1 | /* |
2 | * Copyright (C) 2011 Google Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * 2. Redistributions in binary form must reproduce the above copyright |
11 | * notice, this list of conditions and the following disclaimer in the |
12 | * documentation and/or other materials provided with the distribution. |
13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
14 | * its contributors may be used to endorse or promote products derived |
15 | * from this software without specific prior written permission. |
16 | * |
17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | */ |
28 | |
29 | #include "config.h" |
30 | |
31 | #if ENABLE(WEB_AUDIO) |
32 | |
33 | #include "DynamicsCompressorKernel.h" |
34 | |
35 | #include "AudioUtilities.h" |
36 | #include "DenormalDisabler.h" |
37 | #include <algorithm> |
38 | #include <wtf/MathExtras.h> |
39 | |
40 | namespace WebCore { |
41 | |
42 | using namespace AudioUtilities; |
43 | |
44 | // Metering hits peaks instantly, but releases this fast (in seconds). |
45 | const float meteringReleaseTimeConstant = 0.325f; |
46 | |
47 | const float uninitializedValue = -1; |
48 | |
49 | DynamicsCompressorKernel::DynamicsCompressorKernel(float sampleRate, unsigned numberOfChannels) |
50 | : m_sampleRate(sampleRate) |
51 | , m_lastPreDelayFrames(DefaultPreDelayFrames) |
52 | , m_preDelayReadIndex(0) |
53 | , m_preDelayWriteIndex(DefaultPreDelayFrames) |
54 | , m_ratio(uninitializedValue) |
55 | , m_slope(uninitializedValue) |
56 | , m_linearThreshold(uninitializedValue) |
57 | , m_dbThreshold(uninitializedValue) |
58 | , m_dbKnee(uninitializedValue) |
59 | , m_kneeThreshold(uninitializedValue) |
60 | , m_kneeThresholdDb(uninitializedValue) |
61 | , m_ykneeThresholdDb(uninitializedValue) |
62 | , m_K(uninitializedValue) |
63 | { |
64 | setNumberOfChannels(numberOfChannels); |
65 | |
66 | // Initializes most member variables |
67 | reset(); |
68 | |
69 | m_meteringReleaseK = static_cast<float>(discreteTimeConstantForSampleRate(meteringReleaseTimeConstant, sampleRate)); |
70 | } |
71 | |
72 | void DynamicsCompressorKernel::setNumberOfChannels(unsigned numberOfChannels) |
73 | { |
74 | if (m_preDelayBuffers.size() == numberOfChannels) |
75 | return; |
76 | |
77 | m_preDelayBuffers.clear(); |
78 | for (unsigned i = 0; i < numberOfChannels; ++i) |
79 | m_preDelayBuffers.append(std::make_unique<AudioFloatArray>(MaxPreDelayFrames)); |
80 | } |
81 | |
82 | void DynamicsCompressorKernel::setPreDelayTime(float preDelayTime) |
83 | { |
84 | // Re-configure look-ahead section pre-delay if delay time has changed. |
85 | unsigned preDelayFrames = preDelayTime * sampleRate(); |
86 | if (preDelayFrames > MaxPreDelayFrames - 1) |
87 | preDelayFrames = MaxPreDelayFrames - 1; |
88 | |
89 | if (m_lastPreDelayFrames != preDelayFrames) { |
90 | m_lastPreDelayFrames = preDelayFrames; |
91 | for (unsigned i = 0; i < m_preDelayBuffers.size(); ++i) |
92 | m_preDelayBuffers[i]->zero(); |
93 | |
94 | m_preDelayReadIndex = 0; |
95 | m_preDelayWriteIndex = preDelayFrames; |
96 | } |
97 | } |
98 | |
99 | // Exponential curve for the knee. |
100 | // It is 1st derivative matched at m_linearThreshold and asymptotically approaches the value m_linearThreshold + 1 / k. |
101 | float DynamicsCompressorKernel::kneeCurve(float x, float k) |
102 | { |
103 | // Linear up to threshold. |
104 | if (x < m_linearThreshold) |
105 | return x; |
106 | |
107 | return m_linearThreshold + (1 - expf(-k * (x - m_linearThreshold))) / k; |
