| 1 | /* | 
|---|
| 2 | * Copyright (C) 2010, Google Inc. All rights reserved. | 
|---|
| 3 | * | 
|---|
| 4 | * Redistribution and use in source and binary forms, with or without | 
|---|
| 5 | * modification, are permitted provided that the following conditions | 
|---|
| 6 | * are met: | 
|---|
| 7 | * 1.  Redistributions of source code must retain the above copyright | 
|---|
| 8 | *    notice, this list of conditions and the following disclaimer. | 
|---|
| 9 | * 2.  Redistributions in binary form must reproduce the above copyright | 
|---|
| 10 | *    notice, this list of conditions and the following disclaimer in the | 
|---|
| 11 | *    documentation and/or other materials provided with the distribution. | 
|---|
| 12 | * | 
|---|
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY | 
|---|
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
|---|
| 15 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
|---|
| 16 | * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY | 
|---|
| 17 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
|---|
| 18 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|---|
| 19 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | 
|---|
| 20 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|---|
| 21 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
|---|
| 22 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|---|
| 23 | */ | 
|---|
| 24 |  | 
|---|
| 25 | #include "config.h" | 
|---|
| 26 |  | 
|---|
| 27 | #if ENABLE(WEB_AUDIO) | 
|---|
| 28 |  | 
|---|
| 29 | #include "HRTFPanner.h" | 
|---|
| 30 |  | 
|---|
| 31 | #include "AudioBus.h" | 
|---|
| 32 | #include "FFTConvolver.h" | 
|---|
| 33 | #include "HRTFDatabase.h" | 
|---|
| 34 | #include "HRTFDatabaseLoader.h" | 
|---|
| 35 | #include <algorithm> | 
|---|
| 36 | #include <wtf/MathExtras.h> | 
|---|
| 37 |  | 
|---|
| 38 | namespace WebCore { | 
|---|
| 39 |  | 
|---|
| 40 | // The value of 2 milliseconds is larger than the largest delay which exists in any HRTFKernel from the default HRTFDatabase (0.0136 seconds). | 
|---|
| 41 | // We ASSERT the delay values used in process() with this value. | 
|---|
| 42 | const double MaxDelayTimeSeconds = 0.002; | 
|---|
| 43 |  | 
|---|
| 44 | const int UninitializedAzimuth = -1; | 
|---|
| 45 | const unsigned RenderingQuantum = 128; | 
|---|
| 46 |  | 
|---|
| 47 | HRTFPanner::HRTFPanner(float sampleRate, HRTFDatabaseLoader* databaseLoader) | 
|---|
| 48 | : Panner(PanningModelType::HRTF) | 
|---|
| 49 | , m_databaseLoader(databaseLoader) | 
|---|
| 50 | , m_sampleRate(sampleRate) | 
|---|
| 51 | , m_crossfadeSelection(CrossfadeSelection1) | 
|---|
| 52 | , m_azimuthIndex1(UninitializedAzimuth) | 
|---|
| 53 | , m_elevation1(0) | 
|---|
| 54 | , m_azimuthIndex2(UninitializedAzimuth) | 
|---|
| 55 | , m_elevation2(0) | 
|---|
| 56 | , m_crossfadeX(0) | 
|---|
| 57 | , m_crossfadeIncr(0) | 
|---|
| 58 | , m_convolverL1(fftSizeForSampleRate(sampleRate)) | 
|---|
| 59 | , m_convolverR1(fftSizeForSampleRate(sampleRate)) | 
|---|
| 60 | , m_convolverL2(fftSizeForSampleRate(sampleRate)) | 
|---|
| 61 | , m_convolverR2(fftSizeForSampleRate(sampleRate)) | 
|---|
| 62 | , m_delayLineL(MaxDelayTimeSeconds, sampleRate) | 
|---|
| 63 | , m_delayLineR(MaxDelayTimeSeconds, sampleRate) | 
|---|
| 64 | , m_tempL1(RenderingQuantum) | 
|---|
| 65 | , m_tempR1(RenderingQuantum) | 
|---|
| 66 | , m_tempL2(RenderingQuantum) | 
|---|
| 67 | , m_tempR2(RenderingQuantum) | 
