1 | /* |
2 | * Copyright (C) 1999-2000,2003 Harri Porten (porten@kde.org) |
3 | * Copyright (C) 2007, 2008, 2011 Apple Inc. All rights reserved. |
4 | * |
5 | * This library is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU Lesser General Public |
7 | * License as published by the Free Software Foundation; either |
8 | * version 2 of the License, or (at your option) any later version. |
9 | * |
10 | * This library is distributed in the hope that it will be useful, |
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
13 | * Lesser General Public License for more details. |
14 | * |
15 | * You should have received a copy of the GNU Lesser General Public |
16 | * License along with this library; if not, write to the Free Software |
17 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 |
18 | * USA |
19 | * |
20 | */ |
21 | |
22 | #include "config.h" |
23 | #include "NumberPrototype.h" |
24 | |
25 | #include "BigInteger.h" |
26 | #include "Error.h" |
27 | #include "IntlNumberFormat.h" |
28 | #include "IntlObject.h" |
29 | #include "JSCInlines.h" |
30 | #include "JSFunction.h" |
31 | #include "JSGlobalObject.h" |
32 | #include "JSString.h" |
33 | #include "ParseInt.h" |
34 | #include "Uint16WithFraction.h" |
35 | #include <wtf/dtoa.h> |
36 | #include <wtf/Assertions.h> |
37 | #include <wtf/MathExtras.h> |
38 | #include <wtf/dtoa/double-conversion.h> |
39 | |
40 | using DoubleToStringConverter = WTF::double_conversion::DoubleToStringConverter; |
41 | |
42 | // To avoid conflict with WTF::StringBuilder. |
43 | typedef WTF::double_conversion::StringBuilder DoubleConversionStringBuilder; |
44 | |
45 | namespace JSC { |
46 | |
47 | static EncodedJSValue JSC_HOST_CALL numberProtoFuncToString(ExecState*); |
48 | static EncodedJSValue JSC_HOST_CALL numberProtoFuncToLocaleString(ExecState*); |
49 | static EncodedJSValue JSC_HOST_CALL numberProtoFuncToFixed(ExecState*); |
50 | static EncodedJSValue JSC_HOST_CALL numberProtoFuncToExponential(ExecState*); |
51 | static EncodedJSValue JSC_HOST_CALL numberProtoFuncToPrecision(ExecState*); |
52 | |
53 | } |
54 | |
55 | #include "NumberPrototype.lut.h" |
56 | |
57 | namespace JSC { |
58 | |
59 | const ClassInfo NumberPrototype::s_info = { "Number" , &NumberObject::s_info, &numberPrototypeTable, nullptr, CREATE_METHOD_TABLE(NumberPrototype) }; |
60 | |
61 | /* Source for NumberPrototype.lut.h |
62 | @begin numberPrototypeTable |
63 | toLocaleString numberProtoFuncToLocaleString DontEnum|Function 0 |
64 | valueOf numberProtoFuncValueOf DontEnum|Function 0 |
65 | toFixed numberProtoFuncToFixed DontEnum|Function 1 |
66 | toExponential numberProtoFuncToExponential DontEnum|Function 1 |
67 | toPrecision numberProtoFuncToPrecision DontEnum|Function 1 |
68 | @end |
69 | */ |
70 | |
71 | STATIC_ASSERT_IS_TRIVIALLY_DESTRUCTIBLE(NumberPrototype); |
72 | |
73 | NumberPrototype::NumberPrototype(VM& vm, Structure* structure) |
74 | : NumberObject(vm, structure) |
75 | { |
76 | } |
77 | |
78 | void NumberPrototype::finishCreation(VM& vm, JSGlobalObject* globalObject) |
79 | { |
80 | Base::finishCreation(vm); |
81 | setInternalValue(vm, jsNumber(0)); |
82 | |
83 | JSC_NATIVE_INTRINSIC_FUNCTION_WITHOUT_TRANSITION(vm.propertyNames->toString, numberProtoFuncToString, static_cast<unsigned>(PropertyAttribute::DontEnum), 1, NumberPrototypeToStringIntrinsic); |
84 | ASSERT(inherits(vm, info())); |
85 | } |
86 | |
87 | // ------------------------------ Functions --------------------------- |
88 | |
89 | static ALWAYS_INLINE bool toThisNumber(VM& vm, JSValue thisValue, double& x) |
