| 1 | /* |
| 2 | * Copyright (C) 2016 Igalia S.L. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| 14 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| 15 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| 17 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | * THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "ScrollAnimationKinetic.h" |
| 28 | |
| 29 | #include "ScrollableArea.h" |
| 30 | |
| 31 | /* |
| 32 | * PerAxisData is a port of GtkKineticScrolling as of GTK+ 3.20, |
| 33 | * mimicking its API and its behavior. |
| 34 | * |
| 35 | * All our curves are second degree linear differential equations, and |
| 36 | * so they can always be written as linear combinations of 2 base |
| 37 | * solutions. coef1 and coef2 are the coefficients to these two base |
| 38 | * solutions, and are computed from the initial position and velocity. |
| 39 | * |
| 40 | * In the case of simple deceleration, the differential equation is |
| 41 | * |
| 42 | * y'' = -my' |
| 43 | * |
| 44 | * With m the resistence factor. For this we use the following 2 |
| 45 | * base solutions: |
| 46 | * |
| 47 | * f1(x) = 1 |
| 48 | * f2(x) = exp(-mx) |
| 49 | * |
| 50 | * In the case of overshoot, the differential equation is |
| 51 | * |
| 52 | * y'' = -my' - ky |
| 53 | * |
| 54 | * With m the resistance, and k the spring stiffness constant. We let |
| 55 | * k = m^2 / 4, so that the system is critically damped (ie, returns to its |
| 56 | * equilibrium position as quickly as possible, without oscillating), and offset |
| 57 | * the whole thing, such that the equilibrium position is at 0. This gives the |
| 58 | * base solutions |
| 59 | * |
| 60 | * f1(x) = exp(-mx / 2) |
| 61 | * f2(x) = t exp(-mx / 2) |
| 62 | */ |
| 63 | |
| 64 | static const double decelFriction = 4; |
| 65 | static const double frameRate = 60; |
| 66 | static const Seconds tickTime = 1_s / frameRate; |
| 67 | static const Seconds minimumTimerInterval { 1_ms }; |
| 68 | |
| 69 | namespace WebCore { |
| 70 | |
| 71 | ScrollAnimationKinetic::PerAxisData::PerAxisData(double lower, double upper, double initialPosition, double initialVelocity) |
| 72 | : m_lower(lower) |
| 73 | , m_upper(upper) |
| 74 | , m_coef1(initialVelocity / decelFriction + initialPosition) |
| 75 | , m_coef2(-initialVelocity / decelFriction) |
| 76 | , m_position(clampTo(initialPosition, lower, upper)) |
| 77 | , m_velocity(initialPosition < lower || initialPosition > upper ? 0 : initialVelocity) |
| 78 | { |
| 79 | } |
| 80 | |
| 81 | bool ScrollAnimationKinetic::PerAxisData::animateScroll(Seconds timeDelta) |
| 82 | { |
| 83 | auto lastPosition = m_position; |
| 84 | auto lastTime = m_elapsedTime; |
| 85 | m_elapsedTime += timeDelta; |
| 86 | |
| 87 | double exponentialPart = exp(-decelFriction * m_elapsedTime.value()); |
| 88 | m_position = m_coef1 + m_coef2 * exponentialPart; |
| 89 | m_velocity = -decelFriction * m_coef2 * exponentialPart; |
| 90 | |
| 91 | if (m_position < m_lower) { |
| 92 | m_velocity = m_lower - m_position; |
| 93 | m_position = m_lower; |
| 94 | } else if (m_position > m_upper) { |
| 95 | m_velocity = m_upper - m_position; |
| 96 | m_position = m_upper; |
| 97 | } |
| 98 | |
| 99 | if (fabs(m_velocity) < 1 || (lastTime && fabs(m_position - lastPosition) < 1)) { |
| 100 | m_position = round(m_position); |
| 101 | m_velocity = 0; |
| 102 | } |
| 103 | |
| 104 | return m_velocity; |
| 105 | } |
| 106 | |
| 107 | ScrollAnimationKinetic::ScrollAnimationKinetic(ScrollableArea& scrollableArea, std::function<void(FloatPoint&&)>&& notifyPositionChangedFunction) |
| 108 | : ScrollAnimation(scrollableArea) |
| 109 | , m_notifyPositionChangedFunction(WTFMove(notifyPositionChangedFunction)) |
| 110 | , m_animationTimer(*this, &ScrollAnimationKinetic::animationTimerFired) |
| 111 | { |
| 112 | } |
| 113 | |
| 114 | ScrollAnimationKinetic::~ScrollAnimationKinetic() = default; |
| 115 | |
| 116 | void ScrollAnimationKinetic::stop() |
| 117 | { |
| 118 | m_animationTimer.stop(); |
| 119 | m_horizontalData = WTF::nullopt; |
| 120 | m_verticalData = WTF::nullopt; |
| 121 | } |
| 122 | |
| 123 | void ScrollAnimationKinetic::start(const FloatPoint& initialPosition, const FloatPoint& velocity, bool mayHScroll, bool mayVScroll) |
| 124 | { |
| 125 | stop(); |
| 126 | |
| 127 | m_position = initialPosition; |
| 128 | |
| 129 | if (!velocity.x() && !velocity.y()) |
| 130 | return; |
| 131 | |
| 132 | if (mayHScroll) { |
| 133 | m_horizontalData = PerAxisData(m_scrollableArea.minimumScrollPosition().x(), |
| 134 | m_scrollableArea.maximumScrollPosition().x(), |
| 135 | initialPosition.x(), velocity.x()); |
| 136 | } |
| 137 | if (mayVScroll) { |
| 138 | m_verticalData = PerAxisData(m_scrollableArea.minimumScrollPosition().y(), |
| 139 | m_scrollableArea.maximumScrollPosition().y(), |
| 140 | initialPosition.y(), velocity.y()); |
| 141 | } |
| 142 | |
| 143 | m_startTime = MonotonicTime::now() - tickTime / 2.; |
| 144 | animationTimerFired(); |
| 145 | } |
| 146 | |
| 147 | void ScrollAnimationKinetic::animationTimerFired() |
| 148 | { |
| 149 | MonotonicTime currentTime = MonotonicTime::now(); |
| 150 | Seconds deltaToNextFrame = 1_s * ceil((currentTime - m_startTime).value() * frameRate) / frameRate - (currentTime - m_startTime); |
| 151 | |
| 152 | if (m_horizontalData && !m_horizontalData.value().animateScroll(deltaToNextFrame)) |
| 153 | m_horizontalData = WTF::nullopt; |
| 154 | |
| 155 | if (m_verticalData && !m_verticalData.value().animateScroll(deltaToNextFrame)) |
| 156 | m_verticalData = WTF::nullopt; |
| 157 | |
| 158 | // If one of the axes didn't finish its animation we must continue it. |
| 159 | if (m_horizontalData || m_verticalData) |
| 160 | m_animationTimer.startOneShot(std::max(minimumTimerInterval, deltaToNextFrame)); |
| 161 | |
| 162 | double x = m_horizontalData ? m_horizontalData.value().position() : m_position.x(); |
| 163 | double y = m_verticalData ? m_verticalData.value().position() : m_position.y(); |
| 164 | m_position = FloatPoint(x, y); |
| 165 | m_notifyPositionChangedFunction(FloatPoint(m_position)); |
| 166 | } |
| 167 | |
| 168 | } // namespace WebCore |
| 169 | |