| 1 | // |
| 2 | // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. |
| 3 | // Use of this source code is governed by a BSD-style license that can be |
| 4 | // found in the LICENSE file. |
| 5 | // |
| 6 | |
| 7 | // mathutil.h: Math and bit manipulation functions. |
| 8 | |
| 9 | #ifndef COMMON_MATHUTIL_H_ |
| 10 | #define COMMON_MATHUTIL_H_ |
| 11 | |
| 12 | #include <math.h> |
| 13 | #include <stdint.h> |
| 14 | #include <stdlib.h> |
| 15 | #include <string.h> |
| 16 | #include <algorithm> |
| 17 | #include <limits> |
| 18 | |
| 19 | #include <anglebase/numerics/safe_math.h> |
| 20 | |
| 21 | #include "common/debug.h" |
| 22 | #include "common/platform.h" |
| 23 | |
| 24 | namespace angle |
| 25 | { |
| 26 | using base::CheckedNumeric; |
| 27 | using base::IsValueInRangeForNumericType; |
| 28 | } // namespace angle |
| 29 | |
| 30 | namespace gl |
| 31 | { |
| 32 | |
| 33 | const unsigned int Float32One = 0x3F800000; |
| 34 | const unsigned short Float16One = 0x3C00; |
| 35 | |
| 36 | template <typename T> |
| 37 | inline bool isPow2(T x) |
| 38 | { |
| 39 | static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type." ); |
| 40 | return (x & (x - 1)) == 0 && (x != 0); |
| 41 | } |
| 42 | |
| 43 | inline int log2(int x) |
| 44 | { |
| 45 | int r = 0; |
| 46 | while ((x >> r) > 1) |
| 47 | r++; |
| 48 | return r; |
| 49 | } |
| 50 | |
| 51 | inline unsigned int ceilPow2(unsigned int x) |
| 52 | { |
| 53 | if (x != 0) |
| 54 | x--; |
| 55 | x |= x >> 1; |
| 56 | x |= x >> 2; |
| 57 | x |= x >> 4; |
| 58 | x |= x >> 8; |
| 59 | x |= x >> 16; |
| 60 | x++; |
| 61 | |
| 62 | return x; |
| 63 | } |
| 64 | |
| 65 | template <typename DestT, typename SrcT> |
| 66 | inline DestT clampCast(SrcT value) |
| 67 | { |
| 68 | // For floating-point types with denormalization, min returns the minimum positive normalized |
| 69 | // value. To find the value that has no values less than it, use numeric_limits::lowest. |
| 70 | constexpr const long double destLo = |
| 71 | static_cast<long double>(std::numeric_limits<DestT>::lowest()); |
| 72 | constexpr const long double destHi = |
| 73 | static_cast<long double>(std::numeric_limits<DestT>::max()); |
| 74 | constexpr const long double srcLo = |
| 75 | static_cast<long double>(std::numeric_limits<SrcT>::lowest()); |
| 76 | constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max()); |
| 77 | |
| 78 | if (destHi < srcHi) |
| 79 | { |
| 80 | DestT destMax = std::numeric_limits<DestT>::max(); |
| 81 | if (value >= static_cast<SrcT>(destMax)) |
| 82 | { |
| 83 | return destMax; |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | if (destLo > srcLo) |
| 88 | { |
| 89 | DestT destLow = std::numeric_limits<DestT>::lowest(); |
| 90 | if (value <= static_cast<SrcT>(destLow)) |
| 91 | { |
| 92 | return destLow; |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | return static_cast<DestT>(value); |
| 97 | } |
| 98 | |
| 99 | // Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max |
| 100 | // value is casted to the source type. |
| 101 | template <> |
| 102 | inline unsigned int clampCast(bool value) |
| 103 | { |
| 104 | return static_cast<unsigned int>(value); |
| 105 | } |
| 106 | |
| 107 | template <> |
| 108 | inline int clampCast(bool value) |
| 109 | { |
| 110 | return static_cast<int>(value); |
| 111 | } |
| 112 | |
| 113 | template <typename T, typename MIN, typename MAX> |
| 114 | inline T clamp(T x, MIN min, MAX max) |
| 115 | { |
| 116 | // Since NaNs fail all comparison tests, a NaN value will default to min |
| 117 | return x > min ? (x > max ? max : x) : min; |
| 118 | } |
| 119 | |
| 120 | inline float clamp01(float x) |
| 121 | { |
| 122 | return clamp(x, 0.0f, 1.0f); |
| 123 | } |
| 124 | |
| 125 | template <const int n> |
| 126 | inline unsigned int unorm(float x) |
| 127 | { |
| 128 | const unsigned int max = 0xFFFFFFFF >> (32 - n); |
| 129 | |
| 130 | if (x > 1) |
| 131 | { |
| 132 | return max; |
| 133 | } |
| 134 | else if (x < 0) |
| 135 | { |
| 136 | return 0; |
| 137 | } |
| 138 | else |
| 139 | { |
| 140 | return (unsigned int)(max * x + 0.5f); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | inline bool supportsSSE2() |
| 145 | { |
| 146 | #if defined(ANGLE_USE_SSE) |
| 147 | static bool checked = false; |
| 148 | static bool supports = false; |
| 149 | |
| 150 | if (checked) |
| 151 | { |
| 152 | return supports; |
| 153 | } |
| 154 | |
| 155 | # if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64) |
| 156 | { |
| 157 | int info[4]; |
| 158 | __cpuid(info, 0); |
| 159 | |
| 160 | if (info[0] >= 1) |
| 161 | { |
| 162 | __cpuid(info, 1); |
| 163 | |
| 164 | supports = (info[3] >> 26) & 1; |
| 165 | } |
| 166 | } |
| 167 | # endif // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64) |
| 168 | checked = true; |
| 169 | return supports; |
| 170 | #else // defined(ANGLE_USE_SSE) |
| 171 | return false; |
| 172 | #endif |
| 173 | } |
| 174 | |
| 175 | template <typename destType, typename sourceType> |
| 176 | destType bitCast(const sourceType &source) |
| 177 | { |
| 178 | size_t copySize = std::min(sizeof(destType), sizeof(sourceType)); |
| 179 | destType output; |
| 180 | memcpy(&output, &source, copySize); |
| 181 | return output; |
| 182 | } |
| 183 | |
| 184 | inline unsigned short float32ToFloat16(float fp32) |
| 185 | { |
| 186 | unsigned int fp32i = bitCast<unsigned int>(fp32); |
| 187 | unsigned int sign = (fp32i & 0x80000000) >> 16; |
| 188 | unsigned int abs = fp32i & 0x7FFFFFFF; |