90 | { |
91 | if (thisValue.isInt32()) { |
92 | x = thisValue.asInt32(); |
93 | return true; |
94 | } |
95 | |
96 | if (thisValue.isDouble()) { |
97 | x = thisValue.asDouble(); |
98 | return true; |
99 | } |
100 | |
101 | if (auto* numberObject = jsDynamicCast<NumberObject*>(vm, thisValue)) { |
102 | x = numberObject->internalValue().asNumber(); |
103 | return true; |
104 | } |
105 | |
106 | return false; |
107 | } |
108 | |
109 | static ALWAYS_INLINE EncodedJSValue throwVMToThisNumberError(ExecState* exec, ThrowScope& scope, JSValue thisValue) |
110 | { |
111 | auto typeString = asString(jsTypeStringForValue(exec->vm(), exec->lexicalGlobalObject(), thisValue))->value(exec); |
112 | scope.assertNoException(); |
113 | return throwVMTypeError(exec, scope, WTF::makeString("thisNumberValue called on incompatible " , typeString)); |
114 | } |
115 | |
116 | static ALWAYS_INLINE bool getIntegerArgumentInRange(ExecState* exec, int low, int high, int& result, bool& isUndefined) |
117 | { |
118 | result = 0; |
119 | isUndefined = false; |
120 | |
121 | JSValue argument0 = exec->argument(0); |
122 | if (argument0.isUndefined()) { |
123 | isUndefined = true; |
124 | return true; |
125 | } |
126 | |
127 | double asDouble = argument0.toInteger(exec); |
128 | if (asDouble < low || asDouble > high) |
129 | return false; |
130 | |
131 | result = static_cast<int>(asDouble); |
132 | return true; |
133 | } |
134 | |
135 | // The largest finite floating point number is 1.mantissa * 2^(0x7fe-0x3ff). |
136 | // Since 2^N in binary is a one bit followed by N zero bits. 1 * 2^3ff requires |
137 | // at most 1024 characters to the left of a decimal point, in base 2 (1025 if |
138 | // we include a minus sign). For the fraction, a value with an exponent of 0 |
139 | // has up to 52 bits to the right of the decimal point. Each decrement of the |
140 | // exponent down to a minimum of -0x3fe adds an additional digit to the length |
141 | // of the fraction. As such the maximum fraction size is 1075 (1076 including |
142 | // a point). We pick a buffer size such that can simply place the point in the |
143 | // center of the buffer, and are guaranteed to have enough space in each direction |
144 | // fo any number of digits an IEEE number may require to represent. |
145 | typedef char RadixBuffer[2180]; |
146 | |
147 | static inline char* int52ToStringWithRadix(char* startOfResultString, int64_t int52Value, unsigned radix) |
148 | { |
149 | bool negative = false; |
150 | uint64_t positiveNumber = int52Value; |
151 | if (int52Value < 0) { |
152 | negative = true; |
153 | positiveNumber = -int52Value; |
154 | } |
155 | |
156 | do { |
157 | uint64_t index = positiveNumber % radix; |
158 | ASSERT(index < sizeof(radixDigits)); |
159 | *--startOfResultString = radixDigits[index]; |
160 | positiveNumber /= radix; |
161 | } while (positiveNumber); |
162 | if (negative) |
163 | *--startOfResultString = '-'; |
164 | |
165 | return startOfResultString; |
166 | } |
167 | |
168 | static char* toStringWithRadixInternal(RadixBuffer& buffer, double originalNumber, unsigned radix) |
169 | { |
170 | ASSERT(std::isfinite(originalNumber)); |
171 | ASSERT(radix >= 2 && radix <= 36); |
172 | |
173 | // Position the decimal point at the center of the string, set |
174 | // the startOfResultString pointer to point at the decimal point. |
175 | char* decimalPoint = buffer + sizeof(buffer) / 2; |
176 | char* startOfResultString = decimalPoint; |
177 | |
178 | // Extract the sign. |
