| 1 | /* |
| 2 | * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) |
| 3 | * Copyright (C) 2003-2018 Apple Inc. All rights reserved. |
| 4 | * Copyright (C) 2003 Peter Kelly (pmk@post.com) |
| 5 | * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com) |
| 6 | * |
| 7 | * This library is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU Lesser General Public |
| 9 | * License as published by the Free Software Foundation; either |
| 10 | * version 2 of the License, or (at your option) any later version. |
| 11 | * |
| 12 | * This library is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 15 | * Lesser General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU Lesser General Public |
| 18 | * License along with this library; if not, write to the Free Software |
| 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| 20 | * |
| 21 | */ |
| 22 | |
| 23 | #include "config.h" |
| 24 | #include "JSArray.h" |
| 25 | |
| 26 | #include "ArrayPrototype.h" |
| 27 | #include "ButterflyInlines.h" |
| 28 | #include "CodeBlock.h" |
| 29 | #include "Error.h" |
| 30 | #include "GetterSetter.h" |
| 31 | #include "IndexingHeaderInlines.h" |
| 32 | #include "JSArrayInlines.h" |
| 33 | #include "JSCInlines.h" |
| 34 | #include "PropertyNameArray.h" |
| 35 | #include "TypeError.h" |
| 36 | #include <wtf/Assertions.h> |
| 37 | |
| 38 | namespace JSC { |
| 39 | |
| 40 | const ASCIILiteral LengthExceededTheMaximumArrayLengthError { "Length exceeded the maximum array length"_s }; |
| 41 | |
| 42 | STATIC_ASSERT_IS_TRIVIALLY_DESTRUCTIBLE(JSArray); |
| 43 | |
| 44 | const ClassInfo JSArray::s_info = {"Array" , &JSNonFinalObject::s_info, nullptr, nullptr, CREATE_METHOD_TABLE(JSArray)}; |
| 45 | |
| 46 | JSArray* JSArray::tryCreateUninitializedRestricted(ObjectInitializationScope& scope, GCDeferralContext* deferralContext, Structure* structure, unsigned initialLength) |
| 47 | { |
| 48 | VM& vm = scope.vm(); |
| 49 | |
| 50 | if (UNLIKELY(initialLength > MAX_STORAGE_VECTOR_LENGTH)) |
| 51 | return nullptr; |
| 52 | |
| 53 | unsigned outOfLineStorage = structure->outOfLineCapacity(); |
| 54 | Butterfly* butterfly; |
| 55 | IndexingType indexingType = structure->indexingType(); |
| 56 | if (LIKELY(!hasAnyArrayStorage(indexingType))) { |
| 57 | ASSERT( |
| 58 | hasUndecided(indexingType) |
| 59 | || hasInt32(indexingType) |
| 60 | || hasDouble(indexingType) |
| 61 | || hasContiguous(indexingType)); |
| 62 | |
| 63 | unsigned vectorLength = Butterfly::optimalContiguousVectorLength(structure, initialLength); |
| 64 | void* temp = vm.jsValueGigacageAuxiliarySpace.allocateNonVirtual( |
| 65 | vm, |
| 66 | Butterfly::totalSize(0, outOfLineStorage, true, vectorLength * sizeof(EncodedJSValue)), |
| 67 | deferralContext, AllocationFailureMode::ReturnNull); |
| 68 | if (UNLIKELY(!temp)) |
| 69 | return nullptr; |
| 70 | butterfly = Butterfly::fromBase(temp, 0, outOfLineStorage); |
| 71 | butterfly->setVectorLength(vectorLength); |
| 72 | butterfly->setPublicLength(initialLength); |
| 73 | if (hasDouble(indexingType)) { |
| 74 | for (unsigned i = initialLength; i < vectorLength; ++i) |
| 75 | butterfly->contiguousDouble().atUnsafe(i) = PNaN; |
| 76 | } else { |
| 77 | for (unsigned i = initialLength; i < vectorLength; ++i) |
| 78 | butterfly->contiguous().atUnsafe(i).clear(); |
| 79 | } |
| 80 | } else { |
| 81 | ASSERT( |
| 82 | indexingType == ArrayWithSlowPutArrayStorage |
| 83 | || indexingType == ArrayWithArrayStorage); |
| 84 | static const unsigned indexBias = 0; |
| 85 | unsigned vectorLength = ArrayStorage::optimalVectorLength(indexBias, structure, initialLength); |
| 86 | void* temp = vm.jsValueGigacageAuxiliarySpace.allocateNonVirtual( |
| 87 | vm, |
| 88 | Butterfly::totalSize(indexBias, outOfLineStorage, true, ArrayStorage::sizeFor(vectorLength)), |
| 89 | deferralContext, AllocationFailureMode::ReturnNull); |
| 90 | if (UNLIKELY(!temp)) |
| 91 | return nullptr; |
| 92 | butterfly = Butterfly::fromBase(temp, indexBias, outOfLineStorage); |
| 93 | *butterfly->indexingHeader() = indexingHeaderForArrayStorage(initialLength, vectorLength); |
| 94 | ArrayStorage* storage = butterfly->arrayStorage(); |
| 95 | storage->m_indexBias = indexBias; |
| 96 | storage->m_sparseMap.clear(); |
| 97 | storage->m_numValuesInVector = initialLength; |
| 98 | for (unsigned i = initialLength; i < vectorLength; ++i) |
| 99 | storage->m_vector[i].clear(); |
| 100 | } |
| 101 | |
| 102 | JSArray* result = createWithButterfly(vm, deferralContext, structure, butterfly); |
| 103 | |
| 104 | const bool createUninitialized = true; |
| 105 | scope.notifyAllocated(result, createUninitialized); |
| 106 | return result; |
| 107 | } |
| 108 | |
| 109 | void JSArray::eagerlyInitializeButterfly(ObjectInitializationScope& scope, JSArray* array, unsigned initialLength) |
| 110 | { |
| 111 | Structure* structure = array->structure(scope.vm()); |
| 112 | IndexingType indexingType = structure->indexingType(); |
| 113 | Butterfly* butterfly = array->butterfly(); |
| 114 | |
| 115 | // This function only serves as a companion to tryCreateUninitializedRestricted() |
| 116 | // in the event that we really can't defer initialization of the butterfly after all. |
| 117 | // tryCreateUninitializedRestricted() already initialized the elements between |
| 118 | // initialLength and vector length. We just need to do 0 - initialLength. |
| 119 | // ObjectInitializationScope::notifyInitialized() will verify that all elements are |
| 120 | // initialized. |
| 121 | if (LIKELY(!hasAnyArrayStorage(indexingType))) { |
| 122 | if (hasDouble(indexingType)) { |
| 123 | for (unsigned i = 0; i < initialLength; ++i) |
| 124 | butterfly->contiguousDouble().atUnsafe(i) = PNaN; |
| 125 | } else { |
| 126 | for (unsigned i = 0; i < initialLength; ++i) |
| 127 | butterfly->contiguous().atUnsafe(i).clear(); |
| 128 | } |
| 129 | } else { |
| 130 | ArrayStorage* storage = butterfly->arrayStorage(); |
| 131 | for (unsigned i = 0; i < initialLength; ++i) |
| 132 | storage->m_vector[i].clear(); |
| 133 | } |
| 134 | scope.notifyInitialized(array); |
| 135 | } |
| 136 | |
| 137 | void JSArray::setLengthWritable(ExecState* exec, bool writable) |
| 138 | { |
| 139 | ASSERT(isLengthWritable() || !writable); |
| 140 | if (!isLengthWritable() || writable) |
| 141 | return; |
| 142 | |
| 143 | enterDictionaryIndexingMode(exec->vm()); |
| 144 | |
| 145 | SparseArrayValueMap* map = arrayStorage()->m_sparseMap.get(); |
| 146 | ASSERT(map); |
| 147 | map->setLengthIsReadOnly(); |
| 148 | } |
| 149 | |
| 150 | // Defined in ES5.1 15.4.5.1 |
| 151 | bool JSArray::defineOwnProperty(JSObject* object, ExecState* exec, PropertyName propertyName, const PropertyDescriptor& descriptor, bool throwException) |
| 152 | { |
| 153 | VM& vm = exec->vm(); |
| 154 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 155 | |
| 156 | JSArray* array = jsCast<JSArray*>(object); |
| 157 | |
| 158 | // 3. If P is "length", then |
| 159 | if (propertyName == vm.propertyNames->length) { |
| 160 | // All paths through length definition call the default [[DefineOwnProperty]], hence: |
| 161 | // from ES5.1 8.12.9 7.a. |
| 162 | if (descriptor.configurablePresent() && descriptor.configurable()) |
| 163 | return typeError(exec, scope, throwException, UnconfigurablePropertyChangeConfigurabilityError); |
| 164 | // from ES5.1 8.12.9 7.b. |
| 165 | if (descriptor.enumerablePresent() && descriptor.enumerable()) |
| 166 | return typeError(exec, scope, throwException, UnconfigurablePropertyChangeEnumerabilityError); |
| 167 | |
| 168 | // a. If the [[Value]] field of Desc is absent, then |
