| 1 | /* |
| 2 | * Copyright (C) 2011 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #include <wtf/MathExtras.h> |
| 29 | |
| 30 | namespace JSC { |
| 31 | |
| 32 | // Would be nice if this was a static const member, but the OS X linker |
| 33 | // seems to want a symbol in the binary in that case... |
| 34 | #define oneGreaterThanMaxUInt16 0x10000 |
| 35 | |
| 36 | // A uint16_t with an infinite precision fraction. Upon overflowing |
| 37 | // the uint16_t range, this class will clamp to oneGreaterThanMaxUInt16. |
| 38 | // This is used in converting the fraction part of a number to a string. |
| 39 | class Uint16WithFraction { |
| 40 | public: |
| 41 | explicit Uint16WithFraction(double number, uint16_t divideByExponent = 0) |
| 42 | { |
| 43 | ASSERT(number && std::isfinite(number) && !std::signbit(number)); |
| 44 | |
| 45 | // Check for values out of uint16_t range. |
| 46 | if (number >= oneGreaterThanMaxUInt16) { |
| 47 | m_values.append(oneGreaterThanMaxUInt16); |
| 48 | m_leadingZeros = 0; |
| 49 | return; |
| 50 | } |
| 51 | |
| 52 | // Append the units to m_values. |
| 53 | double integerPart = floor(number); |
| 54 | m_values.append(static_cast<uint32_t>(integerPart)); |
| 55 | |
| 56 | bool sign; |
| 57 | int32_t exponent; |
| 58 | uint64_t mantissa; |
| 59 | decomposeDouble(number - integerPart, sign, exponent, mantissa); |
| 60 | ASSERT(!sign && exponent < 0); |
| 61 | exponent -= divideByExponent; |
| 62 | |
| 63 | int32_t zeroBits = -exponent; |
| 64 | --zeroBits; |
| 65 | |
| 66 | // Append the append words for to m_values. |
| 67 | while (zeroBits >= 32) { |
| 68 | m_values.append(0); |
| 69 | zeroBits -= 32; |
| 70 | } |
| 71 | |
| 72 | // Left align the 53 bits of the mantissa within 96 bits. |
| 73 | uint32_t values[3]; |
| 74 | values[0] = static_cast<uint32_t>(mantissa >> 21); |
| 75 | values[1] = static_cast<uint32_t>(mantissa << 11); |
| 76 | values[2] = 0; |
| 77 | // Shift based on the remainder of the exponent. |
| 78 | if (zeroBits) { |
| 79 | values[2] = values[1] << (32 - zeroBits); |
| 80 | values[1] = (values[1] >> zeroBits) | (values[0] << (32 - zeroBits)); |
| 81 | values[0] = (values[0] >> zeroBits); |
| 82 | } |
| 83 | m_values.append(values[0]); |
| 84 | m_values.append(values[1]); |
| 85 | m_values.append(values[2]); |
| 86 | |
| 87 | // Canonicalize; remove any trailing zeros. |
| 88 | while (m_values.size() > 1 && !m_values.last()) |
| 89 | m_values.removeLast(); |
| 90 | |
| 91 | // Count the number of leading zero, this is useful in optimizing multiplies. |
| 92 | m_leadingZeros = 0; |
| 93 | while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) |
| 94 | ++m_leadingZeros; |
| 95 | } |
| 96 | |
| 97 | Uint16WithFraction& operator*=(uint16_t multiplier) |
| 98 | { |
| 99 | ASSERT(checkConsistency()); |
| 100 | |
| 101 | // iteratate backwards over the fraction until we reach the leading zeros, |
| 102 | // passing the carry from one calculation into the next. |
| 103 | uint64_t accumulator = 0; |
| 104 | for (size_t i = m_values.size(); i > m_leadingZeros; ) { |
| 105 | --i; |
| 106 | accumulator += static_cast<uint64_t>(m_values[i]) * static_cast<uint64_t>(multiplier); |
| 107 | m_values[i] = static_cast<uint32_t>(accumulator); |
| 108 | accumulator >>= 32; |
| 109 | } |
| 110 | |
| 111 | if (!m_leadingZeros) { |
| 112 | // With a multiplicand and multiplier in the uint16_t range, this cannot carry |
| 113 | // (even allowing for the infinity value). |
| 114 | ASSERT(!accumulator); |
| 115 | // Check for overflow & clamp to 'infinity'. |