179 | bool isNegative = originalNumber < 0; |
180 | double number = originalNumber; |
181 | if (std::signbit(originalNumber)) |
182 | number = -originalNumber; |
183 | double integerPart = floor(number); |
184 | |
185 | // Check if the value has a fractional part to convert. |
186 | double fractionPart = number - integerPart; |
187 | if (!fractionPart) { |
188 | *decimalPoint = '\0'; |
189 | // We do not need to care the negative zero (-0) since it is also converted to "0" in all the radix. |
190 | if (integerPart < (static_cast<int64_t>(1) << (JSValue::numberOfInt52Bits - 1))) |
191 | return int52ToStringWithRadix(startOfResultString, static_cast<int64_t>(originalNumber), radix); |
192 | } else { |
193 | // We use this to test for odd values in odd radix bases. |
194 | // Where the base is even, (e.g. 10), to determine whether a value is even we need only |
195 | // consider the least significant digit. For example, 124 in base 10 is even, because '4' |
196 | // is even. if the radix is odd, then the radix raised to an integer power is also odd. |
197 | // E.g. in base 5, 124 represents (1 * 125 + 2 * 25 + 4 * 5). Since each digit in the value |
198 | // is multiplied by an odd number, the result is even if the sum of all digits is even. |
199 | // |
200 | // For the integer portion of the result, we only need test whether the integer value is |
201 | // even or odd. For each digit of the fraction added, we should invert our idea of whether |
202 | // the number is odd if the new digit is odd. |
203 | // |
204 | // Also initialize digit to this value; for even radix values we only need track whether |
205 | // the last individual digit was odd. |
206 | bool integerPartIsOdd = integerPart <= static_cast<double>(0x1FFFFFFFFFFFFFull) && static_cast<int64_t>(integerPart) & 1; |
207 | ASSERT(integerPartIsOdd == static_cast<bool>(fmod(integerPart, 2))); |
208 | bool isOddInOddRadix = integerPartIsOdd; |
209 | uint32_t digit = integerPartIsOdd; |
210 | |
211 | // Write the decimal point now. |
212 | *decimalPoint = '.'; |
213 | |
214 | // Higher precision representation of the fractional part. |
215 | Uint16WithFraction fraction(fractionPart); |
216 | |
217 | bool needsRoundingUp = false; |
218 | char* endOfResultString = decimalPoint + 1; |
219 | |
220 | // Calculate the delta from the current number to the next & previous possible IEEE numbers. |
221 | double nextNumber = nextafter(number, std::numeric_limits<double>::infinity()); |
222 | double lastNumber = nextafter(number, -std::numeric_limits<double>::infinity()); |
223 | ASSERT(std::isfinite(nextNumber) && !std::signbit(nextNumber)); |
224 | ASSERT(std::isfinite(lastNumber) && !std::signbit(lastNumber)); |
225 | double deltaNextDouble = nextNumber - number; |
226 | double deltaLastDouble = number - lastNumber; |
227 | ASSERT(std::isfinite(deltaNextDouble) && !std::signbit(deltaNextDouble)); |
228 | ASSERT(std::isfinite(deltaLastDouble) && !std::signbit(deltaLastDouble)); |
229 | |
230 | // We track the delta from the current value to the next, to track how many digits of the |
231 | // fraction we need to write. For example, if the value we are converting is precisely |
232 | // 1.2345, so far we have written the digits "1.23" to a string leaving a remainder of |
233 | // 0.45, and we want to determine whether we can round off, or whether we need to keep |
234 | // appending digits ('4'). We can stop adding digits provided that then next possible |
235 | // lower IEEE value is further from 1.23 than the remainder we'd be rounding off (0.45), |
