| 1 | /* |
| 2 | * Copyright (C) 2012-2019 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "DFGFixupPhase.h" |
| 28 | |
| 29 | #if ENABLE(DFG_JIT) |
| 30 | |
| 31 | #include "ArrayPrototype.h" |
| 32 | #include "DFGGraph.h" |
| 33 | #include "DFGInsertionSet.h" |
| 34 | #include "DFGPhase.h" |
| 35 | #include "DFGPredictionPropagationPhase.h" |
| 36 | #include "DFGVariableAccessDataDump.h" |
| 37 | #include "JSCInlines.h" |
| 38 | #include "TypeLocation.h" |
| 39 | |
| 40 | namespace JSC { namespace DFG { |
| 41 | |
| 42 | class FixupPhase : public Phase { |
| 43 | public: |
| 44 | FixupPhase(Graph& graph) |
| 45 | : Phase(graph, "fixup" ) |
| 46 | , m_insertionSet(graph) |
| 47 | { |
| 48 | } |
| 49 | |
| 50 | bool run() |
| 51 | { |
| 52 | ASSERT(m_graph.m_fixpointState == BeforeFixpoint); |
| 53 | ASSERT(m_graph.m_form == ThreadedCPS); |
| 54 | |
| 55 | m_profitabilityChanged = false; |
| 56 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
| 57 | fixupBlock(m_graph.block(blockIndex)); |
| 58 | |
| 59 | while (m_profitabilityChanged) { |
| 60 | m_profitabilityChanged = false; |
| 61 | |
| 62 | for (unsigned i = m_graph.m_argumentPositions.size(); i--;) |
| 63 | m_graph.m_argumentPositions[i].mergeArgumentUnboxingAwareness(); |
| 64 | |
| 65 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
| 66 | fixupGetAndSetLocalsInBlock(m_graph.block(blockIndex)); |
| 67 | } |
| 68 | |
| 69 | for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex) |
| 70 | fixupChecksInBlock(m_graph.block(blockIndex)); |
| 71 | |
| 72 | m_graph.m_planStage = PlanStage::AfterFixup; |
| 73 | |
| 74 | return true; |
| 75 | } |
| 76 | |
| 77 | private: |
| 78 | |
| 79 | void fixupArithDivInt32(Node* node, Edge& leftChild, Edge& rightChild) |
| 80 | { |
| 81 | if (optimizeForX86() || optimizeForARM64() || optimizeForARMv7IDIVSupported()) { |
| 82 | fixIntOrBooleanEdge(leftChild); |
| 83 | fixIntOrBooleanEdge(rightChild); |
| 84 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 85 | node->setArithMode(Arith::Unchecked); |
| 86 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 87 | node->setArithMode(Arith::CheckOverflow); |
| 88 | else |
| 89 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 90 | return; |
| 91 | } |
| 92 | |
| 93 | // This will cause conversion nodes to be inserted later. |
| 94 | fixDoubleOrBooleanEdge(leftChild); |
| 95 | fixDoubleOrBooleanEdge(rightChild); |
| 96 | |
| 97 | // We don't need to do ref'ing on the children because we're stealing them from |
| 98 | // the original division. |
| 99 | Node* newDivision = m_insertionSet.insertNode(m_indexInBlock, SpecBytecodeDouble, *node); |
| 100 | newDivision->setResult(NodeResultDouble); |
| 101 | |
| 102 | node->setOp(DoubleAsInt32); |
| 103 | node->children.initialize(Edge(newDivision, DoubleRepUse), Edge(), Edge()); |
| 104 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 105 | node->setArithMode(Arith::CheckOverflow); |
| 106 | else |
| 107 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 108 | |
| 109 | } |
| 110 | |
| 111 | void fixupArithDiv(Node* node, Edge& leftChild, Edge& rightChild) |
| 112 | { |
| 113 | if (m_graph.binaryArithShouldSpeculateInt32(node, FixupPass)) { |
| 114 | fixupArithDivInt32(node, leftChild, rightChild); |
| 115 | return; |
| 116 | } |
| 117 | |
| 118 | fixDoubleOrBooleanEdge(leftChild); |
| 119 | fixDoubleOrBooleanEdge(rightChild); |
| 120 | node->setResult(NodeResultDouble); |
| 121 | } |
| 122 | |
| 123 | void fixupArithMul(Node* node, Edge& leftChild, Edge& rightChild) |
| 124 | { |
| 125 | if (m_graph.binaryArithShouldSpeculateInt32(node, FixupPass)) { |
| 126 | fixIntOrBooleanEdge(leftChild); |
| 127 | fixIntOrBooleanEdge(rightChild); |
| 128 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 129 | node->setArithMode(Arith::Unchecked); |
| 130 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags()) || leftChild.node() == rightChild.node()) |
| 131 | node->setArithMode(Arith::CheckOverflow); |
| 132 | else |
| 133 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 134 | return; |
| 135 | } |
| 136 | if (m_graph.binaryArithShouldSpeculateInt52(node, FixupPass)) { |
| 137 | fixEdge<Int52RepUse>(leftChild); |
| 138 | fixEdge<Int52RepUse>(rightChild); |
| 139 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags()) || leftChild.node() == rightChild.node()) |
| 140 | node->setArithMode(Arith::CheckOverflow); |
| 141 | else |
| 142 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 143 | node->setResult(NodeResultInt52); |
| 144 | return; |
| 145 | } |
| 146 | |
| 147 | fixDoubleOrBooleanEdge(leftChild); |
| 148 | fixDoubleOrBooleanEdge(rightChild); |
| 149 | node->setResult(NodeResultDouble); |
| 150 | } |
| 151 | |
| 152 | void fixupBlock(BasicBlock* block) |
| 153 | { |
| 154 | if (!block) |
| 155 | return; |
| 156 | ASSERT(block->isReachable); |
| 157 | m_block = block; |
| 158 | for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) { |
| 159 | m_currentNode = block->at(m_indexInBlock); |
| 160 | fixupNode(m_currentNode); |
| 161 | } |
| 162 | m_insertionSet.execute(block); |
| 163 | } |
| 164 | |
| 165 | void fixupNode(Node* node) |
| 166 | { |
| 167 | NodeType op = node->op(); |
| 168 | |
| 169 | switch (op) { |
| 170 | case SetLocal: { |
| 171 | // This gets handled by fixupGetAndSetLocalsInBlock(). |
| 172 | return; |
| 173 | } |
| 174 | |
| 175 | case ValueSub: { |
| 176 | Edge& child1 = node->child1(); |
| 177 | Edge& child2 = node->child2(); |
| 178 | |
| 179 | if (Node::shouldSpeculateBigInt(child1.node(), child2.node())) { |
| 180 | fixEdge<BigIntUse>(child1); |
| 181 | fixEdge<BigIntUse>(child2); |
| 182 | break; |
| 183 | } |
| 184 | |
| 185 | if (Node::shouldSpeculateUntypedForArithmetic(node->child1().node(), node->child2().node())) { |
| 186 | fixEdge<UntypedUse>(child1); |
| 187 | fixEdge<UntypedUse>(child2); |
| 188 | break; |
| 189 | } |
| 190 | |
| 191 | if (attemptToMakeIntegerAdd(node)) { |
| 192 | // FIXME: Clear ArithSub's NodeMustGenerate when ArithMode is unchecked |
| 193 | // https://bugs.webkit.org/show_bug.cgi?id=190607 |
| 194 | node->setOp(ArithSub); |
| 195 | break; |
| 196 | } |
| 197 | |
| 198 | fixDoubleOrBooleanEdge(node->child1()); |
| 199 | fixDoubleOrBooleanEdge(node->child2()); |
| 200 | node->setOp(ArithSub); |
| 201 | node->setResult(NodeResultDouble); |
| 202 | |
| 203 | break; |
| 204 | } |
| 205 | |
| 206 | case ValueBitXor: |
| 207 | case ValueBitOr: |
| 208 | case ValueBitAnd: { |
| 209 | if (Node::shouldSpeculateBigInt(node->child1().node(), node->child2().node())) { |
| 210 | fixEdge<BigIntUse>(node->child1()); |
| 211 | fixEdge<BigIntUse>(node->child2()); |
| 212 | break; |
| 213 | } |
| 214 | |
