 | |
| 111 | // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| 112 | while ((reinterpret_cast<uintptr_t>(sourceP) & 0x0F) && n) { |
| 113 | *destP += k * *sourceP; |
| 114 | sourceP++; |
| 115 | destP++; |
| 116 | n--; |
| 117 | } |
| 118 | |
| 119 | // Now the sourceP is aligned, use SSE. |
| 120 | int tailFrames = n % 4; |
| 121 | const float* endP = destP + n - tailFrames; |
| 122 | |
| 123 | __m128 pSource; |
| 124 | __m128 dest; |
| 125 | __m128 temp; |
| 126 | __m128 mScale = _mm_set_ps1(k); |
| 127 | |
| 128 | bool destAligned = !(reinterpret_cast<uintptr_t>(destP) & 0x0F); |
| 129 | |
| 130 | #define SSE2_MULT_ADD(loadInstr, storeInstr) \ |
| 131 | while (destP < endP) \ |
| 132 | { \ |
| 133 | pSource = _mm_load_ps(sourceP); \ |
| 134 | temp = _mm_mul_ps(pSource, mScale); \ |
| 135 | dest = _mm_##loadInstr##_ps(destP); \ |
| 136 | dest = _mm_add_ps(dest, temp); \ |
| 137 | _mm_##storeInstr##_ps(destP, dest); \ |
| 138 | sourceP += 4; \ |
| 139 | destP += 4; \ |
| 140 | } |
| 141 | |
| 142 | if (destAligned) |
| 143 | SSE2_MULT_ADD(load, store) |
| 144 | else |
| 145 | SSE2_MULT_ADD(loadu, storeu) |
| 146 | |
| 147 | n = tailFrames; |
| 148 | } |
| 149 | #elif HAVE(ARM_NEON_INTRINSICS) |
| 150 | if ((sourceStride == 1) && (destStride == 1)) { |
| 151 | int tailFrames = n % 4; |
| 152 | const float* endP = destP + n - tailFrames; |
| 153 | |
| 154 | float32x4_t k = vdupq_n_f32(*scale); |
| 155 | while (destP < endP) { |
| 156 | float32x4_t source = vld1q_f32(sourceP); |
| 157 | float32x4_t dest = vld1q_f32(destP); |
| 158 | |
| 159 | dest = vmlaq_f32(dest, source, k); |
| 160 | vst1q_f32(destP, dest); |
| 161 | |
| 162 | sourceP += 4; |
| 163 | destP += 4; |
| 164 | } |
| 165 | n = tailFrames; |
| 166 | } |
| 167 | #endif |
| 168 | while (n) { |
| 169 | *destP += *sourceP * *scale; |
| 170 | sourceP += sourceStride; |
| 171 | destP += destStride; |
| 172 | n--; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | void vsmul(const float* sourceP, int sourceStride, const float* scale, float* destP, int destStride, size_t framesToProcess) |
| 177 | { |
| 178 | int n = framesToProcess; |
| 179 | |
| 180 | #if CPU(X86_SSE2) |
| 181 | if ((sourceStride == 1) && (destStride == 1)) { |
| 182 | float k = *scale; |
| 183 | |
| 184 | // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| 185 | while ((reinterpret_cast<size_t>(sourceP) & 0x0F) && n) { |
| 186 | *destP = k * *sourceP; |
| 187 | sourceP++; |
| 188 | destP++; |
| 189 | n--; |
| 190 | } |
| 191 | |
| 192 | // Now the sourceP address is aligned and start to apply SSE. |
| 193 | int group = n / 4; |
| 194 | __m128 mScale = _mm_set_ps1(k); |
| 195 | __m128* pSource; |
| 196 | __m128* pDest; |
| 197 | __m128 dest; |
| 198 | |
| 199 | |
| 200 | if (reinterpret_cast<size_t>(destP) & 0x0F) { |
| 201 | while (group--) { |
| 202 | pSource = reinterpret_cast<__m128*>(const_cast<float*>(sourceP)); |
| 203 | dest = _mm_mul_ps(*pSource, mScale); |
| 204 | _mm_storeu_ps(destP, dest); |
| 205 | |
| 206 | sourceP += 4; |
| 207 | destP += 4; |
| 208 | } |
| 209 | } else { |
| 210 | while (group--) { |
| 211 | pSource = reinterpret_cast<__m128*>(const_cast<float*>(sourceP)); |
| 212 | pDest = reinterpret_cast<__m128*>(destP); |