| 169 | // a.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Desc, and Throw as arguments. |
| 170 | if (descriptor.isAccessorDescriptor()) |
| 171 | return typeError(exec, scope, throwException, UnconfigurablePropertyChangeAccessMechanismError); |
| 172 | // from ES5.1 8.12.9 10.a. |
| 173 | if (!array->isLengthWritable() && descriptor.writablePresent() && descriptor.writable()) |
| 174 | return typeError(exec, scope, throwException, UnconfigurablePropertyChangeWritabilityError); |
| 175 | // This descriptor is either just making length read-only, or changing nothing! |
| 176 | if (!descriptor.value()) { |
| 177 | if (descriptor.writablePresent()) |
| 178 | array->setLengthWritable(exec, descriptor.writable()); |
| 179 | return true; |
| 180 | } |
| 181 | |
| 182 | // b. Let newLenDesc be a copy of Desc. |
| 183 | // c. Let newLen be ToUint32(Desc.[[Value]]). |
| 184 | unsigned newLen = descriptor.value().toUInt32(exec); |
| 185 | RETURN_IF_EXCEPTION(scope, false); |
| 186 | // d. If newLen is not equal to ToNumber( Desc.[[Value]]), throw a RangeError exception. |
| 187 | double valueAsNumber = descriptor.value().toNumber(exec); |
| 188 | RETURN_IF_EXCEPTION(scope, false); |
| 189 | if (newLen != valueAsNumber) { |
| 190 | JSC::throwException(exec, scope, createRangeError(exec, "Invalid array length"_s )); |
| 191 | return false; |
| 192 | } |
| 193 | |
| 194 | // Based on SameValue check in 8.12.9, this is always okay. |
| 195 | // FIXME: Nothing prevents this from being called on a RuntimeArray, and the length function will always return 0 in that case. |
| 196 | if (newLen == array->length()) { |
| 197 | if (descriptor.writablePresent()) |
| 198 | array->setLengthWritable(exec, descriptor.writable()); |
| 199 | return true; |
| 200 | } |
| 201 | |
| 202 | // e. Set newLenDesc.[[Value] to newLen. |
| 203 | // f. If newLen >= oldLen, then |
| 204 | // f.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments. |
| 205 | // g. Reject if oldLenDesc.[[Writable]] is false. |
| 206 | if (!array->isLengthWritable()) |
| 207 | return typeError(exec, scope, throwException, ReadonlyPropertyChangeError); |
| 208 | |
| 209 | // h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true. |
| 210 | // i. Else, |
| 211 | // i.i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted. |
| 212 | // i.ii. Let newWritable be false. |
| 213 | // i.iii. Set newLenDesc.[[Writable] to true. |
| 214 | // j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments. |
| 215 | // k. If succeeded is false, return false. |
| 216 | // l. While newLen < oldLen repeat, |
| 217 | // l.i. Set oldLen to oldLen – 1. |
| 218 | // l.ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing ToString(oldLen) and false as arguments. |
| 219 | // l.iii. If deleteSucceeded is false, then |
| 220 | bool success = array->setLength(exec, newLen, throwException); |
| 221 | EXCEPTION_ASSERT(!scope.exception() || !success); |
| 222 | if (!success) { |
| 223 | // 1. Set newLenDesc.[[Value] to oldLen+1. |
| 224 | // 2. If newWritable is false, set newLenDesc.[[Writable] to false. |
| 225 | // 3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and false as arguments. |
| 226 | // 4. Reject. |
| 227 | if (descriptor.writablePresent()) |
| 228 | array->setLengthWritable(exec, descriptor.writable()); |
| 229 | return false; |
| 230 | } |
| 231 | |
| 232 | // m. If newWritable is false, then |
| 233 | // i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", |
| 234 | // Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always |
| 235 | // return true. |
| 236 | if (descriptor.writablePresent()) |
| 237 | array->setLengthWritable(exec, descriptor.writable()); |
| 238 | // n. Return true. |
| 239 | return true; |
| 240 | } |
| 241 | |
| 242 | // 4. Else if P is an array index (15.4), then |
| 243 | // a. Let index be ToUint32(P). |
| 244 | if (Optional<uint32_t> optionalIndex = parseIndex(propertyName)) { |
| 245 | // b. Reject if index >= oldLen and oldLenDesc.[[Writable]] is false. |
| 246 | uint32_t index = optionalIndex.value(); |
| 247 | // FIXME: Nothing prevents this from being called on a RuntimeArray, and the length function will always return 0 in that case. |
| 248 | if (index >= array->length() && !array->isLengthWritable()) |
| 249 | return typeError(exec, scope, throwException, "Attempting to define numeric property on array with non-writable length property."_s ); |
| 250 | // c. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and false as arguments. |
| 251 | // d. Reject if succeeded is false. |
| 252 | // e. If index >= oldLen |
| 253 | // e.i. Set oldLenDesc.[[Value]] to index + 1. |
| 254 | // e.ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", oldLenDesc, and false as arguments. This call will always return true. |
| 255 | // f. Return true. |
| 256 | RELEASE_AND_RETURN(scope, array->defineOwnIndexedProperty(exec, index, descriptor, throwException)); |
| 257 | } |
| 258 | |
| 259 | RELEASE_AND_RETURN(scope, array->JSObject::defineOwnNonIndexProperty(exec, propertyName, descriptor, throwException)); |
| 260 | } |
| 261 | |
| 262 | bool JSArray::getOwnPropertySlot(JSObject* object, ExecState* exec, PropertyName propertyName, PropertySlot& slot) |
| 263 | { |
| 264 | VM& vm = exec->vm(); |
| 265 | JSArray* thisObject = jsCast<JSArray*>(object); |
| 266 | if (propertyName == vm.propertyNames->length) { |
| 267 | unsigned attributes = thisObject->isLengthWritable() ? PropertyAttribute::DontDelete | PropertyAttribute::DontEnum : PropertyAttribute::DontDelete | PropertyAttribute::DontEnum | PropertyAttribute::ReadOnly; |
| 268 | slot.setValue(thisObject, attributes, jsNumber(thisObject->length())); |
| 269 | return true; |
| 270 | } |
| 271 | |
| 272 | return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot); |
| 273 | } |
| 274 | |
| 275 | // ECMA 15.4.5.1 |
| 276 | bool JSArray::put(JSCell* cell, ExecState* exec, PropertyName propertyName, JSValue value, PutPropertySlot& slot) |
| 277 | { |
| 278 | VM& vm = exec->vm(); |
| 279 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 280 | |
| 281 | JSArray* thisObject = jsCast<JSArray*>(cell); |
| 282 | |
| 283 | if (UNLIKELY(isThisValueAltered(slot, thisObject))) |
| 284 | RELEASE_AND_RETURN(scope, ordinarySetSlow(exec, thisObject, propertyName, value, slot.thisValue(), slot.isStrictMode())); |
| 285 | |
| 286 | thisObject->ensureWritable(vm); |
| 287 | |
| 288 | if (propertyName == vm.propertyNames->length) { |
| 289 | if (!thisObject->isLengthWritable()) |
| 290 | return false; |
| 291 | unsigned newLength = value.toUInt32(exec); |
| 292 | RETURN_IF_EXCEPTION(scope, false); |
| 293 | double valueAsNumber = value.toNumber(exec); |
| 294 | RETURN_IF_EXCEPTION(scope, false); |
| 295 | if (valueAsNumber != static_cast<double>(newLength)) { |
| 296 | throwException(exec, scope, createRangeError(exec, "Invalid array length"_s )); |
| 297 | return false; |
| 298 | } |
| 299 | RELEASE_AND_RETURN(scope, thisObject->setLength(exec, newLength, slot.isStrictMode())); |
| 300 | } |
| 301 | |
| 302 | RELEASE_AND_RETURN(scope, JSObject::put(thisObject, exec, propertyName, value, slot)); |
| 303 | } |
| 304 | |
| 305 | bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, PropertyName propertyName) |
| 306 | { |
| 307 | VM& vm = exec->vm(); |
| 308 | JSArray* thisObject = jsCast<JSArray*>(cell); |
| 309 | |
| 310 | if (propertyName == vm.propertyNames->length) |
| 311 | return false; |
| 312 | |
| 313 | return JSObject::deleteProperty(thisObject, exec, propertyName); |
| 314 | } |
| 315 | |
| 316 | static int compareKeysForQSort(const void* a, const void* b) |
