| 1 | /* |
| 2 | * Copyright (C) 2011 Google Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 14 | * its contributors may be used to endorse or promote products derived |
| 15 | * from this software without specific prior written permission. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include "config.h" |
| 30 | |
| 31 | #if ENABLE(WEB_AUDIO) |
| 32 | |
| 33 | #include "DynamicsCompressorKernel.h" |
| 34 | |
| 35 | #include "AudioUtilities.h" |
| 36 | #include "DenormalDisabler.h" |
| 37 | #include <algorithm> |
| 38 | #include <wtf/MathExtras.h> |
| 39 | |
| 40 | namespace WebCore { |
| 41 | |
| 42 | using namespace AudioUtilities; |
| 43 | |
| 44 | // Metering hits peaks instantly, but releases this fast (in seconds). |
| 45 | const float meteringReleaseTimeConstant = 0.325f; |
| 46 | |
| 47 | const float uninitializedValue = -1; |
| 48 | |
| 49 | DynamicsCompressorKernel::DynamicsCompressorKernel(float sampleRate, unsigned numberOfChannels) |
| 50 | : m_sampleRate(sampleRate) |
| 51 | , m_lastPreDelayFrames(DefaultPreDelayFrames) |
| 52 | , m_preDelayReadIndex(0) |
| 53 | , m_preDelayWriteIndex(DefaultPreDelayFrames) |
| 54 | , m_ratio(uninitializedValue) |
| 55 | , m_slope(uninitializedValue) |
| 56 | , m_linearThreshold(uninitializedValue) |
| 57 | , m_dbThreshold(uninitializedValue) |
| 58 | , m_dbKnee(uninitializedValue) |
| 59 | , m_kneeThreshold(uninitializedValue) |
| 60 | , m_kneeThresholdDb(uninitializedValue) |
| 61 | , m_ykneeThresholdDb(uninitializedValue) |
| 62 | , m_K(uninitializedValue) |
| 63 | { |
| 64 | setNumberOfChannels(numberOfChannels); |
| 65 | |
| 66 | // Initializes most member variables |
| 67 | reset(); |
| 68 | |
| 69 | m_meteringReleaseK = static_cast<float>(discreteTimeConstantForSampleRate(meteringReleaseTimeConstant, sampleRate)); |
| 70 | } |
| 71 | |
| 72 | void DynamicsCompressorKernel::setNumberOfChannels(unsigned numberOfChannels) |
| 73 | { |
| 74 | if (m_preDelayBuffers.size() == numberOfChannels) |
| 75 | return; |
| 76 | |
| 77 | m_preDelayBuffers.clear(); |
| 78 | for (unsigned i = 0; i < numberOfChannels; ++i) |
| 79 | m_preDelayBuffers.append(std::make_unique<AudioFloatArray>(MaxPreDelayFrames)); |
| 80 | } |
| 81 | |
| 82 | void DynamicsCompressorKernel::setPreDelayTime(float preDelayTime) |
| 83 | { |
| 84 | // Re-configure look-ahead section pre-delay if delay time has changed. |
| 85 | unsigned preDelayFrames = preDelayTime * sampleRate(); |
| 86 | if (preDelayFrames > MaxPreDelayFrames - 1) |
| 87 | preDelayFrames = MaxPreDelayFrames - 1; |
| 88 | |
| 89 | if (m_lastPreDelayFrames != preDelayFrames) { |
| 90 | m_lastPreDelayFrames = preDelayFrames; |
| 91 | for (unsigned i = 0; i < m_preDelayBuffers.size(); ++i) |
| 92 | m_preDelayBuffers[i]->zero(); |
| 93 | |
| 94 | m_preDelayReadIndex = 0; |
| 95 | m_preDelayWriteIndex = preDelayFrames; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | // Exponential curve for the knee. |
| 100 | // It is 1st derivative matched at m_linearThreshold and asymptotically approaches the value m_linearThreshold + 1 / k. |
| 101 | float DynamicsCompressorKernel::kneeCurve(float x, float k) |
| 102 | { |
| 103 | // Linear up to threshold. |
| 104 | if (x < m_linearThreshold) |
| 105 | return x; |
| 106 | |
| 107 | return m_linearThreshold + (1 - expf(-k * (x - m_linearThreshold))) / k; |
| 108 | } |
| 109 | |
| 110 | // Full compression curve with constant ratio after knee. |
| 111 | float DynamicsCompressorKernel::saturate(float x, float k) |
| 112 | { |
| 113 | float y; |
| 114 | |
| 115 | if (x < m_kneeThreshold) |
