| 1 | /* |
| 2 | * Copyright (C) 2013 Google Inc. All rights reserved. |
| 3 | * Copyright (C) 2013-2017 Apple Inc. All rights reserved. |
| 4 | * |
| 5 | * This library is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU Library General Public |
| 7 | * License as published by the Free Software Foundation; either |
| 8 | * version 2 of the License, or (at your option) any later version. |
| 9 | * |
| 10 | * This library is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * Library General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU Library General Public License |
| 16 | * along with this library; see the file COPYING.LIB. If not, write to |
| 17 | * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| 18 | * Boston, MA 02110-1301, USA. |
| 19 | */ |
| 20 | |
| 21 | #include "config.h" |
| 22 | #include "EventPath.h" |
| 23 | |
| 24 | #include "DOMWindow.h" |
| 25 | #include "Event.h" |
| 26 | #include "EventContext.h" |
| 27 | #include "EventNames.h" |
| 28 | #include "FullscreenManager.h" |
| 29 | #include "HTMLSlotElement.h" |
| 30 | #include "MouseEvent.h" |
| 31 | #include "Node.h" |
| 32 | #include "PseudoElement.h" |
| 33 | #include "ShadowRoot.h" |
| 34 | #include "TouchEvent.h" |
| 35 | |
| 36 | namespace WebCore { |
| 37 | |
| 38 | class WindowEventContext final : public EventContext { |
| 39 | public: |
| 40 | WindowEventContext(Node&, DOMWindow&, EventTarget&, int closedShadowDepth); |
| 41 | private: |
| 42 | void handleLocalEvents(Event&, EventInvokePhase) const final; |
| 43 | }; |
| 44 | |
| 45 | inline WindowEventContext::WindowEventContext(Node& node, DOMWindow& currentTarget, EventTarget& target, int closedShadowDepth) |
| 46 | : EventContext(&node, ¤tTarget, &target, closedShadowDepth) |
| 47 | { |
| 48 | } |
| 49 | |
| 50 | void WindowEventContext::handleLocalEvents(Event& event, EventInvokePhase phase) const |
| 51 | { |
| 52 | event.setTarget(m_target.get()); |
| 53 | event.setCurrentTarget(m_currentTarget.get()); |
| 54 | m_currentTarget->fireEventListeners(event, phase); |
| 55 | } |
| 56 | |
| 57 | static inline bool shouldEventCrossShadowBoundary(Event& event, ShadowRoot& shadowRoot, EventTarget& target) |
| 58 | { |
| 59 | #if ENABLE(FULLSCREEN_API) && ENABLE(VIDEO) |
| 60 | // Video-only full screen is a mode where we use the shadow DOM as an implementation |
| 61 | // detail that should not be detectable by the web content. |
| 62 | if (is<Node>(target)) { |
| 63 | if (auto* element = downcast<Node>(target).document().fullscreenManager().currentFullscreenElement()) { |
| 64 | // FIXME: We assume that if the full screen element is a media element that it's |
| 65 | // the video-only full screen. Both here and elsewhere. But that is probably wrong. |
| 66 | if (element->isMediaElement() && shadowRoot.host() == element) |
| 67 | return false; |
| 68 | } |
| 69 | } |
| 70 | #endif |
| 71 | |
| 72 | bool targetIsInShadowRoot = is<Node>(target) && &downcast<Node>(target).treeScope().rootNode() == &shadowRoot; |
| 73 | return !targetIsInShadowRoot || event.composed(); |
| 74 | } |
| 75 | |
| 76 | static Node* nodeOrHostIfPseudoElement(Node* node) |
| 77 | { |
| 78 | return is<PseudoElement>(*node) ? downcast<PseudoElement>(*node).hostElement() : node; |
| 79 | } |
| 80 | |
| 81 | class RelatedNodeRetargeter { |
| 82 | public: |
| 83 | RelatedNodeRetargeter(Node& relatedNode, Node& target); |