| 213 | *pDest = _mm_mul_ps(*pSource, mScale); |
| 214 | |
| 215 | sourceP += 4; |
| 216 | destP += 4; |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | // Non-SSE handling for remaining frames which is less than 4. |
| 221 | n %= 4; |
| 222 | while (n) { |
| 223 | *destP = k * *sourceP; |
| 224 | sourceP++; |
| 225 | destP++; |
| 226 | n--; |
| 227 | } |
| 228 | } else { // If strides are not 1, rollback to normal algorithm. |
| 229 | #elif HAVE(ARM_NEON_INTRINSICS) |
| 230 | if ((sourceStride == 1) && (destStride == 1)) { |
| 231 | float k = *scale; |
| 232 | int tailFrames = n % 4; |
| 233 | const float* endP = destP + n - tailFrames; |
| 234 | |
| 235 | while (destP < endP) { |
| 236 | float32x4_t source = vld1q_f32(sourceP); |
| 237 | vst1q_f32(destP, vmulq_n_f32(source, k)); |
| 238 | |
| 239 | sourceP += 4; |
| 240 | destP += 4; |
| 241 | } |
| 242 | n = tailFrames; |
| 243 | } |
| 244 | #endif |
| 245 | float k = *scale; |
| 246 | while (n--) { |
| 247 | *destP = k * *sourceP; |
| 248 | sourceP += sourceStride; |
| 249 | destP += destStride; |
| 250 | } |
| 251 | #if CPU(X86_SSE2) |
| 252 | } |
| 253 | #endif |
| 254 | } |
| 255 | |
| 256 | void vadd(const float* source1P, int sourceStride1, const float* source2P, int sourceStride2, float* destP, int destStride, size_t framesToProcess) |
| 257 | { |
| 258 | int n = framesToProcess; |
| 259 | |
| 260 | #if CPU(X86_SSE2) |
| 261 | if ((sourceStride1 ==1) && (sourceStride2 == 1) && (destStride == 1)) { |
| 262 | // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| 263 | while ((reinterpret_cast<size_t>(source1P) & 0x0F) && n) { |
| 264 | *destP = *source1P + *source2P; |
| 265 | source1P++; |
| 266 | source2P++; |
| 267 | destP++; |
| 268 | n--; |
| 269 | } |
| 270 | |
| 271 | // Now the source1P address is aligned and start to apply SSE. |
| 272 | int group = n / 4; |
| 273 | __m128* pSource1; |
| 274 | __m128* pSource2; |
| 275 | __m128* pDest; |
| 276 | __m128 source2; |
| 277 | __m128 dest; |
| 278 | |
| 279 | bool source2Aligned = !(reinterpret_cast<size_t>(source2P) & 0x0F); |
| 280 | bool destAligned = !(reinterpret_cast<size_t>(destP) & 0x0F); |
| 281 | |
| 282 | if (source2Aligned && destAligned) { // all aligned |
| 283 | while (group--) { |
| 284 | pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(source1P)); |
| 285 | pSource2 = reinterpret_cast<__m128*>(const_cast<float*>(source2P)); |
| 286 | pDest = reinterpret_cast<__m128*>(destP); |
| 287 | *pDest = _mm_add_ps(*pSource1, *pSource2); |
| 288 | |
| 289 | source1P += 4; |
| 290 | source2P += 4; |
| 291 | destP += 4; |
| 292 | } |
| 293 | |
| 294 | } else if (source2Aligned && !destAligned) { // source2 aligned but dest not aligned |
| 295 | while (group--) { |
| 296 | pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(source1P)); |
| 297 | pSource2 = reinterpret_cast<__m128*>(const_cast<float*>(source2P)); |
| 298 | dest = _mm_add_ps(*pSource1, *pSource2); |
| 299 | _mm_storeu_ps(destP, dest); |
| 300 | |
| 301 | source1P += 4; |
| 302 | source2P += 4; |
| 303 | destP += 4; |
| 304 | } |
| 305 | |
| 306 | } else if (!source2Aligned && destAligned) { // source2 not aligned but dest aligned |
| 307 | while (group--) { |