| 116 | y = kneeCurve(x, k); |
| 117 | else { |
| 118 | // Constant ratio after knee. |
| 119 | float xDb = linearToDecibels(x); |
| 120 | float yDb = m_ykneeThresholdDb + m_slope * (xDb - m_kneeThresholdDb); |
| 121 | |
| 122 | y = decibelsToLinear(yDb); |
| 123 | } |
| 124 | |
| 125 | return y; |
| 126 | } |
| 127 | |
| 128 | // Approximate 1st derivative with input and output expressed in dB. |
| 129 | // This slope is equal to the inverse of the compression "ratio". |
| 130 | // In other words, a compression ratio of 20 would be a slope of 1/20. |
| 131 | float DynamicsCompressorKernel::slopeAt(float x, float k) |
| 132 | { |
| 133 | if (x < m_linearThreshold) |
| 134 | return 1; |
| 135 | |
| 136 | float x2 = x * 1.001; |
| 137 | |
| 138 | float xDb = linearToDecibels(x); |
| 139 | float x2Db = linearToDecibels(x2); |
| 140 | |
| 141 | float yDb = linearToDecibels(kneeCurve(x, k)); |
| 142 | float y2Db = linearToDecibels(kneeCurve(x2, k)); |
| 143 | |
| 144 | float m = (y2Db - yDb) / (x2Db - xDb); |
| 145 | |
| 146 | return m; |
| 147 | } |
| 148 | |
| 149 | float DynamicsCompressorKernel::kAtSlope(float desiredSlope) |
| 150 | { |
| 151 | float xDb = m_dbThreshold + m_dbKnee; |
| 152 | float x = decibelsToLinear(xDb); |
| 153 | |
| 154 | // Approximate k given initial values. |
| 155 | float minK = 0.1; |
| 156 | float maxK = 10000; |
| 157 | float k = 5; |
| 158 | |
| 159 | for (int i = 0; i < 15; ++i) { |
| 160 | // A high value for k will more quickly asymptotically approach a slope of 0. |
| 161 | float slope = slopeAt(x, k); |
| 162 | |
| 163 | if (slope < desiredSlope) { |
| 164 | // k is too high. |
| 165 | maxK = k; |
| 166 | } else { |
| 167 | // k is too low. |
| 168 | minK = k; |
| 169 | } |
| 170 | |
| 171 | // Re-calculate based on geometric mean. |
| 172 | k = sqrtf(minK * maxK); |
| 173 | } |
| 174 | |
| 175 | return k; |
| 176 | } |
| 177 | |
| 178 | float DynamicsCompressorKernel::updateStaticCurveParameters(float dbThreshold, float dbKnee, float ratio) |
| 179 | { |
| 180 | if (dbThreshold != m_dbThreshold || dbKnee != m_dbKnee || ratio != m_ratio) { |
| 181 | // Threshold and knee. |
| 182 | m_dbThreshold = dbThreshold; |
| 183 | m_linearThreshold = decibelsToLinear(dbThreshold); |
| 184 | m_dbKnee = dbKnee; |
| 185 | |
| 186 | // Compute knee parameters. |
| 187 | m_ratio = ratio; |
| 188 | m_slope = 1 / m_ratio; |
| 189 | |
| 190 | float k = kAtSlope(1 / m_ratio); |
| 191 | |
| 192 | m_kneeThresholdDb = dbThreshold + dbKnee; |
| 193 | m_kneeThreshold = decibelsToLinear(m_kneeThresholdDb); |
| 194 | |
| 195 | m_ykneeThresholdDb = linearToDecibels(kneeCurve(m_kneeThreshold, k)); |
| 196 | |
| 197 | m_K = k; |
| 198 | } |
| 199 | return m_K; |
| 200 | } |
| 201 | |
| 202 | void DynamicsCompressorKernel::process(float* sourceChannels[], |
| 203 | float* destinationChannels[], |
| 204 | unsigned numberOfChannels, |
| 205 | unsigned framesToProcess, |
| 206 | |
| 207 | float dbThreshold, |
| 208 | float dbKnee, |
| 209 | float ratio, |
| 210 | float attackTime, |
| 211 | float releaseTime, |
| 212 | float preDelayTime, |
| 213 | float dbPostGain, |
| 214 | float effectBlend, /* equal power crossfade */ |
| 215 | |
| 216 | float releaseZone1, |
| 217 | float releaseZone2, |
| 218 | float releaseZone3, |
| 219 | float releaseZone4 |
| 220 | ) |
| 221 | { |
| 222 | ASSERT(m_preDelayBuffers.size() == numberOfChannels); |
| 223 | |
| 224 | float sampleRate = this->sampleRate(); |
| 225 | |
| 226 | float dryMix = 1 - effectBlend; |
| 227 | float wetMix = effectBlend; |
| 228 | |
| 229 | float k = updateStaticCurveParameters(dbThreshold, dbKnee, ratio); |