| 317 | { |
| 318 | unsigned da = *static_cast<const unsigned*>(a); |
| 319 | unsigned db = *static_cast<const unsigned*>(b); |
| 320 | return (da > db) - (da < db); |
| 321 | } |
| 322 | |
| 323 | void JSArray::getOwnNonIndexPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode) |
| 324 | { |
| 325 | VM& vm = exec->vm(); |
| 326 | JSArray* thisObject = jsCast<JSArray*>(object); |
| 327 | |
| 328 | if (mode.includeDontEnumProperties()) |
| 329 | propertyNames.add(vm.propertyNames->length); |
| 330 | |
| 331 | JSObject::getOwnNonIndexPropertyNames(thisObject, exec, propertyNames, mode); |
| 332 | } |
| 333 | |
| 334 | // This method makes room in the vector, but leaves the new space for count slots uncleared. |
| 335 | bool JSArray::unshiftCountSlowCase(const AbstractLocker&, VM& vm, DeferGC&, bool addToFront, unsigned count) |
| 336 | { |
| 337 | ASSERT(cellLock().isLocked()); |
| 338 | |
| 339 | ArrayStorage* storage = ensureArrayStorage(vm); |
| 340 | Butterfly* butterfly = storage->butterfly(); |
| 341 | Structure* structure = this->structure(vm); |
| 342 | unsigned propertyCapacity = structure->outOfLineCapacity(); |
| 343 | unsigned propertySize = structure->outOfLineSize(); |
| 344 | |
| 345 | // If not, we should have handled this on the fast path. |
| 346 | ASSERT(!addToFront || count > storage->m_indexBias); |
| 347 | |
| 348 | // Step 1: |
| 349 | // Gather 4 key metrics: |
| 350 | // * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors). |
| 351 | // * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more. |
| 352 | // * currentCapacity - what is the current size of the vector, including any pre-capacity. |
| 353 | // * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength. |
| 354 | |
| 355 | unsigned length = storage->length(); |
| 356 | unsigned oldVectorLength = storage->vectorLength(); |
| 357 | unsigned usedVectorLength = std::min(oldVectorLength, length); |
| 358 | ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH); |
| 359 | // Check that required vector length is possible, in an overflow-safe fashion. |
| 360 | if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength) |
| 361 | return false; |
| 362 | unsigned requiredVectorLength = usedVectorLength + count; |
| 363 | ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH); |
| 364 | // The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH. |
| 365 | ASSERT(storage->vectorLength() <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - storage->vectorLength()) >= storage->m_indexBias); |
| 366 | unsigned currentCapacity = storage->vectorLength() + storage->m_indexBias; |
| 367 | // The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH. |
| 368 | // FIXME: This code should be fixed to avoid internal fragmentation. It's not super high |
| 369 | // priority since increaseVectorLength() will "fix" any mistakes we make, but it would be cool |
| 370 | // to get this right eventually. |
| 371 | unsigned desiredCapacity = std::min(MAX_STORAGE_VECTOR_LENGTH, std::max(BASE_ARRAY_STORAGE_VECTOR_LEN, requiredVectorLength) << 1); |
| 372 | |
| 373 | // Step 2: |
| 374 | // We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing one. |
| 375 | |
| 376 | void* newAllocBase = nullptr; |
| 377 | unsigned newStorageCapacity; |
| 378 | bool allocatedNewStorage; |
| 379 | // If the current storage array is sufficiently large (but not too large!) then just keep using it. |
| 380 | if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) { |
| 381 | newAllocBase = butterfly->base(structure); |
| 382 | newStorageCapacity = currentCapacity; |
| 383 | allocatedNewStorage = false; |
| 384 | } else { |
| 385 | const unsigned preCapacity = 0; |
| 386 | Butterfly* newButterfly = Butterfly::tryCreateUninitialized(vm, this, preCapacity, propertyCapacity, true, ArrayStorage::sizeFor(desiredCapacity)); |
| 387 | if (!newButterfly) |
| 388 | return false; |
| 389 | newAllocBase = newButterfly->base(preCapacity, propertyCapacity); |
| 390 | newStorageCapacity = desiredCapacity; |
| 391 | allocatedNewStorage = true; |
| 392 | } |
| 393 | |
| 394 | // Step 3: |
| 395 | // Work out where we're going to move things to. |
| 396 | |
| 397 | // Determine how much of the vector to use as pre-capacity, and how much as post-capacity. |
| 398 | // If we're adding to the end, we'll add all the new space to the end. |
| 399 | // If the vector had no free post-capacity (length >= m_vectorLength), don't give it any. |
| 400 | // If it did, we calculate the amount that will remain based on an atomic decay - leave the |
| 401 | // vector with half the post-capacity it had previously. |
| 402 | unsigned postCapacity = 0; |
| 403 | if (!addToFront) |
| 404 | postCapacity = newStorageCapacity - requiredVectorLength; |
| 405 | else if (length < storage->vectorLength()) { |
| 406 | // Atomic decay, + the post-capacity cannot be greater than what is available. |
| 407 | postCapacity = std::min((storage->vectorLength() - length) >> 1, newStorageCapacity - requiredVectorLength); |
| 408 | // If we're moving contents within the same allocation, the post-capacity is being reduced. |
| 409 | ASSERT(newAllocBase != butterfly->base(structure) || postCapacity < storage->vectorLength() - length); |
| 410 | } |
| 411 | |
| 412 | unsigned newVectorLength = requiredVectorLength + postCapacity; |
| 413 | RELEASE_ASSERT(newVectorLength <= MAX_STORAGE_VECTOR_LENGTH); |
| 414 | unsigned preCapacity = newStorageCapacity - newVectorLength; |
| 415 | |
| 416 | Butterfly* newButterfly = Butterfly::fromBase(newAllocBase, preCapacity, propertyCapacity); |
| 417 | |
| 418 | if (addToFront) { |
| 419 | ASSERT(count + usedVectorLength <= newVectorLength); |
| 420 | memmove(newButterfly->arrayStorage()->m_vector + count, storage->m_vector, sizeof(JSValue) * usedVectorLength); |
| 421 | memmove(newButterfly->propertyStorage() - propertySize, butterfly->propertyStorage() - propertySize, sizeof(JSValue) * propertySize + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0)); |
| 422 | |
| 423 | // We don't need to zero the pre-capacity for the concurrent GC because it is not available to use as property storage. |
| 424 | memset(newButterfly->base(0, propertyCapacity), 0, (propertyCapacity - propertySize) * sizeof(JSValue)); |
| 425 | |
| 426 | if (allocatedNewStorage) { |
| 427 | // We will set the vectorLength to newVectorLength. We populated requiredVectorLength |
| 428 | // (usedVectorLength + count), which is less. Clear the difference. |
| 429 | for (unsigned i = requiredVectorLength; i < newVectorLength; ++i) |
| 430 | newButterfly->arrayStorage()->m_vector[i].clear(); |
| 431 | } |
| 432 | } else if ((newAllocBase != butterfly->base(structure)) || (preCapacity != storage->m_indexBias)) { |
| 433 | memmove(newButterfly->propertyStorage() - propertyCapacity, butterfly->propertyStorage() - propertyCapacity, sizeof(JSValue) * propertyCapacity + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0)); |
| 434 | memmove(newButterfly->arrayStorage()->m_vector, storage->m_vector, sizeof(JSValue) * usedVectorLength); |
| 435 | |
| 436 | for (unsigned i = requiredVectorLength; i < newVectorLength; i++) |
| 437 | newButterfly->arrayStorage()->m_vector[i].clear(); |
| 438 | } |
| 439 | |
| 440 | newButterfly->arrayStorage()->setVectorLength(newVectorLength); |
| 441 | newButterfly->arrayStorage()->m_indexBias = preCapacity; |
| 442 | |
| 443 | setButterfly(vm, newButterfly); |
| 444 | |
| 445 | return true; |
| 446 | } |
| 447 | |
| 448 | bool JSArray::setLengthWithArrayStorage(ExecState* exec, unsigned newLength, bool throwException, ArrayStorage* storage) |