| 215 | if (Node::shouldSpeculateUntypedForBitOps(node->child1().node(), node->child2().node())) { |
| 216 | fixEdge<UntypedUse>(node->child1()); |
| 217 | fixEdge<UntypedUse>(node->child2()); |
| 218 | break; |
| 219 | } |
| 220 | |
| 221 | // In such case, we need to fallback to ArithBitOp |
| 222 | switch (op) { |
| 223 | case ValueBitXor: |
| 224 | node->setOp(ArithBitXor); |
| 225 | break; |
| 226 | case ValueBitOr: |
| 227 | node->setOp(ArithBitOr); |
| 228 | break; |
| 229 | case ValueBitAnd: |
| 230 | node->setOp(ArithBitAnd); |
| 231 | break; |
| 232 | default: |
| 233 | DFG_CRASH(m_graph, node, "Unexpected node during ValueBit operation fixup" ); |
| 234 | break; |
| 235 | } |
| 236 | |
| 237 | node->clearFlags(NodeMustGenerate); |
| 238 | node->setResult(NodeResultInt32); |
| 239 | fixIntConvertingEdge(node->child1()); |
| 240 | fixIntConvertingEdge(node->child2()); |
| 241 | break; |
| 242 | } |
| 243 | |
| 244 | case ValueBitNot: { |
| 245 | Edge& operandEdge = node->child1(); |
| 246 | |
| 247 | if (operandEdge.node()->shouldSpeculateBigInt()) { |
| 248 | node->clearFlags(NodeMustGenerate); |
| 249 | fixEdge<BigIntUse>(operandEdge); |
| 250 | } else if (operandEdge.node()->shouldSpeculateUntypedForBitOps()) |
| 251 | fixEdge<UntypedUse>(operandEdge); |
| 252 | else { |
| 253 | node->setOp(ArithBitNot); |
| 254 | node->setResult(NodeResultInt32); |
| 255 | node->clearFlags(NodeMustGenerate); |
| 256 | fixIntConvertingEdge(operandEdge); |
| 257 | } |
| 258 | break; |
| 259 | } |
| 260 | |
| 261 | case ArithBitNot: { |
| 262 | Edge& operandEdge = node->child1(); |
| 263 | |
| 264 | fixIntConvertingEdge(operandEdge); |
| 265 | break; |
| 266 | } |
| 267 | |
| 268 | case ArithBitXor: |
| 269 | case ArithBitOr: |
| 270 | case ArithBitAnd: { |
| 271 | fixIntConvertingEdge(node->child1()); |
| 272 | fixIntConvertingEdge(node->child2()); |
| 273 | break; |
| 274 | } |
| 275 | |
| 276 | case BitRShift: |
| 277 | case BitLShift: |
| 278 | case BitURShift: { |
| 279 | if (Node::shouldSpeculateUntypedForBitOps(node->child1().node(), node->child2().node())) { |
| 280 | fixEdge<UntypedUse>(node->child1()); |
| 281 | fixEdge<UntypedUse>(node->child2()); |
| 282 | break; |
| 283 | } |
| 284 | fixIntConvertingEdge(node->child1()); |
| 285 | fixIntConvertingEdge(node->child2()); |
| 286 | break; |
| 287 | } |
| 288 | |
| 289 | case ArithIMul: { |
| 290 | fixIntConvertingEdge(node->child1()); |
| 291 | fixIntConvertingEdge(node->child2()); |
| 292 | node->setOp(ArithMul); |
| 293 | node->setArithMode(Arith::Unchecked); |
| 294 | node->child1().setUseKind(Int32Use); |
| 295 | node->child2().setUseKind(Int32Use); |
| 296 | break; |
| 297 | } |
| 298 | |
| 299 | case ArithClz32: { |
| 300 | if (node->child1()->shouldSpeculateNotCell()) { |
| 301 | fixIntConvertingEdge(node->child1()); |
| 302 | node->clearFlags(NodeMustGenerate); |
| 303 | } else |
| 304 | fixEdge<UntypedUse>(node->child1()); |
| 305 | break; |
| 306 | } |
| 307 | |
| 308 | case UInt32ToNumber: { |
| 309 | fixIntConvertingEdge(node->child1()); |
| 310 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 311 | node->convertToIdentity(); |
| 312 | else if (node->canSpeculateInt32(FixupPass)) |
| 313 | node->setArithMode(Arith::CheckOverflow); |
| 314 | else { |
| 315 | node->setArithMode(Arith::DoOverflow); |
| 316 | node->setResult(enableInt52() ? NodeResultInt52 : NodeResultDouble); |
| 317 | } |
| 318 | break; |
| 319 | } |
| 320 | |
| 321 | case ValueNegate: { |
| 322 | if (node->child1()->shouldSpeculateInt32OrBoolean() && node->canSpeculateInt32(FixupPass)) { |
| 323 | node->setOp(ArithNegate); |
| 324 | fixIntOrBooleanEdge(node->child1()); |
| 325 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 326 | node->setArithMode(Arith::Unchecked); |
| 327 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 328 | node->setArithMode(Arith::CheckOverflow); |
| 329 | else |
| 330 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 331 | node->setResult(NodeResultInt32); |
| 332 | node->clearFlags(NodeMustGenerate); |
| 333 | break; |
| 334 | } |
| 335 | |
| 336 | if (m_graph.unaryArithShouldSpeculateInt52(node, FixupPass)) { |
| 337 | node->setOp(ArithNegate); |
| 338 | fixEdge<Int52RepUse>(node->child1()); |
| 339 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 340 | node->setArithMode(Arith::CheckOverflow); |
| 341 | else |
| 342 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 343 | node->setResult(NodeResultInt52); |
| 344 | node->clearFlags(NodeMustGenerate); |
| 345 | break; |
| 346 | } |
| 347 | if (node->child1()->shouldSpeculateNotCell()) { |
| 348 | node->setOp(ArithNegate); |
| 349 | fixDoubleOrBooleanEdge(node->child1()); |
| 350 | node->setResult(NodeResultDouble); |
| 351 | node->clearFlags(NodeMustGenerate); |
| 352 | } else { |
| 353 | fixEdge<UntypedUse>(node->child1()); |
| 354 | node->setResult(NodeResultJS); |
| 355 | } |
| 356 | break; |
| 357 | } |
| 358 | |
| 359 | case ValueAdd: { |
| 360 | if (attemptToMakeIntegerAdd(node)) { |
| 361 | node->setOp(ArithAdd); |
| 362 | break; |
| 363 | } |
| 364 | if (Node::shouldSpeculateNumberOrBooleanExpectingDefined(node->child1().node(), node->child2().node())) { |
| 365 | fixDoubleOrBooleanEdge(node->child1()); |
| 366 | fixDoubleOrBooleanEdge(node->child2()); |
| 367 | node->setOp(ArithAdd); |
| 368 | node->setResult(NodeResultDouble); |
| 369 | break; |
| 370 | } |
| 371 | |
| 372 | if (attemptToMakeFastStringAdd(node)) |
| 373 | break; |
| 374 | |
| 375 | Edge& child1 = node->child1(); |
| 376 | Edge& child2 = node->child2(); |
| 377 | if (child1->shouldSpeculateString() || child2->shouldSpeculateString()) { |
| 378 | if (child1->shouldSpeculateInt32() || child2->shouldSpeculateInt32()) { |
| 379 | auto convertString = [&](Node* node, Edge& edge) { |
| 380 | if (edge->shouldSpeculateInt32()) |
| 381 | convertStringAddUse<Int32Use>(node, edge); |
| 382 | else { |
| 383 | ASSERT(edge->shouldSpeculateString()); |
| 384 | convertStringAddUse<StringUse>(node, edge); |
| 385 | } |
| 386 | }; |
| 387 | convertString(node, child1); |
| 388 | convertString(node, child2); |
| 389 | convertToMakeRope(node); |
| 390 | break; |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | if (Node::shouldSpeculateBigInt(child1.node(), child2.node())) { |
| 395 | fixEdge<BigIntUse>(child1); |
| 396 | fixEdge<BigIntUse>(child2); |
| 397 | } else { |
| 398 | fixEdge<UntypedUse>(child1); |
| 399 | fixEdge<UntypedUse>(child2); |
| 400 | } |
| 401 | |
| 402 | node->setResult(NodeResultJS); |
| 403 | break; |
| 404 | } |
| 405 | |
| 406 | case StrCat: { |
| 407 | if (attemptToMakeFastStringAdd(node)) |
| 408 | break; |
| 409 | |
| 410 | // FIXME: Remove empty string arguments and possibly turn this into a ToString operation. That |