| 308 | pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(source1P)); |
| 309 | source2 = _mm_loadu_ps(source2P); |
| 310 | pDest = reinterpret_cast<__m128*>(destP); |
| 311 | *pDest = _mm_add_ps(*pSource1, source2); |
| 312 | |
| 313 | source1P += 4; |
| 314 | source2P += 4; |
| 315 | destP += 4; |
| 316 | } |
| 317 | } else if (!source2Aligned && !destAligned) { // both source2 and dest not aligned |
| 318 | while (group--) { |
| 319 | pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(source1P)); |
| 320 | source2 = _mm_loadu_ps(source2P); |
| 321 | dest = _mm_add_ps(*pSource1, source2); |
| 322 | _mm_storeu_ps(destP, dest); |
| 323 | |
| 324 | source1P += 4; |
| 325 | source2P += 4; |
| 326 | destP += 4; |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | // Non-SSE handling for remaining frames which is less than 4. |
| 331 | n %= 4; |
| 332 | while (n) { |
| 333 | *destP = *source1P + *source2P; |
| 334 | source1P++; |
| 335 | source2P++; |
| 336 | destP++; |
| 337 | n--; |
| 338 | } |
| 339 | } else { // if strides are not 1, rollback to normal algorithm |
| 340 | #elif HAVE(ARM_NEON_INTRINSICS) |
| 341 | if ((sourceStride1 ==1) && (sourceStride2 == 1) && (destStride == 1)) { |
| 342 | int tailFrames = n % 4; |
| 343 | const float* endP = destP + n - tailFrames; |
| 344 | |
| 345 | while (destP < endP) { |
| 346 | float32x4_t source1 = vld1q_f32(source1P); |
| 347 | float32x4_t source2 = vld1q_f32(source2P); |
| 348 | vst1q_f32(destP, vaddq_f32(source1, source2)); |
| 349 | |
| 350 | source1P += 4; |
| 351 | source2P += 4; |
| 352 | destP += 4; |
| 353 | } |
| 354 | n = tailFrames; |
| 355 | } |
| 356 | #endif |
| 357 | while (n--) { |
| 358 | *destP = *source1P + *source2P; |
| 359 | source1P += sourceStride1; |
| 360 | source2P += sourceStride2; |
| 361 | destP += destStride; |
| 362 | } |
| 363 | #if CPU(X86_SSE2) |
| 364 | } |
| 365 | #endif |
| 366 | } |
| 367 | |
| 368 | void vmul(const float* source1P, int sourceStride1, const float* source2P, int sourceStride2, float* destP, int destStride, size_t framesToProcess) |
| 369 | { |
| 370 | |
| 371 | int n = framesToProcess; |
| 372 | |
| 373 | #if CPU(X86_SSE2) |
| 374 | if ((sourceStride1 == 1) && (sourceStride2 == 1) && (destStride == 1)) { |
| 375 | // If the source1P address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| 376 | while ((reinterpret_cast<uintptr_t>(source1P) & 0x0F) && n) { |
| 377 | *destP = *source1P * *source2P; |
| 378 | source1P++; |
| 379 | source2P++; |
| 380 | destP++; |
| 381 | n--; |
| 382 | } |
| 383 | |
| 384 | // Now the source1P address aligned and start to apply SSE. |
| 385 | int tailFrames = n % 4; |
| 386 | const float* endP = destP + n - tailFrames; |
| 387 | __m128 pSource1; |
| 388 | __m128 pSource2; |
| 389 | __m128 dest; |
| 390 | |
| 391 | bool source2Aligned = !(reinterpret_cast<uintptr_t>(source2P) & 0x0F); |
| 392 | bool destAligned = !(reinterpret_cast<uintptr_t>(destP) & 0x0F); |
| 393 | |
| 394 | #define SSE2_MULT(loadInstr, storeInstr) \ |
| 395 | while (destP < endP) \ |
| 396 | { \ |
| 397 | pSource1 = _mm_load_ps(source1P); \ |
| 398 | pSource2 = _mm_##loadInstr##_ps(source2P); \ |
| 399 | dest = _mm_mul_ps(pSource1, pSource2); \ |
| 400 | _mm_##storeInstr##_ps(destP, dest); \ |