236 | // which is to say, less than 1.2255. Put another way, the delta between the prior |
237 | // possible value and this number must be more than 2x the remainder we'd be rounding off |
238 | // (or more simply half the delta between numbers must be greater than the remainder). |
239 | // |
240 | // Similarly we need track the delta to the next possible value, to dertermine whether |
241 | // to round up. In almost all cases (other than at exponent boundaries) the deltas to |
242 | // prior and subsequent values are identical, so we don't need track then separately. |
243 | if (deltaNextDouble != deltaLastDouble) { |
244 | // Since the deltas are different track them separately. Pre-multiply by 0.5. |
245 | Uint16WithFraction halfDeltaNext(deltaNextDouble, 1); |
246 | Uint16WithFraction halfDeltaLast(deltaLastDouble, 1); |
247 | |
248 | while (true) { |
249 | // examine the remainder to determine whether we should be considering rounding |
250 | // up or down. If remainder is precisely 0.5 rounding is to even. |
251 | int dComparePoint5 = fraction.comparePoint5(); |
252 | if (dComparePoint5 > 0 || (!dComparePoint5 && (radix & 1 ? isOddInOddRadix : digit & 1))) { |
253 | // Check for rounding up; are we closer to the value we'd round off to than |
254 | // the next IEEE value would be? |
255 | if (fraction.sumGreaterThanOne(halfDeltaNext)) { |
256 | needsRoundingUp = true; |
257 | break; |
258 | } |
259 | } else { |
260 | // Check for rounding down; are we closer to the value we'd round off to than |
261 | // the prior IEEE value would be? |
262 | if (fraction < halfDeltaLast) |
263 | break; |
264 | } |
265 | |
266 | ASSERT(endOfResultString < (buffer + sizeof(buffer) - 1)); |
267 | // Write a digit to the string. |
268 | fraction *= radix; |
269 | digit = fraction.floorAndSubtract(); |
270 | *endOfResultString++ = radixDigits[digit]; |
271 | // Keep track whether the portion written is currently even, if the radix is odd. |
272 | if (digit & 1) |
273 | isOddInOddRadix = !isOddInOddRadix; |
274 | |
275 | // Shift the fractions by radix. |
276 | halfDeltaNext *= radix; |
277 | halfDeltaLast *= radix; |
278 | } |
279 | } else { |
280 | // This code is identical to that above, except since deltaNextDouble != deltaLastDouble |
281 | // we don't need to track these two values separately. |
282 | Uint16WithFraction halfDelta(deltaNextDouble, 1); |
283 | |
284 | while (true) { |
285 | int dComparePoint5 = fraction.comparePoint5(); |
286 | if (dComparePoint5 > 0 || (!dComparePoint5 && (radix & 1 ? isOddInOddRadix : digit & 1))) { |
287 | if (fraction.sumGreaterThanOne(halfDelta)) { |
288 | needsRoundingUp = true; |
289 | break; |
290 | } |
291 | } else if (fraction < halfDelta) |
292 | break; |
293 | |
294 | ASSERT(endOfResultString < (buffer + sizeof(buffer) - 1)); |
295 | fraction *= radix; |
296 | digit = fraction.floorAndSubtract(); |
297 | if (digit & 1) |
298 | isOddInOddRadix = !isOddInOddRadix; |
299 | *endOfResultString++ = radixDigits[digit]; |
300 | |
301 | halfDelta *= radix; |
302 | } |
303 | } |
304 | |
305 | // Check if the fraction needs rounding off (flag set in the loop writing digits, above). |
306 | if (needsRoundingUp) { |
307 | // Whilst the last digit is the maximum in the current radix, remove it. |
308 | // e.g. rounding up the last digit in "12.3999" is the same as rounding up the |
309 | // last digit in "12.3" - both round up to "12.4". |
310 | while (endOfResultString[-1] == radixDigits[radix - 1]) |