| 411 | // would require a form of ToString that takes a KnownPrimitiveUse. This is necessary because |
| 412 | // the implementation of StrCat doesn't dynamically optimize for empty strings. |
| 413 | // https://bugs.webkit.org/show_bug.cgi?id=148540 |
| 414 | m_graph.doToChildren( |
| 415 | node, |
| 416 | [&] (Edge& edge) { |
| 417 | fixEdge<KnownPrimitiveUse>(edge); |
| 418 | // StrCat automatically coerces the values into strings before concatenating them. |
| 419 | // The ECMA spec says that we're not allowed to automatically coerce a Symbol into |
| 420 | // a string. If a Symbol is encountered, a TypeError will be thrown. As a result, |
| 421 | // our runtime functions for this slow path expect that they will never be passed |
| 422 | // Symbols. |
| 423 | m_insertionSet.insertNode( |
| 424 | m_indexInBlock, SpecNone, Check, node->origin, |
| 425 | Edge(edge.node(), NotSymbolUse)); |
| 426 | }); |
| 427 | break; |
| 428 | } |
| 429 | |
| 430 | case MakeRope: { |
| 431 | fixupMakeRope(node); |
| 432 | break; |
| 433 | } |
| 434 | |
| 435 | case ArithAdd: |
| 436 | case ArithSub: { |
| 437 | // FIXME: Clear ArithSub's NodeMustGenerate when ArithMode is unchecked |
| 438 | // https://bugs.webkit.org/show_bug.cgi?id=190607 |
| 439 | if (attemptToMakeIntegerAdd(node)) |
| 440 | break; |
| 441 | fixDoubleOrBooleanEdge(node->child1()); |
| 442 | fixDoubleOrBooleanEdge(node->child2()); |
| 443 | node->setResult(NodeResultDouble); |
| 444 | break; |
| 445 | } |
| 446 | |
| 447 | case ArithNegate: { |
| 448 | if (node->child1()->shouldSpeculateInt32OrBoolean() && node->canSpeculateInt32(FixupPass)) { |
| 449 | fixIntOrBooleanEdge(node->child1()); |
| 450 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 451 | node->setArithMode(Arith::Unchecked); |
| 452 | else if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 453 | node->setArithMode(Arith::CheckOverflow); |
| 454 | else |
| 455 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 456 | node->setResult(NodeResultInt32); |
| 457 | node->clearFlags(NodeMustGenerate); |
| 458 | break; |
| 459 | } |
| 460 | if (m_graph.unaryArithShouldSpeculateInt52(node, FixupPass)) { |
| 461 | fixEdge<Int52RepUse>(node->child1()); |
| 462 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 463 | node->setArithMode(Arith::CheckOverflow); |
| 464 | else |
| 465 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 466 | node->setResult(NodeResultInt52); |
| 467 | node->clearFlags(NodeMustGenerate); |
| 468 | break; |
| 469 | } |
| 470 | |
| 471 | fixDoubleOrBooleanEdge(node->child1()); |
| 472 | node->setResult(NodeResultDouble); |
| 473 | node->clearFlags(NodeMustGenerate); |
| 474 | break; |
| 475 | } |
| 476 | |
| 477 | case ValueMul: { |
| 478 | Edge& leftChild = node->child1(); |
| 479 | Edge& rightChild = node->child2(); |
| 480 | |
| 481 | if (Node::shouldSpeculateBigInt(leftChild.node(), rightChild.node())) { |
| 482 | fixEdge<BigIntUse>(node->child1()); |
| 483 | fixEdge<BigIntUse>(node->child2()); |
| 484 | node->clearFlags(NodeMustGenerate); |
| 485 | break; |
| 486 | } |
| 487 | |
| 488 | // There are cases where we can have BigInt + Int32 operands reaching ValueMul. |
| 489 | // Imagine the scenario where ValueMul was never executed, but we can predict types |
| 490 | // reaching the node: |
| 491 | // |
| 492 | // 63: GetLocal(Check:Untyped:@72, JS|MustGen, NonBoolInt32, ...) predicting NonBoolInt32 |
| 493 | // 64: GetLocal(Check:Untyped:@71, JS|MustGen, BigInt, ...) predicting BigInt |
| 494 | // 65: ValueMul(Check:Untyped:@63, Check:Untyped:@64, BigInt|BoolInt32|NonBoolInt32, ...) |
| 495 | // |
| 496 | // In such scenario, we need to emit ValueMul(Untyped, Untyped), so the runtime can throw |
| 497 | // an exception whenever it gets excuted. |
| 498 | if (Node::shouldSpeculateUntypedForArithmetic(leftChild.node(), rightChild.node())) { |
| 499 | fixEdge<UntypedUse>(leftChild); |
| 500 | fixEdge<UntypedUse>(rightChild); |
| 501 | break; |
| 502 | } |
| 503 | |
| 504 | // At this point, all other possible specializations are only handled by ArithMul. |
| 505 | node->setOp(ArithMul); |
| 506 | node->setResult(NodeResultNumber); |
| 507 | fixupArithMul(node, leftChild, rightChild); |
| 508 | break; |
| 509 | } |
| 510 | |
| 511 | case ArithMul: { |
| 512 | Edge& leftChild = node->child1(); |
| 513 | Edge& rightChild = node->child2(); |
| 514 | |
| 515 | fixupArithMul(node, leftChild, rightChild); |
| 516 | break; |
| 517 | } |
| 518 | |
| 519 | case ValueMod: |
| 520 | case ValueDiv: { |
| 521 | Edge& leftChild = node->child1(); |
| 522 | Edge& rightChild = node->child2(); |
| 523 | |
| 524 | if (Node::shouldSpeculateBigInt(leftChild.node(), rightChild.node())) { |
| 525 | fixEdge<BigIntUse>(leftChild); |
| 526 | fixEdge<BigIntUse>(rightChild); |
| 527 | node->clearFlags(NodeMustGenerate); |
| 528 | break; |
| 529 | } |
| 530 | |
| 531 | if (Node::shouldSpeculateUntypedForArithmetic(leftChild.node(), rightChild.node())) { |
| 532 | fixEdge<UntypedUse>(leftChild); |
| 533 | fixEdge<UntypedUse>(rightChild); |
| 534 | break; |
| 535 | } |
| 536 | |
| 537 | if (op == ValueDiv) |
| 538 | node->setOp(ArithDiv); |
| 539 | else |
| 540 | node->setOp(ArithMod); |
| 541 | |
| 542 | node->setResult(NodeResultNumber); |
| 543 | fixupArithDiv(node, leftChild, rightChild); |
| 544 | break; |
| 545 | |
| 546 | } |
| 547 | |
| 548 | case ArithDiv: |
| 549 | case ArithMod: { |
| 550 | Edge& leftChild = node->child1(); |
| 551 | Edge& rightChild = node->child2(); |
| 552 | |
| 553 | fixupArithDiv(node, leftChild, rightChild); |
| 554 | break; |
| 555 | } |
| 556 | |
| 557 | case ArithMin: |
| 558 | case ArithMax: { |
| 559 | if (m_graph.binaryArithShouldSpeculateInt32(node, FixupPass)) { |
| 560 | fixIntOrBooleanEdge(node->child1()); |
| 561 | fixIntOrBooleanEdge(node->child2()); |
| 562 | break; |
| 563 | } |
| 564 | fixDoubleOrBooleanEdge(node->child1()); |
| 565 | fixDoubleOrBooleanEdge(node->child2()); |
| 566 | node->setResult(NodeResultDouble); |
| 567 | break; |
| 568 | } |
| 569 | |
| 570 | case ArithAbs: { |
| 571 | if (node->child1()->shouldSpeculateInt32OrBoolean() |
| 572 | && node->canSpeculateInt32(FixupPass)) { |
| 573 | fixIntOrBooleanEdge(node->child1()); |
| 574 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 575 | node->setArithMode(Arith::Unchecked); |
| 576 | else |
| 577 | node->setArithMode(Arith::CheckOverflow); |
| 578 | node->clearFlags(NodeMustGenerate); |
| 579 | node->setResult(NodeResultInt32); |
| 580 | break; |
| 581 | } |
| 582 | |
| 583 | if (node->child1()->shouldSpeculateNotCell()) { |
| 584 | fixDoubleOrBooleanEdge(node->child1()); |
| 585 | node->clearFlags(NodeMustGenerate); |
| 586 | } else |
| 587 | fixEdge<UntypedUse>(node->child1()); |