| 84 | |
| 85 | Node* currentNode(Node& currentTreeScope); |
| 86 | void moveToNewTreeScope(TreeScope* previousTreeScope, TreeScope& newTreeScope); |
| 87 | |
| 88 | private: |
| 89 | Node* nodeInLowestCommonAncestor(); |
| 90 | void collectTreeScopes(); |
| 91 | |
| 92 | void checkConsistency(Node& currentTarget); |
| 93 | |
| 94 | Node& m_relatedNode; |
| 95 | Node* m_retargetedRelatedNode; |
| 96 | Vector<TreeScope*, 8> m_ancestorTreeScopes; |
| 97 | unsigned m_lowestCommonAncestorIndex { 0 }; |
| 98 | bool m_hasDifferentTreeRoot { false }; |
| 99 | }; |
| 100 | |
| 101 | EventPath::EventPath(Node& originalTarget, Event& event) |
| 102 | { |
| 103 | buildPath(originalTarget, event); |
| 104 | |
| 105 | if (auto* relatedTarget = event.relatedTarget()) |
| 106 | setRelatedTarget(originalTarget, *relatedTarget); |
| 107 | |
| 108 | #if ENABLE(TOUCH_EVENTS) |
| 109 | if (is<TouchEvent>(event)) |
| 110 | retargetTouchLists(downcast<TouchEvent>(event)); |
| 111 | #endif |
| 112 | } |
| 113 | |
| 114 | void EventPath::buildPath(Node& originalTarget, Event& event) |
| 115 | { |
| 116 | using MakeEventContext = std::unique_ptr<EventContext> (*)(Node&, EventTarget*, EventTarget*, int closedShadowDepth); |
| 117 | MakeEventContext makeEventContext = [] (Node& node, EventTarget* currentTarget, EventTarget* target, int closedShadowDepth) { |
| 118 | return std::make_unique<EventContext>(&node, currentTarget, target, closedShadowDepth); |
| 119 | }; |
| 120 | if (is<MouseEvent>(event) || event.isFocusEvent()) { |
| 121 | makeEventContext = [] (Node& node, EventTarget* currentTarget, EventTarget* target, int closedShadowDepth) -> std::unique_ptr<EventContext> { |
| 122 | return std::make_unique<MouseOrFocusEventContext>(node, currentTarget, target, closedShadowDepth); |
| 123 | }; |
| 124 | } |
| 125 | #if ENABLE(TOUCH_EVENTS) |
| 126 | if (is<TouchEvent>(event)) { |
| 127 | makeEventContext = [] (Node& node, EventTarget* currentTarget, EventTarget* target, int closedShadowDepth) -> std::unique_ptr<EventContext> { |
| 128 | return std::make_unique<TouchEventContext>(node, currentTarget, target, closedShadowDepth); |
| 129 | }; |
| 130 | } |
| 131 | #endif |
| 132 | |
| 133 | Node* node = nodeOrHostIfPseudoElement(&originalTarget); |
| 134 | Node* target = node ? eventTargetRespectingTargetRules(*node) : nullptr; |
| 135 | int closedShadowDepth = 0; |
| 136 | // Depths are used to decided which nodes are excluded in event.composedPath when the tree is mutated during event dispatching. |
| 137 | // They could be negative for nodes outside the shadow tree of the target node. |
| 138 | while (node) { |
| 139 | while (node) { |
| 140 | m_path.append(makeEventContext(*node, eventTargetRespectingTargetRules(*node), target, closedShadowDepth)); |
| 141 | |
| 142 | if (is<ShadowRoot>(*node)) |
| 143 | break; |
| 144 | |
| 145 | ContainerNode* parent = node->parentNode(); |
| 146 | if (UNLIKELY(!parent)) { |
| 147 | // https://dom.spec.whatwg.org/#interface-document |
| 148 | if (is<Document>(*node) && event.type() != eventNames().loadEvent) { |
| 149 | ASSERT(target); |
| 150 | if (target) { |
| 151 | if (auto* window = downcast<Document>(*node).domWindow()) |
| 152 | m_path.append(std::make_unique<WindowEventContext>(*node, *window, *target, closedShadowDepth)); |
| 153 | } |
| 154 | } |
| 155 | return; |
| 156 | } |