| 449 | { |
| 450 | VM& vm = exec->vm(); |
| 451 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 452 | |
| 453 | unsigned length = storage->length(); |
| 454 | |
| 455 | // If the length is read only then we enter sparse mode, so should enter the following 'if'. |
| 456 | ASSERT(isLengthWritable() || storage->m_sparseMap); |
| 457 | |
| 458 | if (SparseArrayValueMap* map = storage->m_sparseMap.get()) { |
| 459 | // Fail if the length is not writable. |
| 460 | if (map->lengthIsReadOnly()) |
| 461 | return typeError(exec, scope, throwException, ReadonlyPropertyWriteError); |
| 462 | |
| 463 | if (newLength < length) { |
| 464 | // Copy any keys we might be interested in into a vector. |
| 465 | Vector<unsigned, 0, UnsafeVectorOverflow> keys; |
| 466 | keys.reserveInitialCapacity(std::min(map->size(), static_cast<size_t>(length - newLength))); |
| 467 | SparseArrayValueMap::const_iterator end = map->end(); |
| 468 | for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) { |
| 469 | unsigned index = static_cast<unsigned>(it->key); |
| 470 | if (index < length && index >= newLength) |
| 471 | keys.append(index); |
| 472 | } |
| 473 | |
| 474 | // Check if the array is in sparse mode. If so there may be non-configurable |
| 475 | // properties, so we have to perform deletion with caution, if not we can |
| 476 | // delete values in any order. |
| 477 | if (map->sparseMode()) { |
| 478 | qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort); |
| 479 | unsigned i = keys.size(); |
| 480 | while (i) { |
| 481 | unsigned index = keys[--i]; |
| 482 | SparseArrayValueMap::iterator it = map->find(index); |
| 483 | ASSERT(it != map->notFound()); |
| 484 | if (it->value.attributes() & PropertyAttribute::DontDelete) { |
| 485 | storage->setLength(index + 1); |
| 486 | return typeError(exec, scope, throwException, UnableToDeletePropertyError); |
| 487 | } |
| 488 | map->remove(it); |
| 489 | } |
| 490 | } else { |
| 491 | for (unsigned i = 0; i < keys.size(); ++i) |
| 492 | map->remove(keys[i]); |
| 493 | if (map->isEmpty()) |
| 494 | deallocateSparseIndexMap(); |
| 495 | } |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | if (newLength < length) { |
| 500 | // Delete properties from the vector. |
| 501 | unsigned usedVectorLength = std::min(length, storage->vectorLength()); |
| 502 | for (unsigned i = newLength; i < usedVectorLength; ++i) { |
| 503 | WriteBarrier<Unknown>& valueSlot = storage->m_vector[i]; |
| 504 | bool hadValue = !!valueSlot; |
| 505 | valueSlot.clear(); |
| 506 | storage->m_numValuesInVector -= hadValue; |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | storage->setLength(newLength); |
| 511 | |
| 512 | return true; |
| 513 | } |
| 514 | |
| 515 | bool JSArray::appendMemcpy(ExecState* exec, VM& vm, unsigned startIndex, JSC::JSArray* otherArray) |
| 516 | { |
| 517 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 518 | |
| 519 | if (!canFastCopy(vm, otherArray)) |
| 520 | return false; |
| 521 | |
| 522 | IndexingType type = indexingType(); |
| 523 | IndexingType otherType = otherArray->indexingType(); |
| 524 | IndexingType copyType = mergeIndexingTypeForCopying(otherType); |
| 525 | if (type == ArrayWithUndecided && copyType != NonArray) { |
| 526 | if (copyType == ArrayWithInt32) |
| 527 | convertUndecidedToInt32(vm); |
| 528 | else if (copyType == ArrayWithDouble) |
| 529 | convertUndecidedToDouble(vm); |
| 530 | else if (copyType == ArrayWithContiguous) |
| 531 | convertUndecidedToContiguous(vm); |
| 532 | else { |
| 533 | ASSERT(copyType == ArrayWithUndecided); |
| 534 | return true; |
| 535 | } |
| 536 | } else if (type != copyType) |
| 537 | return false; |
| 538 | |
| 539 | unsigned otherLength = otherArray->length(); |
| 540 | Checked<unsigned, RecordOverflow> checkedNewLength = startIndex; |
| 541 | checkedNewLength += otherLength; |
| 542 | |
| 543 | unsigned newLength; |
| 544 | if (checkedNewLength.safeGet(newLength) == CheckedState::DidOverflow) { |
| 545 | throwException(exec, scope, createRangeError(exec, LengthExceededTheMaximumArrayLengthError)); |
| 546 | return false; |
| 547 | } |
| 548 | |
| 549 | if (newLength >= MIN_SPARSE_ARRAY_INDEX) |
| 550 | return false; |
| 551 | |
| 552 | if (!ensureLength(vm, newLength)) { |
| 553 | throwOutOfMemoryError(exec, scope); |
| 554 | return false; |
| 555 | } |
| 556 | ASSERT(copyType == indexingType()); |
| 557 | |
| 558 | if (UNLIKELY(otherType == ArrayWithUndecided)) { |
| 559 | auto* butterfly = this->butterfly(); |
| 560 | if (type == ArrayWithDouble) { |
| 561 | for (unsigned i = startIndex; i < newLength; ++i) |
| 562 | butterfly->contiguousDouble().at(this, i) = PNaN; |
| 563 | } else { |
| 564 | for (unsigned i = startIndex; i < newLength; ++i) |
| 565 | butterfly->contiguousInt32().at(this, i).setWithoutWriteBarrier(JSValue()); |
| 566 | } |
| 567 | } else if (type == ArrayWithDouble) |
| 568 | memcpy(butterfly()->contiguousDouble().data() + startIndex, otherArray->butterfly()->contiguousDouble().data(), sizeof(JSValue) * otherLength); |
| 569 | else { |
| 570 | memcpy(butterfly()->contiguous().data() + startIndex, otherArray->butterfly()->contiguous().data(), sizeof(JSValue) * otherLength); |
| 571 | vm.heap.writeBarrier(this); |
| 572 | } |
| 573 | |
| 574 | return true; |
| 575 | } |
| 576 | |
| 577 | bool JSArray::setLength(ExecState* exec, unsigned newLength, bool throwException) |
| 578 | { |
| 579 | VM& vm = exec->vm(); |
| 580 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 581 | |
| 582 | Butterfly* butterfly = this->butterfly(); |
| 583 | switch (indexingMode()) { |
| 584 | case ArrayClass: |
| 585 | if (!newLength) |
| 586 | return true; |
| 587 | if (newLength >= MIN_SPARSE_ARRAY_INDEX) { |
| 588 | RELEASE_AND_RETURN(scope, setLengthWithArrayStorage( |
| 589 | exec, newLength, throwException, |
| 590 | ensureArrayStorage(vm))); |
| 591 | } |
| 592 | createInitialUndecided(vm, newLength); |
| 593 | return true; |
| 594 | |
| 595 | case CopyOnWriteArrayWithInt32: |
| 596 | case CopyOnWriteArrayWithDouble: |
| 597 | case CopyOnWriteArrayWithContiguous: |
| 598 | if (newLength == butterfly->publicLength()) |
| 599 | return true; |
| 600 | convertFromCopyOnWrite(vm); |
| 601 | butterfly = this->butterfly(); |
| 602 | FALLTHROUGH; |
| 603 | |
| 604 | case ArrayWithUndecided: |
| 605 | case ArrayWithInt32: |
| 606 | case ArrayWithDouble: |
| 607 | case ArrayWithContiguous: { |
| 608 | if (newLength == butterfly->publicLength()) |
| 609 | return true; |
| 610 | if (newLength > MAX_STORAGE_VECTOR_LENGTH // This check ensures that we can do fast push. |
| 611 | || (newLength >= MIN_SPARSE_ARRAY_INDEX |
| 612 | && !isDenseEnoughForVector(newLength, countElements()))) { |
| 613 | RELEASE_AND_RETURN(scope, setLengthWithArrayStorage( |
| 614 | exec, newLength, throwException, |
| 615 | ensureArrayStorage(vm))); |
| 616 | } |
| 617 | if (newLength > butterfly->publicLength()) { |
| 618 | if (!ensureLength(vm, newLength)) { |
| 619 | throwOutOfMemoryError(exec, scope); |
| 620 | return false; |
| 621 | } |
| 622 | return true; |
| 623 | } |
| 624 | |
| 625 | unsigned lengthToClear = butterfly->publicLength() - newLength; |
| 626 | unsigned costToAllocateNewButterfly = 64; // a heuristic. |
| 627 | if (lengthToClear > newLength && lengthToClear > costToAllocateNewButterfly) { |
| 628 | reallocateAndShrinkButterfly(vm, newLength); |
| 629 | return true; |
| 630 | } |
| 631 | |
| 632 | if (indexingType() == ArrayWithDouble) { |
| 633 | for (unsigned i = butterfly->publicLength(); i-- > newLength;) |