| 588 | node->setResult(NodeResultDouble); |
| 589 | break; |
| 590 | } |
| 591 | |
| 592 | case ArithPow: { |
| 593 | if (node->child2()->shouldSpeculateInt32OrBooleanForArithmetic()) { |
| 594 | fixDoubleOrBooleanEdge(node->child1()); |
| 595 | fixIntOrBooleanEdge(node->child2()); |
| 596 | break; |
| 597 | } |
| 598 | |
| 599 | fixDoubleOrBooleanEdge(node->child1()); |
| 600 | fixDoubleOrBooleanEdge(node->child2()); |
| 601 | break; |
| 602 | } |
| 603 | |
| 604 | case ArithRandom: { |
| 605 | node->setResult(NodeResultDouble); |
| 606 | break; |
| 607 | } |
| 608 | |
| 609 | case ArithRound: |
| 610 | case ArithFloor: |
| 611 | case ArithCeil: |
| 612 | case ArithTrunc: { |
| 613 | if (node->child1()->shouldSpeculateInt32OrBoolean() && m_graph.roundShouldSpeculateInt32(node, FixupPass)) { |
| 614 | fixIntOrBooleanEdge(node->child1()); |
| 615 | insertCheck<Int32Use>(node->child1().node()); |
| 616 | node->convertToIdentity(); |
| 617 | break; |
| 618 | } |
| 619 | if (node->child1()->shouldSpeculateNotCell()) { |
| 620 | fixDoubleOrBooleanEdge(node->child1()); |
| 621 | |
| 622 | if (isInt32OrBooleanSpeculation(node->getHeapPrediction()) && m_graph.roundShouldSpeculateInt32(node, FixupPass)) { |
| 623 | node->setResult(NodeResultInt32); |
| 624 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 625 | node->setArithRoundingMode(Arith::RoundingMode::Int32); |
| 626 | else |
| 627 | node->setArithRoundingMode(Arith::RoundingMode::Int32WithNegativeZeroCheck); |
| 628 | } else { |
| 629 | node->setResult(NodeResultDouble); |
| 630 | node->setArithRoundingMode(Arith::RoundingMode::Double); |
| 631 | } |
| 632 | node->clearFlags(NodeMustGenerate); |
| 633 | } else |
| 634 | fixEdge<UntypedUse>(node->child1()); |
| 635 | break; |
| 636 | } |
| 637 | |
| 638 | case ArithFRound: |
| 639 | case ArithSqrt: |
| 640 | case ArithUnary: { |
| 641 | Edge& child1 = node->child1(); |
| 642 | if (child1->shouldSpeculateNotCell()) { |
| 643 | fixDoubleOrBooleanEdge(child1); |
| 644 | node->clearFlags(NodeMustGenerate); |
| 645 | } else |
| 646 | fixEdge<UntypedUse>(child1); |
| 647 | break; |
| 648 | } |
| 649 | |
| 650 | case LogicalNot: { |
| 651 | if (node->child1()->shouldSpeculateBoolean()) { |
| 652 | if (node->child1()->result() == NodeResultBoolean) { |
| 653 | // This is necessary in case we have a bytecode instruction implemented by: |
| 654 | // |
| 655 | // a: CompareEq(...) |
| 656 | // b: LogicalNot(@a) |
| 657 | // |
| 658 | // In that case, CompareEq might have a side-effect. Then, we need to make |
| 659 | // sure that we know that Branch does not exit. |
| 660 | fixEdge<KnownBooleanUse>(node->child1()); |
| 661 | } else |
| 662 | fixEdge<BooleanUse>(node->child1()); |
| 663 | } else if (node->child1()->shouldSpeculateObjectOrOther()) |
| 664 | fixEdge<ObjectOrOtherUse>(node->child1()); |
| 665 | else if (node->child1()->shouldSpeculateInt32OrBoolean()) |
| 666 | fixIntOrBooleanEdge(node->child1()); |
| 667 | else if (node->child1()->shouldSpeculateNumber()) |
| 668 | fixEdge<DoubleRepUse>(node->child1()); |
| 669 | else if (node->child1()->shouldSpeculateString()) |
| 670 | fixEdge<StringUse>(node->child1()); |
| 671 | else if (node->child1()->shouldSpeculateStringOrOther()) |
| 672 | fixEdge<StringOrOtherUse>(node->child1()); |
| 673 | else { |
| 674 | WatchpointSet* masqueradesAsUndefinedWatchpoint = m_graph.globalObjectFor(node->origin.semantic)->masqueradesAsUndefinedWatchpoint(); |
| 675 | if (masqueradesAsUndefinedWatchpoint->isStillValid()) |
| 676 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
| 677 | } |
| 678 | break; |
| 679 | } |
| 680 | |
| 681 | case CompareEq: |
| 682 | case CompareLess: |
| 683 | case CompareLessEq: |
| 684 | case CompareGreater: |
| 685 | case CompareGreaterEq: { |
| 686 | if (node->op() == CompareEq |
| 687 | && Node::shouldSpeculateBoolean(node->child1().node(), node->child2().node())) { |
| 688 | fixEdge<BooleanUse>(node->child1()); |
| 689 | fixEdge<BooleanUse>(node->child2()); |
| 690 | node->clearFlags(NodeMustGenerate); |
| 691 | break; |
| 692 | } |
| 693 | if (Node::shouldSpeculateInt32OrBoolean(node->child1().node(), node->child2().node())) { |
| 694 | fixIntOrBooleanEdge(node->child1()); |
| 695 | fixIntOrBooleanEdge(node->child2()); |
| 696 | node->clearFlags(NodeMustGenerate); |
| 697 | break; |
| 698 | } |
| 699 | if (Node::shouldSpeculateInt52(node->child1().node(), node->child2().node())) { |
| 700 | fixEdge<Int52RepUse>(node->child1()); |
| 701 | fixEdge<Int52RepUse>(node->child2()); |
| 702 | node->clearFlags(NodeMustGenerate); |
| 703 | break; |
| 704 | } |
| 705 | if (Node::shouldSpeculateNumberOrBoolean(node->child1().node(), node->child2().node())) { |
| 706 | fixDoubleOrBooleanEdge(node->child1()); |
| 707 | fixDoubleOrBooleanEdge(node->child2()); |
| 708 | } |
| 709 | if (node->op() != CompareEq |
| 710 | && node->child1()->shouldSpeculateNotCell() |
| 711 | && node->child2()->shouldSpeculateNotCell()) { |
| 712 | if (node->child1()->shouldSpeculateNumberOrBoolean()) |
| 713 | fixDoubleOrBooleanEdge(node->child1()); |
| 714 | else |
| 715 | fixEdge<DoubleRepUse>(node->child1()); |
| 716 | if (node->child2()->shouldSpeculateNumberOrBoolean()) |
| 717 | fixDoubleOrBooleanEdge(node->child2()); |
| 718 | else |
| 719 | fixEdge<DoubleRepUse>(node->child2()); |
| 720 | node->clearFlags(NodeMustGenerate); |
| 721 | break; |
| 722 | } |
| 723 | if (node->child1()->shouldSpeculateStringIdent() && node->child2()->shouldSpeculateStringIdent()) { |
| 724 | fixEdge<StringIdentUse>(node->child1()); |
| 725 | fixEdge<StringIdentUse>(node->child2()); |
| 726 | node->clearFlags(NodeMustGenerate); |
| 727 | break; |
| 728 | } |
| 729 | if (node->child1()->shouldSpeculateString() && node->child2()->shouldSpeculateString() && GPRInfo::numberOfRegisters >= 7) { |
| 730 | fixEdge<StringUse>(node->child1()); |
| 731 | fixEdge<StringUse>(node->child2()); |
| 732 | node->clearFlags(NodeMustGenerate); |
| 733 | break; |
| 734 | } |
| 735 | |
| 736 | if (node->op() != CompareEq) |
| 737 | break; |
| 738 | if (Node::shouldSpeculateSymbol(node->child1().node(), node->child2().node())) { |
| 739 | fixEdge<SymbolUse>(node->child1()); |
| 740 | fixEdge<SymbolUse>(node->child2()); |
| 741 | node->clearFlags(NodeMustGenerate); |
| 742 | break; |
| 743 | } |
| 744 | if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObject()) { |
| 745 | fixEdge<ObjectUse>(node->child1()); |
| 746 | fixEdge<ObjectUse>(node->child2()); |
| 747 | node->clearFlags(NodeMustGenerate); |
| 748 | break; |
| 749 | } |
| 750 | |
| 751 | // If either child can be proved to be Null or Undefined, comparing them is greatly simplified. |
| 752 | bool oneArgumentIsUsedAsSpecOther = false; |