| 230 | |
| 231 | // Makeup gain. |
| 232 | float fullRangeGain = saturate(1, k); |
| 233 | float fullRangeMakeupGain = 1 / fullRangeGain; |
| 234 | |
| 235 | // Empirical/perceptual tuning. |
| 236 | fullRangeMakeupGain = powf(fullRangeMakeupGain, 0.6f); |
| 237 | |
| 238 | float masterLinearGain = decibelsToLinear(dbPostGain) * fullRangeMakeupGain; |
| 239 | |
| 240 | // Attack parameters. |
| 241 | attackTime = std::max(0.001f, attackTime); |
| 242 | float attackFrames = attackTime * sampleRate; |
| 243 | |
| 244 | // Release parameters. |
| 245 | float releaseFrames = sampleRate * releaseTime; |
| 246 | |
| 247 | // Detector release time. |
| 248 | float satReleaseTime = 0.0025f; |
| 249 | float satReleaseFrames = satReleaseTime * sampleRate; |
| 250 | |
| 251 | // Create a smooth function which passes through four points. |
| 252 | |
| 253 | // Polynomial of the form |
| 254 | // y = a + b*x + c*x^2 + d*x^3 + e*x^4; |
| 255 | |
| 256 | float y1 = releaseFrames * releaseZone1; |
| 257 | float y2 = releaseFrames * releaseZone2; |
| 258 | float y3 = releaseFrames * releaseZone3; |
| 259 | float y4 = releaseFrames * releaseZone4; |
| 260 | |
| 261 | // All of these coefficients were derived for 4th order polynomial curve fitting where the y values |
| 262 | // match the evenly spaced x values as follows: (y1 : x == 0, y2 : x == 1, y3 : x == 2, y4 : x == 3) |
| 263 | float kA = 0.9999999999999998f*y1 + 1.8432219684323923e-16f*y2 - 1.9373394351676423e-16f*y3 + 8.824516011816245e-18f*y4; |
| 264 | float kB = -1.5788320352845888f*y1 + 2.3305837032074286f*y2 - 0.9141194204840429f*y3 + 0.1623677525612032f*y4; |
| 265 | float kC = 0.5334142869106424f*y1 - 1.272736789213631f*y2 + 0.9258856042207512f*y3 - 0.18656310191776226f*y4; |
| 266 | float kD = 0.08783463138207234f*y1 - 0.1694162967925622f*y2 + 0.08588057951595272f*y3 - 0.00429891410546283f*y4; |
| 267 | float kE = -0.042416883008123074f*y1 + 0.1115693827987602f*y2 - 0.09764676325265872f*y3 + 0.028494263462021576f*y4; |
| 268 | |
| 269 | // x ranges from 0 -> 3 0 1 2 3 |
| 270 | // -15 -10 -5 0db |
| 271 | |
| 272 | // y calculates adaptive release frames depending on the amount of compression. |
| 273 | |
| 274 | setPreDelayTime(preDelayTime); |
| 275 | |
| 276 | const int nDivisionFrames = 32; |
| 277 | |
| 278 | const int nDivisions = framesToProcess / nDivisionFrames; |
| 279 | |
| 280 | unsigned frameIndex = 0; |
| 281 | for (int i = 0; i < nDivisions; ++i) { |
| 282 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 283 | // Calculate desired gain |
| 284 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 285 | |
| 286 | // Fix gremlins. |
| 287 | if (std::isnan(m_detectorAverage)) |
| 288 | m_detectorAverage = 1; |
| 289 | if (std::isinf(m_detectorAverage)) |
| 290 | m_detectorAverage = 1; |
| 291 | |
| 292 | float desiredGain = m_detectorAverage; |
| 293 | |
| 294 | // Pre-warp so we get desiredGain after sin() warp below. |
| 295 | float scaledDesiredGain = asinf(desiredGain) / (0.5f * piFloat); |
| 296 | |
| 297 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 298 | // Deal with envelopes |
| 299 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 300 | |
| 301 | // envelopeRate is the rate we slew from current compressor level to the desired level. |
| 302 | // The exact rate depends on if we're attacking or releasing and by how much. |
| 303 | float envelopeRate; |
| 304 | |
| 305 | bool isReleasing = scaledDesiredGain > m_compressorGain; |
| 306 | |
| 307 | // compressionDiffDb is the difference between current compression level and the desired level. |