|---|
| 68 | { | 
|---|
| 69 | ASSERT(databaseLoader); | 
|---|
| 70 | } | 
|---|
| 71 |  | 
|---|
| 72 | HRTFPanner::~HRTFPanner() = default; | 
|---|
| 73 |  | 
|---|
| 74 | size_t HRTFPanner::fftSizeForSampleRate(float sampleRate) | 
|---|
| 75 | { | 
|---|
| 76 | // The HRTF impulse responses (loaded as audio resources) are 512 sample-frames @44.1KHz. | 
|---|
| 77 | // Currently, we truncate the impulse responses to half this size, but an FFT-size of twice impulse response size is needed (for convolution). | 
|---|
| 78 | // So for sample rates around 44.1KHz an FFT size of 512 is good. We double the FFT-size only for sample rates at least double this. | 
|---|
| 79 | ASSERT(sampleRate >= 44100 && sampleRate <= 96000.0); | 
|---|
| 80 | return (sampleRate < 88200.0) ? 512 : 1024; | 
|---|
| 81 | } | 
|---|
| 82 |  | 
|---|
| 83 | void HRTFPanner::reset() | 
|---|
| 84 | { | 
|---|
| 85 | m_convolverL1.reset(); | 
|---|
| 86 | m_convolverR1.reset(); | 
|---|
| 87 | m_convolverL2.reset(); | 
|---|
| 88 | m_convolverR2.reset(); | 
|---|
| 89 | m_delayLineL.reset(); | 
|---|
| 90 | m_delayLineR.reset(); | 
|---|
| 91 | } | 
|---|
| 92 |  | 
|---|
| 93 | int HRTFPanner::calculateDesiredAzimuthIndexAndBlend(double azimuth, double& azimuthBlend) | 
|---|
| 94 | { | 
|---|
| 95 | // Convert the azimuth angle from the range -180 -> +180 into the range 0 -> 360. | 
|---|
| 96 | // The azimuth index may then be calculated from this positive value. | 
|---|
| 97 | if (azimuth < 0) | 
|---|
| 98 | azimuth += 360.0; | 
|---|
| 99 |  | 
|---|
| 100 | HRTFDatabase* database = m_databaseLoader->database(); | 
|---|
| 101 | ASSERT(database); | 
|---|
| 102 |  | 
|---|
| 103 | int numberOfAzimuths = database->numberOfAzimuths(); | 
|---|
| 104 | const double angleBetweenAzimuths = 360.0 / numberOfAzimuths; | 
|---|
| 105 |  | 
|---|
| 106 | // Calculate the azimuth index and the blend (0 -> 1) for interpolation. | 
|---|
| 107 | double desiredAzimuthIndexFloat = azimuth / angleBetweenAzimuths; | 
|---|
| 108 | int desiredAzimuthIndex = static_cast<int>(desiredAzimuthIndexFloat); | 
|---|
| 109 | azimuthBlend = desiredAzimuthIndexFloat - static_cast<double>(desiredAzimuthIndex); | 
|---|
| 110 |  | 
|---|
| 111 | // We don't immediately start using this azimuth index, but instead approach this index from the last index we rendered at. | 
|---|
| 112 | // This minimizes the clicks and graininess for moving sources which occur otherwise. | 
|---|
| 113 | desiredAzimuthIndex = std::max(0, desiredAzimuthIndex); | 
|---|
| 114 | desiredAzimuthIndex = std::min(numberOfAzimuths - 1, desiredAzimuthIndex); | 
|---|
| 115 | return desiredAzimuthIndex; | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 | void HRTFPanner::pan(double desiredAzimuth, double elevation, const AudioBus* inputBus, AudioBus* outputBus, size_t framesToProcess) | 
|---|
| 119 | { | 
|---|
| 120 | unsigned numInputChannels = inputBus ? inputBus->numberOfChannels() : 0; | 
|---|
| 121 |  | 
|---|
| 122 | bool isInputGood = inputBus &&  numInputChannels >= 1 && numInputChannels <= 2; | 
|---|
| 123 | ASSERT(isInputGood); | 
|---|
| 124 |  | 
|---|
| 125 | bool isOutputGood = outputBus && outputBus->numberOfChannels() == 2 && framesToProcess <= outputBus->length(); | 
|---|
| 126 | ASSERT(isOutputGood); | 
|---|
| 127 |  | 
|---|
| 128 | if (!isInputGood || !isOutputGood) { | 
|---|
| 129 | if (outputBus) | 
|---|
| 130 | outputBus->zero(); | 
|---|
| 131 | return; | 