| 753 | if (node->child1()->isUndefinedOrNullConstant()) { |
| 754 | fixEdge<KnownOtherUse>(node->child1()); |
| 755 | oneArgumentIsUsedAsSpecOther = true; |
| 756 | } else if (node->child1()->shouldSpeculateOther()) { |
| 757 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, |
| 758 | Edge(node->child1().node(), OtherUse)); |
| 759 | fixEdge<KnownOtherUse>(node->child1()); |
| 760 | oneArgumentIsUsedAsSpecOther = true; |
| 761 | } |
| 762 | if (node->child2()->isUndefinedOrNullConstant()) { |
| 763 | fixEdge<KnownOtherUse>(node->child2()); |
| 764 | oneArgumentIsUsedAsSpecOther = true; |
| 765 | } else if (node->child2()->shouldSpeculateOther()) { |
| 766 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, |
| 767 | Edge(node->child2().node(), OtherUse)); |
| 768 | fixEdge<KnownOtherUse>(node->child2()); |
| 769 | oneArgumentIsUsedAsSpecOther = true; |
| 770 | } |
| 771 | if (oneArgumentIsUsedAsSpecOther) { |
| 772 | node->clearFlags(NodeMustGenerate); |
| 773 | break; |
| 774 | } |
| 775 | |
| 776 | if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObjectOrOther()) { |
| 777 | fixEdge<ObjectUse>(node->child1()); |
| 778 | fixEdge<ObjectOrOtherUse>(node->child2()); |
| 779 | node->clearFlags(NodeMustGenerate); |
| 780 | break; |
| 781 | } |
| 782 | if (node->child1()->shouldSpeculateObjectOrOther() && node->child2()->shouldSpeculateObject()) { |
| 783 | fixEdge<ObjectOrOtherUse>(node->child1()); |
| 784 | fixEdge<ObjectUse>(node->child2()); |
| 785 | node->clearFlags(NodeMustGenerate); |
| 786 | break; |
| 787 | } |
| 788 | |
| 789 | break; |
| 790 | } |
| 791 | |
| 792 | case CompareStrictEq: |
| 793 | case SameValue: { |
| 794 | fixupCompareStrictEqAndSameValue(node); |
| 795 | break; |
| 796 | } |
| 797 | |
| 798 | case StringFromCharCode: |
| 799 | if (node->child1()->shouldSpeculateInt32()) { |
| 800 | fixEdge<Int32Use>(node->child1()); |
| 801 | node->clearFlags(NodeMustGenerate); |
| 802 | } else |
| 803 | fixEdge<UntypedUse>(node->child1()); |
| 804 | break; |
| 805 | |
| 806 | case StringCharAt: |
| 807 | case StringCharCodeAt: { |
| 808 | // Currently we have no good way of refining these. |
| 809 | ASSERT(node->arrayMode() == ArrayMode(Array::String, Array::Read)); |
| 810 | blessArrayOperation(node->child1(), node->child2(), node->child3()); |
| 811 | fixEdge<KnownStringUse>(node->child1()); |
| 812 | fixEdge<Int32Use>(node->child2()); |
| 813 | break; |
| 814 | } |
| 815 | |
| 816 | case GetByVal: { |
| 817 | if (!node->prediction()) { |
| 818 | m_insertionSet.insertNode( |
| 819 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
| 820 | } |
| 821 | |
| 822 | node->setArrayMode( |
| 823 | node->arrayMode().refine( |
| 824 | m_graph, node, |
| 825 | m_graph.varArgChild(node, 0)->prediction(), |
| 826 | m_graph.varArgChild(node, 1)->prediction(), |
| 827 | SpecNone)); |
| 828 | |
| 829 | blessArrayOperation(m_graph.varArgChild(node, 0), m_graph.varArgChild(node, 1), m_graph.varArgChild(node, 2)); |
| 830 | |
| 831 | ArrayMode arrayMode = node->arrayMode(); |
| 832 | switch (arrayMode.type()) { |
| 833 | case Array::Contiguous: |
| 834 | case Array::Double: |
| 835 | if (arrayMode.isJSArrayWithOriginalStructure() && arrayMode.speculation() == Array::InBounds) { |
| 836 | // Check if SaneChain will work on a per-type basis. Note that: |
| 837 | // |
| 838 | // 1) We don't want double arrays to sometimes return undefined, since |
| 839 | // that would require a change to the return type and it would pessimise |
| 840 | // things a lot. So, we'd only want to do that if we actually had |
| 841 | // evidence that we could read from a hole. That's pretty annoying. |
| 842 | // Likely the best way to handle that case is with an equivalent of |
| 843 | // SaneChain for OutOfBounds. For now we just detect when Undefined and |
| 844 | // NaN are indistinguishable according to backwards propagation, and just |
| 845 | // use SaneChain in that case. This happens to catch a lot of cases. |
| 846 | // |
| 847 | // 2) We don't want int32 array loads to have to do a hole check just to |
| 848 | // coerce to Undefined, since that would mean twice the checks. |
| 849 | // |
| 850 | // This has two implications. First, we have to do more checks than we'd |
| 851 | // like. It's unfortunate that we have to do the hole check. Second, |
| 852 | // some accesses that hit a hole will now need to take the full-blown |
| 853 | // out-of-bounds slow path. We can fix that with: |
| 854 | // https://bugs.webkit.org/show_bug.cgi?id=144668 |
| 855 | |
| 856 | bool canDoSaneChain = false; |
| 857 | switch (arrayMode.type()) { |
| 858 | case Array::Contiguous: |
| 859 | // This is happens to be entirely natural. We already would have |
| 860 | // returned any JSValue, and now we'll return Undefined. We still do |
| 861 | // the check but it doesn't require taking any kind of slow path. |
| 862 | canDoSaneChain = true; |
| 863 | break; |
| 864 | |
| 865 | case Array::Double: |
| 866 | if (!(node->flags() & NodeBytecodeUsesAsOther)) { |
| 867 | // Holes look like NaN already, so if the user doesn't care |
| 868 | // about the difference between Undefined and NaN then we can |
| 869 | // do this. |
| 870 | canDoSaneChain = true; |
| 871 | } |
| 872 | break; |
| 873 | |
| 874 | default: |
| 875 | break; |
| 876 | } |
| 877 | |
| 878 | if (canDoSaneChain) { |
| 879 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| 880 | Structure* arrayPrototypeStructure = globalObject->arrayPrototype()->structure(vm()); |
| 881 | Structure* objectPrototypeStructure = globalObject->objectPrototype()->structure(vm()); |
| 882 | if (arrayPrototypeStructure->transitionWatchpointSetIsStillValid() |
| 883 | && objectPrototypeStructure->transitionWatchpointSetIsStillValid() |
| 884 | && globalObject->arrayPrototypeChainIsSane()) { |
| 885 | m_graph.registerAndWatchStructureTransition(arrayPrototypeStructure); |
| 886 | m_graph.registerAndWatchStructureTransition(objectPrototypeStructure); |
| 887 | node->setArrayMode(arrayMode.withSpeculation(Array::SaneChain)); |
| 888 | } |
| 889 | } |
| 890 | } |
| 891 | break; |
| 892 | |
| 893 | case Array::String: |
| 894 | if ((node->prediction() & ~SpecString) |
| 895 | || m_graph.hasExitSite(node->origin.semantic, OutOfBounds)) |
| 896 | node->setArrayMode(arrayMode.withSpeculation(Array::OutOfBounds)); |
| 897 | break; |
| 898 | |
| 899 | default: |
| 900 | break; |
| 901 | } |
| 902 | |
| 903 | arrayMode = node->arrayMode(); |
| 904 | switch (arrayMode.type()) { |
| 905 | case Array::SelectUsingPredictions: |
| 906 | case Array::Unprofiled: |
| 907 | RELEASE_ASSERT_NOT_REACHED(); |
| 908 | break; |
| 909 | case Array::Generic: |
| 910 | if (m_graph.varArgChild(node, 0)->shouldSpeculateObject()) { |