| 189 | |
| 190 | if (abs > 0x47FFEFFF) // Infinity |
| 191 | { |
| 192 | return static_cast<unsigned short>(sign | 0x7FFF); |
| 193 | } |
| 194 | else if (abs < 0x38800000) // Denormal |
| 195 | { |
| 196 | unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000; |
| 197 | int e = 113 - (abs >> 23); |
| 198 | |
| 199 | if (e < 24) |
| 200 | { |
| 201 | abs = mantissa >> e; |
| 202 | } |
| 203 | else |
| 204 | { |
| 205 | abs = 0; |
| 206 | } |
| 207 | |
| 208 | return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13); |
| 209 | } |
| 210 | else |
| 211 | { |
| 212 | return static_cast<unsigned short>( |
| 213 | sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13); |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | float float16ToFloat32(unsigned short h); |
| 218 | |
| 219 | unsigned int convertRGBFloatsTo999E5(float red, float green, float blue); |
| 220 | void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue); |
| 221 | |
| 222 | inline unsigned short float32ToFloat11(float fp32) |
| 223 | { |
| 224 | const unsigned int float32MantissaMask = 0x7FFFFF; |
| 225 | const unsigned int float32ExponentMask = 0x7F800000; |
| 226 | const unsigned int float32SignMask = 0x80000000; |
| 227 | const unsigned int float32ValueMask = ~float32SignMask; |
| 228 | const unsigned int float32ExponentFirstBit = 23; |
| 229 | const unsigned int float32ExponentBias = 127; |
| 230 | |
| 231 | const unsigned short float11Max = 0x7BF; |
| 232 | const unsigned short float11MantissaMask = 0x3F; |
| 233 | const unsigned short float11ExponentMask = 0x7C0; |
| 234 | const unsigned short float11BitMask = 0x7FF; |
| 235 | const unsigned int float11ExponentBias = 14; |
| 236 | |
| 237 | const unsigned int float32Maxfloat11 = 0x477E0000; |
| 238 | const unsigned int float32Minfloat11 = 0x38800000; |
| 239 | |
| 240 | const unsigned int float32Bits = bitCast<unsigned int>(fp32); |
| 241 | const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; |
| 242 | |
| 243 | unsigned int float32Val = float32Bits & float32ValueMask; |
| 244 | |
| 245 | if ((float32Val & float32ExponentMask) == float32ExponentMask) |
| 246 | { |
| 247 | // INF or NAN |
| 248 | if ((float32Val & float32MantissaMask) != 0) |
| 249 | { |
| 250 | return float11ExponentMask | |
| 251 | (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & |
| 252 | float11MantissaMask); |
| 253 | } |
| 254 | else if (float32Sign) |
| 255 | { |
| 256 | // -INF is clamped to 0 since float11 is positive only |
| 257 | return 0; |
| 258 | } |
| 259 | else |
| 260 | { |
| 261 | return float11ExponentMask; |
| 262 | } |
| 263 | } |
| 264 | else if (float32Sign) |
| 265 | { |
| 266 | // float11 is positive only, so clamp to zero |
| 267 | return 0; |
| 268 | } |
| 269 | else if (float32Val > float32Maxfloat11) |
| 270 | { |
| 271 | // The number is too large to be represented as a float11, set to max |
| 272 | return float11Max; |
| 273 | } |
| 274 | else |
| 275 | { |
| 276 | if (float32Val < float32Minfloat11) |
| 277 | { |
| 278 | // The number is too small to be represented as a normalized float11 |
| 279 | // Convert it to a denormalized value. |
| 280 | const unsigned int shift = (float32ExponentBias - float11ExponentBias) - |
| 281 | (float32Val >> float32ExponentFirstBit); |
| 282 | float32Val = |
| 283 | ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; |
| 284 | } |
| 285 | else |
| 286 | { |
| 287 | // Rebias the exponent to represent the value as a normalized float11 |
| 288 | float32Val += 0xC8000000; |
| 289 | } |
| 290 | |
| 291 | return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask; |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | inline unsigned short float32ToFloat10(float fp32) |
| 296 | { |
| 297 | const unsigned int float32MantissaMask = 0x7FFFFF; |
| 298 | const unsigned int float32ExponentMask = 0x7F800000; |
| 299 | const unsigned int float32SignMask = 0x80000000; |
| 300 | const unsigned int float32ValueMask = ~float32SignMask; |
| 301 | const unsigned int float32ExponentFirstBit = 23; |
| 302 | const unsigned int float32ExponentBias = 127; |
| 303 | |
| 304 | const unsigned short float10Max = 0x3DF; |
| 305 | const unsigned short float10MantissaMask = 0x1F; |
| 306 | const unsigned short float10ExponentMask = 0x3E0; |
| 307 | const unsigned short float10BitMask = 0x3FF; |
| 308 | const unsigned int float10ExponentBias = 14; |
| 309 | |
| 310 | const unsigned int float32Maxfloat10 = 0x477C0000; |
| 311 | const unsigned int float32Minfloat10 = 0x38800000; |
| 312 | |
| 313 | const unsigned int float32Bits = bitCast<unsigned int>(fp32); |
| 314 | const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; |
| 315 | |
| 316 | unsigned int float32Val = float32Bits & float32ValueMask; |
| 317 | |
| 318 | if ((float32Val & float32ExponentMask) == float32ExponentMask) |
| 319 | { |
| 320 | // INF or NAN |
| 321 | if ((float32Val & float32MantissaMask) != 0) |
| 322 | { |
| 323 | return float10ExponentMask | |
| 324 | (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & |
| 325 | float10MantissaMask); |
| 326 | } |
| 327 | else if (float32Sign) |
| 328 | { |
| 329 | // -INF is clamped to 0 since float11 is positive only |
| 330 | return 0; |
| 331 | } |
| 332 | else |
| 333 | { |
| 334 | return float10ExponentMask; |
| 335 | } |
| 336 | } |
| 337 | else if (float32Sign) |
| 338 | { |
| 339 | // float10 is positive only, so clamp to zero |
| 340 | return 0; |
| 341 | } |
