| 1 | /* |
| 2 | * Copyright (C) 2010, Google Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 15 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 16 | * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 17 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 18 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 19 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON |
| 20 | * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 21 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 22 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 23 | */ |
| 24 | |
| 25 | #include "config.h" |
| 26 | |
| 27 | #if ENABLE(WEB_AUDIO) |
| 28 | |
| 29 | #include "RealtimeAnalyser.h" |
| 30 | |
| 31 | #include "AudioBus.h" |
| 32 | #include "AudioUtilities.h" |
| 33 | #include "VectorMath.h" |
| 34 | #include <JavaScriptCore/Float32Array.h> |
| 35 | #include <JavaScriptCore/Uint8Array.h> |
| 36 | #include <algorithm> |
| 37 | #include <complex> |
| 38 | #include <wtf/MainThread.h> |
| 39 | #include <wtf/MathExtras.h> |
| 40 | |
| 41 | namespace WebCore { |
| 42 | |
| 43 | const double RealtimeAnalyser::DefaultSmoothingTimeConstant = 0.8; |
| 44 | const double RealtimeAnalyser::DefaultMinDecibels = -100; |
| 45 | const double RealtimeAnalyser::DefaultMaxDecibels = -30; |
| 46 | |
| 47 | const unsigned RealtimeAnalyser::DefaultFFTSize = 2048; |
| 48 | // All FFT implementations are expected to handle power-of-two sizes MinFFTSize <= size <= MaxFFTSize. |
| 49 | const unsigned RealtimeAnalyser::MinFFTSize = 32; |
| 50 | const unsigned RealtimeAnalyser::MaxFFTSize = 32768; |
| 51 | const unsigned RealtimeAnalyser::InputBufferSize = RealtimeAnalyser::MaxFFTSize * 2; |
| 52 | |
| 53 | RealtimeAnalyser::RealtimeAnalyser() |
| 54 | : m_inputBuffer(InputBufferSize) |
| 55 | , m_writeIndex(0) |
| 56 | , m_fftSize(DefaultFFTSize) |
| 57 | , m_magnitudeBuffer(DefaultFFTSize / 2) |
| 58 | , m_smoothingTimeConstant(DefaultSmoothingTimeConstant) |
| 59 | , m_minDecibels(DefaultMinDecibels) |
| 60 | , m_maxDecibels(DefaultMaxDecibels) |
| 61 | { |
| 62 | m_analysisFrame = std::make_unique<FFTFrame>(DefaultFFTSize); |
| 63 | } |
| 64 | |
| 65 | RealtimeAnalyser::~RealtimeAnalyser() = default; |
| 66 | |
| 67 | void RealtimeAnalyser::reset() |
| 68 | { |
| 69 | m_writeIndex = 0; |
| 70 | m_inputBuffer.zero(); |
| 71 | m_magnitudeBuffer.zero(); |
| 72 | } |
| 73 | |
| 74 | bool RealtimeAnalyser::setFftSize(size_t size) |
| 75 | { |
| 76 | ASSERT(isMainThread()); |
| 77 | |
| 78 | // Only allow powers of two. |
| 79 | unsigned log2size = static_cast<unsigned>(log2(size)); |
| 80 | bool isPOT(1UL << log2size == size); |
| 81 | |
| 82 | if (!isPOT || size > MaxFFTSize || size < MinFFTSize) |
| 83 | return false; |
| 84 | |
| 85 | if (m_fftSize != size) { |
| 86 | m_analysisFrame = std::make_unique<FFTFrame>(size); |
| 87 | // m_magnitudeBuffer has size = fftSize / 2 because it contains floats reduced from complex values in m_analysisFrame. |
| 88 | m_magnitudeBuffer.allocate(size / 2); |
| 89 | m_fftSize = size; |
| 90 | } |
| 91 | |
| 92 | return true; |
| 93 | } |
| 94 | |
| 95 | void RealtimeAnalyser::writeInput(AudioBus* bus, size_t framesToProcess) |
| 96 | { |
| 97 | bool isBusGood = bus && bus->numberOfChannels() > 0 && bus->channel(0)->length() >= framesToProcess; |
| 98 | ASSERT(isBusGood); |
| 99 | if (!isBusGood) |
| 100 | return; |
| 101 | |
| 102 | // FIXME : allow to work with non-FFTSize divisible chunking |
| 103 | bool isDestinationGood = m_writeIndex < m_inputBuffer.size() && m_writeIndex + framesToProcess <= m_inputBuffer.size(); |
| 104 | ASSERT(isDestinationGood); |
| 105 | if (!isDestinationGood) |
| 106 | return; |
| 107 | |
| 108 | // Perform real-time analysis |
| 109 | const float* source = bus->channel(0)->data(); |