| 157 | |
| 158 | auto* shadowRootOfParent = parent->shadowRoot(); |
| 159 | if (UNLIKELY(shadowRootOfParent)) { |
| 160 | if (auto* assignedSlot = shadowRootOfParent->findAssignedSlot(*node)) { |
| 161 | if (shadowRootOfParent->mode() != ShadowRootMode::Open) |
| 162 | closedShadowDepth++; |
| 163 | // node is assigned to a slot. Continue dispatching the event at this slot. |
| 164 | parent = assignedSlot; |
| 165 | } |
| 166 | } |
| 167 | node = parent; |
| 168 | } |
| 169 | |
| 170 | bool exitingShadowTreeOfTarget = &target->treeScope() == &node->treeScope(); |
| 171 | ShadowRoot& shadowRoot = downcast<ShadowRoot>(*node); |
| 172 | if (!shouldEventCrossShadowBoundary(event, shadowRoot, originalTarget)) |
| 173 | return; |
| 174 | node = shadowRoot.host(); |
| 175 | if (shadowRoot.mode() != ShadowRootMode::Open) |
| 176 | closedShadowDepth--; |
| 177 | if (exitingShadowTreeOfTarget) |
| 178 | target = eventTargetRespectingTargetRules(*node); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | void EventPath::setRelatedTarget(Node& origin, EventTarget& relatedTarget) |
| 183 | { |
| 184 | if (!is<Node>(relatedTarget) || m_path.isEmpty()) |
| 185 | return; |
| 186 | |
| 187 | auto& relatedNode = downcast<Node>(relatedTarget); |
| 188 | RelatedNodeRetargeter retargeter(relatedNode, *m_path[0]->node()); |
| 189 | |
| 190 | bool originIsRelatedTarget = &origin == &relatedNode; |
| 191 | Node& rootNodeInOriginTreeScope = origin.treeScope().rootNode(); |
| 192 | TreeScope* previousTreeScope = nullptr; |
| 193 | size_t originalEventPathSize = m_path.size(); |
| 194 | for (unsigned contextIndex = 0; contextIndex < originalEventPathSize; contextIndex++) { |
| 195 | auto& ambgiousContext = *m_path[contextIndex]; |
| 196 | if (!is<MouseOrFocusEventContext>(ambgiousContext)) |
| 197 | continue; |
| 198 | auto& context = downcast<MouseOrFocusEventContext>(ambgiousContext); |
| 199 | |
| 200 | Node& currentTarget = *context.node(); |
| 201 | TreeScope& currentTreeScope = currentTarget.treeScope(); |
| 202 | if (UNLIKELY(previousTreeScope && ¤tTreeScope != previousTreeScope)) |
| 203 | retargeter.moveToNewTreeScope(previousTreeScope, currentTreeScope); |
| 204 | |
| 205 | Node* currentRelatedNode = retargeter.currentNode(currentTarget); |
| 206 | if (UNLIKELY(!originIsRelatedTarget && context.target() == currentRelatedNode)) { |
| 207 | m_path.shrink(contextIndex); |
| 208 | break; |
| 209 | } |
| 210 | |
| 211 | context.setRelatedTarget(currentRelatedNode); |
| 212 | |
| 213 | if (UNLIKELY(originIsRelatedTarget && context.node() == &rootNodeInOriginTreeScope)) { |
| 214 | m_path.shrink(contextIndex + 1); |
| 215 | break; |
| 216 | } |
| 217 | |
| 218 | previousTreeScope = ¤tTreeScope; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | #if ENABLE(TOUCH_EVENTS) |
| 223 | |
| 224 | void EventPath::retargetTouch(TouchEventContext::TouchListType type, const Touch& touch) |
| 225 | { |
| 226 | auto* eventTarget = touch.target(); |
| 227 | if (!is<Node>(eventTarget)) |
| 228 | return; |
| 229 | |
| 230 | RelatedNodeRetargeter retargeter(downcast<Node>(*eventTarget), *m_path[0]->node()); |
| 231 | TreeScope* previousTreeScope = nullptr; |
| 232 | for (auto& context : m_path) { |
| 233 | Node& currentTarget = *context->node(); |
| 234 | TreeScope& currentTreeScope = currentTarget.treeScope(); |
