1 | /* |
2 | * Copyright (C) 2011 Google Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * 2. Redistributions in binary form must reproduce the above copyright |
11 | * notice, this list of conditions and the following disclaimer in the |
12 | * documentation and/or other materials provided with the distribution. |
13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
14 | * its contributors may be used to endorse or promote products derived |
15 | * from this software without specific prior written permission. |
16 | * |
17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | */ |
28 | |
29 | #include "config.h" |
30 | |
31 | #if ENABLE(WEB_AUDIO) |
32 | |
33 | #include "DynamicsCompressor.h" |
34 | |
35 | #include "AudioBus.h" |
36 | #include "AudioUtilities.h" |
37 | #include <wtf/MathExtras.h> |
38 | #include <wtf/StdLibExtras.h> |
39 | |
40 | namespace WebCore { |
41 | |
42 | using namespace AudioUtilities; |
43 | |
44 | DynamicsCompressor::DynamicsCompressor(float sampleRate, unsigned numberOfChannels) |
45 | : m_numberOfChannels(numberOfChannels) |
46 | , m_sampleRate(sampleRate) |
47 | , m_compressor(sampleRate, numberOfChannels) |
48 | { |
49 | // Uninitialized state - for parameter recalculation. |
50 | m_lastFilterStageRatio = -1; |
51 | m_lastAnchor = -1; |
52 | m_lastFilterStageGain = -1; |
53 | |
54 | setNumberOfChannels(numberOfChannels); |
55 | initializeParameters(); |
56 | } |
57 | |
58 | void DynamicsCompressor::setParameterValue(unsigned parameterID, float value) |
59 | { |
60 | ASSERT(parameterID < ParamLast); |
61 | if (parameterID < ParamLast) |
62 | m_parameters[parameterID] = value; |
63 | } |
64 | |
65 | void DynamicsCompressor::initializeParameters() |
66 | { |
67 | // Initializes compressor to default values. |
68 | |
69 | m_parameters[ParamThreshold] = -24; // dB |
70 | m_parameters[ParamKnee] = 30; // dB |
71 | m_parameters[ParamRatio] = 12; // unit-less |
72 | m_parameters[ParamAttack] = 0.003f; // seconds |
73 | m_parameters[ParamRelease] = 0.250f; // seconds |
74 | m_parameters[ParamPreDelay] = 0.006f; // seconds |
75 | |
76 | // Release zone values 0 -> 1. |
77 | m_parameters[ParamReleaseZone1] = 0.09f; |
78 | m_parameters[ParamReleaseZone2] = 0.16f; |
79 | m_parameters[ParamReleaseZone3] = 0.42f; |
80 | m_parameters[ParamReleaseZone4] = 0.98f; |
81 | |
82 | m_parameters[ParamFilterStageGain] = 4.4f; // dB |
83 | m_parameters[ParamFilterStageRatio] = 2; |
84 | m_parameters[ParamFilterAnchor] = 15000 / nyquist(); |
85 | |
86 | m_parameters[ParamPostGain] = 0; // dB |
87 | m_parameters[ParamReduction] = 0; // dB |
88 | |
89 | // Linear crossfade (0 -> 1). |
90 | m_parameters[ParamEffectBlend] = 1; |
91 | } |
92 | |
93 | float DynamicsCompressor::parameterValue(unsigned parameterID) |
94 | { |
95 | ASSERT(parameterID < ParamLast); |
96 | return m_parameters[parameterID]; |
97 | } |
98 | |
99 | void DynamicsCompressor::setEmphasisStageParameters(unsigned stageIndex, float gain, float normalizedFrequency /* 0 -> 1 */) |
100 | { |
101 | float gk = 1 - gain / 20; |
102 | float f1 = normalizedFrequency * gk; |
103 | float f2 = normalizedFrequency / gk; |
104 | float r1 = expf(-f1 * piFloat); |
105 | float r2 = expf(-f2 * piFloat); |
106 | |
107 | ASSERT(m_numberOfChannels == m_preFilterPacks.size()); |
108 | |
109 | for (unsigned i = 0; i < m_numberOfChannels; ++i) { |
110 | // Set pre-filter zero and pole to create an emphasis filter. |
111 | ZeroPole& preFilter = m_preFilterPacks[i]->filters[stageIndex]; |
112 | preFilter.setZero(r1); |
113 | preFilter.setPole(r2); |
114 | |
115 | // Set post-filter with zero and pole reversed to create the de-emphasis filter. |