| 342 | else if (float32Val > float32Maxfloat10) |
| 343 | { |
| 344 | // The number is too large to be represented as a float11, set to max |
| 345 | return float10Max; |
| 346 | } |
| 347 | else |
| 348 | { |
| 349 | if (float32Val < float32Minfloat10) |
| 350 | { |
| 351 | // The number is too small to be represented as a normalized float11 |
| 352 | // Convert it to a denormalized value. |
| 353 | const unsigned int shift = (float32ExponentBias - float10ExponentBias) - |
| 354 | (float32Val >> float32ExponentFirstBit); |
| 355 | float32Val = |
| 356 | ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; |
| 357 | } |
| 358 | else |
| 359 | { |
| 360 | // Rebias the exponent to represent the value as a normalized float11 |
| 361 | float32Val += 0xC8000000; |
| 362 | } |
| 363 | |
| 364 | return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | inline float float11ToFloat32(unsigned short fp11) |
| 369 | { |
| 370 | unsigned short exponent = (fp11 >> 6) & 0x1F; |
| 371 | unsigned short mantissa = fp11 & 0x3F; |
| 372 | |
| 373 | if (exponent == 0x1F) |
| 374 | { |
| 375 | // INF or NAN |
| 376 | return bitCast<float>(0x7f800000 | (mantissa << 17)); |
| 377 | } |
| 378 | else |
| 379 | { |
| 380 | if (exponent != 0) |
| 381 | { |
| 382 | // normalized |
| 383 | } |
| 384 | else if (mantissa != 0) |
| 385 | { |
| 386 | // The value is denormalized |
| 387 | exponent = 1; |
| 388 | |
| 389 | do |
| 390 | { |
| 391 | exponent--; |
| 392 | mantissa <<= 1; |
| 393 | } while ((mantissa & 0x40) == 0); |
| 394 | |
| 395 | mantissa = mantissa & 0x3F; |
| 396 | } |
| 397 | else // The value is zero |
| 398 | { |
| 399 | exponent = static_cast<unsigned short>(-112); |
| 400 | } |
| 401 | |
| 402 | return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17)); |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | inline float float10ToFloat32(unsigned short fp11) |
| 407 | { |
| 408 | unsigned short exponent = (fp11 >> 5) & 0x1F; |
| 409 | unsigned short mantissa = fp11 & 0x1F; |
| 410 | |
| 411 | if (exponent == 0x1F) |
| 412 | { |
| 413 | // INF or NAN |
| 414 | return bitCast<float>(0x7f800000 | (mantissa << 17)); |
| 415 | } |
| 416 | else |
| 417 | { |
| 418 | if (exponent != 0) |
| 419 | { |
| 420 | // normalized |
| 421 | } |
| 422 | else if (mantissa != 0) |
| 423 | { |
| 424 | // The value is denormalized |
| 425 | exponent = 1; |
| 426 | |
| 427 | do |
| 428 | { |
| 429 | exponent--; |
| 430 | mantissa <<= 1; |
| 431 | } while ((mantissa & 0x20) == 0); |
| 432 | |
| 433 | mantissa = mantissa & 0x1F; |
| 434 | } |
| 435 | else // The value is zero |
| 436 | { |
| 437 | exponent = static_cast<unsigned short>(-112); |
| 438 | } |
| 439 | |
| 440 | return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18)); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | // Convers to and from float and 16.16 fixed point format. |
| 445 | |
| 446 | inline float FixedToFloat(uint32_t fixedInput) |
| 447 | { |
| 448 | return static_cast<float>(fixedInput) / 65536.0f; |
| 449 | } |
| 450 | |
| 451 | inline uint32_t FloatToFixed(float floatInput) |
| 452 | { |
| 453 | static constexpr uint32_t kHighest = 32767 * 65536 + 65535; |
| 454 | static constexpr uint32_t kLowest = static_cast<uint32_t>(-32768 * 65536 + 65535); |
| 455 | |
| 456 | if (floatInput > 32767.65535) |
| 457 | { |
| 458 | return kHighest; |
| 459 | } |
| 460 | else if (floatInput < -32768.65535) |
| 461 | { |
| 462 | return kLowest; |
| 463 | } |
| 464 | else |
| 465 | { |
| 466 | return static_cast<uint32_t>(floatInput * 65536); |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | template <typename T> |
| 471 | inline float normalizedToFloat(T input) |
| 472 | { |
| 473 | static_assert(std::numeric_limits<T>::is_integer, "T must be an integer." ); |
| 474 | |
| 475 | if (sizeof(T) > 2) |
| 476 | { |
| 477 | // float has only a 23 bit mantissa, so we need to do the calculation in double precision |
| 478 | constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max(); |
| 479 | return static_cast<float>(input * inverseMax); |
| 480 | } |
| 481 | else |
| 482 | { |
| 483 | constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max(); |
| 484 | return input * inverseMax; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | template <unsigned int inputBitCount, typename T> |
| 489 | inline float normalizedToFloat(T input) |
| 490 | { |
| 491 | static_assert(std::numeric_limits<T>::is_integer, "T must be an integer." ); |
| 492 | static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount." ); |
| 493 | |
| 494 | if (inputBitCount > 23) |
| 495 | { |
| 496 | // float has only a 23 bit mantissa, so we need to do the calculation in double precision |
| 497 | constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1); |
| 498 | return static_cast<float>(input * inverseMax); |
| 499 | } |
| 500 | else |
| 501 | { |
| 502 | constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1); |
| 503 | return input * inverseMax; |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | template <typename T> |
| 508 | inline T floatToNormalized(float input) |
| 509 | { |
| 510 | if (sizeof(T) > 2) |
| 511 | { |
| 512 | // float has only a 23 bit mantissa, so we need to do the calculation in double precision |
| 513 | return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5); |
| 514 | } |
| 515 | else |
| 516 | { |
| 517 | return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f); |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | template <unsigned int outputBitCount, typename T> |