| 634 | butterfly->contiguousDouble().at(this, i) = PNaN; |
| 635 | } else { |
| 636 | for (unsigned i = butterfly->publicLength(); i-- > newLength;) |
| 637 | butterfly->contiguous().at(this, i).clear(); |
| 638 | } |
| 639 | butterfly->setPublicLength(newLength); |
| 640 | return true; |
| 641 | } |
| 642 | |
| 643 | case ArrayWithArrayStorage: |
| 644 | case ArrayWithSlowPutArrayStorage: |
| 645 | RELEASE_AND_RETURN(scope, setLengthWithArrayStorage(exec, newLength, throwException, arrayStorage())); |
| 646 | |
| 647 | default: |
| 648 | CRASH(); |
| 649 | return false; |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | JSValue JSArray::pop(ExecState* exec) |
| 654 | { |
| 655 | VM& vm = exec->vm(); |
| 656 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 657 | |
| 658 | ensureWritable(vm); |
| 659 | |
| 660 | Butterfly* butterfly = this->butterfly(); |
| 661 | |
| 662 | switch (indexingType()) { |
| 663 | case ArrayClass: |
| 664 | return jsUndefined(); |
| 665 | |
| 666 | case ArrayWithUndecided: |
| 667 | if (!butterfly->publicLength()) |
| 668 | return jsUndefined(); |
| 669 | // We have nothing but holes. So, drop down to the slow version. |
| 670 | break; |
| 671 | |
| 672 | case ArrayWithInt32: |
| 673 | case ArrayWithContiguous: { |
| 674 | unsigned length = butterfly->publicLength(); |
| 675 | |
| 676 | if (!length--) |
| 677 | return jsUndefined(); |
| 678 | |
| 679 | RELEASE_ASSERT(length < butterfly->vectorLength()); |
| 680 | JSValue value = butterfly->contiguous().at(this, length).get(); |
| 681 | if (value) { |
| 682 | butterfly->contiguous().at(this, length).clear(); |
| 683 | butterfly->setPublicLength(length); |
| 684 | return value; |
| 685 | } |
| 686 | break; |
| 687 | } |
| 688 | |
| 689 | case ArrayWithDouble: { |
| 690 | unsigned length = butterfly->publicLength(); |
| 691 | |
| 692 | if (!length--) |
| 693 | return jsUndefined(); |
| 694 | |
| 695 | RELEASE_ASSERT(length < butterfly->vectorLength()); |
| 696 | double value = butterfly->contiguousDouble().at(this, length); |
| 697 | if (value == value) { |
| 698 | butterfly->contiguousDouble().at(this, length) = PNaN; |
| 699 | butterfly->setPublicLength(length); |
| 700 | return JSValue(JSValue::EncodeAsDouble, value); |
| 701 | } |
| 702 | break; |
| 703 | } |
| 704 | |
| 705 | case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: { |
| 706 | ArrayStorage* storage = butterfly->arrayStorage(); |
| 707 | |
| 708 | unsigned length = storage->length(); |
| 709 | if (!length) { |
| 710 | if (!isLengthWritable()) |
| 711 | throwTypeError(exec, scope, ReadonlyPropertyWriteError); |
| 712 | return jsUndefined(); |
| 713 | } |
| 714 | |
| 715 | unsigned index = length - 1; |
| 716 | if (index < storage->vectorLength()) { |
| 717 | WriteBarrier<Unknown>& valueSlot = storage->m_vector[index]; |
| 718 | if (valueSlot) { |
| 719 | --storage->m_numValuesInVector; |
| 720 | JSValue element = valueSlot.get(); |
| 721 | valueSlot.clear(); |
| 722 | |
| 723 | RELEASE_ASSERT(isLengthWritable()); |
| 724 | storage->setLength(index); |
| 725 | return element; |
| 726 | } |
| 727 | } |
| 728 | break; |
| 729 | } |
| 730 | |
| 731 | default: |
| 732 | CRASH(); |
| 733 | return JSValue(); |
| 734 | } |
| 735 | |
| 736 | unsigned index = getArrayLength() - 1; |
| 737 | // Let element be the result of calling the [[Get]] internal method of O with argument indx. |
| 738 | JSValue element = get(exec, index); |
| 739 | RETURN_IF_EXCEPTION(scope, JSValue()); |
| 740 | // Call the [[Delete]] internal method of O with arguments indx and true. |
| 741 | bool success = deletePropertyByIndex(this, exec, index); |
| 742 | RETURN_IF_EXCEPTION(scope, JSValue()); |
| 743 | if (!success) { |
| 744 | throwTypeError(exec, scope, UnableToDeletePropertyError); |
| 745 | return jsUndefined(); |
| 746 | } |
| 747 | // Call the [[Put]] internal method of O with arguments "length", indx, and true. |
| 748 | scope.release(); |
| 749 | setLength(exec, index, true); |
| 750 | // Return element. |
| 751 | return element; |
| 752 | } |
| 753 | |
| 754 | // Push & putIndex are almost identical, with two small differences. |
| 755 | // - we always are writing beyond the current array bounds, so it is always necessary to update m_length & m_numValuesInVector. |
| 756 | // - pushing to an array of length 2^32-1 stores the property, but throws a range error. |
| 757 | NEVER_INLINE void JSArray::push(ExecState* exec, JSValue value) |
| 758 | { |
| 759 | pushInline(exec, value); |
| 760 | } |
| 761 | |
| 762 | JSArray* JSArray::fastSlice(ExecState& exec, unsigned startIndex, unsigned count) |
| 763 | { |
| 764 | VM& vm = exec.vm(); |
| 765 | |
| 766 | ensureWritable(vm); |
| 767 | |
| 768 | auto arrayType = indexingMode(); |
| 769 | switch (arrayType) { |
| 770 | case ArrayWithDouble: |
| 771 | case ArrayWithInt32: |
| 772 | case ArrayWithContiguous: { |
| 773 | if (count >= MIN_SPARSE_ARRAY_INDEX || structure(vm)->holesMustForwardToPrototype(vm, this)) |
| 774 | return nullptr; |
| 775 | |
| 776 | JSGlobalObject* lexicalGlobalObject = exec.lexicalGlobalObject(); |
| 777 | Structure* resultStructure = lexicalGlobalObject->arrayStructureForIndexingTypeDuringAllocation(arrayType); |
| 778 | if (UNLIKELY(hasAnyArrayStorage(resultStructure->indexingType()))) |
| 779 | return nullptr; |
| 780 | |
| 781 | ASSERT(!lexicalGlobalObject->isHavingABadTime()); |
| 782 | ObjectInitializationScope scope(vm); |
| 783 | JSArray* resultArray = JSArray::tryCreateUninitializedRestricted(scope, resultStructure, count); |
| 784 | if (UNLIKELY(!resultArray)) |
| 785 | return nullptr; |
| 786 | |
| 787 | auto& resultButterfly = *resultArray->butterfly(); |
| 788 | if (arrayType == ArrayWithDouble) |
| 789 | memcpy(resultButterfly.contiguousDouble().data(), butterfly()->contiguousDouble().data() + startIndex, sizeof(JSValue) * count); |
| 790 | else |
| 791 | memcpy(resultButterfly.contiguous().data(), butterfly()->contiguous().data() + startIndex, sizeof(JSValue) * count); |
| 792 | resultButterfly.setPublicLength(count); |
| 793 | |
| 794 | return resultArray; |
| 795 | } |
| 796 | default: |
| 797 | return nullptr; |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | bool JSArray::shiftCountWithArrayStorage(VM& vm, unsigned startIndex, unsigned count, ArrayStorage* storage) |
| 802 | { |
| 803 | unsigned oldLength = storage->length(); |
| 804 | RELEASE_ASSERT(count <= oldLength); |
| 805 | |
| 806 | // If the array contains holes or is otherwise in an abnormal state, |
| 807 | // use the generic algorithm in ArrayPrototype. |
| 808 | if (storage->hasHoles() |
| 809 | || hasSparseMap() |
| 810 | || shouldUseSlowPut(indexingType())) { |
| 811 | return false; |
| 812 | } |
| 813 | |
| 814 | if (!oldLength) |
| 815 | return true; |
| 816 | |
| 817 | unsigned length = oldLength - count; |
| 818 | |
| 819 | storage->m_numValuesInVector -= count; |
| 820 | storage->setLength(length); |
| 821 | |
| 822 | unsigned vectorLength = storage->vectorLength(); |
| 823 | if (!vectorLength) |
| 824 | return true; |
| 825 | |
| 826 | if (startIndex >= vectorLength) |
| 827 | return true; |
| 828 | |
| 829 | DisallowGC disallowGC; |
| 830 | auto locker = holdLock(cellLock()); |
| 831 | |
| 832 | if (startIndex + count > vectorLength) |
| 833 | count = vectorLength - startIndex; |
| 834 | |
| 835 | unsigned usedVectorLength = std::min(vectorLength, oldLength); |
| 836 | |
| 837 | unsigned numElementsBeforeShiftRegion = startIndex; |
| 838 | unsigned firstIndexAfterShiftRegion = startIndex + count; |
| 839 | unsigned numElementsAfterShiftRegion = usedVectorLength - firstIndexAfterShiftRegion; |