108 | } |
109 | |
110 | // Full compression curve with constant ratio after knee. |
111 | float DynamicsCompressorKernel::saturate(float x, float k) |
112 | { |
113 | float y; |
114 | |
115 | if (x < m_kneeThreshold) |
116 | y = kneeCurve(x, k); |
117 | else { |
118 | // Constant ratio after knee. |
119 | float xDb = linearToDecibels(x); |
120 | float yDb = m_ykneeThresholdDb + m_slope * (xDb - m_kneeThresholdDb); |
121 | |
122 | y = decibelsToLinear(yDb); |
123 | } |
124 | |
125 | return y; |
126 | } |
127 | |
128 | // Approximate 1st derivative with input and output expressed in dB. |
129 | // This slope is equal to the inverse of the compression "ratio". |
130 | // In other words, a compression ratio of 20 would be a slope of 1/20. |
131 | float DynamicsCompressorKernel::slopeAt(float x, float k) |
132 | { |
133 | if (x < m_linearThreshold) |
134 | return 1; |
135 | |
136 | float x2 = x * 1.001; |
137 | |
138 | float xDb = linearToDecibels(x); |
139 | float x2Db = linearToDecibels(x2); |
140 | |
141 | float yDb = linearToDecibels(kneeCurve(x, k)); |
142 | float y2Db = linearToDecibels(kneeCurve(x2, k)); |
143 | |
144 | float m = (y2Db - yDb) / (x2Db - xDb); |
145 | |
146 | return m; |
147 | } |
148 | |
149 | float DynamicsCompressorKernel::kAtSlope(float desiredSlope) |
150 | { |
151 | float xDb = m_dbThreshold + m_dbKnee; |
152 | float x = decibelsToLinear(xDb); |
153 | |
154 | // Approximate k given initial values. |
155 | float minK = 0.1; |
156 | float maxK = 10000; |
157 | float k = 5; |
158 | |
159 | for (int i = 0; i < 15; ++i) { |
160 | // A high value for k will more quickly asymptotically approach a slope of 0. |
161 | float slope = slopeAt(x, k); |
162 | |
163 | if (slope < desiredSlope) { |
164 | // k is too high. |
165 | maxK = k; |
166 | } else { |
167 | // k is too low. |
168 | minK = k; |
169 | } |
170 | |
171 | // Re-calculate based on geometric mean. |
172 | k = sqrtf(minK * maxK); |
173 | } |
174 | |
175 | return k; |
176 | } |
177 | |
178 | float DynamicsCompressorKernel::updateStaticCurveParameters(float dbThreshold, float dbKnee, float ratio) |
179 | { |
180 | if (dbThreshold != m_dbThreshold || dbKnee != m_dbKnee || ratio != m_ratio) { |
181 | // Threshold and knee. |
182 | m_dbThreshold = dbThreshold; |
183 | m_linearThreshold = decibelsToLinear(dbThreshold); |
184 | m_dbKnee = dbKnee; |
185 | |
186 | // Compute knee parameters. |
187 | m_ratio = ratio; |
188 | m_slope = 1 / m_ratio; |
189 | |
190 | float k = kAtSlope(1 / m_ratio); |
191 | |
192 | m_kneeThresholdDb = dbThreshold + dbKnee; |
193 | m_kneeThreshold = decibelsToLinear(m_kneeThresholdDb); |
194 | |
195 | m_ykneeThresholdDb = linearToDecibels(kneeCurve(m_kneeThreshold, k)); |
196 | |
197 | m_K = k; |
198 | } |
199 | return m_K; |
200 | } |
201 | |
202 | void DynamicsCompressorKernel::process(float* sourceChannels[], |
203 | float* destinationChannels[], |
204 | unsigned numberOfChannels, |
205 | unsigned framesToProcess, |
206 | |
207 | float dbThreshold, |
208 | float dbKnee, |
209 | float ratio, |
210 | float attackTime, |
211 | float releaseTime, |
212 | float preDelayTime, |
213 | float dbPostGain, |
214 | float effectBlend, /* equal power crossfade */ |
215 | |
216 | float releaseZone1, |
217 | float releaseZone2, |
218 | float releaseZone3, |
219 | float releaseZone4 |
220 | ) |
221 | { |
222 | ASSERT(m_preDelayBuffers.size() == numberOfChannels); |
223 | |
224 | float sampleRate = this->sampleRate(); |