311 | --endOfResultString; |
312 | |
313 | // Radix digits are sequential in ascii/unicode, except for '9' and 'a'. |
314 | // E.g. the first 'if' case handles rounding 67.89 to 67.8a in base 16. |
315 | // The 'else if' case handles rounding of all other digits. |
316 | if (endOfResultString[-1] == '9') |
317 | endOfResultString[-1] = 'a'; |
318 | else if (endOfResultString[-1] != '.') |
319 | ++endOfResultString[-1]; |
320 | else { |
321 | // One other possibility - there may be no digits to round up in the fraction |
322 | // (or all may be been rounded off already), in which case we may need to |
323 | // round into the integer portion of the number. Remove the decimal point. |
324 | --endOfResultString; |
325 | // In order to get here there must have been a non-zero fraction, in which case |
326 | // there must be at least one bit of the value's mantissa not in use in the |
327 | // integer part of the number. As such, adding to the integer part should not |
328 | // be able to lose precision. |
329 | ASSERT((integerPart + 1) - integerPart == 1); |
330 | ++integerPart; |
331 | } |
332 | } else { |
333 | // We only need to check for trailing zeros if the value does not get rounded up. |
334 | while (endOfResultString[-1] == '0') |
335 | --endOfResultString; |
336 | } |
337 | |
338 | *endOfResultString = '\0'; |
339 | ASSERT(endOfResultString < buffer + sizeof(buffer)); |
340 | } |
341 | |
342 | BigInteger units(integerPart); |
343 | |
344 | // Always loop at least once, to emit at least '0'. |
345 | do { |
346 | ASSERT(buffer < startOfResultString); |
347 | |
348 | // Read a single digit and write it to the front of the string. |
349 | // Divide by radix to remove one digit from the value. |
350 | uint32_t digit = units.divide(radix); |
351 | *--startOfResultString = radixDigits[digit]; |
352 | } while (!!units); |
353 | |
354 | // If the number is negative, prepend '-'. |
355 | if (isNegative) |
356 | *--startOfResultString = '-'; |
357 | ASSERT(buffer <= startOfResultString); |
358 | |
359 | return startOfResultString; |
360 | } |
361 | |
362 | static String toStringWithRadixInternal(int32_t number, unsigned radix) |
363 | { |
364 | LChar buf[1 + 32]; // Worst case is radix == 2, which gives us 32 digits + sign. |
365 | LChar* end = std::end(buf); |
366 | LChar* p = end; |
367 | |
368 | bool negative = false; |
369 | uint32_t positiveNumber = number; |
370 | if (number < 0) { |
371 | negative = true; |
372 | positiveNumber = static_cast<uint32_t>(-static_cast<int64_t>(number)); |
373 | } |
374 | |
375 | // Always loop at least once, to emit at least '0'. |
376 | do { |
377 | uint32_t index = positiveNumber % radix; |
378 | ASSERT(index < sizeof(radixDigits)); |
379 | *--p = static_cast<LChar>(radixDigits[index]); |
380 | positiveNumber /= radix; |
381 | } while (positiveNumber); |
382 | |
383 | if (negative) |
384 | *--p = '-'; |
385 | |
386 | return String(p, static_cast<unsigned>(end - p)); |
387 | } |
388 | |
389 | String toStringWithRadix(double doubleValue, int32_t radix) |
390 | { |
391 | ASSERT(2 <= radix && radix <= 36); |
392 | |
393 | int32_t integerValue = static_cast<int32_t>(doubleValue); |
394 | if (integerValue == doubleValue) |
395 | return toStringWithRadixInternal(integerValue, radix); |
396 | |
397 | if (radix == 10 || !std::isfinite(doubleValue)) |
398 | return String::numberToStringECMAScript(doubleValue); |
399 | |
400 | RadixBuffer buffer; |
401 | return toStringWithRadixInternal(buffer, doubleValue, radix); |
402 | } |
403 | |