| 840 | ASSERT(numElementsBeforeShiftRegion + count + numElementsAfterShiftRegion == usedVectorLength); |
| 841 | |
| 842 | // The point of this comparison seems to be to minimize the amount of elements that have to |
| 843 | // be moved during a shift operation. |
| 844 | if (numElementsBeforeShiftRegion < numElementsAfterShiftRegion) { |
| 845 | // The number of elements before the shift region is less than the number of elements |
| 846 | // after the shift region, so we move the elements before to the right. |
| 847 | if (numElementsBeforeShiftRegion) { |
| 848 | RELEASE_ASSERT(count + startIndex <= vectorLength); |
| 849 | memmove(storage->m_vector + count, |
| 850 | storage->m_vector, |
| 851 | sizeof(JSValue) * startIndex); |
| 852 | } |
| 853 | // Adjust the Butterfly and the index bias. We only need to do this here because we're changing |
| 854 | // the start of the Butterfly, which needs to point at the first indexed property in the used |
| 855 | // portion of the vector. |
| 856 | Butterfly* butterfly = this->butterfly()->shift(structure(vm), count); |
| 857 | storage = butterfly->arrayStorage(); |
| 858 | storage->m_indexBias += count; |
| 859 | |
| 860 | // Since we're consuming part of the vector by moving its beginning to the left, |
| 861 | // we need to modify the vector length appropriately. |
| 862 | storage->setVectorLength(vectorLength - count); |
| 863 | setButterfly(vm, butterfly); |
| 864 | } else { |
| 865 | // The number of elements before the shift region is greater than or equal to the number |
| 866 | // of elements after the shift region, so we move the elements after the shift region to the left. |
| 867 | memmove(storage->m_vector + startIndex, |
| 868 | storage->m_vector + firstIndexAfterShiftRegion, |
| 869 | sizeof(JSValue) * numElementsAfterShiftRegion); |
| 870 | |
| 871 | // Clear the slots of the elements we just moved. |
| 872 | unsigned startOfEmptyVectorTail = usedVectorLength - count; |
| 873 | for (unsigned i = startOfEmptyVectorTail; i < usedVectorLength; ++i) |
| 874 | storage->m_vector[i].clear(); |
| 875 | // We don't modify the index bias or the Butterfly pointer in this case because we're not changing |
| 876 | // the start of the Butterfly, which needs to point at the first indexed property in the used |
| 877 | // portion of the vector. We also don't modify the vector length because we're not actually changing |
| 878 | // its length; we're just using less of it. |
| 879 | } |
| 880 | |
| 881 | return true; |
| 882 | } |
| 883 | |
| 884 | bool JSArray::shiftCountWithAnyIndexingType(ExecState* exec, unsigned& startIndex, unsigned count) |
| 885 | { |
| 886 | VM& vm = exec->vm(); |
| 887 | RELEASE_ASSERT(count > 0); |
| 888 | |
| 889 | ensureWritable(vm); |
| 890 | |
| 891 | Butterfly* butterfly = this->butterfly(); |
| 892 | |
| 893 | switch (indexingType()) { |
| 894 | case ArrayClass: |
| 895 | return true; |
| 896 | |
| 897 | case ArrayWithUndecided: |
| 898 | // Don't handle this because it's confusing and it shouldn't come up. |
| 899 | return false; |
| 900 | |
| 901 | case ArrayWithInt32: |
| 902 | case ArrayWithContiguous: { |
| 903 | unsigned oldLength = butterfly->publicLength(); |
| 904 | RELEASE_ASSERT(count <= oldLength); |
| 905 | |
| 906 | // We may have to walk the entire array to do the shift. We're willing to do |
| 907 | // so only if it's not horribly slow. |
| 908 | if (oldLength - (startIndex + count) >= MIN_SPARSE_ARRAY_INDEX) |
| 909 | return shiftCountWithArrayStorage(vm, startIndex, count, ensureArrayStorage(vm)); |
| 910 | |
| 911 | // Storing to a hole is fine since we're still having a good time. But reading from a hole |
| 912 | // is totally not fine, since we might have to read from the proto chain. |
| 913 | // We have to check for holes before we start moving things around so that we don't get halfway |
| 914 | // through shifting and then realize we should have been in ArrayStorage mode. |
| 915 | unsigned end = oldLength - count; |
| 916 | if (this->structure(vm)->holesMustForwardToPrototype(vm, this)) { |
| 917 | for (unsigned i = startIndex; i < end; ++i) { |
| 918 | JSValue v = butterfly->contiguous().at(this, i + count).get(); |
| 919 | if (UNLIKELY(!v)) { |
| 920 | startIndex = i; |
| 921 | return shiftCountWithArrayStorage(vm, startIndex, count, ensureArrayStorage(vm)); |
| 922 | } |
| 923 | butterfly->contiguous().at(this, i).setWithoutWriteBarrier(v); |
| 924 | } |
| 925 | } else { |
| 926 | memmove(butterfly->contiguous().data() + startIndex, |
| 927 | butterfly->contiguous().data() + startIndex + count, |
| 928 | sizeof(JSValue) * (end - startIndex)); |
| 929 | } |
| 930 | |
| 931 | for (unsigned i = end; i < oldLength; ++i) |
| 932 | butterfly->contiguous().at(this, i).clear(); |
| 933 | |
| 934 | butterfly->setPublicLength(oldLength - count); |
| 935 | |
| 936 | // Our memmoving of values around in the array could have concealed some of them from |
| 937 | // the collector. Let's make sure that the collector scans this object again. |
| 938 | vm.heap.writeBarrier(this); |
| 939 | |
| 940 | return true; |
| 941 | } |
| 942 | |
| 943 | case ArrayWithDouble: { |
| 944 | unsigned oldLength = butterfly->publicLength(); |
| 945 | RELEASE_ASSERT(count <= oldLength); |
| 946 | |
| 947 | // We may have to walk the entire array to do the shift. We're willing to do |
| 948 | // so only if it's not horribly slow. |
| 949 | if (oldLength - (startIndex + count) >= MIN_SPARSE_ARRAY_INDEX) |
| 950 | return shiftCountWithArrayStorage(vm, startIndex, count, ensureArrayStorage(vm)); |
| 951 | |
| 952 | // Storing to a hole is fine since we're still having a good time. But reading from a hole |
| 953 | // is totally not fine, since we might have to read from the proto chain. |
| 954 | // We have to check for holes before we start moving things around so that we don't get halfway |
| 955 | // through shifting and then realize we should have been in ArrayStorage mode. |
| 956 | unsigned end = oldLength - count; |
| 957 | if (this->structure(vm)->holesMustForwardToPrototype(vm, this)) { |
| 958 | for (unsigned i = startIndex; i < end; ++i) { |
| 959 | double v = butterfly->contiguousDouble().at(this, i + count); |
| 960 | if (UNLIKELY(v != v)) { |
| 961 | startIndex = i; |
| 962 | return shiftCountWithArrayStorage(vm, startIndex, count, ensureArrayStorage(vm)); |
| 963 | } |
| 964 | butterfly->contiguousDouble().at(this, i) = v; |
| 965 | } |
| 966 | } else { |
| 967 | memmove(butterfly->contiguousDouble().data() + startIndex, |
| 968 | butterfly->contiguousDouble().data() + startIndex + count, |
| 969 | sizeof(JSValue) * (end - startIndex)); |
| 970 | } |
| 971 | for (unsigned i = end; i < oldLength; ++i) |
| 972 | butterfly->contiguousDouble().at(this, i) = PNaN; |
| 973 | |
| 974 | butterfly->setPublicLength(oldLength - count); |
| 975 | return true; |
| 976 | } |
| 977 | |
| 978 | case ArrayWithArrayStorage: |
| 979 | case ArrayWithSlowPutArrayStorage: |
| 980 | return shiftCountWithArrayStorage(vm, startIndex, count, arrayStorage()); |
| 981 | |
| 982 | default: |
| 983 | CRASH(); |
| 984 | return false; |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | // Returns true if the unshift can be handled, false to fallback. |
| 989 | bool JSArray::unshiftCountWithArrayStorage(ExecState* exec, unsigned startIndex, unsigned count, ArrayStorage* storage) |
| 990 | { |
| 991 | VM& vm = exec->vm(); |
| 992 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 993 | |
| 994 | unsigned length = storage->length(); |
| 995 | |
| 996 | RELEASE_ASSERT(startIndex <= length); |