| 522 | inline T floatToNormalized(float input) |
| 523 | { |
| 524 | static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount." ); |
| 525 | |
| 526 | if (outputBitCount > 23) |
| 527 | { |
| 528 | // float has only a 23 bit mantissa, so we need to do the calculation in double precision |
| 529 | return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5); |
| 530 | } |
| 531 | else |
| 532 | { |
| 533 | return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f); |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | template <unsigned int inputBitCount, unsigned int inputBitStart, typename T> |
| 538 | inline T getShiftedData(T input) |
| 539 | { |
| 540 | static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8), |
| 541 | "T must have at least as many bits as inputBitCount + inputBitStart." ); |
| 542 | const T mask = (1 << inputBitCount) - 1; |
| 543 | return (input >> inputBitStart) & mask; |
| 544 | } |
| 545 | |
| 546 | template <unsigned int inputBitCount, unsigned int inputBitStart, typename T> |
| 547 | inline T shiftData(T input) |
| 548 | { |
| 549 | static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8), |
| 550 | "T must have at least as many bits as inputBitCount + inputBitStart." ); |
| 551 | const T mask = (1 << inputBitCount) - 1; |
| 552 | return (input & mask) << inputBitStart; |
| 553 | } |
| 554 | |
| 555 | inline unsigned int CountLeadingZeros(uint32_t x) |
| 556 | { |
| 557 | // Use binary search to find the amount of leading zeros. |
| 558 | unsigned int zeros = 32u; |
| 559 | uint32_t y; |
| 560 | |
| 561 | y = x >> 16u; |
| 562 | if (y != 0) |
| 563 | { |
| 564 | zeros = zeros - 16u; |
| 565 | x = y; |
| 566 | } |
| 567 | y = x >> 8u; |
| 568 | if (y != 0) |
| 569 | { |
| 570 | zeros = zeros - 8u; |
| 571 | x = y; |
| 572 | } |
| 573 | y = x >> 4u; |
| 574 | if (y != 0) |
| 575 | { |
| 576 | zeros = zeros - 4u; |
| 577 | x = y; |
| 578 | } |
| 579 | y = x >> 2u; |
| 580 | if (y != 0) |
| 581 | { |
| 582 | zeros = zeros - 2u; |
| 583 | x = y; |
| 584 | } |
| 585 | y = x >> 1u; |
| 586 | if (y != 0) |
| 587 | { |
| 588 | return zeros - 2u; |
| 589 | } |
| 590 | return zeros - x; |
| 591 | } |
| 592 | |
| 593 | inline unsigned char average(unsigned char a, unsigned char b) |
| 594 | { |
| 595 | return ((a ^ b) >> 1) + (a & b); |
| 596 | } |
| 597 | |
| 598 | inline signed char average(signed char a, signed char b) |
| 599 | { |
| 600 | return ((short)a + (short)b) / 2; |
| 601 | } |
| 602 | |
| 603 | inline unsigned short average(unsigned short a, unsigned short b) |
| 604 | { |
| 605 | return ((a ^ b) >> 1) + (a & b); |
| 606 | } |
| 607 | |
| 608 | inline signed short average(signed short a, signed short b) |
| 609 | { |
| 610 | return ((int)a + (int)b) / 2; |
| 611 | } |
| 612 | |
| 613 | inline unsigned int average(unsigned int a, unsigned int b) |
| 614 | { |
| 615 | return ((a ^ b) >> 1) + (a & b); |
| 616 | } |
| 617 | |
| 618 | inline int average(int a, int b) |
| 619 | { |
| 620 | long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll; |
| 621 | return static_cast<int>(average); |
| 622 | } |
| 623 | |
| 624 | inline float average(float a, float b) |
| 625 | { |
| 626 | return (a + b) * 0.5f; |
| 627 | } |
| 628 | |
| 629 | inline unsigned short averageHalfFloat(unsigned short a, unsigned short b) |
| 630 | { |
| 631 | return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f); |
| 632 | } |
| 633 | |
| 634 | inline unsigned int averageFloat11(unsigned int a, unsigned int b) |
| 635 | { |
| 636 | return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) + |
| 637 | float11ToFloat32(static_cast<unsigned short>(b))) * |
| 638 | 0.5f); |
| 639 | } |
| 640 | |
| 641 | inline unsigned int averageFloat10(unsigned int a, unsigned int b) |
| 642 | { |
| 643 | return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) + |
| 644 | float10ToFloat32(static_cast<unsigned short>(b))) * |
| 645 | 0.5f); |
| 646 | } |
| 647 | |
| 648 | template <typename T> |
| 649 | class Range |
| 650 | { |
| 651 | public: |
| 652 | Range() {} |
| 653 | Range(T lo, T hi) : mLow(lo), mHigh(hi) {} |
| 654 | |
| 655 | T length() const { return (empty() ? 0 : (mHigh - mLow)); } |
| 656 | |
| 657 | bool intersects(Range<T> other) |
| 658 | { |
| 659 | if (mLow <= other.mLow) |
| 660 | { |
| 661 | return other.mLow < mHigh; |
| 662 | } |
| 663 | else |
| 664 | { |
| 665 | return mLow < other.mHigh; |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6. |
| 670 | void extend(T value) |
| 671 | { |
| 672 | mLow = value < mLow ? value : mLow; |
| 673 | mHigh = value >= mHigh ? (value + 1) : mHigh; |
| 674 | } |
| 675 | |
| 676 | bool empty() const { return mHigh <= mLow; } |
| 677 | |
| 678 | bool contains(T value) const { return value >= mLow && value < mHigh; } |
| 679 | |
| 680 | class Iterator final |
| 681 | { |
| 682 | public: |
| 683 | Iterator(T value) : mCurrent(value) {} |
| 684 | |
| 685 | Iterator &operator++() |
| 686 | { |
| 687 | mCurrent++; |
| 688 | return *this; |
| 689 | } |
| 690 | bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; } |
| 691 | bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; } |
| 692 | T operator*() const { return mCurrent; } |
| 693 | |
| 694 | private: |
| 695 | T mCurrent; |
| 696 | }; |
| 697 | |
| 698 | Iterator begin() const { return Iterator(mLow); } |
| 699 | |
| 700 | Iterator end() const { return Iterator(mHigh); } |
| 701 | |