404 | // toExponential converts a number to a string, always formatting as an exponential. |
405 | // This method takes an optional argument specifying a number of *decimal places* |
406 | // to round the significand to (or, put another way, this method optionally rounds |
407 | // to argument-plus-one significant figures). |
408 | EncodedJSValue JSC_HOST_CALL numberProtoFuncToExponential(ExecState* exec) |
409 | { |
410 | VM& vm = exec->vm(); |
411 | auto scope = DECLARE_THROW_SCOPE(vm); |
412 | |
413 | double x; |
414 | if (!toThisNumber(vm, exec->thisValue(), x)) |
415 | return throwVMToThisNumberError(exec, scope, exec->thisValue()); |
416 | |
417 | // Perform ToInteger on the argument before remaining steps. |
418 | int decimalPlacesInExponent; |
419 | bool isUndefined; |
420 | bool inRange = getIntegerArgumentInRange(exec, 0, 20, decimalPlacesInExponent, isUndefined); |
421 | RETURN_IF_EXCEPTION(scope, { }); |
422 | |
423 | // Handle NaN and Infinity. |
424 | if (!std::isfinite(x)) |
425 | return JSValue::encode(jsNontrivialString(exec, String::numberToStringECMAScript(x))); |
426 | |
427 | if (!inRange) |
428 | return throwVMError(exec, scope, createRangeError(exec, "toExponential() argument must be between 0 and 20"_s )); |
429 | |
430 | // Round if the argument is not undefined, always format as exponential. |
431 | NumberToStringBuffer buffer; |
432 | DoubleConversionStringBuilder builder { &buffer[0], sizeof(buffer) }; |
433 | const DoubleToStringConverter& converter = DoubleToStringConverter::EcmaScriptConverter(); |
434 | builder.Reset(); |
435 | isUndefined |
436 | ? converter.ToExponential(x, -1, &builder) |
437 | : converter.ToExponential(x, decimalPlacesInExponent, &builder); |
438 | return JSValue::encode(jsString(exec, builder.Finalize())); |
439 | } |
440 | |
441 | // toFixed converts a number to a string, always formatting as an a decimal fraction. |
442 | // This method takes an argument specifying a number of decimal places to round the |
443 | // significand to. However when converting large values (1e+21 and above) this |
444 | // method will instead fallback to calling ToString. |
445 | EncodedJSValue JSC_HOST_CALL numberProtoFuncToFixed(ExecState* exec) |
446 | { |
447 | VM& vm = exec->vm(); |
448 | auto scope = DECLARE_THROW_SCOPE(vm); |
449 | |
450 | double x; |
451 | if (!toThisNumber(vm, exec->thisValue(), x)) |
452 | return throwVMToThisNumberError(exec, scope, exec->thisValue()); |
453 | |
454 | // Get the argument. |
455 | int decimalPlaces; |
456 | bool isUndefined; // This is ignored; undefined treated as 0. |
457 | bool inRange = getIntegerArgumentInRange(exec, 0, 20, decimalPlaces, isUndefined); |
458 | RETURN_IF_EXCEPTION(scope, { }); |
459 | if (!inRange) |
460 | return throwVMError(exec, scope, createRangeError(exec, "toFixed() argument must be between 0 and 20"_s )); |
461 | |
462 | // 15.7.4.5.7 states "If x >= 10^21, then let m = ToString(x)" |
463 | // This also covers Ininity, and structure the check so that NaN |
464 | // values are also handled by numberToString |
465 | if (!(fabs(x) < 1e+21)) |
466 | return JSValue::encode(jsString(exec, String::numberToStringECMAScript(x))); |
467 | |
468 | // The check above will return false for NaN or Infinity, these will be |
469 | // handled by numberToString. |
470 | ASSERT(std::isfinite(x)); |
471 | |
472 | return JSValue::encode(jsString(exec, String::numberToStringFixedWidth(x, decimalPlaces))); |
473 | } |
474 | |
475 | // toPrecision converts a number to a string, taking an argument specifying a |