| 308 | float compressionDiffDb = linearToDecibels(m_compressorGain / scaledDesiredGain); |
| 309 | |
| 310 | if (isReleasing) { |
| 311 | // Release mode - compressionDiffDb should be negative dB |
| 312 | m_maxAttackCompressionDiffDb = -1; |
| 313 | |
| 314 | // Fix gremlins. |
| 315 | if (std::isnan(compressionDiffDb)) |
| 316 | compressionDiffDb = -1; |
| 317 | if (std::isinf(compressionDiffDb)) |
| 318 | compressionDiffDb = -1; |
| 319 | |
| 320 | // Adaptive release - higher compression (lower compressionDiffDb) releases faster. |
| 321 | |
| 322 | // Contain within range: -12 -> 0 then scale to go from 0 -> 3 |
| 323 | float x = compressionDiffDb; |
| 324 | x = std::max(-12.0f, x); |
| 325 | x = std::min(0.0f, x); |
| 326 | x = 0.25f * (x + 12); |
| 327 | |
| 328 | // Compute adaptive release curve using 4th order polynomial. |
| 329 | // Normal values for the polynomial coefficients would create a monotonically increasing function. |
| 330 | float x2 = x * x; |
| 331 | float x3 = x2 * x; |
| 332 | float x4 = x2 * x2; |
| 333 | float releaseFrames = kA + kB * x + kC * x2 + kD * x3 + kE * x4; |
| 334 | |
| 335 | #define kSpacingDb 5 |
| 336 | float dbPerFrame = kSpacingDb / releaseFrames; |
| 337 | |
| 338 | envelopeRate = decibelsToLinear(dbPerFrame); |
| 339 | } else { |
| 340 | // Attack mode - compressionDiffDb should be positive dB |
| 341 | |
| 342 | // Fix gremlins. |
| 343 | if (std::isnan(compressionDiffDb)) |
| 344 | compressionDiffDb = 1; |
| 345 | if (std::isinf(compressionDiffDb)) |
| 346 | compressionDiffDb = 1; |
| 347 | |
| 348 | // As long as we're still in attack mode, use a rate based off |
| 349 | // the largest compressionDiffDb we've encountered so far. |
| 350 | if (m_maxAttackCompressionDiffDb == -1 || m_maxAttackCompressionDiffDb < compressionDiffDb) |
| 351 | m_maxAttackCompressionDiffDb = compressionDiffDb; |
| 352 | |
| 353 | float effAttenDiffDb = std::max(0.5f, m_maxAttackCompressionDiffDb); |
| 354 | |
| 355 | float x = 0.25f / effAttenDiffDb; |
| 356 | envelopeRate = 1 - powf(x, 1 / attackFrames); |
| 357 | } |
| 358 | |
| 359 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 360 | // Inner loop - calculate shaped power average - apply compression. |
| 361 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 362 | |
| 363 | { |
| 364 | int preDelayReadIndex = m_preDelayReadIndex; |
| 365 | int preDelayWriteIndex = m_preDelayWriteIndex; |
| 366 | float detectorAverage = m_detectorAverage; |
| 367 | float compressorGain = m_compressorGain; |
| 368 | |
| 369 | int loopFrames = nDivisionFrames; |
| 370 | while (loopFrames--) { |
| 371 | float compressorInput = 0; |
| 372 | |
| 373 | // Predelay signal, computing compression amount from un-delayed version. |
| 374 | for (unsigned i = 0; i < numberOfChannels; ++i) { |
| 375 | float* delayBuffer = m_preDelayBuffers[i]->data(); |
| 376 | float undelayedSource = sourceChannels[i][frameIndex]; |
| 377 | delayBuffer[preDelayWriteIndex] = undelayedSource; |
| 378 | |
| 379 | float absUndelayedSource = undelayedSource > 0 ? undelayedSource : -undelayedSource; |
| 380 | if (compressorInput < absUndelayedSource) |
| 381 | compressorInput = absUndelayedSource; |
| 382 | } |
| 383 | |
| 384 | // Calculate shaped power on undelayed input. |
| 385 | |
| 386 | float scaledInput = compressorInput; |
| 387 | float absInput = scaledInput > 0 ? scaledInput : -scaledInput; |
| 388 | |
| 389 | // Put through shaping curve. |
| 390 | // This is linear up to the threshold, then enters a "knee" portion followed by the "ratio" portion. |