| 702 | T low() const { return mLow; } |
| 703 | T high() const { return mHigh; } |
| 704 | |
| 705 | void invalidate() |
| 706 | { |
| 707 | mLow = std::numeric_limits<T>::max(); |
| 708 | mHigh = std::numeric_limits<T>::min(); |
| 709 | } |
| 710 | |
| 711 | private: |
| 712 | T mLow; |
| 713 | T mHigh; |
| 714 | }; |
| 715 | |
| 716 | typedef Range<int> RangeI; |
| 717 | typedef Range<unsigned int> RangeUI; |
| 718 | |
| 719 | struct IndexRange |
| 720 | { |
| 721 | struct Undefined |
| 722 | {}; |
| 723 | IndexRange(Undefined) {} |
| 724 | IndexRange() : IndexRange(0, 0, 0) {} |
| 725 | IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_) |
| 726 | : start(start_), end(end_), vertexIndexCount(vertexIndexCount_) |
| 727 | { |
| 728 | ASSERT(start <= end); |
| 729 | } |
| 730 | |
| 731 | // Number of vertices in the range. |
| 732 | size_t vertexCount() const { return (end - start) + 1; } |
| 733 | |
| 734 | // Inclusive range of indices that are not primitive restart |
| 735 | size_t start; |
| 736 | size_t end; |
| 737 | |
| 738 | // Number of non-primitive restart indices |
| 739 | size_t vertexIndexCount; |
| 740 | }; |
| 741 | |
| 742 | // Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a |
| 743 | // floating-point value. As in GLSL ldexp() built-in. |
| 744 | inline float Ldexp(float x, int exp) |
| 745 | { |
| 746 | if (exp > 128) |
| 747 | { |
| 748 | return std::numeric_limits<float>::infinity(); |
| 749 | } |
| 750 | if (exp < -126) |
| 751 | { |
| 752 | return 0.0f; |
| 753 | } |
| 754 | double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp)); |
| 755 | return static_cast<float>(result); |
| 756 | } |
| 757 | |
| 758 | // First, both normalized floating-point values are converted into 16-bit integer values. |
| 759 | // Then, the results are packed into the returned 32-bit unsigned integer. |
| 760 | // The first float value will be written to the least significant bits of the output; |
| 761 | // the last float value will be written to the most significant bits. |
| 762 | // The conversion of each value to fixed point is done as follows : |
| 763 | // packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0) |
| 764 | inline uint32_t packSnorm2x16(float f1, float f2) |
| 765 | { |
| 766 | int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f)); |
| 767 | int16_t mostSignificantBits = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f)); |
| 768 | return static_cast<uint32_t>(mostSignificantBits) << 16 | |
| 769 | (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF); |
| 770 | } |
| 771 | |
| 772 | // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, |
| 773 | // each component is converted to a normalized floating-point value to generate the returned two |
| 774 | // float values. The first float value will be extracted from the least significant bits of the |
| 775 | // input; the last float value will be extracted from the most-significant bits. The conversion for |
| 776 | // unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f / |
| 777 | // 32767.0, -1, +1) |
| 778 | inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2) |
| 779 | { |
| 780 | int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF); |
| 781 | int16_t mostSignificantBits = static_cast<int16_t>(u >> 16); |
| 782 | *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f); |
| 783 | *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f); |
| 784 | } |
| 785 | |
| 786 | // First, both normalized floating-point values are converted into 16-bit integer values. |
| 787 | // Then, the results are packed into the returned 32-bit unsigned integer. |
| 788 | // The first float value will be written to the least significant bits of the output; |
| 789 | // the last float value will be written to the most significant bits. |
| 790 | // The conversion of each value to fixed point is done as follows: |
| 791 | // packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0) |
| 792 | inline uint32_t packUnorm2x16(float f1, float f2) |
| 793 | { |
| 794 | uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f)); |
| 795 | uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f)); |
| 796 | return static_cast<uint32_t>(mostSignificantBits) << 16 | |
| 797 | static_cast<uint32_t>(leastSignificantBits); |
| 798 | } |
| 799 | |
| 800 | // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, |
| 801 | // each component is converted to a normalized floating-point value to generate the returned two |
| 802 | // float values. The first float value will be extracted from the least significant bits of the |
| 803 | // input; the last float value will be extracted from the most-significant bits. The conversion for |
| 804 | // unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0 |
| 805 | inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2) |
| 806 | { |
| 807 | uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF); |
| 808 | uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16); |
| 809 | *f1 = static_cast<float>(leastSignificantBits) / 65535.0f; |
| 810 | *f2 = static_cast<float>(mostSignificantBits) / 65535.0f; |
| 811 | } |
| 812 | |
| 813 | // Helper functions intended to be used only here. |
| 814 | namespace priv |
| 815 | { |
| 816 | |
| 817 | inline uint8_t ToPackedUnorm8(float f) |
| 818 | { |
| 819 | return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f)); |
| 820 | } |
| 821 | |
| 822 | inline int8_t ToPackedSnorm8(float f) |
| 823 | { |