|---|
| 132 | } | 
|---|
| 133 |  | 
|---|
| 134 | // This code only runs as long as the context is alive and after database has been loaded. | 
|---|
| 135 | HRTFDatabase* database = m_databaseLoader->database(); | 
|---|
| 136 | ASSERT(database); | 
|---|
| 137 | if (!database) { | 
|---|
| 138 | outputBus->zero(); | 
|---|
| 139 | return; | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | // IRCAM HRTF azimuths values from the loaded database is reversed from the panner's notion of azimuth. | 
|---|
| 143 | double azimuth = -desiredAzimuth; | 
|---|
| 144 |  | 
|---|
| 145 | bool isAzimuthGood = azimuth >= -180.0 && azimuth <= 180.0; | 
|---|
| 146 | ASSERT(isAzimuthGood); | 
|---|
| 147 | if (!isAzimuthGood) { | 
|---|
| 148 | outputBus->zero(); | 
|---|
| 149 | return; | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | // Normally, we'll just be dealing with mono sources. | 
|---|
| 153 | // If we have a stereo input, implement stereo panning with left source processed by left HRTF, and right source by right HRTF. | 
|---|
| 154 | const AudioChannel* inputChannelL = inputBus->channelByType(AudioBus::ChannelLeft); | 
|---|
| 155 | const AudioChannel* inputChannelR = numInputChannels > 1 ? inputBus->channelByType(AudioBus::ChannelRight) : 0; | 
|---|
| 156 |  | 
|---|
| 157 | // Get source and destination pointers. | 
|---|
| 158 | const float* sourceL = inputChannelL->data(); | 
|---|
| 159 | const float* sourceR = numInputChannels > 1 ? inputChannelR->data() : sourceL; | 
|---|
| 160 | float* destinationL = outputBus->channelByType(AudioBus::ChannelLeft)->mutableData(); | 
|---|
| 161 | float* destinationR = outputBus->channelByType(AudioBus::ChannelRight)->mutableData(); | 
|---|
| 162 |  | 
|---|
| 163 | double azimuthBlend; | 
|---|
| 164 | int desiredAzimuthIndex = calculateDesiredAzimuthIndexAndBlend(azimuth, azimuthBlend); | 
|---|
| 165 |  | 
|---|
| 166 | // Initially snap azimuth and elevation values to first values encountered. | 
|---|
| 167 | if (m_azimuthIndex1 == UninitializedAzimuth) { | 
|---|
| 168 | m_azimuthIndex1 = desiredAzimuthIndex; | 
|---|
| 169 | m_elevation1 = elevation; | 
|---|
| 170 | } | 
|---|
| 171 | if (m_azimuthIndex2 == UninitializedAzimuth) { | 
|---|
| 172 | m_azimuthIndex2 = desiredAzimuthIndex; | 
|---|
| 173 | m_elevation2 = elevation; | 
|---|
| 174 | } | 
|---|
| 175 |  | 
|---|
| 176 | // Cross-fade / transition over a period of around 45 milliseconds. | 
|---|
| 177 | // This is an empirical value tuned to be a reasonable trade-off between | 
|---|
| 178 | // smoothness and speed. | 
|---|
| 179 | const double fadeFrames = sampleRate() <= 48000 ? 2048 : 4096; | 
|---|
| 180 |  | 
|---|
| 181 | // Check for azimuth and elevation changes, initiating a cross-fade if needed. | 
|---|
| 182 | if (!m_crossfadeX && m_crossfadeSelection == CrossfadeSelection1) { | 
|---|
| 183 | if (desiredAzimuthIndex != m_azimuthIndex1 || elevation != m_elevation1) { | 
|---|
| 184 | // Cross-fade from 1 -> 2 | 
|---|
| 185 | m_crossfadeIncr = 1 / fadeFrames; | 
|---|
| 186 | m_azimuthIndex2 = desiredAzimuthIndex; | 
|---|
| 187 | m_elevation2 = elevation; | 
|---|
| 188 | } | 
|---|
| 189 | } | 
|---|
| 190 | if (m_crossfadeX == 1 && m_crossfadeSelection == CrossfadeSelection2) { | 
|---|
| 191 | if (desiredAzimuthIndex != m_azimuthIndex2 || elevation != m_elevation2) { | 
|---|
| 192 | // Cross-fade from 2 -> 1 | 
|---|
| 193 | m_crossfadeIncr = -1 / fadeFrames; | 
|---|