| 997 | |
| 998 | // If the array contains holes or is otherwise in an abnormal state, |
| 999 | // use the generic algorithm in ArrayPrototype. |
| 1000 | if (storage->hasHoles() || storage->inSparseMode() || shouldUseSlowPut(indexingType())) |
| 1001 | return false; |
| 1002 | |
| 1003 | bool moveFront = !startIndex || startIndex < length / 2; |
| 1004 | |
| 1005 | unsigned vectorLength = storage->vectorLength(); |
| 1006 | |
| 1007 | // Need to have GC deferred around the unshiftCountSlowCase(), since that leaves the butterfly in |
| 1008 | // a weird state: some parts of it will be left uninitialized, which we will fill in here. |
| 1009 | DeferGC deferGC(vm.heap); |
| 1010 | auto locker = holdLock(cellLock()); |
| 1011 | |
| 1012 | if (moveFront && storage->m_indexBias >= count) { |
| 1013 | Butterfly* newButterfly = storage->butterfly()->unshift(structure(vm), count); |
| 1014 | storage = newButterfly->arrayStorage(); |
| 1015 | storage->m_indexBias -= count; |
| 1016 | storage->setVectorLength(vectorLength + count); |
| 1017 | setButterfly(vm, newButterfly); |
| 1018 | } else if (!moveFront && vectorLength - length >= count) |
| 1019 | storage = storage->butterfly()->arrayStorage(); |
| 1020 | else if (unshiftCountSlowCase(locker, vm, deferGC, moveFront, count)) |
| 1021 | storage = arrayStorage(); |
| 1022 | else { |
| 1023 | throwOutOfMemoryError(exec, scope); |
| 1024 | return true; |
| 1025 | } |
| 1026 | |
| 1027 | WriteBarrier<Unknown>* vector = storage->m_vector; |
| 1028 | |
| 1029 | if (startIndex) { |
| 1030 | if (moveFront) |
| 1031 | memmove(vector, vector + count, startIndex * sizeof(JSValue)); |
| 1032 | else if (length - startIndex) |
| 1033 | memmove(vector + startIndex + count, vector + startIndex, (length - startIndex) * sizeof(JSValue)); |
| 1034 | } |
| 1035 | |
| 1036 | for (unsigned i = 0; i < count; i++) |
| 1037 | vector[i + startIndex].clear(); |
| 1038 | |
| 1039 | return true; |
| 1040 | } |
| 1041 | |
| 1042 | bool JSArray::unshiftCountWithAnyIndexingType(ExecState* exec, unsigned startIndex, unsigned count) |
| 1043 | { |
| 1044 | VM& vm = exec->vm(); |
| 1045 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 1046 | |
| 1047 | ensureWritable(vm); |
| 1048 | |
| 1049 | Butterfly* butterfly = this->butterfly(); |
| 1050 | |
| 1051 | switch (indexingType()) { |
| 1052 | case ArrayClass: |
| 1053 | case ArrayWithUndecided: |
| 1054 | // We could handle this. But it shouldn't ever come up, so we won't. |
| 1055 | return false; |
| 1056 | |
| 1057 | case ArrayWithInt32: |
| 1058 | case ArrayWithContiguous: { |
| 1059 | unsigned oldLength = butterfly->publicLength(); |
| 1060 | |
| 1061 | // We may have to walk the entire array to do the unshift. We're willing to do so |
| 1062 | // only if it's not horribly slow. |
| 1063 | if (oldLength - startIndex >= MIN_SPARSE_ARRAY_INDEX) |
| 1064 | RELEASE_AND_RETURN(scope, unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(vm))); |
| 1065 | |
| 1066 | Checked<unsigned, RecordOverflow> checkedLength(oldLength); |
| 1067 | checkedLength += count; |
| 1068 | unsigned newLength; |
| 1069 | if (CheckedState::DidOverflow == checkedLength.safeGet(newLength)) { |
| 1070 | throwOutOfMemoryError(exec, scope); |
| 1071 | return true; |
| 1072 | } |
| 1073 | if (newLength > MAX_STORAGE_VECTOR_LENGTH) |
| 1074 | return false; |
| 1075 | if (!ensureLength(vm, newLength)) { |
| 1076 | throwOutOfMemoryError(exec, scope); |
| 1077 | return true; |
| 1078 | } |
| 1079 | butterfly = this->butterfly(); |
| 1080 | |
| 1081 | // We have to check for holes before we start moving things around so that we don't get halfway |
| 1082 | // through shifting and then realize we should have been in ArrayStorage mode. |
| 1083 | for (unsigned i = oldLength; i-- > startIndex;) { |
| 1084 | JSValue v = butterfly->contiguous().at(this, i).get(); |
| 1085 | if (UNLIKELY(!v)) |
| 1086 | RELEASE_AND_RETURN(scope, unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(vm))); |
| 1087 | } |
| 1088 | |
| 1089 | for (unsigned i = oldLength; i-- > startIndex;) { |
| 1090 | JSValue v = butterfly->contiguous().at(this, i).get(); |
| 1091 | ASSERT(v); |
| 1092 | butterfly->contiguous().at(this, i + count).setWithoutWriteBarrier(v); |
| 1093 | } |
| 1094 | |
| 1095 | // Our memmoving of values around in the array could have concealed some of them from |
| 1096 | // the collector. Let's make sure that the collector scans this object again. |
| 1097 | vm.heap.writeBarrier(this); |
| 1098 | |
| 1099 | // NOTE: we're leaving being garbage in the part of the array that we shifted out |
| 1100 | // of. This is fine because the caller is required to store over that area, and |
| 1101 | // in contiguous mode storing into a hole is guaranteed to behave exactly the same |
| 1102 | // as storing over an existing element. |
| 1103 | |
| 1104 | return true; |
| 1105 | } |
| 1106 | |
| 1107 | case ArrayWithDouble: { |
| 1108 | unsigned oldLength = butterfly->publicLength(); |
| 1109 | |
| 1110 | // We may have to walk the entire array to do the unshift. We're willing to do so |
| 1111 | // only if it's not horribly slow. |
| 1112 | if (oldLength - startIndex >= MIN_SPARSE_ARRAY_INDEX) |
| 1113 | RELEASE_AND_RETURN(scope, unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(vm))); |
| 1114 | |
| 1115 | Checked<unsigned, RecordOverflow> checkedLength(oldLength); |
| 1116 | checkedLength += count; |
| 1117 | unsigned newLength; |
| 1118 | if (CheckedState::DidOverflow == checkedLength.safeGet(newLength)) { |
| 1119 | throwOutOfMemoryError(exec, scope); |
| 1120 | return true; |
| 1121 | } |
| 1122 | if (newLength > MAX_STORAGE_VECTOR_LENGTH) |
| 1123 | return false; |
| 1124 | if (!ensureLength(vm, newLength)) { |
| 1125 | throwOutOfMemoryError(exec, scope); |
| 1126 | return true; |
| 1127 | } |
| 1128 | butterfly = this->butterfly(); |
| 1129 | |
| 1130 | // We have to check for holes before we start moving things around so that we don't get halfway |
| 1131 | // through shifting and then realize we should have been in ArrayStorage mode. |
| 1132 | for (unsigned i = oldLength; i-- > startIndex;) { |
| 1133 | double v = butterfly->contiguousDouble().at(this, i); |
| 1134 | if (UNLIKELY(v != v)) |
| 1135 | RELEASE_AND_RETURN(scope, unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(vm))); |
| 1136 | } |
| 1137 | |
| 1138 | for (unsigned i = oldLength; i-- > startIndex;) { |
| 1139 | double v = butterfly->contiguousDouble().at(this, i); |
| 1140 | ASSERT(v == v); |
| 1141 | butterfly->contiguousDouble().at(this, i + count) = v; |
| 1142 | } |
| 1143 | |
| 1144 | // NOTE: we're leaving being garbage in the part of the array that we shifted out |
| 1145 | // of. This is fine because the caller is required to store over that area, and |
| 1146 | // in contiguous mode storing into a hole is guaranteed to behave exactly the same |
| 1147 | // as storing over an existing element. |
| 1148 | |
| 1149 | return true; |
| 1150 | } |
| 1151 | |
| 1152 | case ArrayWithArrayStorage: |
| 1153 | case ArrayWithSlowPutArrayStorage: |
| 1154 | RELEASE_AND_RETURN(scope, unshiftCountWithArrayStorage(exec, startIndex, count, arrayStorage())); |
| 1155 | |
| 1156 | default: |
| 1157 | CRASH(); |
| 1158 | return false; |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args) |
| 1163 | { |
| 1164 | unsigned i = 0; |
| 1165 | unsigned vectorEnd; |
| 1166 | WriteBarrier<Unknown>* vector; |
| 1167 | |
| 1168 | Butterfly* butterfly = this->butterfly(); |
| 1169 | |
| 1170 | switch (indexingType()) { |
| 1171 | case ArrayClass: |
| 1172 | return; |
| 1173 | |