476 | // number of significant figures to round the significand to. For positive |
477 | // exponent, all values that can be represented using a decimal fraction will |
478 | // be, e.g. when rounding to 3 s.f. any value up to 999 will be formated as a |
479 | // decimal, whilst 1000 is converted to the exponential representation 1.00e+3. |
480 | // For negative exponents values >= 1e-6 are formated as decimal fractions, |
481 | // with smaller values converted to exponential representation. |
482 | EncodedJSValue JSC_HOST_CALL numberProtoFuncToPrecision(ExecState* exec) |
483 | { |
484 | VM& vm = exec->vm(); |
485 | auto scope = DECLARE_THROW_SCOPE(vm); |
486 | |
487 | double x; |
488 | if (!toThisNumber(vm, exec->thisValue(), x)) |
489 | return throwVMToThisNumberError(exec, scope, exec->thisValue()); |
490 | |
491 | // Perform ToInteger on the argument before remaining steps. |
492 | int significantFigures; |
493 | bool isUndefined; |
494 | bool inRange = getIntegerArgumentInRange(exec, 1, 21, significantFigures, isUndefined); |
495 | RETURN_IF_EXCEPTION(scope, { }); |
496 | |
497 | // To precision called with no argument is treated as ToString. |
498 | if (isUndefined) |
499 | return JSValue::encode(jsString(exec, String::numberToStringECMAScript(x))); |
500 | |
501 | // Handle NaN and Infinity. |
502 | if (!std::isfinite(x)) |
503 | return JSValue::encode(jsNontrivialString(exec, String::numberToStringECMAScript(x))); |
504 | |
505 | if (!inRange) |
506 | return throwVMError(exec, scope, createRangeError(exec, "toPrecision() argument must be between 1 and 21"_s )); |
507 | |
508 | return JSValue::encode(jsString(exec, String::numberToStringFixedPrecision(x, significantFigures, KeepTrailingZeros))); |
509 | } |
510 | |
511 | static ALWAYS_INLINE JSString* int32ToStringInternal(VM& vm, int32_t value, int32_t radix) |
512 | { |
513 | ASSERT(!(radix < 2 || radix > 36)); |
514 | // A negative value casted to unsigned would be bigger than 36 (the max radix). |
515 | if (static_cast<unsigned>(value) < static_cast<unsigned>(radix)) { |
516 | ASSERT(value <= 36); |
517 | ASSERT(value >= 0); |
518 | return vm.smallStrings.singleCharacterString(radixDigits[value]); |
519 | } |
520 | |
521 | if (radix == 10) |
522 | return jsNontrivialString(&vm, vm.numericStrings.add(value)); |
523 | |
524 | return jsNontrivialString(&vm, toStringWithRadixInternal(value, radix)); |
525 | |
526 | } |
527 | |
528 | static ALWAYS_INLINE JSString* numberToStringInternal(VM& vm, double doubleValue, int32_t radix) |
529 | { |
530 | ASSERT(!(radix < 2 || radix > 36)); |
531 | |
532 | int32_t integerValue = static_cast<int32_t>(doubleValue); |
533 | if (integerValue == doubleValue) |
534 | return int32ToStringInternal(vm, integerValue, radix); |
535 | |
536 | if (radix == 10) |
537 | return jsString(&vm, vm.numericStrings.add(doubleValue)); |
538 | |
539 | if (!std::isfinite(doubleValue)) |
540 | return jsNontrivialString(&vm, String::numberToStringECMAScript(doubleValue)); |
541 | |
542 | RadixBuffer buffer; |
543 | return jsString(&vm, toStringWithRadixInternal(buffer, doubleValue, radix)); |
544 | } |
545 | |
546 | JSString* int32ToString(VM& vm, int32_t value, int32_t radix) |
547 | { |
548 | return int32ToStringInternal(vm, value, radix); |
549 | } |
550 | |
551 | JSString* int52ToString(VM& vm, int64_t value, int32_t radix) |
552 | { |
553 | ASSERT(!(radix < 2 || radix > 36)); |
554 | // A negative value casted to unsigned would be bigger than 36 (the max radix). |