| 194 | m_azimuthIndex1 = desiredAzimuthIndex; | 
|---|
| 195 | m_elevation1 = elevation; | 
|---|
| 196 | } | 
|---|
| 197 | } | 
|---|
| 198 |  | 
|---|
| 199 | // This algorithm currently requires that we process in power-of-two size chunks at least RenderingQuantum. | 
|---|
| 200 | ASSERT(1UL << static_cast<int>(log2(framesToProcess)) == framesToProcess); | 
|---|
| 201 | ASSERT(framesToProcess >= RenderingQuantum); | 
|---|
| 202 |  | 
|---|
| 203 | const unsigned framesPerSegment = RenderingQuantum; | 
|---|
| 204 | const unsigned numberOfSegments = framesToProcess / framesPerSegment; | 
|---|
| 205 |  | 
|---|
| 206 | for (unsigned segment = 0; segment < numberOfSegments; ++segment) { | 
|---|
| 207 | // Get the HRTFKernels and interpolated delays. | 
|---|
| 208 | HRTFKernel* kernelL1; | 
|---|
| 209 | HRTFKernel* kernelR1; | 
|---|
| 210 | HRTFKernel* kernelL2; | 
|---|
| 211 | HRTFKernel* kernelR2; | 
|---|
| 212 | double frameDelayL1; | 
|---|
| 213 | double frameDelayR1; | 
|---|
| 214 | double frameDelayL2; | 
|---|
| 215 | double frameDelayR2; | 
|---|
| 216 | database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex1, m_elevation1, kernelL1, kernelR1, frameDelayL1, frameDelayR1); | 
|---|
| 217 | database->getKernelsFromAzimuthElevation(azimuthBlend, m_azimuthIndex2, m_elevation2, kernelL2, kernelR2, frameDelayL2, frameDelayR2); | 
|---|
| 218 |  | 
|---|
| 219 | bool areKernelsGood = kernelL1 && kernelR1 && kernelL2 && kernelR2; | 
|---|
| 220 | ASSERT(areKernelsGood); | 
|---|
| 221 | if (!areKernelsGood) { | 
|---|
| 222 | outputBus->zero(); | 
|---|
| 223 | return; | 
|---|
| 224 | } | 
|---|
| 225 |  | 
|---|
| 226 | ASSERT(frameDelayL1 / sampleRate() < MaxDelayTimeSeconds && frameDelayR1 / sampleRate() < MaxDelayTimeSeconds); | 
|---|
| 227 | ASSERT(frameDelayL2 / sampleRate() < MaxDelayTimeSeconds && frameDelayR2 / sampleRate() < MaxDelayTimeSeconds); | 
|---|
| 228 |  | 
|---|
| 229 | // Crossfade inter-aural delays based on transitions. | 
|---|
| 230 | double frameDelayL = (1 - m_crossfadeX) * frameDelayL1 + m_crossfadeX * frameDelayL2; | 
|---|
| 231 | double frameDelayR = (1 - m_crossfadeX) * frameDelayR1 + m_crossfadeX * frameDelayR2; | 
|---|
| 232 |  | 
|---|
| 233 | // Calculate the source and destination pointers for the current segment. | 
|---|
| 234 | unsigned offset = segment * framesPerSegment; | 
|---|
| 235 | const float* segmentSourceL = sourceL + offset; | 
|---|
| 236 | const float* segmentSourceR = sourceR + offset; | 
|---|
| 237 | float* segmentDestinationL = destinationL + offset; | 
|---|
| 238 | float* segmentDestinationR = destinationR + offset; | 
|---|
| 239 |  | 
|---|
| 240 | // First run through delay lines for inter-aural time difference. | 
|---|
| 241 | m_delayLineL.setDelayFrames(frameDelayL); | 
|---|
| 242 | m_delayLineR.setDelayFrames(frameDelayR); | 
|---|
| 243 | m_delayLineL.process(segmentSourceL, segmentDestinationL, framesPerSegment); | 
|---|
| 244 | m_delayLineR.process(segmentSourceR, segmentDestinationR, framesPerSegment); | 
|---|
| 245 |  | 
|---|
| 246 | bool needsCrossfading = m_crossfadeIncr; | 
|---|
| 247 |  | 
|---|
| 248 | // Have the convolvers render directly to the final destination if we're not cross-fading. | 
|---|
| 249 | float* convolutionDestinationL1 = needsCrossfading ? m_tempL1.data() : segmentDestinationL; | 
|---|
| 250 | float* convolutionDestinationR1 = needsCrossfading ? m_tempR1.data() : segmentDestinationR; | 