116 | // If there were no compressor kernel in between, they would cancel each other out (allpass filter). |
117 | ZeroPole& postFilter = m_postFilterPacks[i]->filters[stageIndex]; |
118 | postFilter.setZero(r2); |
119 | postFilter.setPole(r1); |
120 | } |
121 | } |
122 | |
123 | void DynamicsCompressor::setEmphasisParameters(float gain, float anchorFreq, float filterStageRatio) |
124 | { |
125 | setEmphasisStageParameters(0, gain, anchorFreq); |
126 | setEmphasisStageParameters(1, gain, anchorFreq / filterStageRatio); |
127 | setEmphasisStageParameters(2, gain, anchorFreq / (filterStageRatio * filterStageRatio)); |
128 | setEmphasisStageParameters(3, gain, anchorFreq / (filterStageRatio * filterStageRatio * filterStageRatio)); |
129 | } |
130 | |
131 | void DynamicsCompressor::process(const AudioBus* sourceBus, AudioBus* destinationBus, unsigned framesToProcess) |
132 | { |
133 | // Though numberOfChannels is retrived from destinationBus, we still name it numberOfChannels instead of numberOfDestinationChannels. |
134 | // It's because we internally match sourceChannels's size to destinationBus by channel up/down mix. Thus we need numberOfChannels |
135 | // to do the loop work for both m_sourceChannels and m_destinationChannels. |
136 | |
137 | unsigned numberOfChannels = destinationBus->numberOfChannels(); |
138 | unsigned numberOfSourceChannels = sourceBus->numberOfChannels(); |
139 | |
140 | ASSERT(numberOfChannels == m_numberOfChannels && numberOfSourceChannels); |
141 | |
142 | if (numberOfChannels != m_numberOfChannels || !numberOfSourceChannels) { |
143 | destinationBus->zero(); |
144 | return; |
145 | } |
146 | |
147 | switch (numberOfChannels) { |
148 | case 2: // stereo |
149 | m_sourceChannels[0] = sourceBus->channel(0)->data(); |
150 | |
151 | if (numberOfSourceChannels > 1) |
152 | m_sourceChannels[1] = sourceBus->channel(1)->data(); |
153 | else |
154 | // Simply duplicate mono channel input data to right channel for stereo processing. |
155 | m_sourceChannels[1] = m_sourceChannels[0]; |
156 | |
157 | break; |
158 | default: |
159 | // FIXME : support other number of channels. |
160 | ASSERT_NOT_REACHED(); |
161 | destinationBus->zero(); |
162 | return; |
163 | } |
164 | |
165 | for (unsigned i = 0; i < numberOfChannels; ++i) |
166 | m_destinationChannels[i] = destinationBus->channel(i)->mutableData(); |
167 | |
168 | float filterStageGain = parameterValue(ParamFilterStageGain); |
169 | float filterStageRatio = parameterValue(ParamFilterStageRatio); |
170 | float anchor = parameterValue(ParamFilterAnchor); |
171 | |
172 | if (filterStageGain != m_lastFilterStageGain || filterStageRatio != m_lastFilterStageRatio || anchor != m_lastAnchor) { |
173 | m_lastFilterStageGain = filterStageGain; |
174 | m_lastFilterStageRatio = filterStageRatio; |
175 | m_lastAnchor = anchor; |
176 | |
177 | setEmphasisParameters(filterStageGain, anchor, filterStageRatio); |
178 | } |
179 | |
180 | // Apply pre-emphasis filter. |
181 | // Note that the final three stages are computed in-place in the destination buffer. |
182 | for (unsigned i = 0; i < numberOfChannels; ++i) { |
183 | const float* sourceData = m_sourceChannels[i]; |
184 | float* destinationData = m_destinationChannels[i]; |
185 | ZeroPole* preFilters = m_preFilterPacks[i]->filters; |
186 | |
187 | preFilters[0].process(sourceData, destinationData, framesToProcess); |
188 | preFilters[1].process(destinationData, destinationData, framesToProcess); |
189 | preFilters[2].process(destinationData, destinationData, framesToProcess); |
190 | preFilters[3].process(destinationData, destinationData, framesToProcess); |