| 824 | return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f)); |
| 825 | } |
| 826 | |
| 827 | } // namespace priv |
| 828 | |
| 829 | // Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works |
| 830 | // similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the |
| 831 | // unsigned integer starting from the least significant bits. |
| 832 | inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4) |
| 833 | { |
| 834 | uint8_t bits[4]; |
| 835 | bits[0] = priv::ToPackedUnorm8(f1); |
| 836 | bits[1] = priv::ToPackedUnorm8(f2); |
| 837 | bits[2] = priv::ToPackedUnorm8(f3); |
| 838 | bits[3] = priv::ToPackedUnorm8(f4); |
| 839 | uint32_t result = 0u; |
| 840 | for (int i = 0; i < 4; ++i) |
| 841 | { |
| 842 | int shift = i * 8; |
| 843 | result |= (static_cast<uint32_t>(bits[i]) << shift); |
| 844 | } |
| 845 | return result; |
| 846 | } |
| 847 | |
| 848 | // Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f. |
| 849 | // Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant |
| 850 | // bits. |
| 851 | inline void UnpackUnorm4x8(uint32_t u, float *f) |
| 852 | { |
| 853 | for (int i = 0; i < 4; ++i) |
| 854 | { |
| 855 | int shift = i * 8; |
| 856 | uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF); |
| 857 | f[i] = static_cast<float>(bits) / 255.0f; |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | // Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats |
| 862 | // are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least |
| 863 | // significant bits. |
| 864 | inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4) |
| 865 | { |
| 866 | int8_t bits[4]; |
| 867 | bits[0] = priv::ToPackedSnorm8(f1); |
| 868 | bits[1] = priv::ToPackedSnorm8(f2); |
| 869 | bits[2] = priv::ToPackedSnorm8(f3); |
| 870 | bits[3] = priv::ToPackedSnorm8(f4); |
| 871 | uint32_t result = 0u; |
| 872 | for (int i = 0; i < 4; ++i) |
| 873 | { |
| 874 | int shift = i * 8; |
| 875 | result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift); |
| 876 | } |
| 877 | return result; |
| 878 | } |
| 879 | |
| 880 | // Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f. |
| 881 | // Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant |
| 882 | // bits, and clamped to the range -1.0 to 1.0. |
| 883 | inline void UnpackSnorm4x8(uint32_t u, float *f) |
| 884 | { |
| 885 | for (int i = 0; i < 4; ++i) |
| 886 | { |
| 887 | int shift = i * 8; |
| 888 | int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF); |
| 889 | f[i] = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f); |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | // Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit |
| 894 | // floating-point representation found in the OpenGL ES Specification, and then packing these |
| 895 | // two 16-bit integers into a 32-bit unsigned integer. |
| 896 | // f1: The 16 least-significant bits of the result; |
| 897 | // f2: The 16 most-significant bits. |
| 898 | inline uint32_t packHalf2x16(float f1, float f2) |
| 899 | { |
| 900 | uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1)); |
| 901 | uint16_t mostSignificantBits = static_cast<uint16_t>(float32ToFloat16(f2)); |
| 902 | return static_cast<uint32_t>(mostSignificantBits) << 16 | |
| 903 | static_cast<uint32_t>(leastSignificantBits); |
| 904 | } |
| 905 | |
| 906 | // Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of |
| 907 | // 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL |
| 908 | // ES Specification, and converting them to 32-bit floating-point values. The first float value is |
| 909 | // obtained from the 16 least-significant bits of u; the second component is obtained from the 16 |
| 910 | // most-significant bits of u. |
| 911 | inline void unpackHalf2x16(uint32_t u, float *f1, float *f2) |
| 912 | { |
| 913 | uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF); |
| 914 | uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16); |
| 915 | |
| 916 | *f1 = float16ToFloat32(leastSignificantBits); |
| 917 | *f2 = float16ToFloat32(mostSignificantBits); |
| 918 | } |
| 919 | |
| 920 | inline uint8_t sRGBToLinear(uint8_t srgbValue) |
| 921 | { |
| 922 | float value = srgbValue / 255.0f; |
| 923 | if (value <= 0.04045f) |
| 924 | { |
| 925 | value = value / 12.92f; |
| 926 | } |
| 927 | else |
| 928 | { |
| 929 | value = std::pow((value + 0.055f) / 1.055f, 2.4f); |
| 930 | } |
| 931 | return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f)); |
| 932 | } |
| 933 | |
| 934 | inline uint8_t linearToSRGB(uint8_t linearValue) |
| 935 | { |
| 936 | float value = linearValue / 255.0f; |
| 937 | if (value <= 0.0f) |
| 938 | { |
| 939 | value = 0.0f; |
| 940 | } |
| 941 | else if (value < 0.0031308f) |
| 942 | { |
| 943 | value = value * 12.92f; |
| 944 | } |
| 945 | else if (value < 1.0f) |
| 946 | { |
| 947 | value = std::pow(value, 0.41666f) * 1.055f - 0.055f; |
| 948 | } |
| 949 | else |
| 950 | { |
| 951 | value = 1.0f; |
| 952 | } |
| 953 | return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f)); |
| 954 | } |
| 955 | |
| 956 | // Reverse the order of the bits. |
| 957 | inline uint32_t BitfieldReverse(uint32_t value) |
| 958 | { |
| 959 | // TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics |
| 960 | // for this, and right now it's not used in performance-critical paths. |
| 961 | uint32_t result = 0u; |
| 962 | for (size_t j = 0u; j < 32u; ++j) |
| 963 | { |
| 964 | result |= (((value >> j) & 1u) << (31u - j)); |
| 965 | } |
| 966 | return result; |
| 967 | } |