| 401 | source1P += 4; \ |
| 402 | source2P += 4; \ |
| 403 | destP += 4; \ |
| 404 | } |
| 405 | |
| 406 | if (source2Aligned && destAligned) // Both aligned. |
| 407 | SSE2_MULT(load, store) |
| 408 | else if (source2Aligned && !destAligned) // Source2 is aligned but dest not. |
| 409 | SSE2_MULT(load, storeu) |
| 410 | else if (!source2Aligned && destAligned) // Dest is aligned but source2 not. |
| 411 | SSE2_MULT(loadu, store) |
| 412 | else // Neither aligned. |
| 413 | SSE2_MULT(loadu, storeu) |
| 414 | |
| 415 | n = tailFrames; |
| 416 | } |
| 417 | #elif HAVE(ARM_NEON_INTRINSICS) |
| 418 | if ((sourceStride1 ==1) && (sourceStride2 == 1) && (destStride == 1)) { |
| 419 | int tailFrames = n % 4; |
| 420 | const float* endP = destP + n - tailFrames; |
| 421 | |
| 422 | while (destP < endP) { |
| 423 | float32x4_t source1 = vld1q_f32(source1P); |
| 424 | float32x4_t source2 = vld1q_f32(source2P); |
| 425 | vst1q_f32(destP, vmulq_f32(source1, source2)); |
| 426 | |
| 427 | source1P += 4; |
| 428 | source2P += 4; |
| 429 | destP += 4; |
| 430 | } |
| 431 | n = tailFrames; |
| 432 | } |
| 433 | #endif |
| 434 | while (n) { |
| 435 | *destP = *source1P * *source2P; |
| 436 | source1P += sourceStride1; |
| 437 | source2P += sourceStride2; |
| 438 | destP += destStride; |
| 439 | n--; |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | void zvmul(const float* real1P, const float* imag1P, const float* real2P, const float* imag2P, float* realDestP, float* imagDestP, size_t framesToProcess) |
| 444 | { |
| 445 | unsigned i = 0; |
| 446 | #if CPU(X86_SSE2) |
| 447 | // Only use the SSE optimization in the very common case that all addresses are 16-byte aligned. |
| 448 | // Otherwise, fall through to the scalar code below. |
| 449 | if (!(reinterpret_cast<uintptr_t>(real1P) & 0x0F) |
| 450 | && !(reinterpret_cast<uintptr_t>(imag1P) & 0x0F) |
| 451 | && !(reinterpret_cast<uintptr_t>(real2P) & 0x0F) |
| 452 | && !(reinterpret_cast<uintptr_t>(imag2P) & 0x0F) |
| 453 | && !(reinterpret_cast<uintptr_t>(realDestP) & 0x0F) |
| 454 | && !(reinterpret_cast<uintptr_t>(imagDestP) & 0x0F)) { |
| 455 | |
| 456 | unsigned endSize = framesToProcess - framesToProcess % 4; |
| 457 | while (i < endSize) { |
| 458 | __m128 real1 = _mm_load_ps(real1P + i); |
| 459 | __m128 real2 = _mm_load_ps(real2P + i); |
| 460 | __m128 imag1 = _mm_load_ps(imag1P + i); |
| 461 | __m128 imag2 = _mm_load_ps(imag2P + i); |
| 462 | __m128 real = _mm_mul_ps(real1, real2); |
| 463 | real = _mm_sub_ps(real, _mm_mul_ps(imag1, imag2)); |
| 464 | __m128 imag = _mm_mul_ps(real1, imag2); |
| 465 | imag = _mm_add_ps(imag, _mm_mul_ps(imag1, real2)); |
| 466 | _mm_store_ps(realDestP + i, real); |
| 467 | _mm_store_ps(imagDestP + i, imag); |
| 468 | i += 4; |
| 469 | } |
| 470 | } |
| 471 | #elif HAVE(ARM_NEON_INTRINSICS) |
| 472 | unsigned endSize = framesToProcess - framesToProcess % 4; |
| 473 | while (i < endSize) { |
| 474 | float32x4_t real1 = vld1q_f32(real1P + i); |
| 475 | float32x4_t real2 = vld1q_f32(real2P + i); |
| 476 | float32x4_t imag1 = vld1q_f32(imag1P + i); |
| 477 | float32x4_t imag2 = vld1q_f32(imag2P + i); |
| 478 | |
| 479 | float32x4_t realResult = vmlsq_f32(vmulq_f32(real1, real2), imag1, imag2); |