| 391 | // The transition from the threshold to the knee is smooth (1st derivative matched). |
| 392 | // The transition from the knee to the ratio portion is smooth (1st derivative matched). |
| 393 | float shapedInput = saturate(absInput, k); |
| 394 | |
| 395 | float attenuation = absInput <= 0.0001f ? 1 : shapedInput / absInput; |
| 396 | |
| 397 | float attenuationDb = -linearToDecibels(attenuation); |
| 398 | attenuationDb = std::max(2.0f, attenuationDb); |
| 399 | |
| 400 | float dbPerFrame = attenuationDb / satReleaseFrames; |
| 401 | |
| 402 | float satReleaseRate = decibelsToLinear(dbPerFrame) - 1; |
| 403 | |
| 404 | bool isRelease = (attenuation > detectorAverage); |
| 405 | float rate = isRelease ? satReleaseRate : 1; |
| 406 | |
| 407 | detectorAverage += (attenuation - detectorAverage) * rate; |
| 408 | detectorAverage = std::min(1.0f, detectorAverage); |
| 409 | |
| 410 | // Fix gremlins. |
| 411 | if (std::isnan(detectorAverage)) |
| 412 | detectorAverage = 1; |
| 413 | if (std::isinf(detectorAverage)) |
| 414 | detectorAverage = 1; |
| 415 | |
| 416 | // Exponential approach to desired gain. |
| 417 | if (envelopeRate < 1) { |
| 418 | // Attack - reduce gain to desired. |
| 419 | compressorGain += (scaledDesiredGain - compressorGain) * envelopeRate; |
| 420 | } else { |
| 421 | // Release - exponentially increase gain to 1.0 |
| 422 | compressorGain *= envelopeRate; |
| 423 | compressorGain = std::min(1.0f, compressorGain); |
| 424 | } |
| 425 | |
| 426 | // Warp pre-compression gain to smooth out sharp exponential transition points. |
| 427 | float postWarpCompressorGain = sinf(0.5f * piFloat * compressorGain); |
| 428 | |
| 429 | // Calculate total gain using master gain and effect blend. |
| 430 | float totalGain = dryMix + wetMix * masterLinearGain * postWarpCompressorGain; |
| 431 | |
| 432 | // Calculate metering. |
| 433 | float dbRealGain = 20 * log10(postWarpCompressorGain); |
| 434 | if (dbRealGain < m_meteringGain) |
| 435 | m_meteringGain = dbRealGain; |
| 436 | else |
| 437 | m_meteringGain += (dbRealGain - m_meteringGain) * m_meteringReleaseK; |
| 438 | |
| 439 | // Apply final gain. |
| 440 | for (unsigned i = 0; i < numberOfChannels; ++i) { |
| 441 | float* delayBuffer = m_preDelayBuffers[i]->data(); |
| 442 | destinationChannels[i][frameIndex] = delayBuffer[preDelayReadIndex] * totalGain; |
| 443 | } |
| 444 | |
| 445 | frameIndex++; |
| 446 | preDelayReadIndex = (preDelayReadIndex + 1) & MaxPreDelayFramesMask; |
| 447 | preDelayWriteIndex = (preDelayWriteIndex + 1) & MaxPreDelayFramesMask; |
| 448 | } |
| 449 | |
| 450 | // Locals back to member variables. |
| 451 | m_preDelayReadIndex = preDelayReadIndex; |
| 452 | m_preDelayWriteIndex = preDelayWriteIndex; |
| 453 | m_detectorAverage = DenormalDisabler::flushDenormalFloatToZero(detectorAverage); |
| 454 | m_compressorGain = DenormalDisabler::flushDenormalFloatToZero(compressorGain); |
| 455 | } |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | void DynamicsCompressorKernel::reset() |
| 460 | { |
| 461 | m_detectorAverage = 0; |
| 462 | m_compressorGain = 1; |
| 463 | m_meteringGain = 1; |
| 464 | |
| 465 | // Predelay section. |
| 466 | for (unsigned i = 0; i < m_preDelayBuffers.size(); ++i) |
| 467 | m_preDelayBuffers[i]->zero(); |
| 468 | |
| 469 | m_preDelayReadIndex = 0; |
| 470 | m_preDelayWriteIndex = DefaultPreDelayFrames; |
| 471 | |
| 472 | m_maxAttackCompressionDiffDb = -1; // uninitialized state |
| 473 | } |
| 474 | |
| 475 | } // namespace WebCore |
| 476 | |
| 477 | #endif // ENABLE(WEB_AUDIO) |
| 478 | |