|---|
| 251 | float* convolutionDestinationL2 = needsCrossfading ? m_tempL2.data() : segmentDestinationL; | 
|---|
| 252 | float* convolutionDestinationR2 = needsCrossfading ? m_tempR2.data() : segmentDestinationR; | 
|---|
| 253 |  | 
|---|
| 254 | // Now do the convolutions. | 
|---|
| 255 | // Note that we avoid doing convolutions on both sets of convolvers if we're not currently cross-fading. | 
|---|
| 256 |  | 
|---|
| 257 | if (m_crossfadeSelection == CrossfadeSelection1 || needsCrossfading) { | 
|---|
| 258 | m_convolverL1.process(kernelL1->fftFrame(), segmentDestinationL, convolutionDestinationL1, framesPerSegment); | 
|---|
| 259 | m_convolverR1.process(kernelR1->fftFrame(), segmentDestinationR, convolutionDestinationR1, framesPerSegment); | 
|---|
| 260 | } | 
|---|
| 261 |  | 
|---|
| 262 | if (m_crossfadeSelection == CrossfadeSelection2 || needsCrossfading) { | 
|---|
| 263 | m_convolverL2.process(kernelL2->fftFrame(), segmentDestinationL, convolutionDestinationL2, framesPerSegment); | 
|---|
| 264 | m_convolverR2.process(kernelR2->fftFrame(), segmentDestinationR, convolutionDestinationR2, framesPerSegment); | 
|---|
| 265 | } | 
|---|
| 266 |  | 
|---|
| 267 | if (needsCrossfading) { | 
|---|
| 268 | // Apply linear cross-fade. | 
|---|
| 269 | float x = m_crossfadeX; | 
|---|
| 270 | float incr = m_crossfadeIncr; | 
|---|
| 271 | for (unsigned i = 0; i < framesPerSegment; ++i) { | 
|---|
| 272 | segmentDestinationL[i] = (1 - x) * convolutionDestinationL1[i] + x * convolutionDestinationL2[i]; | 
|---|
| 273 | segmentDestinationR[i] = (1 - x) * convolutionDestinationR1[i] + x * convolutionDestinationR2[i]; | 
|---|
| 274 | x += incr; | 
|---|
| 275 | } | 
|---|
| 276 | // Update cross-fade value from local. | 
|---|
| 277 | m_crossfadeX = x; | 
|---|
| 278 |  | 
|---|
| 279 | if (m_crossfadeIncr > 0 && fabs(m_crossfadeX - 1) < m_crossfadeIncr) { | 
|---|
| 280 | // We've fully made the crossfade transition from 1 -> 2. | 
|---|
| 281 | m_crossfadeSelection = CrossfadeSelection2; | 
|---|
| 282 | m_crossfadeX = 1; | 
|---|
| 283 | m_crossfadeIncr = 0; | 
|---|
| 284 | } else if (m_crossfadeIncr < 0 && fabs(m_crossfadeX) < -m_crossfadeIncr) { | 
|---|
| 285 | // We've fully made the crossfade transition from 2 -> 1. | 
|---|
| 286 | m_crossfadeSelection = CrossfadeSelection1; | 
|---|
| 287 | m_crossfadeX = 0; | 
|---|
| 288 | m_crossfadeIncr = 0; | 
|---|
| 289 | } | 
|---|
| 290 | } | 
|---|
| 291 | } | 
|---|
| 292 | } | 
|---|
| 293 |  | 
|---|
| 294 | double HRTFPanner::tailTime() const | 
|---|
| 295 | { | 
|---|
| 296 | // Because HRTFPanner is implemented with a DelayKernel and a FFTConvolver, the tailTime of the HRTFPanner | 
|---|
| 297 | // is the sum of the tailTime of the DelayKernel and the tailTime of the FFTConvolver, which is MaxDelayTimeSeconds | 
|---|
| 298 | // and fftSize() / 2, respectively. | 
|---|
| 299 | return MaxDelayTimeSeconds + (fftSize() / 2) / static_cast<double>(sampleRate()); | 
|---|
| 300 | } | 
|---|
| 301 |  | 
|---|
| 302 | double HRTFPanner::latencyTime() const | 
|---|
| 303 | { | 
|---|
| 304 | // The latency of a FFTConvolver is also fftSize() / 2, and is in addition to its tailTime of the | 
|---|
| 305 | // same value. | 
|---|
| 306 | return (fftSize() / 2) / static_cast<double>(sampleRate()); | 
|---|
| 307 | } | 
|---|
| 308 |  | 
|---|
| 309 | } // namespace WebCore | 
|---|
| 310 |  | 
|---|
| 311 | #endif // ENABLE(WEB_AUDIO) | 
|---|
| 312 |  | 
|---|