| 968 | |
| 969 | // Count the 1 bits. |
| 970 | #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) |
| 971 | # define ANGLE_HAS_BITCOUNT_32 |
| 972 | inline int BitCount(uint32_t bits) |
| 973 | { |
| 974 | return static_cast<int>(__popcnt(bits)); |
| 975 | } |
| 976 | # if defined(_M_X64) |
| 977 | # define ANGLE_HAS_BITCOUNT_64 |
| 978 | inline int BitCount(uint64_t bits) |
| 979 | { |
| 980 | return static_cast<int>(__popcnt64(bits)); |
| 981 | } |
| 982 | # endif // defined(_M_X64) |
| 983 | #endif // defined(_M_IX86) || defined(_M_X64) |
| 984 | |
| 985 | #if defined(ANGLE_PLATFORM_POSIX) |
| 986 | # define ANGLE_HAS_BITCOUNT_32 |
| 987 | inline int BitCount(uint32_t bits) |
| 988 | { |
| 989 | return __builtin_popcount(bits); |
| 990 | } |
| 991 | |
| 992 | # if defined(ANGLE_IS_64_BIT_CPU) |
| 993 | # define ANGLE_HAS_BITCOUNT_64 |
| 994 | inline int BitCount(uint64_t bits) |
| 995 | { |
| 996 | return __builtin_popcountll(bits); |
| 997 | } |
| 998 | # endif // defined(ANGLE_IS_64_BIT_CPU) |
| 999 | #endif // defined(ANGLE_PLATFORM_POSIX) |
| 1000 | |
| 1001 | int BitCountPolyfill(uint32_t bits); |
| 1002 | |
| 1003 | #if !defined(ANGLE_HAS_BITCOUNT_32) |
| 1004 | inline int BitCount(const uint32_t bits) |
| 1005 | { |
| 1006 | return BitCountPolyfill(bits); |
| 1007 | } |
| 1008 | #endif // !defined(ANGLE_HAS_BITCOUNT_32) |
| 1009 | |
| 1010 | #if !defined(ANGLE_HAS_BITCOUNT_64) |
| 1011 | inline int BitCount(const uint64_t bits) |
| 1012 | { |
| 1013 | return BitCount(static_cast<uint32_t>(bits >> 32)) + BitCount(static_cast<uint32_t>(bits)); |
| 1014 | } |
| 1015 | #endif // !defined(ANGLE_HAS_BITCOUNT_64) |
| 1016 | #undef ANGLE_HAS_BITCOUNT_32 |
| 1017 | #undef ANGLE_HAS_BITCOUNT_64 |
| 1018 | |
| 1019 | inline int BitCount(uint8_t bits) |
| 1020 | { |
| 1021 | return BitCount(static_cast<uint32_t>(bits)); |
| 1022 | } |
| 1023 | |
| 1024 | inline int BitCount(uint16_t bits) |
| 1025 | { |
| 1026 | return BitCount(static_cast<uint32_t>(bits)); |
| 1027 | } |
| 1028 | |
| 1029 | #if defined(ANGLE_PLATFORM_WINDOWS) |
| 1030 | // Return the index of the least significant bit set. Indexing is such that bit 0 is the least |
| 1031 | // significant bit. Implemented for different bit widths on different platforms. |
| 1032 | inline unsigned long ScanForward(uint32_t bits) |
| 1033 | { |
| 1034 | ASSERT(bits != 0u); |
| 1035 | unsigned long firstBitIndex = 0ul; |
| 1036 | unsigned char ret = _BitScanForward(&firstBitIndex, bits); |
| 1037 | ASSERT(ret != 0u); |
| 1038 | return firstBitIndex; |
| 1039 | } |
| 1040 | |
| 1041 | # if defined(ANGLE_IS_64_BIT_CPU) |
| 1042 | inline unsigned long ScanForward(uint64_t bits) |
| 1043 | { |
| 1044 | ASSERT(bits != 0u); |
| 1045 | unsigned long firstBitIndex = 0ul; |
| 1046 | unsigned char ret = _BitScanForward64(&firstBitIndex, bits); |
| 1047 | ASSERT(ret != 0u); |
| 1048 | return firstBitIndex; |
| 1049 | } |
| 1050 | # endif // defined(ANGLE_IS_64_BIT_CPU) |
| 1051 | #endif // defined(ANGLE_PLATFORM_WINDOWS) |
| 1052 | |
| 1053 | #if defined(ANGLE_PLATFORM_POSIX) |
| 1054 | inline unsigned long ScanForward(uint32_t bits) |
| 1055 | { |
| 1056 | ASSERT(bits != 0u); |
| 1057 | return static_cast<unsigned long>(__builtin_ctz(bits)); |
| 1058 | } |
| 1059 | |
| 1060 | # if defined(ANGLE_IS_64_BIT_CPU) |
| 1061 | inline unsigned long ScanForward(uint64_t bits) |
| 1062 | { |
| 1063 | ASSERT(bits != 0u); |
| 1064 | return static_cast<unsigned long>(__builtin_ctzll(bits)); |
| 1065 | } |
| 1066 | # endif // defined(ANGLE_IS_64_BIT_CPU) |
| 1067 | #endif // defined(ANGLE_PLATFORM_POSIX) |
| 1068 | |
| 1069 | inline unsigned long ScanForward(uint8_t bits) |
| 1070 | { |
| 1071 | return ScanForward(static_cast<uint32_t>(bits)); |
| 1072 | } |
| 1073 | |
| 1074 | inline unsigned long ScanForward(uint16_t bits) |
| 1075 | { |
| 1076 | return ScanForward(static_cast<uint32_t>(bits)); |
| 1077 | } |
| 1078 | |
| 1079 | // Return the index of the most significant bit set. Indexing is such that bit 0 is the least |
| 1080 | // significant bit. |
| 1081 | inline unsigned long ScanReverse(unsigned long bits) |
| 1082 | { |
| 1083 | ASSERT(bits != 0u); |
| 1084 | #if defined(ANGLE_PLATFORM_WINDOWS) |
| 1085 | unsigned long lastBitIndex = 0ul; |
| 1086 | unsigned char ret = _BitScanReverse(&lastBitIndex, bits); |
| 1087 | ASSERT(ret != 0u); |
| 1088 | return lastBitIndex; |
| 1089 | #elif defined(ANGLE_PLATFORM_POSIX) |
| 1090 | return static_cast<unsigned long>(sizeof(unsigned long) * CHAR_BIT - 1 - __builtin_clzl(bits)); |
| 1091 | #else |
| 1092 | # error Please implement bit-scan-reverse for your platform! |
| 1093 | #endif |
| 1094 | } |
| 1095 | |
| 1096 | // Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL. |
| 1097 | template <typename T> |
| 1098 | int FindLSB(T bits) |
| 1099 | { |
| 1100 | static_assert(std::is_integral<T>::value, "must be integral type." ); |
| 1101 | if (bits == 0u) |
| 1102 | { |
| 1103 | return -1; |
| 1104 | } |
| 1105 | else |
| 1106 | { |
| 1107 | return static_cast<int>(ScanForward(bits)); |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | // Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL. |
| 1112 | template <typename T> |
| 1113 | int FindMSB(T bits) |
| 1114 | { |
| 1115 | static_assert(std::is_integral<T>::value, "must be integral type." ); |
| 1116 | if (bits == 0u) |
| 1117 | { |
| 1118 | return -1; |
| 1119 | } |
| 1120 | else |
| 1121 | { |