| 110 | float* dest = m_inputBuffer.data() + m_writeIndex; |
| 111 | |
| 112 | // The source has already been sanity checked with isBusGood above. |
| 113 | memcpy(dest, source, sizeof(float) * framesToProcess); |
| 114 | |
| 115 | // Sum all channels in one if numberOfChannels > 1. |
| 116 | unsigned numberOfChannels = bus->numberOfChannels(); |
| 117 | if (numberOfChannels > 1) { |
| 118 | for (unsigned i = 1; i < numberOfChannels; i++) { |
| 119 | source = bus->channel(i)->data(); |
| 120 | VectorMath::vadd(dest, 1, source, 1, dest, 1, framesToProcess); |
| 121 | } |
| 122 | const float scale = 1.0 / numberOfChannels; |
| 123 | VectorMath::vsmul(dest, 1, &scale, dest, 1, framesToProcess); |
| 124 | } |
| 125 | |
| 126 | m_writeIndex += framesToProcess; |
| 127 | if (m_writeIndex >= InputBufferSize) |
| 128 | m_writeIndex = 0; |
| 129 | } |
| 130 | |
| 131 | namespace { |
| 132 | |
| 133 | void applyWindow(float* p, size_t n) |
| 134 | { |
| 135 | ASSERT(isMainThread()); |
| 136 | |
| 137 | // Blackman window |
| 138 | double alpha = 0.16; |
| 139 | double a0 = 0.5 * (1 - alpha); |
| 140 | double a1 = 0.5; |
| 141 | double a2 = 0.5 * alpha; |
| 142 | |
| 143 | for (unsigned i = 0; i < n; ++i) { |
| 144 | double x = static_cast<double>(i) / static_cast<double>(n); |
| 145 | double window = a0 - a1 * cos(2 * piDouble * x) + a2 * cos(4 * piDouble * x); |
| 146 | p[i] *= float(window); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | } // namespace |
| 151 | |
| 152 | void RealtimeAnalyser::doFFTAnalysis() |
| 153 | { |
| 154 | ASSERT(isMainThread()); |
| 155 | |
| 156 | // Unroll the input buffer into a temporary buffer, where we'll apply an analysis window followed by an FFT. |
| 157 | size_t fftSize = this->fftSize(); |
| 158 | |
| 159 | AudioFloatArray temporaryBuffer(fftSize); |
| 160 | float* inputBuffer = m_inputBuffer.data(); |
| 161 | float* tempP = temporaryBuffer.data(); |
| 162 | |
| 163 | // Take the previous fftSize values from the input buffer and copy into the temporary buffer. |
| 164 | unsigned writeIndex = m_writeIndex; |
| 165 | if (writeIndex < fftSize) { |
| 166 | memcpy(tempP, inputBuffer + writeIndex - fftSize + InputBufferSize, sizeof(*tempP) * (fftSize - writeIndex)); |
| 167 | memcpy(tempP + fftSize - writeIndex, inputBuffer, sizeof(*tempP) * writeIndex); |
| 168 | } else |
| 169 | memcpy(tempP, inputBuffer + writeIndex - fftSize, sizeof(*tempP) * fftSize); |
| 170 | |
| 171 | |
| 172 | // Window the input samples. |
| 173 | applyWindow(tempP, fftSize); |
| 174 | |
| 175 | // Do the analysis. |
| 176 | m_analysisFrame->doFFT(tempP); |
| 177 | |
| 178 | float* realP = m_analysisFrame->realData(); |
| 179 | float* imagP = m_analysisFrame->imagData(); |
| 180 | |
| 181 | // Blow away the packed nyquist component. |
| 182 | imagP[0] = 0; |
| 183 | |
| 184 | // Normalize so than an input sine wave at 0dBfs registers as 0dBfs (undo FFT scaling factor). |
| 185 | const double magnitudeScale = 1.0 / fftSize; |
| 186 | |
| 187 | // A value of 0 does no averaging with the previous result. Larger values produce slower, but smoother changes. |
| 188 | double k = m_smoothingTimeConstant; |
| 189 | k = std::max(0.0, k); |
| 190 | k = std::min(1.0, k); |
| 191 | |
| 192 | // Convert the analysis data from complex to magnitude and average with the previous result. |
| 193 | float* destination = magnitudeBuffer().data(); |
| 194 | size_t n = magnitudeBuffer().size(); |
| 195 | for (size_t i = 0; i < n; ++i) { |
| 196 | std::complex<double> c(realP[i], imagP[i]); |
| 197 | double scalarMagnitude = abs(c) * magnitudeScale; |
| 198 | destination[i] = static_cast<float>(k * destination[i] + (1 - k) * scalarMagnitude); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | void RealtimeAnalyser::getFloatFrequencyData(Float32Array* destinationArray) |