225 | |
226 | float dryMix = 1 - effectBlend; |
227 | float wetMix = effectBlend; |
228 | |
229 | float k = updateStaticCurveParameters(dbThreshold, dbKnee, ratio); |
230 | |
231 | // Makeup gain. |
232 | float fullRangeGain = saturate(1, k); |
233 | float fullRangeMakeupGain = 1 / fullRangeGain; |
234 | |
235 | // Empirical/perceptual tuning. |
236 | fullRangeMakeupGain = powf(fullRangeMakeupGain, 0.6f); |
237 | |
238 | float masterLinearGain = decibelsToLinear(dbPostGain) * fullRangeMakeupGain; |
239 | |
240 | // Attack parameters. |
241 | attackTime = std::max(0.001f, attackTime); |
242 | float attackFrames = attackTime * sampleRate; |
243 | |
244 | // Release parameters. |
245 | float releaseFrames = sampleRate * releaseTime; |
246 | |
247 | // Detector release time. |
248 | float satReleaseTime = 0.0025f; |
249 | float satReleaseFrames = satReleaseTime * sampleRate; |
250 | |
251 | // Create a smooth function which passes through four points. |
252 | |
253 | // Polynomial of the form |
254 | // y = a + b*x + c*x^2 + d*x^3 + e*x^4; |
255 | |
256 | float y1 = releaseFrames * releaseZone1; |
257 | float y2 = releaseFrames * releaseZone2; |
258 | float y3 = releaseFrames * releaseZone3; |
259 | float y4 = releaseFrames * releaseZone4; |
260 | |
261 | // All of these coefficients were derived for 4th order polynomial curve fitting where the y values |
262 | // match the evenly spaced x values as follows: (y1 : x == 0, y2 : x == 1, y3 : x == 2, y4 : x == 3) |
263 | float kA = 0.9999999999999998f*y1 + 1.8432219684323923e-16f*y2 - 1.9373394351676423e-16f*y3 + 8.824516011816245e-18f*y4; |
264 | float kB = -1.5788320352845888f*y1 + 2.3305837032074286f*y2 - 0.9141194204840429f*y3 + 0.1623677525612032f*y4; |
265 | float kC = 0.5334142869106424f*y1 - 1.272736789213631f*y2 + 0.9258856042207512f*y3 - 0.18656310191776226f*y4; |
266 | float kD = 0.08783463138207234f*y1 - 0.1694162967925622f*y2 + 0.08588057951595272f*y3 - 0.00429891410546283f*y4; |
267 | float kE = -0.042416883008123074f*y1 + 0.1115693827987602f*y2 - 0.09764676325265872f*y3 + 0.028494263462021576f*y4; |
268 | |
269 | // x ranges from 0 -> 3 0 1 2 3 |
270 | // -15 -10 -5 0db |
271 | |
272 | // y calculates adaptive release frames depending on the amount of compression. |
273 | |
274 | setPreDelayTime(preDelayTime); |
275 | |
276 | const int nDivisionFrames = 32; |
277 | |
278 | const int nDivisions = framesToProcess / nDivisionFrames; |
279 | |
280 | unsigned frameIndex = 0; |
281 | for (int i = 0; i < nDivisions; ++i) { |
282 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
283 | // Calculate desired gain |
284 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
285 | |
286 | // Fix gremlins. |
287 | if (std::isnan(m_detectorAverage)) |
288 | m_detectorAverage = 1; |
289 | if (std::isinf(m_detectorAverage)) |
290 | m_detectorAverage = 1; |
291 | |
292 | float desiredGain = m_detectorAverage; |
293 | |
294 | // Pre-warp so we get desiredGain after sin() warp below. |
295 | float scaledDesiredGain = asinf(desiredGain) / (0.5f * piFloat); |
296 | |
297 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
298 | // Deal with envelopes |
299 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
300 | |
301 | // envelopeRate is the rate we slew from current compressor level to the desired level. |
302 | // The exact rate depends on if we're attacking or releasing and by how much. |
303 | float envelopeRate; |
304 | |