| 480 | float32x4_t imagResult = vmlaq_f32(vmulq_f32(real1, imag2), imag1, real2); |
| 481 | |
| 482 | vst1q_f32(realDestP + i, realResult); |
| 483 | vst1q_f32(imagDestP + i, imagResult); |
| 484 | |
| 485 | i += 4; |
| 486 | } |
| 487 | #endif |
| 488 | for (; i < framesToProcess; ++i) { |
| 489 | // Read and compute result before storing them, in case the |
| 490 | // destination is the same as one of the sources. |
| 491 | float realResult = real1P[i] * real2P[i] - imag1P[i] * imag2P[i]; |
| 492 | float imagResult = real1P[i] * imag2P[i] + imag1P[i] * real2P[i]; |
| 493 | |
| 494 | realDestP[i] = realResult; |
| 495 | imagDestP[i] = imagResult; |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | void vsvesq(const float* sourceP, int sourceStride, float* sumP, size_t framesToProcess) |
| 500 | { |
| 501 | int n = framesToProcess; |
| 502 | float sum = 0; |
| 503 | |
| 504 | #if CPU(X86_SSE2) |
| 505 | if (sourceStride == 1) { |
| 506 | // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| 507 | while ((reinterpret_cast<uintptr_t>(sourceP) & 0x0F) && n) { |
| 508 | float sample = *sourceP; |
| 509 | sum += sample * sample; |
| 510 | sourceP++; |
| 511 | n--; |
| 512 | } |
| 513 | |
| 514 | // Now the sourceP is aligned, use SSE. |
| 515 | int tailFrames = n % 4; |
| 516 | const float* endP = sourceP + n - tailFrames; |
| 517 | __m128 source; |
| 518 | __m128 mSum = _mm_setzero_ps(); |
| 519 | |
| 520 | while (sourceP < endP) { |
| 521 | source = _mm_load_ps(sourceP); |
| 522 | source = _mm_mul_ps(source, source); |
| 523 | mSum = _mm_add_ps(mSum, source); |
| 524 | sourceP += 4; |
| 525 | } |
| 526 | |
| 527 | // Summarize the SSE results. |
| 528 | const float* groupSumP = reinterpret_cast<float*>(&mSum); |
| 529 | sum += groupSumP[0] + groupSumP[1] + groupSumP[2] + groupSumP[3]; |
| 530 | |
| 531 | n = tailFrames; |
| 532 | } |
| 533 | #elif HAVE(ARM_NEON_INTRINSICS) |
| 534 | if (sourceStride == 1) { |
| 535 | int tailFrames = n % 4; |
| 536 | const float* endP = sourceP + n - tailFrames; |
| 537 | |
| 538 | float32x4_t fourSum = vdupq_n_f32(0); |
| 539 | while (sourceP < endP) { |
| 540 | float32x4_t source = vld1q_f32(sourceP); |
| 541 | fourSum = vmlaq_f32(fourSum, source, source); |
| 542 | sourceP += 4; |
| 543 | } |
| 544 | float32x2_t twoSum = vadd_f32(vget_low_f32(fourSum), vget_high_f32(fourSum)); |
| 545 | |
| 546 | float groupSum[2]; |
| 547 | vst1_f32(groupSum, twoSum); |
| 548 | sum += groupSum[0] + groupSum[1]; |
| 549 | |
| 550 | n = tailFrames; |
| 551 | } |
| 552 | #endif |
| 553 | |
| 554 | while (n--) { |
| 555 | float sample = *sourceP; |
| 556 | sum += sample * sample; |
| 557 | sourceP += sourceStride; |
| 558 | } |
| 559 | |
| 560 | ASSERT(sumP); |
| 561 | *sumP = sum; |
| 562 | } |
| 563 | |
| 564 | void vmaxmgv(const float* sourceP, int sourceStride, float* maxP, size_t framesToProcess) |
| 565 | { |
| 566 | int n = framesToProcess; |
| 567 | float max = 0; |
| 568 | |
| 569 | #if CPU(X86_SSE2) |
| 570 | if (sourceStride == 1) { |
| 571 | // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately. |
| 572 | while ((reinterpret_cast<uintptr_t>(sourceP) & 0x0F) && n) { |
| 573 | max = std::max(max, fabsf(*sourceP)); |
| 574 | sourceP++; |