| 911 | if (m_graph.varArgChild(node, 1)->shouldSpeculateString()) { |
| 912 | fixEdge<ObjectUse>(m_graph.varArgChild(node, 0)); |
| 913 | fixEdge<StringUse>(m_graph.varArgChild(node, 1)); |
| 914 | break; |
| 915 | } |
| 916 | |
| 917 | if (m_graph.varArgChild(node, 1)->shouldSpeculateSymbol()) { |
| 918 | fixEdge<ObjectUse>(m_graph.varArgChild(node, 0)); |
| 919 | fixEdge<SymbolUse>(m_graph.varArgChild(node, 1)); |
| 920 | break; |
| 921 | } |
| 922 | } |
| 923 | #if USE(JSVALUE32_64) |
| 924 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); // Speculating cell due to register pressure on 32-bit. |
| 925 | #endif |
| 926 | break; |
| 927 | case Array::ForceExit: |
| 928 | break; |
| 929 | case Array::String: |
| 930 | fixEdge<KnownStringUse>(m_graph.varArgChild(node, 0)); |
| 931 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
| 932 | break; |
| 933 | default: |
| 934 | fixEdge<KnownCellUse>(m_graph.varArgChild(node, 0)); |
| 935 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
| 936 | break; |
| 937 | } |
| 938 | |
| 939 | switch (arrayMode.type()) { |
| 940 | case Array::Double: |
| 941 | if (!arrayMode.isOutOfBounds()) |
| 942 | node->setResult(NodeResultDouble); |
| 943 | break; |
| 944 | |
| 945 | case Array::Float32Array: |
| 946 | case Array::Float64Array: |
| 947 | node->setResult(NodeResultDouble); |
| 948 | break; |
| 949 | |
| 950 | case Array::Uint32Array: |
| 951 | if (node->shouldSpeculateInt32()) |
| 952 | break; |
| 953 | if (node->shouldSpeculateInt52()) |
| 954 | node->setResult(NodeResultInt52); |
| 955 | else |
| 956 | node->setResult(NodeResultDouble); |
| 957 | break; |
| 958 | |
| 959 | default: |
| 960 | break; |
| 961 | } |
| 962 | |
| 963 | break; |
| 964 | } |
| 965 | |
| 966 | case PutByValDirect: |
| 967 | case PutByVal: |
| 968 | case PutByValAlias: { |
| 969 | Edge& child1 = m_graph.varArgChild(node, 0); |
| 970 | Edge& child2 = m_graph.varArgChild(node, 1); |
| 971 | Edge& child3 = m_graph.varArgChild(node, 2); |
| 972 | |
| 973 | node->setArrayMode( |
| 974 | node->arrayMode().refine( |
| 975 | m_graph, node, |
| 976 | child1->prediction(), |
| 977 | child2->prediction(), |
| 978 | child3->prediction())); |
| 979 | |
| 980 | blessArrayOperation(child1, child2, m_graph.varArgChild(node, 3)); |
| 981 | |
| 982 | switch (node->arrayMode().modeForPut().type()) { |
| 983 | case Array::SelectUsingPredictions: |
| 984 | case Array::SelectUsingArguments: |
| 985 | case Array::Unprofiled: |
| 986 | case Array::Undecided: |
| 987 | RELEASE_ASSERT_NOT_REACHED(); |
| 988 | break; |
| 989 | case Array::ForceExit: |
| 990 | case Array::Generic: |
| 991 | if (child1->shouldSpeculateCell()) { |
| 992 | if (child2->shouldSpeculateString()) { |
| 993 | fixEdge<CellUse>(child1); |
| 994 | fixEdge<StringUse>(child2); |
| 995 | break; |
| 996 | } |
| 997 | |
| 998 | if (child2->shouldSpeculateSymbol()) { |
| 999 | fixEdge<CellUse>(child1); |
| 1000 | fixEdge<SymbolUse>(child2); |
| 1001 | break; |
| 1002 | } |
| 1003 | } |
| 1004 | #if USE(JSVALUE32_64) |
| 1005 | // Due to register pressure on 32-bit, we speculate cell and |
| 1006 | // ignore the base-is-not-cell case entirely by letting the |
| 1007 | // baseline JIT handle it. |
| 1008 | fixEdge<CellUse>(child1); |
| 1009 | #endif |
| 1010 | break; |
| 1011 | case Array::Int32: |
| 1012 | fixEdge<KnownCellUse>(child1); |
| 1013 | fixEdge<Int32Use>(child2); |
| 1014 | fixEdge<Int32Use>(child3); |
| 1015 | break; |
| 1016 | case Array::Double: |
| 1017 | fixEdge<KnownCellUse>(child1); |
| 1018 | fixEdge<Int32Use>(child2); |
| 1019 | fixEdge<DoubleRepRealUse>(child3); |
| 1020 | break; |
| 1021 | case Array::Int8Array: |
| 1022 | case Array::Int16Array: |
| 1023 | case Array::Int32Array: |
| 1024 | case Array::Uint8Array: |
| 1025 | case Array::Uint8ClampedArray: |
| 1026 | case Array::Uint16Array: |
| 1027 | case Array::Uint32Array: |
| 1028 | fixEdge<KnownCellUse>(child1); |
| 1029 | fixEdge<Int32Use>(child2); |
| 1030 | if (child3->shouldSpeculateInt32()) |
| 1031 | fixIntOrBooleanEdge(child3); |
| 1032 | else if (child3->shouldSpeculateInt52()) |
| 1033 | fixEdge<Int52RepUse>(child3); |
| 1034 | else |
| 1035 | fixDoubleOrBooleanEdge(child3); |
| 1036 | break; |
| 1037 | case Array::Float32Array: |
| 1038 | case Array::Float64Array: |
| 1039 | fixEdge<KnownCellUse>(child1); |
| 1040 | fixEdge<Int32Use>(child2); |
| 1041 | fixDoubleOrBooleanEdge(child3); |
| 1042 | break; |
| 1043 | case Array::Contiguous: |
| 1044 | case Array::ArrayStorage: |
| 1045 | case Array::SlowPutArrayStorage: |
| 1046 | fixEdge<KnownCellUse>(child1); |
| 1047 | fixEdge<Int32Use>(child2); |
| 1048 | speculateForBarrier(child3); |
| 1049 | break; |
| 1050 | default: |
| 1051 | fixEdge<KnownCellUse>(child1); |
| 1052 | fixEdge<Int32Use>(child2); |
| 1053 | break; |
| 1054 | } |
| 1055 | break; |
| 1056 | } |
| 1057 | |
| 1058 | case AtomicsAdd: |
| 1059 | case AtomicsAnd: |
| 1060 | case AtomicsCompareExchange: |
| 1061 | case AtomicsExchange: |
| 1062 | case AtomicsLoad: |
| 1063 | case AtomicsOr: |
| 1064 | case AtomicsStore: |
| 1065 | case AtomicsSub: |
| 1066 | case AtomicsXor: { |
| 1067 | Edge& base = m_graph.child(node, 0); |
| 1068 | Edge& index = m_graph.child(node, 1); |
| 1069 | |
| 1070 | bool badNews = false; |
| 1071 | for (unsigned i = numExtraAtomicsArgs(node->op()); i--;) { |
| 1072 | Edge& child = m_graph.child(node, 2 + i); |
| 1073 | // NOTE: DFG is not smart enough to handle double->int conversions in atomics. So, we |
| 1074 | // just call the function when that happens. But the FTL is totally cool with those |
| 1075 | // conversions. |
| 1076 | if (!child->shouldSpeculateInt32() |
| 1077 | && !child->shouldSpeculateInt52() |
| 1078 | && !(child->shouldSpeculateNumberOrBoolean() && m_graph.m_plan.isFTL())) |
| 1079 | badNews = true; |
| 1080 | } |
| 1081 | |
| 1082 | if (badNews) { |
| 1083 | node->setArrayMode(ArrayMode(Array::Generic, node->arrayMode().action())); |
| 1084 | break; |
| 1085 | } |
| 1086 | |
| 1087 | node->setArrayMode( |
| 1088 | node->arrayMode().refine( |
| 1089 | m_graph, node, base->prediction(), index->prediction())); |
| 1090 | |
| 1091 | if (node->arrayMode().type() == Array::Generic) |
| 1092 | break; |
| 1093 | |
| 1094 | for (unsigned i = numExtraAtomicsArgs(node->op()); i--;) { |
| 1095 | Edge& child = m_graph.child(node, 2 + i); |
| 1096 | if (child->shouldSpeculateInt32()) |
| 1097 | fixIntOrBooleanEdge(child); |
| 1098 | else if (child->shouldSpeculateInt52()) |
| 1099 | fixEdge<Int52RepUse>(child); |
| 1100 | else { |
| 1101 | RELEASE_ASSERT(child->shouldSpeculateNumberOrBoolean() && m_graph.m_plan.isFTL()); |