305 | bool isReleasing = scaledDesiredGain > m_compressorGain; |
306 | |
307 | // compressionDiffDb is the difference between current compression level and the desired level. |
308 | float compressionDiffDb = linearToDecibels(m_compressorGain / scaledDesiredGain); |
309 | |
310 | if (isReleasing) { |
311 | // Release mode - compressionDiffDb should be negative dB |
312 | m_maxAttackCompressionDiffDb = -1; |
313 | |
314 | // Fix gremlins. |
315 | if (std::isnan(compressionDiffDb)) |
316 | compressionDiffDb = -1; |
317 | if (std::isinf(compressionDiffDb)) |
318 | compressionDiffDb = -1; |
319 | |
320 | // Adaptive release - higher compression (lower compressionDiffDb) releases faster. |
321 | |
322 | // Contain within range: -12 -> 0 then scale to go from 0 -> 3 |
323 | float x = compressionDiffDb; |
324 | x = std::max(-12.0f, x); |
325 | x = std::min(0.0f, x); |
326 | x = 0.25f * (x + 12); |
327 | |
328 | // Compute adaptive release curve using 4th order polynomial. |
329 | // Normal values for the polynomial coefficients would create a monotonically increasing function. |
330 | float x2 = x * x; |
331 | float x3 = x2 * x; |
332 | float x4 = x2 * x2; |
333 | float releaseFrames = kA + kB * x + kC * x2 + kD * x3 + kE * x4; |
334 | |
335 | #define kSpacingDb 5 |
336 | float dbPerFrame = kSpacingDb / releaseFrames; |
337 | |
338 | envelopeRate = decibelsToLinear(dbPerFrame); |
339 | } else { |
340 | // Attack mode - compressionDiffDb should be positive dB |
341 | |
342 | // Fix gremlins. |
343 | if (std::isnan(compressionDiffDb)) |
344 | compressionDiffDb = 1; |
345 | if (std::isinf(compressionDiffDb)) |
346 | compressionDiffDb = 1; |
347 | |
348 | // As long as we're still in attack mode, use a rate based off |
349 | // the largest compressionDiffDb we've encountered so far. |
350 | if (m_maxAttackCompressionDiffDb == -1 || m_maxAttackCompressionDiffDb < compressionDiffDb) |
351 | m_maxAttackCompressionDiffDb = compressionDiffDb; |
352 | |
353 | float effAttenDiffDb = std::max(0.5f, m_maxAttackCompressionDiffDb); |
354 | |
355 | float x = 0.25f / effAttenDiffDb; |
356 | envelopeRate = 1 - powf(x, 1 / attackFrames); |
357 | } |
358 | |
359 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
360 | // Inner loop - calculate shaped power average - apply compression. |
361 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
362 | |
363 | { |
364 | int preDelayReadIndex = m_preDelayReadIndex; |
365 | int preDelayWriteIndex = m_preDelayWriteIndex; |
366 | float detectorAverage = m_detectorAverage; |
367 | float compressorGain = m_compressorGain; |
368 | |
369 | int loopFrames = nDivisionFrames; |
370 | while (loopFrames--) { |
371 | float compressorInput = 0; |
372 | |
373 | // Predelay signal, computing compression amount from un-delayed version. |
374 | for (unsigned i = 0; i < numberOfChannels; ++i) { |
375 | float* delayBuffer = m_preDelayBuffers[i]->data(); |
376 | float undelayedSource = sourceChannels[i][frameIndex]; |
377 | delayBuffer[preDelayWriteIndex] = undelayedSource; |
378 | |
379 | float absUndelayedSource = undelayedSource > 0 ? undelayedSource : -undelayedSource; |
380 | if (compressorInput < absUndelayedSource) |
381 | compressorInput = absUndelayedSource; |
382 | } |
383 | |
384 | // Calculate shaped power on undelayed input. |
385 | |
386 | float scaledInput = compressorInput; |
387 | float absInput = scaledInput > 0 ? scaledInput : -scaledInput; |
388 | |
389 | // Put through shaping curve. |