| 575 | n--; |
| 576 | } |
| 577 | |
| 578 | // Now the sourceP is aligned, use SSE. |
| 579 | int tailFrames = n % 4; |
| 580 | const float* endP = sourceP + n - tailFrames; |
| 581 | __m128 source; |
| 582 | __m128 mMax = _mm_setzero_ps(); |
| 583 | int mask = 0x7FFFFFFF; |
| 584 | __m128 mMask = _mm_set1_ps(*reinterpret_cast<float*>(&mask)); |
| 585 | |
| 586 | while (sourceP < endP) { |
| 587 | source = _mm_load_ps(sourceP); |
| 588 | // Calculate the absolute value by anding source with mask, the sign bit is set to 0. |
| 589 | source = _mm_and_ps(source, mMask); |
| 590 | mMax = _mm_max_ps(mMax, source); |
| 591 | sourceP += 4; |
| 592 | } |
| 593 | |
| 594 | // Get max from the SSE results. |
| 595 | const float* groupMaxP = reinterpret_cast<float*>(&mMax); |
| 596 | max = std::max(max, groupMaxP[0]); |
| 597 | max = std::max(max, groupMaxP[1]); |
| 598 | max = std::max(max, groupMaxP[2]); |
| 599 | max = std::max(max, groupMaxP[3]); |
| 600 | |
| 601 | n = tailFrames; |
| 602 | } |
| 603 | #elif HAVE(ARM_NEON_INTRINSICS) |
| 604 | if (sourceStride == 1) { |
| 605 | int tailFrames = n % 4; |
| 606 | const float* endP = sourceP + n - tailFrames; |
| 607 | |
| 608 | float32x4_t fourMax = vdupq_n_f32(0); |
| 609 | while (sourceP < endP) { |
| 610 | float32x4_t source = vld1q_f32(sourceP); |
| 611 | fourMax = vmaxq_f32(fourMax, vabsq_f32(source)); |
| 612 | sourceP += 4; |
| 613 | } |
| 614 | float32x2_t twoMax = vmax_f32(vget_low_f32(fourMax), vget_high_f32(fourMax)); |
| 615 | |
| 616 | float groupMax[2]; |
| 617 | vst1_f32(groupMax, twoMax); |
| 618 | max = std::max(groupMax[0], groupMax[1]); |
| 619 | |
| 620 | n = tailFrames; |
| 621 | } |
| 622 | #endif |
| 623 | |
| 624 | while (n--) { |
| 625 | max = std::max(max, fabsf(*sourceP)); |
| 626 | sourceP += sourceStride; |
| 627 | } |
| 628 | |
| 629 | ASSERT(maxP); |
| 630 | *maxP = max; |
| 631 | } |
| 632 | |
| 633 | void vclip(const float* sourceP, int sourceStride, const float* lowThresholdP, const float* highThresholdP, float* destP, int destStride, size_t framesToProcess) |
| 634 | { |
| 635 | int n = framesToProcess; |
| 636 | float lowThreshold = *lowThresholdP; |
| 637 | float highThreshold = *highThresholdP; |
| 638 | |
| 639 | // FIXME: Optimize for SSE2. |
| 640 | #if HAVE(ARM_NEON_INTRINSICS) |
| 641 | if ((sourceStride == 1) && (destStride == 1)) { |
| 642 | int tailFrames = n % 4; |
| 643 | const float* endP = destP + n - tailFrames; |
| 644 | |
| 645 | float32x4_t low = vdupq_n_f32(lowThreshold); |
| 646 | float32x4_t high = vdupq_n_f32(highThreshold); |
| 647 | while (destP < endP) { |
| 648 | float32x4_t source = vld1q_f32(sourceP); |
| 649 | vst1q_f32(destP, vmaxq_f32(vminq_f32(source, high), low)); |
| 650 | sourceP += 4; |
| 651 | destP += 4; |
| 652 | } |
| 653 | n = tailFrames; |
| 654 | } |
| 655 | #endif |
| 656 | while (n--) { |
| 657 | *destP = std::max(std::min(*sourceP, highThreshold), lowThreshold); |
| 658 | sourceP += sourceStride; |
| 659 | destP += destStride; |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | #endif // USE(ACCELERATE) |
| 664 | |
| 665 | } // namespace VectorMath |
| 666 | |
| 667 | } // namespace WebCore |
| 668 | |
| 669 | #endif // ENABLE(WEB_AUDIO) |
| 670 | |