191 | } |
192 | |
193 | float dbThreshold = parameterValue(ParamThreshold); |
194 | float dbKnee = parameterValue(ParamKnee); |
195 | float ratio = parameterValue(ParamRatio); |
196 | float attackTime = parameterValue(ParamAttack); |
197 | float releaseTime = parameterValue(ParamRelease); |
198 | float preDelayTime = parameterValue(ParamPreDelay); |
199 | |
200 | // This is effectively a master volume on the compressed signal (pre-blending). |
201 | float dbPostGain = parameterValue(ParamPostGain); |
202 | |
203 | // Linear blending value from dry to completely processed (0 -> 1) |
204 | // 0 means the signal is completely unprocessed. |
205 | // 1 mixes in only the compressed signal. |
206 | float effectBlend = parameterValue(ParamEffectBlend); |
207 | |
208 | float releaseZone1 = parameterValue(ParamReleaseZone1); |
209 | float releaseZone2 = parameterValue(ParamReleaseZone2); |
210 | float releaseZone3 = parameterValue(ParamReleaseZone3); |
211 | float releaseZone4 = parameterValue(ParamReleaseZone4); |
212 | |
213 | // Apply compression to the pre-filtered signal. |
214 | // The processing is performed in place. |
215 | m_compressor.process(m_destinationChannels.get(), |
216 | m_destinationChannels.get(), |
217 | numberOfChannels, |
218 | framesToProcess, |
219 | |
220 | dbThreshold, |
221 | dbKnee, |
222 | ratio, |
223 | attackTime, |
224 | releaseTime, |
225 | preDelayTime, |
226 | dbPostGain, |
227 | effectBlend, |
228 | |
229 | releaseZone1, |
230 | releaseZone2, |
231 | releaseZone3, |
232 | releaseZone4 |
233 | ); |
234 | |
235 | // Update the compression amount. |
236 | setParameterValue(ParamReduction, m_compressor.meteringGain()); |
237 | |
238 | // Apply de-emphasis filter. |
239 | for (unsigned i = 0; i < numberOfChannels; ++i) { |
240 | float* destinationData = m_destinationChannels[i]; |
241 | ZeroPole* postFilters = m_postFilterPacks[i]->filters; |
242 | |
243 | postFilters[0].process(destinationData, destinationData, framesToProcess); |
244 | postFilters[1].process(destinationData, destinationData, framesToProcess); |
245 | postFilters[2].process(destinationData, destinationData, framesToProcess); |
246 | postFilters[3].process(destinationData, destinationData, framesToProcess); |
247 | } |
248 | } |
249 | |
250 | void DynamicsCompressor::reset() |
251 | { |
252 | m_lastFilterStageRatio = -1; // for recalc |
253 | m_lastAnchor = -1; |
254 | m_lastFilterStageGain = -1; |
255 | |
256 | for (unsigned channel = 0; channel < m_numberOfChannels; ++channel) { |
257 | for (unsigned stageIndex = 0; stageIndex < 4; ++stageIndex) { |
258 | m_preFilterPacks[channel]->filters[stageIndex].reset(); |
259 | m_postFilterPacks[channel]->filters[stageIndex].reset(); |
260 | } |
261 | } |
262 | |
263 | m_compressor.reset(); |
264 | } |
265 | |
266 | void DynamicsCompressor::setNumberOfChannels(unsigned numberOfChannels) |
267 | { |
268 | if (m_preFilterPacks.size() == numberOfChannels) |
269 | return; |
270 | |
271 | m_preFilterPacks.clear(); |
272 | m_postFilterPacks.clear(); |
273 | for (unsigned i = 0; i < numberOfChannels; ++i) { |
274 | m_preFilterPacks.append(std::make_unique<ZeroPoleFilterPack4>()); |
275 | m_postFilterPacks.append(std::make_unique<ZeroPoleFilterPack4>()); |
276 | } |
277 | |
278 | m_sourceChannels = makeUniqueArray<const float*>(numberOfChannels); |
279 | m_destinationChannels = makeUniqueArray<float*>(numberOfChannels); |
280 | |
281 | m_compressor.setNumberOfChannels(numberOfChannels); |
282 | m_numberOfChannels = numberOfChannels; |
283 | } |
284 | |
285 | } // namespace WebCore |
286 | |
287 | #endif // ENABLE(WEB_AUDIO) |
288 | |