390 | // This is linear up to the threshold, then enters a "knee" portion followed by the "ratio" portion. |
391 | // The transition from the threshold to the knee is smooth (1st derivative matched). |
392 | // The transition from the knee to the ratio portion is smooth (1st derivative matched). |
393 | float shapedInput = saturate(absInput, k); |
394 | |
395 | float attenuation = absInput <= 0.0001f ? 1 : shapedInput / absInput; |
396 | |
397 | float attenuationDb = -linearToDecibels(attenuation); |
398 | attenuationDb = std::max(2.0f, attenuationDb); |
399 | |
400 | float dbPerFrame = attenuationDb / satReleaseFrames; |
401 | |
402 | float satReleaseRate = decibelsToLinear(dbPerFrame) - 1; |
403 | |
404 | bool isRelease = (attenuation > detectorAverage); |
405 | float rate = isRelease ? satReleaseRate : 1; |
406 | |
407 | detectorAverage += (attenuation - detectorAverage) * rate; |
408 | detectorAverage = std::min(1.0f, detectorAverage); |
409 | |
410 | // Fix gremlins. |
411 | if (std::isnan(detectorAverage)) |
412 | detectorAverage = 1; |
413 | if (std::isinf(detectorAverage)) |
414 | detectorAverage = 1; |
415 | |
416 | // Exponential approach to desired gain. |
417 | if (envelopeRate < 1) { |
418 | // Attack - reduce gain to desired. |
419 | compressorGain += (scaledDesiredGain - compressorGain) * envelopeRate; |
420 | } else { |
421 | // Release - exponentially increase gain to 1.0 |
422 | compressorGain *= envelopeRate; |
423 | compressorGain = std::min(1.0f, compressorGain); |
424 | } |
425 | |
426 | // Warp pre-compression gain to smooth out sharp exponential transition points. |
427 | float postWarpCompressorGain = sinf(0.5f * piFloat * compressorGain); |
428 | |
429 | // Calculate total gain using master gain and effect blend. |
430 | float totalGain = dryMix + wetMix * masterLinearGain * postWarpCompressorGain; |
431 | |
432 | // Calculate metering. |
433 | float dbRealGain = 20 * log10(postWarpCompressorGain); |
434 | if (dbRealGain < m_meteringGain) |
435 | m_meteringGain = dbRealGain; |
436 | else |
437 | m_meteringGain += (dbRealGain - m_meteringGain) * m_meteringReleaseK; |
438 | |
439 | // Apply final gain. |
440 | for (unsigned i = 0; i < numberOfChannels; ++i) { |
441 | float* delayBuffer = m_preDelayBuffers[i]->data(); |
442 | destinationChannels[i][frameIndex] = delayBuffer[preDelayReadIndex] * totalGain; |
443 | } |
444 | |
445 | frameIndex++; |
446 | preDelayReadIndex = (preDelayReadIndex + 1) & MaxPreDelayFramesMask; |
447 | preDelayWriteIndex = (preDelayWriteIndex + 1) & MaxPreDelayFramesMask; |
448 | } |
449 | |
450 | // Locals back to member variables. |
451 | m_preDelayReadIndex = preDelayReadIndex; |
452 | m_preDelayWriteIndex = preDelayWriteIndex; |
453 | m_detectorAverage = DenormalDisabler::flushDenormalFloatToZero(detectorAverage); |
454 | m_compressorGain = DenormalDisabler::flushDenormalFloatToZero(compressorGain); |
455 | } |
456 | } |
457 | } |
458 | |
459 | void DynamicsCompressorKernel::reset() |
460 | { |
461 | m_detectorAverage = 0; |
462 | m_compressorGain = 1; |
463 | m_meteringGain = 1; |
464 | |
465 | // Predelay section. |
466 | for (unsigned i = 0; i < m_preDelayBuffers.size(); ++i) |
467 | m_preDelayBuffers[i]->zero(); |
468 | |
469 | m_preDelayReadIndex = 0; |
470 | m_preDelayWriteIndex = DefaultPreDelayFrames; |
471 | |
472 | m_maxAttackCompressionDiffDb = -1; // uninitialized state |
473 | } |
474 | |
475 | } // namespace WebCore |
476 | |
477 | #endif // ENABLE(WEB_AUDIO) |
478 | |