| 1122 | return static_cast<int>(ScanReverse(bits)); |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | // Returns whether the argument is Not a Number. |
| 1127 | // IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) - |
| 1128 | // non-zero. |
| 1129 | inline bool isNaN(float f) |
| 1130 | { |
| 1131 | // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u |
| 1132 | // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu |
| 1133 | return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && |
| 1134 | (bitCast<uint32_t>(f) & 0x7fffffu); |
| 1135 | } |
| 1136 | |
| 1137 | // Returns whether the argument is infinity. |
| 1138 | // IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) - |
| 1139 | // zero. |
| 1140 | inline bool isInf(float f) |
| 1141 | { |
| 1142 | // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u |
| 1143 | // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu |
| 1144 | return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && |
| 1145 | !(bitCast<uint32_t>(f) & 0x7fffffu); |
| 1146 | } |
| 1147 | |
| 1148 | namespace priv |
| 1149 | { |
| 1150 | template <unsigned int N, unsigned int R> |
| 1151 | struct iSquareRoot |
| 1152 | { |
| 1153 | static constexpr unsigned int solve() |
| 1154 | { |
| 1155 | return (R * R > N) |
| 1156 | ? 0 |
| 1157 | : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value)); |
| 1158 | } |
| 1159 | enum Result |
| 1160 | { |
| 1161 | value = iSquareRoot::solve() |
| 1162 | }; |
| 1163 | }; |
| 1164 | |
| 1165 | template <unsigned int N> |
| 1166 | struct iSquareRoot<N, N> |
| 1167 | { |
| 1168 | enum result |
| 1169 | { |
| 1170 | value = N |
| 1171 | }; |
| 1172 | }; |
| 1173 | |
| 1174 | } // namespace priv |
| 1175 | |
| 1176 | template <unsigned int N> |
| 1177 | constexpr unsigned int iSquareRoot() |
| 1178 | { |
| 1179 | return priv::iSquareRoot<N, 1>::value; |
| 1180 | } |
| 1181 | |
| 1182 | // Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow. |
| 1183 | // |
| 1184 | // Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow |
| 1185 | // behavior is undefined. |
| 1186 | |
| 1187 | template <typename T> |
| 1188 | inline T WrappingSum(T lhs, T rhs) |
| 1189 | { |
| 1190 | uint32_t lhsUnsigned = static_cast<uint32_t>(lhs); |
| 1191 | uint32_t rhsUnsigned = static_cast<uint32_t>(rhs); |
| 1192 | return static_cast<T>(lhsUnsigned + rhsUnsigned); |
| 1193 | } |
| 1194 | |
| 1195 | template <typename T> |
| 1196 | inline T WrappingDiff(T lhs, T rhs) |
| 1197 | { |
| 1198 | uint32_t lhsUnsigned = static_cast<uint32_t>(lhs); |
| 1199 | uint32_t rhsUnsigned = static_cast<uint32_t>(rhs); |
| 1200 | return static_cast<T>(lhsUnsigned - rhsUnsigned); |
| 1201 | } |
| 1202 | |
| 1203 | inline int32_t WrappingMul(int32_t lhs, int32_t rhs) |
| 1204 | { |
| 1205 | int64_t lhsWide = static_cast<int64_t>(lhs); |
| 1206 | int64_t rhsWide = static_cast<int64_t>(rhs); |
| 1207 | // The multiplication is guaranteed not to overflow. |
| 1208 | int64_t resultWide = lhsWide * rhsWide; |
| 1209 | // Implement the desired wrapping behavior by masking out the high-order 32 bits. |
| 1210 | resultWide = resultWide & 0xffffffffll; |
| 1211 | // Casting to a narrower signed type is fine since the casted value is representable in the |
| 1212 | // narrower type. |
| 1213 | return static_cast<int32_t>(resultWide); |
| 1214 | } |
| 1215 | |
| 1216 | inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension) |
| 1217 | { |
| 1218 | return 2.0f * dimensionScreen / viewportDimension; |
| 1219 | } |
| 1220 | |
| 1221 | inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension) |
| 1222 | { |
| 1223 | float halfShifted = coordinateScreen / viewportDimension; |
| 1224 | return 2.0f * (halfShifted - 0.5f); |
| 1225 | } |
| 1226 | |
| 1227 | } // namespace gl |
| 1228 | |
| 1229 | namespace rx |
| 1230 | { |
| 1231 | |
| 1232 | template <typename T> |
| 1233 | T roundUp(const T value, const T alignment) |
| 1234 | { |
| 1235 | auto temp = value + alignment - static_cast<T>(1); |
| 1236 | return temp - temp % alignment; |
| 1237 | } |
| 1238 | |
| 1239 | template <typename T> |
| 1240 | angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment) |
| 1241 | { |
| 1242 | angle::CheckedNumeric<T> checkedValue(value); |
| 1243 | angle::CheckedNumeric<T> checkedAlignment(alignment); |
| 1244 | return roundUp(checkedValue, checkedAlignment); |
| 1245 | } |
| 1246 | |
| 1247 | inline unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor) |
| 1248 | { |
| 1249 | unsigned int divided = value / divisor; |
| 1250 | return (divided + ((value % divisor == 0) ? 0 : 1)); |
| 1251 | } |
| 1252 | |
| 1253 | #if defined(_MSC_VER) |
| 1254 | |
| 1255 | # define ANGLE_ROTL(x, y) _rotl(x, y) |
| 1256 | # define ANGLE_ROTR16(x, y) _rotr16(x, y) |
| 1257 | |
| 1258 | #else |
| 1259 | |
| 1260 | inline uint32_t RotL(uint32_t x, int8_t r) |
| 1261 | { |
| 1262 | return (x << r) | (x >> (32 - r)); |
| 1263 | } |
| 1264 | |
| 1265 | inline uint16_t RotR16(uint16_t x, int8_t r) |
| 1266 | { |
| 1267 | return (x >> r) | (x << (16 - r)); |
| 1268 | } |
| 1269 | |
| 1270 | # define ANGLE_ROTL(x, y) ::rx::RotL(x, y) |
| 1271 | # define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y) |
| 1272 | |
| 1273 | #endif // namespace rx |
| 1274 | |
| 1275 | constexpr unsigned int Log2(unsigned int bytes) |
| 1276 | { |
| 1277 | return bytes == 1 ? 0 : (1 + Log2(bytes / 2)); |
| 1278 | } |
| 1279 | } // namespace rx |
| 1280 | |
| 1281 | #endif // COMMON_MATHUTIL_H_ |
| 1282 | |