| 1102 | fixDoubleOrBooleanEdge(child); |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | blessArrayOperation(base, index, m_graph.child(node, 2 + numExtraAtomicsArgs(node->op()))); |
| 1107 | fixEdge<CellUse>(base); |
| 1108 | fixEdge<Int32Use>(index); |
| 1109 | |
| 1110 | if (node->arrayMode().type() == Array::Uint32Array) { |
| 1111 | // NOTE: This means basically always doing Int52. |
| 1112 | if (node->shouldSpeculateInt52()) |
| 1113 | node->setResult(NodeResultInt52); |
| 1114 | else |
| 1115 | node->setResult(NodeResultDouble); |
| 1116 | } |
| 1117 | break; |
| 1118 | } |
| 1119 | |
| 1120 | case AtomicsIsLockFree: |
| 1121 | if (node->child1()->shouldSpeculateInt32()) |
| 1122 | fixIntOrBooleanEdge(node->child1()); |
| 1123 | break; |
| 1124 | |
| 1125 | case ArrayPush: { |
| 1126 | // May need to refine the array mode in case the value prediction contravenes |
| 1127 | // the array prediction. For example, we may have evidence showing that the |
| 1128 | // array is in Int32 mode, but the value we're storing is likely to be a double. |
| 1129 | // Then we should turn this into a conversion to Double array followed by the |
| 1130 | // push. On the other hand, we absolutely don't want to refine based on the |
| 1131 | // base prediction. If it has non-cell garbage in it, then we want that to be |
| 1132 | // ignored. That's because ArrayPush can't handle any array modes that aren't |
| 1133 | // array-related - so if refine() turned this into a "Generic" ArrayPush then |
| 1134 | // that would break things. |
| 1135 | Edge& storageEdge = m_graph.varArgChild(node, 0); |
| 1136 | Edge& arrayEdge = m_graph.varArgChild(node, 1); |
| 1137 | unsigned elementOffset = 2; |
| 1138 | unsigned elementCount = node->numChildren() - elementOffset; |
| 1139 | for (unsigned i = 0; i < elementCount; ++i) { |
| 1140 | Edge& element = m_graph.varArgChild(node, i + elementOffset); |
| 1141 | node->setArrayMode( |
| 1142 | node->arrayMode().refine( |
| 1143 | m_graph, node, |
| 1144 | arrayEdge->prediction() & SpecCell, |
| 1145 | SpecInt32Only, |
| 1146 | element->prediction())); |
| 1147 | } |
| 1148 | blessArrayOperation(arrayEdge, Edge(), storageEdge); |
| 1149 | fixEdge<KnownCellUse>(arrayEdge); |
| 1150 | |
| 1151 | // Convert `array.push()` to GetArrayLength. |
| 1152 | if (!elementCount && node->arrayMode().supportsSelfLength()) { |
| 1153 | node->setOpAndDefaultFlags(GetArrayLength); |
| 1154 | node->child1() = arrayEdge; |
| 1155 | node->child2() = storageEdge; |
| 1156 | fixEdge<KnownCellUse>(node->child1()); |
| 1157 | break; |
| 1158 | } |
| 1159 | |
| 1160 | // We do not want to perform osr exit and retry for ArrayPush. We insert Check with appropriate type, |
| 1161 | // and ArrayPush uses the edge as known typed edge. Therefore, ArrayPush do not need to perform type checks. |
| 1162 | for (unsigned i = 0; i < elementCount; ++i) { |
| 1163 | Edge& element = m_graph.varArgChild(node, i + elementOffset); |
| 1164 | switch (node->arrayMode().type()) { |
| 1165 | case Array::Int32: |
| 1166 | fixEdge<Int32Use>(element); |
| 1167 | break; |
| 1168 | case Array::Double: |
| 1169 | fixEdge<DoubleRepRealUse>(element); |
| 1170 | break; |
| 1171 | case Array::Contiguous: |
| 1172 | case Array::ArrayStorage: |
| 1173 | speculateForBarrier(element); |
| 1174 | break; |
| 1175 | default: |
| 1176 | break; |
| 1177 | } |
| 1178 | } |
| 1179 | break; |
| 1180 | } |
| 1181 | |
| 1182 | case ArrayPop: { |
| 1183 | blessArrayOperation(node->child1(), Edge(), node->child2()); |
| 1184 | fixEdge<KnownCellUse>(node->child1()); |
| 1185 | break; |
| 1186 | } |
| 1187 | |
| 1188 | case ArraySlice: { |
| 1189 | fixEdge<KnownCellUse>(m_graph.varArgChild(node, 0)); |
| 1190 | if (node->numChildren() >= 3) { |
| 1191 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
| 1192 | if (node->numChildren() == 4) |
| 1193 | fixEdge<Int32Use>(m_graph.varArgChild(node, 2)); |
| 1194 | } |
| 1195 | break; |
| 1196 | } |
| 1197 | |
| 1198 | case ArrayIndexOf: |
| 1199 | fixupArrayIndexOf(node); |
| 1200 | break; |
| 1201 | |
| 1202 | case RegExpExec: |
| 1203 | case RegExpTest: { |
| 1204 | fixEdge<KnownCellUse>(node->child1()); |
| 1205 | |
| 1206 | if (node->child2()->shouldSpeculateRegExpObject()) { |
| 1207 | fixEdge<RegExpObjectUse>(node->child2()); |
| 1208 | |
| 1209 | if (node->child3()->shouldSpeculateString()) |
| 1210 | fixEdge<StringUse>(node->child3()); |
| 1211 | } |
| 1212 | break; |
| 1213 | } |
| 1214 | |
| 1215 | case RegExpMatchFast: { |
| 1216 | fixEdge<KnownCellUse>(node->child1()); |
| 1217 | fixEdge<RegExpObjectUse>(node->child2()); |
| 1218 | fixEdge<StringUse>(node->child3()); |
| 1219 | break; |
| 1220 | } |
| 1221 | |
| 1222 | case StringReplace: |
| 1223 | case StringReplaceRegExp: { |
| 1224 | if (node->child2()->shouldSpeculateString()) { |
| 1225 | m_insertionSet.insertNode( |
| 1226 | m_indexInBlock, SpecNone, Check, node->origin, |
| 1227 | Edge(node->child2().node(), StringUse)); |
| 1228 | fixEdge<StringUse>(node->child2()); |
| 1229 | } else if (op == StringReplace) { |
| 1230 | if (node->child2()->shouldSpeculateRegExpObject()) |
| 1231 | addStringReplacePrimordialChecks(node->child2().node()); |
| 1232 | else |
| 1233 | m_insertionSet.insertNode( |
| 1234 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
| 1235 | } |
| 1236 | |
| 1237 | if (node->child1()->shouldSpeculateString() |
| 1238 | && node->child2()->shouldSpeculateRegExpObject() |
| 1239 | && node->child3()->shouldSpeculateString()) { |
| 1240 | |
| 1241 | fixEdge<StringUse>(node->child1()); |
| 1242 | fixEdge<RegExpObjectUse>(node->child2()); |
| 1243 | fixEdge<StringUse>(node->child3()); |
| 1244 | break; |
| 1245 | } |
| 1246 | break; |
| 1247 | } |
| 1248 | |
| 1249 | case Branch: { |
| 1250 | if (node->child1()->shouldSpeculateBoolean()) { |
| 1251 | if (node->child1()->result() == NodeResultBoolean) { |
| 1252 | // This is necessary in case we have a bytecode instruction implemented by: |
| 1253 | // |
| 1254 | // a: CompareEq(...) |
| 1255 | // b: Branch(@a) |
| 1256 | // |
| 1257 | // In that case, CompareEq might have a side-effect. Then, we need to make |
| 1258 | // sure that we know that Branch does not exit. |
| 1259 | fixEdge<KnownBooleanUse>(node->child1()); |
| 1260 | } else |
| 1261 | fixEdge<BooleanUse>(node->child1()); |
| 1262 | } else if (node->child1()->shouldSpeculateObjectOrOther()) |
| 1263 | fixEdge<ObjectOrOtherUse>(node->child1()); |
| 1264 | else if (node->child1()->shouldSpeculateInt32OrBoolean()) |
| 1265 | fixIntOrBooleanEdge(node->child1()); |
| 1266 | else if (node->child1()->shouldSpeculateNumber()) |
| 1267 | fixEdge<DoubleRepUse>(node->child1()); |
| 1268 | else if (node->child1()->shouldSpeculateString()) |
| 1269 | fixEdge<StringUse>(node->child1()); |