555 | if (static_cast<uint64_t>(value) < static_cast<uint64_t>(radix)) { |
556 | ASSERT(value <= 36); |
557 | ASSERT(value >= 0); |
558 | return vm.smallStrings.singleCharacterString(radixDigits[value]); |
559 | } |
560 | |
561 | if (radix == 10) |
562 | return jsNontrivialString(&vm, vm.numericStrings.add(static_cast<double>(value))); |
563 | |
564 | // Position the decimal point at the center of the string, set |
565 | // the startOfResultString pointer to point at the decimal point. |
566 | RadixBuffer buffer; |
567 | char* decimalPoint = buffer + sizeof(buffer) / 2; |
568 | char* startOfResultString = decimalPoint; |
569 | *decimalPoint = '\0'; |
570 | |
571 | return jsNontrivialString(&vm, int52ToStringWithRadix(startOfResultString, value, radix)); |
572 | } |
573 | |
574 | JSString* numberToString(VM& vm, double doubleValue, int32_t radix) |
575 | { |
576 | return numberToStringInternal(vm, doubleValue, radix); |
577 | } |
578 | |
579 | EncodedJSValue JSC_HOST_CALL numberProtoFuncToString(ExecState* state) |
580 | { |
581 | VM& vm = state->vm(); |
582 | auto scope = DECLARE_THROW_SCOPE(vm); |
583 | |
584 | double doubleValue; |
585 | if (!toThisNumber(vm, state->thisValue(), doubleValue)) |
586 | return throwVMToThisNumberError(state, scope, state->thisValue()); |
587 | |
588 | auto radix = extractToStringRadixArgument(state, state->argument(0), scope); |
589 | RETURN_IF_EXCEPTION(scope, encodedJSValue()); |
590 | |
591 | return JSValue::encode(numberToStringInternal(vm, doubleValue, radix)); |
592 | } |
593 | |
594 | EncodedJSValue JSC_HOST_CALL numberProtoFuncToLocaleString(ExecState* exec) |
595 | { |
596 | VM& vm = exec->vm(); |
597 | auto scope = DECLARE_THROW_SCOPE(vm); |
598 | |
599 | double x; |
600 | if (!toThisNumber(vm, exec->thisValue(), x)) |
601 | return throwVMToThisNumberError(exec, scope, exec->thisValue()); |
602 | |
603 | #if ENABLE(INTL) |
604 | JSGlobalObject* globalObject = exec->lexicalGlobalObject(); |
605 | IntlNumberFormat* numberFormat = IntlNumberFormat::create(vm, globalObject->numberFormatStructure()); |
606 | numberFormat->initializeNumberFormat(*exec, exec->argument(0), exec->argument(1)); |
607 | RETURN_IF_EXCEPTION(scope, encodedJSValue()); |
608 | RELEASE_AND_RETURN(scope, JSValue::encode(numberFormat->formatNumber(*exec, x))); |
609 | #else |
610 | return JSValue::encode(jsNumber(x).toString(exec)); |
611 | #endif |
612 | } |
613 | |
614 | EncodedJSValue JSC_HOST_CALL numberProtoFuncValueOf(ExecState* exec) |
615 | { |
616 | VM& vm = exec->vm(); |
617 | auto scope = DECLARE_THROW_SCOPE(vm); |
618 | |
619 | double x; |
620 | JSValue thisValue = exec->thisValue(); |
621 | if (!toThisNumber(vm, thisValue, x)) |
622 | return throwVMToThisNumberError(exec, scope, exec->thisValue()); |
623 | return JSValue::encode(jsNumber(x)); |
624 | } |
625 | |
626 | int32_t (ExecState* state, JSValue radixValue, ThrowScope& throwScope) |
627 | { |
628 | if (radixValue.isUndefined()) |
629 | return 10; |
630 | |
631 | if (radixValue.isInt32()) { |
632 | int32_t radix = radixValue.asInt32(); |
633 | if (radix >= 2 && radix <= 36) |
634 | return radix; |
635 | } else { |
636 | double radixDouble = radixValue.toInteger(state); |
637 | RETURN_IF_EXCEPTION(throwScope, 0); |
638 | if (radixDouble >= 2 && radixDouble <= 36) |
639 | return static_cast<int32_t>(radixDouble); |
640 | } |
641 | |
642 | throwRangeError(state, throwScope, "toString() radix argument must be between 2 and 36"_s ); |
643 | return 0; |
644 | } |
645 | |
646 | } // namespace JSC |
647 | |