| 235 | if (UNLIKELY(previousTreeScope && ¤tTreeScope != previousTreeScope)) |
| 236 | retargeter.moveToNewTreeScope(previousTreeScope, currentTreeScope); |
| 237 | |
| 238 | if (is<TouchEventContext>(*context)) { |
| 239 | Node* currentRelatedNode = retargeter.currentNode(currentTarget); |
| 240 | downcast<TouchEventContext>(*context).touchList(type).append(touch.cloneWithNewTarget(currentRelatedNode)); |
| 241 | } |
| 242 | |
| 243 | previousTreeScope = ¤tTreeScope; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | void EventPath::retargetTouchList(TouchEventContext::TouchListType type, const TouchList* list) |
| 248 | { |
| 249 | for (unsigned i = 0, length = list ? list->length() : 0; i < length; ++i) |
| 250 | retargetTouch(type, *list->item(i)); |
| 251 | } |
| 252 | |
| 253 | void EventPath::retargetTouchLists(const TouchEvent& event) |
| 254 | { |
| 255 | retargetTouchList(TouchEventContext::Touches, event.touches()); |
| 256 | retargetTouchList(TouchEventContext::TargetTouches, event.targetTouches()); |
| 257 | retargetTouchList(TouchEventContext::ChangedTouches, event.changedTouches()); |
| 258 | } |
| 259 | |
| 260 | #endif |
| 261 | |
| 262 | // https://dom.spec.whatwg.org/#dom-event-composedpath |
| 263 | // Any node whose depth computed in EventPath::buildPath is greater than the context object is excluded. |
| 264 | // Because we can exit out of a closed shadow tree and re-enter another closed shadow tree via a slot, |
| 265 | // we decrease the *allowed depth* whenever we moved to a "shallower" (closer-to-document) tree. |
| 266 | Vector<EventTarget*> EventPath::computePathUnclosedToTarget(const EventTarget& target) const |
| 267 | { |
| 268 | Vector<EventTarget*> path; |
| 269 | auto pathSize = m_path.size(); |
| 270 | RELEASE_ASSERT(pathSize); |
| 271 | path.reserveInitialCapacity(pathSize); |
| 272 | |
| 273 | auto currentTargetIndex = m_path.findMatching([&target] (auto& context) { |
| 274 | return context->currentTarget() == ⌖ |
| 275 | }); |
| 276 | RELEASE_ASSERT(currentTargetIndex != notFound); |
| 277 | auto currentTargetDepth = m_path[currentTargetIndex]->closedShadowDepth(); |
| 278 | |
| 279 | auto appendTargetWithLesserDepth = [&path] (const EventContext& currentContext, int& currentDepthAllowed) { |
| 280 | auto depth = currentContext.closedShadowDepth(); |
| 281 | bool contextIsInsideInnerShadowTree = depth > currentDepthAllowed; |
| 282 | if (contextIsInsideInnerShadowTree) |
| 283 | return; |
| 284 | bool movedOutOfShadowTree = depth < currentDepthAllowed; |
| 285 | if (movedOutOfShadowTree) |
| 286 | currentDepthAllowed = depth; |
| 287 | path.uncheckedAppend(currentContext.currentTarget()); |
| 288 | }; |
| 289 | |
| 290 | auto currentDepthAllowed = currentTargetDepth; |
| 291 | auto i = currentTargetIndex; |
| 292 | do { |
| 293 | appendTargetWithLesserDepth(*m_path[i], currentDepthAllowed); |
| 294 | } while (i--); |
| 295 | path.reverse(); |
| 296 | |
| 297 | currentDepthAllowed = currentTargetDepth; |
| 298 | for (auto i = currentTargetIndex + 1; i < pathSize; ++i) |
| 299 | appendTargetWithLesserDepth(*m_path[i], currentDepthAllowed); |
| 300 | |
| 301 | return path; |
| 302 | } |
| 303 | |
| 304 | EventPath::EventPath(const Vector<Element*>& targets) |
| 305 | { |
| 306 | // FIXME: This function seems wrong. Why are we not firing events in the closed shadow trees? |
| 307 | for (auto* target : targets) { |