| 1174 | case ArrayWithUndecided: { |
| 1175 | vector = 0; |
| 1176 | vectorEnd = 0; |
| 1177 | break; |
| 1178 | } |
| 1179 | |
| 1180 | case ArrayWithInt32: |
| 1181 | case ArrayWithContiguous: { |
| 1182 | vectorEnd = butterfly->publicLength(); |
| 1183 | vector = butterfly->contiguous().data(); |
| 1184 | break; |
| 1185 | } |
| 1186 | |
| 1187 | case ArrayWithDouble: { |
| 1188 | vector = 0; |
| 1189 | vectorEnd = 0; |
| 1190 | for (; i < butterfly->publicLength(); ++i) { |
| 1191 | double v = butterfly->contiguousDouble().at(this, i); |
| 1192 | if (v != v) |
| 1193 | break; |
| 1194 | args.append(JSValue(JSValue::EncodeAsDouble, v)); |
| 1195 | } |
| 1196 | break; |
| 1197 | } |
| 1198 | |
| 1199 | case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: { |
| 1200 | ArrayStorage* storage = butterfly->arrayStorage(); |
| 1201 | |
| 1202 | vector = storage->m_vector; |
| 1203 | vectorEnd = std::min(storage->length(), storage->vectorLength()); |
| 1204 | break; |
| 1205 | } |
| 1206 | |
| 1207 | default: |
| 1208 | CRASH(); |
| 1209 | #if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE) |
| 1210 | vector = 0; |
| 1211 | vectorEnd = 0; |
| 1212 | break; |
| 1213 | #endif |
| 1214 | } |
| 1215 | |
| 1216 | for (; i < vectorEnd; ++i) { |
| 1217 | WriteBarrier<Unknown>& v = vector[i]; |
| 1218 | if (!v) |
| 1219 | break; |
| 1220 | args.append(v.get()); |
| 1221 | } |
| 1222 | |
| 1223 | // FIXME: What prevents this from being called with a RuntimeArray? The length function will always return 0 in that case. |
| 1224 | for (; i < length(); ++i) |
| 1225 | args.append(get(exec, i)); |
| 1226 | } |
| 1227 | |
| 1228 | void JSArray::copyToArguments(ExecState* exec, VirtualRegister firstElementDest, unsigned offset, unsigned length) |
| 1229 | { |
| 1230 | VM& vm = exec->vm(); |
| 1231 | auto scope = DECLARE_THROW_SCOPE(vm); |
| 1232 | |
| 1233 | unsigned i = offset; |
| 1234 | WriteBarrier<Unknown>* vector; |
| 1235 | unsigned vectorEnd; |
| 1236 | length += offset; // We like to think of the length as being our length, rather than the output length. |
| 1237 | |
| 1238 | // FIXME: What prevents this from being called with a RuntimeArray? The length function will always return 0 in that case. |
| 1239 | ASSERT(length == this->length()); |
| 1240 | |
| 1241 | Butterfly* butterfly = this->butterfly(); |
| 1242 | switch (indexingType()) { |
| 1243 | case ArrayClass: |
| 1244 | return; |
| 1245 | |
| 1246 | case ArrayWithUndecided: { |
| 1247 | vector = 0; |
| 1248 | vectorEnd = 0; |
| 1249 | break; |
| 1250 | } |
| 1251 | |
| 1252 | case ArrayWithInt32: |
| 1253 | case ArrayWithContiguous: { |
| 1254 | vector = butterfly->contiguous().data(); |
| 1255 | vectorEnd = butterfly->publicLength(); |
| 1256 | break; |
| 1257 | } |
| 1258 | |
| 1259 | case ArrayWithDouble: { |
| 1260 | vector = 0; |
| 1261 | vectorEnd = 0; |
| 1262 | for (; i < butterfly->publicLength(); ++i) { |
| 1263 | ASSERT(i < butterfly->vectorLength()); |
| 1264 | double v = butterfly->contiguousDouble().at(this, i); |
| 1265 | if (v != v) |
| 1266 | break; |
| 1267 | exec->r(firstElementDest + i - offset) = JSValue(JSValue::EncodeAsDouble, v); |
| 1268 | } |
| 1269 | break; |
| 1270 | } |
| 1271 | |
| 1272 | case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: { |
| 1273 | ArrayStorage* storage = butterfly->arrayStorage(); |
| 1274 | vector = storage->m_vector; |
| 1275 | vectorEnd = std::min(length, storage->vectorLength()); |
| 1276 | break; |
| 1277 | } |
| 1278 | |
| 1279 | default: |
| 1280 | CRASH(); |
| 1281 | #if COMPILER_QUIRK(CONSIDERS_UNREACHABLE_CODE) |
| 1282 | vector = 0; |
| 1283 | vectorEnd = 0; |
| 1284 | break; |
| 1285 | #endif |
| 1286 | } |
| 1287 | |
| 1288 | for (; i < vectorEnd; ++i) { |
| 1289 | WriteBarrier<Unknown>& v = vector[i]; |
| 1290 | if (!v) |
| 1291 | break; |
| 1292 | exec->r(firstElementDest + i - offset) = v.get(); |
| 1293 | } |
| 1294 | |
| 1295 | for (; i < length; ++i) { |
| 1296 | exec->r(firstElementDest + i - offset) = get(exec, i); |
| 1297 | RETURN_IF_EXCEPTION(scope, void()); |
| 1298 | } |
| 1299 | } |
| 1300 | |
| 1301 | bool JSArray::isIteratorProtocolFastAndNonObservable() |
| 1302 | { |
| 1303 | JSGlobalObject* globalObject = this->globalObject(); |
| 1304 | if (!globalObject->isArrayPrototypeIteratorProtocolFastAndNonObservable()) |
| 1305 | return false; |
| 1306 | |
| 1307 | VM& vm = globalObject->vm(); |
| 1308 | Structure* structure = this->structure(vm); |
| 1309 | // This is the fast case. Many arrays will be an original array. |
| 1310 | if (globalObject->isOriginalArrayStructure(structure)) |
| 1311 | return true; |
| 1312 | |
| 1313 | if (structure->mayInterceptIndexedAccesses()) |
| 1314 | return false; |
| 1315 | |
| 1316 | if (getPrototypeDirect(vm) != globalObject->arrayPrototype()) |
| 1317 | return false; |
| 1318 | |
| 1319 | if (getDirectOffset(vm, vm.propertyNames->iteratorSymbol) != invalidOffset) |
| 1320 | return false; |
| 1321 | |
| 1322 | return true; |
| 1323 | } |
| 1324 | |
| 1325 | inline JSArray* constructArray(ObjectInitializationScope& scope, Structure* arrayStructure, unsigned length) |
| 1326 | { |
| 1327 | JSArray* array = JSArray::tryCreateUninitializedRestricted(scope, arrayStructure, length); |
| 1328 | |
| 1329 | // FIXME: we should probably throw an out of memory error here, but |
| 1330 | // when making this change we should check that all clients of this |
| 1331 | // function will correctly handle an exception being thrown from here. |
| 1332 | // https://bugs.webkit.org/show_bug.cgi?id=169786 |
| 1333 | RELEASE_ASSERT(array); |
| 1334 | |
| 1335 | // FIXME: We only need this for subclasses of Array because we might need to allocate a new structure to change |
| 1336 | // indexing types while initializing. If this triggered a GC then we might scan our currently uninitialized |
| 1337 | // array and crash. https://bugs.webkit.org/show_bug.cgi?id=186811 |
| 1338 | if (!arrayStructure->globalObject()->isOriginalArrayStructure(arrayStructure)) |
| 1339 | JSArray::eagerlyInitializeButterfly(scope, array, length); |
| 1340 | |
| 1341 | return array; |
| 1342 | } |
| 1343 | |
| 1344 | JSArray* constructArray(ExecState* exec, Structure* arrayStructure, const ArgList& values) |
| 1345 | { |
| 1346 | VM& vm = exec->vm(); |
| 1347 | unsigned length = values.size(); |
| 1348 | ObjectInitializationScope scope(vm); |
| 1349 | |
| 1350 | JSArray* array = constructArray(scope, arrayStructure, length); |
| 1351 | for (unsigned i = 0; i < length; ++i) |
| 1352 | array->initializeIndex(scope, i, values.at(i)); |
| 1353 | return array; |
| 1354 | } |
| 1355 | |
| 1356 | JSArray* constructArray(ExecState* exec, Structure* arrayStructure, const JSValue* values, unsigned length) |
| 1357 | { |
| 1358 | VM& vm = exec->vm(); |
| 1359 | ObjectInitializationScope scope(vm); |
| 1360 | |
| 1361 | JSArray* array = constructArray(scope, arrayStructure, length); |
| 1362 | for (unsigned i = 0; i < length; ++i) |
| 1363 | array->initializeIndex(scope, i, values[i]); |
| 1364 | return array; |
| 1365 | } |
| 1366 | |
| 1367 | JSArray* constructArrayNegativeIndexed(ExecState* exec, Structure* arrayStructure, const JSValue* values, unsigned length) |
| 1368 | { |
| 1369 | VM& vm = exec->vm(); |
| 1370 | ObjectInitializationScope scope(vm); |
| 1371 | |
| 1372 | JSArray* array = constructArray(scope, arrayStructure, length); |
| 1373 | for (int i = 0; i < static_cast<int>(length); ++i) |
| 1374 | array->initializeIndex(scope, i, values[-i]); |
| 1375 | return array; |
| 1376 | } |
| 1377 | |
| 1378 | } // namespace JSC |
| 1379 | |