| 116 | if (m_values[0] >= oneGreaterThanMaxUInt16) { |
| 117 | m_values.shrink(1); |
| 118 | m_values[0] = oneGreaterThanMaxUInt16; |
| 119 | m_leadingZeros = 0; |
| 120 | return *this; |
| 121 | } |
| 122 | } else if (accumulator) { |
| 123 | // Check for carry from the last multiply, if so overwrite last leading zero. |
| 124 | m_values[--m_leadingZeros] = static_cast<uint32_t>(accumulator); |
| 125 | // The limited range of the multiplier should mean that even if we carry into |
| 126 | // the units, we don't need to check for overflow of the uint16_t range. |
| 127 | ASSERT(m_values[0] < oneGreaterThanMaxUInt16); |
| 128 | } |
| 129 | |
| 130 | // Multiplication by an even value may introduce trailing zeros; if so, clean them |
| 131 | // up. (Keeping the value in a normalized form makes some of the comparison operations |
| 132 | // more efficient). |
| 133 | while (m_values.size() > 1 && !m_values.last()) |
| 134 | m_values.removeLast(); |
| 135 | ASSERT(checkConsistency()); |
| 136 | return *this; |
| 137 | } |
| 138 | |
| 139 | bool operator<(const Uint16WithFraction& other) |
| 140 | { |
| 141 | ASSERT(checkConsistency()); |
| 142 | ASSERT(other.checkConsistency()); |
| 143 | |
| 144 | // Iterate over the common lengths of arrays. |
| 145 | size_t minSize = std::min(m_values.size(), other.m_values.size()); |
| 146 | for (size_t index = 0; index < minSize; ++index) { |
| 147 | // If we find a value that is not equal, compare and return. |
| 148 | uint32_t fromThis = m_values[index]; |
| 149 | uint32_t fromOther = other.m_values[index]; |
| 150 | if (fromThis != fromOther) |
| 151 | return fromThis < fromOther; |
| 152 | } |
| 153 | // If these numbers have the same lengths, they are equal, |
| 154 | // otherwise which ever number has a longer fraction in larger. |
| 155 | return other.m_values.size() > minSize; |
| 156 | } |
| 157 | |
| 158 | // Return the floor (non-fractional portion) of the number, clearing this to zero, |
| 159 | // leaving the fractional part unchanged. |
| 160 | uint32_t floorAndSubtract() |
| 161 | { |
| 162 | // 'floor' is simple the integer portion of the value. |
| 163 | uint32_t floor = m_values[0]; |
| 164 | |
| 165 | // If floor is non-zero, |
| 166 | if (floor) { |
| 167 | m_values[0] = 0; |
| 168 | m_leadingZeros = 1; |
| 169 | while (m_leadingZeros < m_values.size() && !m_values[m_leadingZeros]) |
| 170 | ++m_leadingZeros; |
| 171 | } |
| 172 | |
| 173 | return floor; |
| 174 | } |
| 175 | |
| 176 | // Compare this value to 0.5, returns -1 for less than, 0 for equal, 1 for greater. |
| 177 | int comparePoint5() |
| 178 | { |
| 179 | ASSERT(checkConsistency()); |
| 180 | // If units != 0, this is greater than 0.5. |
| 181 | if (m_values[0]) |
| 182 | return 1; |
| 183 | // If size == 1 this value is 0, hence < 0.5. |
| 184 | if (m_values.size() == 1) |
| 185 | return -1; |
| 186 | // Compare to 0.5. |
| 187 | if (m_values[1] > 0x80000000ul) |
| 188 | return 1; |
| 189 | if (m_values[1] < 0x80000000ul) |
| 190 | return -1; |
| 191 | // Check for more words - since normalized numbers have no trailing zeros, if |
| 192 | // there are more that two digits we can assume at least one more is non-zero, |
| 193 | // and hence the value is > 0.5. |
| 194 | return m_values.size() > 2 ? 1 : 0; |
| 195 | } |
| 196 | |
| 197 | // Return true if the sum of this plus addend would be greater than 1. |
| 198 | bool sumGreaterThanOne(const Uint16WithFraction& addend) |
| 199 | { |
| 200 | ASSERT(checkConsistency()); |