| 308 | ASSERT(target); |
| 309 | Node* origin = *targets.begin(); |
| 310 | if (!target->isClosedShadowHidden(*origin)) |
| 311 | m_path.append(std::make_unique<EventContext>(target, target, origin, 0)); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | EventPath::EventPath(const Vector<EventTarget*>& targets) |
| 316 | { |
| 317 | for (auto* target : targets) { |
| 318 | ASSERT(target); |
| 319 | ASSERT(!is<Node>(target)); |
| 320 | m_path.append(std::make_unique<EventContext>(nullptr, target, *targets.begin(), 0)); |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | static Node* moveOutOfAllShadowRoots(Node& startingNode) |
| 325 | { |
| 326 | Node* node = &startingNode; |
| 327 | while (node->isInShadowTree()) |
| 328 | node = downcast<ShadowRoot>(node->treeScope().rootNode()).host(); |
| 329 | return node; |
| 330 | } |
| 331 | |
| 332 | RelatedNodeRetargeter::RelatedNodeRetargeter(Node& relatedNode, Node& target) |
| 333 | : m_relatedNode(relatedNode) |
| 334 | , m_retargetedRelatedNode(&relatedNode) |
| 335 | { |
| 336 | auto& targetTreeScope = target.treeScope(); |
| 337 | TreeScope* currentTreeScope = &m_relatedNode.treeScope(); |
| 338 | if (LIKELY(currentTreeScope == &targetTreeScope && target.isConnected() && m_relatedNode.isConnected())) |
| 339 | return; |
| 340 | |
| 341 | if (¤tTreeScope->documentScope() != &targetTreeScope.documentScope()) { |
| 342 | m_hasDifferentTreeRoot = true; |
| 343 | m_retargetedRelatedNode = nullptr; |
| 344 | return; |
| 345 | } |
| 346 | if (relatedNode.isConnected() != target.isConnected()) { |
| 347 | m_hasDifferentTreeRoot = true; |
| 348 | m_retargetedRelatedNode = moveOutOfAllShadowRoots(relatedNode); |
| 349 | return; |
| 350 | } |
| 351 | |
| 352 | collectTreeScopes(); |
| 353 | |
| 354 | // FIXME: We should collect this while constructing the event path. |
| 355 | Vector<TreeScope*, 8> targetTreeScopeAncestors; |
| 356 | for (TreeScope* currentTreeScope = &targetTreeScope; currentTreeScope; currentTreeScope = currentTreeScope->parentTreeScope()) |
| 357 | targetTreeScopeAncestors.append(currentTreeScope); |
| 358 | ASSERT_WITH_SECURITY_IMPLICATION(!targetTreeScopeAncestors.isEmpty()); |
| 359 | |
| 360 | unsigned i = m_ancestorTreeScopes.size(); |
| 361 | unsigned j = targetTreeScopeAncestors.size(); |
| 362 | ASSERT_WITH_SECURITY_IMPLICATION(m_ancestorTreeScopes.last() == targetTreeScopeAncestors.last()); |
| 363 | while (m_ancestorTreeScopes[i - 1] == targetTreeScopeAncestors[j - 1]) { |
| 364 | i--; |
| 365 | j--; |
| 366 | if (!i || !j) |
| 367 | break; |
| 368 | } |
| 369 | |
| 370 | bool lowestCommonAncestorIsDocumentScope = i + 1 == m_ancestorTreeScopes.size(); |
| 371 | if (lowestCommonAncestorIsDocumentScope && !relatedNode.isConnected() && !target.isConnected()) { |
| 372 | Node& relatedNodeAncestorInDocumentScope = i ? *downcast<ShadowRoot>(m_ancestorTreeScopes[i - 1]->rootNode()).shadowHost() : relatedNode; |
| 373 | Node& targetAncestorInDocumentScope = j ? *downcast<ShadowRoot>(targetTreeScopeAncestors[j - 1]->rootNode()).shadowHost() : target; |
| 374 | if (&targetAncestorInDocumentScope.rootNode() != &relatedNodeAncestorInDocumentScope.rootNode()) { |
| 375 | m_hasDifferentTreeRoot = true; |
| 376 | m_retargetedRelatedNode = moveOutOfAllShadowRoots(relatedNode); |
| 377 | return; |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | m_lowestCommonAncestorIndex = i; |