| 203 | { |
| 204 | ASSERT(isMainThread()); |
| 205 | |
| 206 | if (!destinationArray) |
| 207 | return; |
| 208 | |
| 209 | doFFTAnalysis(); |
| 210 | |
| 211 | // Convert from linear magnitude to floating-point decibels. |
| 212 | const double minDecibels = m_minDecibels; |
| 213 | unsigned sourceLength = magnitudeBuffer().size(); |
| 214 | size_t len = std::min(sourceLength, destinationArray->length()); |
| 215 | if (len > 0) { |
| 216 | const float* source = magnitudeBuffer().data(); |
| 217 | float* destination = destinationArray->data(); |
| 218 | |
| 219 | for (unsigned i = 0; i < len; ++i) { |
| 220 | float linearValue = source[i]; |
| 221 | double dbMag = !linearValue ? minDecibels : AudioUtilities::linearToDecibels(linearValue); |
| 222 | destination[i] = static_cast<float>(dbMag); |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | void RealtimeAnalyser::getByteFrequencyData(Uint8Array* destinationArray) |
| 228 | { |
| 229 | ASSERT(isMainThread()); |
| 230 | |
| 231 | if (!destinationArray) |
| 232 | return; |
| 233 | |
| 234 | doFFTAnalysis(); |
| 235 | |
| 236 | // Convert from linear magnitude to unsigned-byte decibels. |
| 237 | unsigned sourceLength = magnitudeBuffer().size(); |
| 238 | size_t len = std::min(sourceLength, destinationArray->length()); |
| 239 | if (len > 0) { |
| 240 | const double rangeScaleFactor = m_maxDecibels == m_minDecibels ? 1 : 1 / (m_maxDecibels - m_minDecibels); |
| 241 | const double minDecibels = m_minDecibels; |
| 242 | |
| 243 | const float* source = magnitudeBuffer().data(); |
| 244 | unsigned char* destination = destinationArray->data(); |
| 245 | |
| 246 | for (unsigned i = 0; i < len; ++i) { |
| 247 | float linearValue = source[i]; |
| 248 | double dbMag = !linearValue ? minDecibels : AudioUtilities::linearToDecibels(linearValue); |
| 249 | |
| 250 | // The range m_minDecibels to m_maxDecibels will be scaled to byte values from 0 to UCHAR_MAX. |
| 251 | double scaledValue = UCHAR_MAX * (dbMag - minDecibels) * rangeScaleFactor; |
| 252 | |
| 253 | // Clip to valid range. |
| 254 | if (scaledValue < 0) |
| 255 | scaledValue = 0; |
| 256 | if (scaledValue > UCHAR_MAX) |
| 257 | scaledValue = UCHAR_MAX; |
| 258 | |
| 259 | destination[i] = static_cast<unsigned char>(scaledValue); |
| 260 | } |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | void RealtimeAnalyser::getByteTimeDomainData(Uint8Array* destinationArray) |
| 265 | { |
| 266 | ASSERT(isMainThread()); |
| 267 | |
| 268 | if (!destinationArray) |
| 269 | return; |
| 270 | |
| 271 | unsigned fftSize = this->fftSize(); |
| 272 | size_t len = std::min(fftSize, destinationArray->length()); |
| 273 | if (len > 0) { |
| 274 | bool isInputBufferGood = m_inputBuffer.size() == InputBufferSize && m_inputBuffer.size() > fftSize; |
| 275 | ASSERT(isInputBufferGood); |
| 276 | if (!isInputBufferGood) |
| 277 | return; |
| 278 | |
| 279 | float* inputBuffer = m_inputBuffer.data(); |
| 280 | unsigned char* destination = destinationArray->data(); |
| 281 | |
| 282 | unsigned writeIndex = m_writeIndex; |
| 283 | |
| 284 | for (unsigned i = 0; i < len; ++i) { |
| 285 | // Buffer access is protected due to modulo operation. |
| 286 | float value = inputBuffer[(i + writeIndex - fftSize + InputBufferSize) % InputBufferSize]; |
| 287 | |
| 288 | // Scale from nominal -1 -> +1 to unsigned byte. |
| 289 | double scaledValue = 128 * (value + 1); |
| 290 | |
| 291 | // Clip to valid range. |
| 292 | if (scaledValue < 0) |
| 293 | scaledValue = 0; |
| 294 | if (scaledValue > UCHAR_MAX) |
| 295 | scaledValue = UCHAR_MAX; |
| 296 | |
| 297 | destination[i] = static_cast<unsigned char>(scaledValue); |
| 298 | } |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | } // namespace WebCore |
| 303 | |
| 304 | #endif // ENABLE(WEB_AUDIO) |
| 305 | |