| 201 | ASSERT(addend.checkConsistency()); |
| 202 | |
| 203 | // First, sum the units. If the result is greater than one, return true. |
| 204 | // If equal to one, return true if either number has a fractional part. |
| 205 | uint32_t sum = m_values[0] + addend.m_values[0]; |
| 206 | if (sum) |
| 207 | return sum > 1 || std::max(m_values.size(), addend.m_values.size()) > 1; |
| 208 | |
| 209 | // We could still produce a result greater than zero if addition of the next |
| 210 | // word from the fraction were to carry, leaving a result > 0. |
| 211 | |
| 212 | // Iterate over the common lengths of arrays. |
| 213 | size_t minSize = std::min(m_values.size(), addend.m_values.size()); |
| 214 | for (size_t index = 1; index < minSize; ++index) { |
| 215 | // Sum the next word from this & the addend. |
| 216 | uint32_t fromThis = m_values[index]; |
| 217 | uint32_t fromAddend = addend.m_values[index]; |
| 218 | sum = fromThis + fromAddend; |
| 219 | |
| 220 | // Check for overflow. If so, check whether the remaining result is non-zero, |
| 221 | // or if there are any further words in the fraction. |
| 222 | if (sum < fromThis) |
| 223 | return sum || (index + 1) < std::max(m_values.size(), addend.m_values.size()); |
| 224 | |
| 225 | // If the sum is uint32_t max, then we would carry a 1 if addition of the next |
| 226 | // digits in the number were to overflow. |
| 227 | if (sum != 0xFFFFFFFF) |
| 228 | return false; |
| 229 | } |
| 230 | return false; |
| 231 | } |
| 232 | |
| 233 | private: |
| 234 | bool checkConsistency() const |
| 235 | { |
| 236 | // All values should have at least one value. |
| 237 | return (m_values.size()) |
| 238 | // The units value must be a uint16_t, or the value is the overflow value. |
| 239 | && (m_values[0] < oneGreaterThanMaxUInt16 || (m_values[0] == oneGreaterThanMaxUInt16 && m_values.size() == 1)) |
| 240 | // There should be no trailing zeros (unless this value is zero!). |
| 241 | && (m_values.last() || m_values.size() == 1); |
| 242 | } |
| 243 | |
| 244 | // The internal storage of the number. This vector is always at least one entry in size, |
| 245 | // with the first entry holding the portion of the number greater than zero. The first |
| 246 | // value always hold a value in the uint16_t range, or holds the value oneGreaterThanMaxUInt16 to |
| 247 | // indicate the value has overflowed to >= 0x10000. If the units value is oneGreaterThanMaxUInt16, |
| 248 | // there can be no fraction (size must be 1). |
| 249 | // |
| 250 | // Subsequent values in the array represent portions of the fractional part of this number. |
| 251 | // The total value of the number is the sum of (m_values[i] / pow(2^32, i)), for each i |
| 252 | // in the array. The vector should contain no trailing zeros, except for the value '0', |
| 253 | // represented by a vector contianing a single zero value. These constraints are checked |
| 254 | // by 'checkConsistency()', above. |
| 255 | // |
| 256 | // The inline capacity of the vector is set to be able to contain any IEEE double (1 for |
| 257 | // the units column, 32 for zeros introduced due to an exponent up to -3FE, and 2 for |
| 258 | // bits taken from the mantissa). |
| 259 | Vector<uint32_t, 36> m_values; |
| 260 | |
| 261 | // Cache a count of the number of leading zeros in m_values. We can use this to optimize |
| 262 | // methods that would otherwise need visit all words in the vector, e.g. multiplication. |
| 263 | size_t m_leadingZeros; |
| 264 | }; |
| 265 | |
| 266 | } // namespace JSC |
| 267 | |