| 382 | m_retargetedRelatedNode = nodeInLowestCommonAncestor(); |
| 383 | } |
| 384 | |
| 385 | inline Node* RelatedNodeRetargeter::currentNode(Node& currentTarget) |
| 386 | { |
| 387 | checkConsistency(currentTarget); |
| 388 | return m_retargetedRelatedNode; |
| 389 | } |
| 390 | |
| 391 | void RelatedNodeRetargeter::moveToNewTreeScope(TreeScope* previousTreeScope, TreeScope& newTreeScope) |
| 392 | { |
| 393 | if (m_hasDifferentTreeRoot) |
| 394 | return; |
| 395 | |
| 396 | auto& currentRelatedNodeScope = m_retargetedRelatedNode->treeScope(); |
| 397 | if (previousTreeScope != ¤tRelatedNodeScope) { |
| 398 | // currentRelatedNode is still outside our shadow tree. New tree scope may contain currentRelatedNode |
| 399 | // but there is no need to re-target it. Moving into a slot (thereby a deeper shadow tree) doesn't matter. |
| 400 | return; |
| 401 | } |
| 402 | |
| 403 | bool enteredSlot = newTreeScope.parentTreeScope() == previousTreeScope; |
| 404 | if (enteredSlot) { |
| 405 | if (m_lowestCommonAncestorIndex) { |
| 406 | if (m_ancestorTreeScopes.isEmpty()) |
| 407 | collectTreeScopes(); |
| 408 | bool relatedNodeIsInSlot = m_ancestorTreeScopes[m_lowestCommonAncestorIndex - 1] == &newTreeScope; |
| 409 | if (relatedNodeIsInSlot) { |
| 410 | m_lowestCommonAncestorIndex--; |
| 411 | m_retargetedRelatedNode = nodeInLowestCommonAncestor(); |
| 412 | ASSERT(&newTreeScope == &m_retargetedRelatedNode->treeScope()); |
| 413 | } |
| 414 | } else |
| 415 | ASSERT(m_retargetedRelatedNode == &m_relatedNode); |
| 416 | } else { |
| 417 | ASSERT(previousTreeScope->parentTreeScope() == &newTreeScope); |
| 418 | m_lowestCommonAncestorIndex++; |
| 419 | ASSERT_WITH_SECURITY_IMPLICATION(m_ancestorTreeScopes.isEmpty() || m_lowestCommonAncestorIndex < m_ancestorTreeScopes.size()); |
| 420 | m_retargetedRelatedNode = downcast<ShadowRoot>(currentRelatedNodeScope.rootNode()).host(); |
| 421 | ASSERT(&newTreeScope == &m_retargetedRelatedNode->treeScope()); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | inline Node* RelatedNodeRetargeter::nodeInLowestCommonAncestor() |
| 426 | { |
| 427 | if (!m_lowestCommonAncestorIndex) |
| 428 | return &m_relatedNode; |
| 429 | auto& rootNode = m_ancestorTreeScopes[m_lowestCommonAncestorIndex - 1]->rootNode(); |
| 430 | return downcast<ShadowRoot>(rootNode).host(); |
| 431 | } |
| 432 | |
| 433 | void RelatedNodeRetargeter::collectTreeScopes() |
| 434 | { |
| 435 | ASSERT(m_ancestorTreeScopes.isEmpty()); |
| 436 | for (TreeScope* currentTreeScope = &m_relatedNode.treeScope(); currentTreeScope; currentTreeScope = currentTreeScope->parentTreeScope()) |
| 437 | m_ancestorTreeScopes.append(currentTreeScope); |
| 438 | ASSERT_WITH_SECURITY_IMPLICATION(!m_ancestorTreeScopes.isEmpty()); |
| 439 | } |
| 440 | |
| 441 | #if ASSERT_DISABLED |
| 442 | |
| 443 | inline void RelatedNodeRetargeter::checkConsistency(Node&) |
| 444 | { |
| 445 | } |
| 446 | |
| 447 | #else |
| 448 | |
| 449 | void RelatedNodeRetargeter::checkConsistency(Node& currentTarget) |
| 450 | { |
| 451 | if (!m_retargetedRelatedNode) |
| 452 | return; |
| 453 | ASSERT(!currentTarget.isClosedShadowHidden(*m_retargetedRelatedNode)); |
| 454 | ASSERT(m_retargetedRelatedNode == ¤tTarget.treeScope().retargetToScope(m_relatedNode)); |
| 455 | } |
| 456 | |
| 457 | #endif |
| 458 | |
| 459 | } |
| 460 | |