| 1270 | else if (node->child1()->shouldSpeculateStringOrOther()) |
| 1271 | fixEdge<StringOrOtherUse>(node->child1()); |
| 1272 | else { |
| 1273 | WatchpointSet* masqueradesAsUndefinedWatchpoint = m_graph.globalObjectFor(node->origin.semantic)->masqueradesAsUndefinedWatchpoint(); |
| 1274 | if (masqueradesAsUndefinedWatchpoint->isStillValid()) |
| 1275 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
| 1276 | } |
| 1277 | break; |
| 1278 | } |
| 1279 | |
| 1280 | case Switch: { |
| 1281 | SwitchData* data = node->switchData(); |
| 1282 | switch (data->kind) { |
| 1283 | case SwitchImm: |
| 1284 | if (node->child1()->shouldSpeculateInt32()) |
| 1285 | fixEdge<Int32Use>(node->child1()); |
| 1286 | break; |
| 1287 | case SwitchChar: |
| 1288 | if (node->child1()->shouldSpeculateString()) |
| 1289 | fixEdge<StringUse>(node->child1()); |
| 1290 | break; |
| 1291 | case SwitchString: |
| 1292 | if (node->child1()->shouldSpeculateStringIdent()) |
| 1293 | fixEdge<StringIdentUse>(node->child1()); |
| 1294 | else if (node->child1()->shouldSpeculateString()) |
| 1295 | fixEdge<StringUse>(node->child1()); |
| 1296 | break; |
| 1297 | case SwitchCell: |
| 1298 | if (node->child1()->shouldSpeculateCell()) |
| 1299 | fixEdge<CellUse>(node->child1()); |
| 1300 | // else it's fine for this to have UntypedUse; we will handle this by just making |
| 1301 | // non-cells take the default case. |
| 1302 | break; |
| 1303 | } |
| 1304 | break; |
| 1305 | } |
| 1306 | |
| 1307 | case ToPrimitive: { |
| 1308 | fixupToPrimitive(node); |
| 1309 | break; |
| 1310 | } |
| 1311 | |
| 1312 | case ToNumber: { |
| 1313 | fixupToNumber(node); |
| 1314 | break; |
| 1315 | } |
| 1316 | |
| 1317 | case ToString: |
| 1318 | case CallStringConstructor: { |
| 1319 | fixupToStringOrCallStringConstructor(node); |
| 1320 | break; |
| 1321 | } |
| 1322 | |
| 1323 | case NewStringObject: { |
| 1324 | fixEdge<KnownStringUse>(node->child1()); |
| 1325 | break; |
| 1326 | } |
| 1327 | |
| 1328 | case NewSymbol: { |
| 1329 | if (node->child1()) |
| 1330 | fixEdge<KnownStringUse>(node->child1()); |
| 1331 | break; |
| 1332 | } |
| 1333 | |
| 1334 | case NewArrayWithSpread: { |
| 1335 | watchHavingABadTime(node); |
| 1336 | |
| 1337 | BitVector* bitVector = node->bitVector(); |
| 1338 | for (unsigned i = node->numChildren(); i--;) { |
| 1339 | if (bitVector->get(i)) |
| 1340 | fixEdge<KnownCellUse>(m_graph.m_varArgChildren[node->firstChild() + i]); |
| 1341 | else |
| 1342 | fixEdge<UntypedUse>(m_graph.m_varArgChildren[node->firstChild() + i]); |
| 1343 | } |
| 1344 | |
| 1345 | break; |
| 1346 | } |
| 1347 | |
| 1348 | case Spread: { |
| 1349 | // Note: We care about performing the protocol on our child's global object, not necessarily ours. |
| 1350 | |
| 1351 | watchHavingABadTime(node->child1().node()); |
| 1352 | |
| 1353 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->child1()->origin.semantic); |
| 1354 | // When we go down the fast path, we don't consult the prototype chain, so we must prove |
| 1355 | // that it doesn't contain any indexed properties, and that any holes will result in |
| 1356 | // jsUndefined(). |
| 1357 | Structure* arrayPrototypeStructure = globalObject->arrayPrototype()->structure(vm()); |
| 1358 | Structure* objectPrototypeStructure = globalObject->objectPrototype()->structure(vm()); |
| 1359 | if (node->child1()->shouldSpeculateArray() |
| 1360 | && arrayPrototypeStructure->transitionWatchpointSetIsStillValid() |
| 1361 | && objectPrototypeStructure->transitionWatchpointSetIsStillValid() |
| 1362 | && globalObject->arrayPrototypeChainIsSane() |
| 1363 | && m_graph.isWatchingArrayIteratorProtocolWatchpoint(node->child1().node()) |
| 1364 | && m_graph.isWatchingHavingABadTimeWatchpoint(node->child1().node())) { |
| 1365 | m_graph.registerAndWatchStructureTransition(objectPrototypeStructure); |
| 1366 | m_graph.registerAndWatchStructureTransition(arrayPrototypeStructure); |
| 1367 | fixEdge<ArrayUse>(node->child1()); |
| 1368 | } else |
| 1369 | fixEdge<CellUse>(node->child1()); |
| 1370 | break; |
| 1371 | } |
| 1372 | |
| 1373 | case NewArray: { |
| 1374 | watchHavingABadTime(node); |
| 1375 | |
| 1376 | for (unsigned i = m_graph.varArgNumChildren(node); i--;) { |
| 1377 | node->setIndexingType( |
| 1378 | leastUpperBoundOfIndexingTypeAndType( |
| 1379 | node->indexingType(), m_graph.varArgChild(node, i)->prediction())); |
| 1380 | } |
| 1381 | switch (node->indexingType()) { |
| 1382 | case ALL_BLANK_INDEXING_TYPES: |
| 1383 | CRASH(); |
| 1384 | break; |
| 1385 | case ALL_UNDECIDED_INDEXING_TYPES: |
| 1386 | if (node->numChildren()) { |
| 1387 | // This will only happen if the children have no type predictions. We |
| 1388 | // would have already exited by now, but insert a forced exit just to |
| 1389 | // be safe. |
| 1390 | m_insertionSet.insertNode( |
| 1391 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
| 1392 | } |
| 1393 | break; |
| 1394 | case ALL_INT32_INDEXING_TYPES: |
| 1395 | for (unsigned operandIndex = 0; operandIndex < node->numChildren(); ++operandIndex) |
| 1396 | fixEdge<Int32Use>(m_graph.m_varArgChildren[node->firstChild() + operandIndex]); |
| 1397 | break; |
| 1398 | case ALL_DOUBLE_INDEXING_TYPES: |
| 1399 | for (unsigned operandIndex = 0; operandIndex < node->numChildren(); ++operandIndex) |
| 1400 | fixEdge<DoubleRepRealUse>(m_graph.m_varArgChildren[node->firstChild() + operandIndex]); |
| 1401 | break; |
| 1402 | case ALL_CONTIGUOUS_INDEXING_TYPES: |
| 1403 | case ALL_ARRAY_STORAGE_INDEXING_TYPES: |
| 1404 | break; |
| 1405 | default: |
| 1406 | CRASH(); |
| 1407 | break; |
| 1408 | } |
| 1409 | break; |
| 1410 | } |
| 1411 | |
| 1412 | case NewTypedArray: { |
| 1413 | watchHavingABadTime(node); |
| 1414 | |
| 1415 | if (node->child1()->shouldSpeculateInt32()) { |
| 1416 | fixEdge<Int32Use>(node->child1()); |
| 1417 | node->clearFlags(NodeMustGenerate); |
| 1418 | break; |
| 1419 | } |
| 1420 | break; |
| 1421 | } |
| 1422 | |
| 1423 | case NewArrayWithSize: { |
| 1424 | watchHavingABadTime(node); |
| 1425 | fixEdge<Int32Use>(node->child1()); |
| 1426 | break; |
| 1427 | } |
| 1428 | |
| 1429 | case NewArrayBuffer: { |
| 1430 | watchHavingABadTime(node); |
| 1431 | break; |
| 1432 | } |
| 1433 | |
| 1434 | case ToObject: { |
| 1435 | fixupToObject(node); |
| 1436 | break; |
| 1437 | } |
| 1438 | |
| 1439 | case CallObjectConstructor: { |
| 1440 | fixupCallObjectConstructor(node); |
| 1441 | break; |
| 1442 | } |
| 1443 | |
| 1444 | case ToThis: { |
| 1445 | fixupToThis(node); |
| 1446 | break; |
| 1447 | } |
| 1448 | |
| 1449 | case PutStructure: { |
| 1450 | fixEdge<KnownCellUse>(node->child1()); |
| 1451 | break; |
| 1452 | } |
| 1453 | |
| 1454 | case GetClosureVar: |
| 1455 | case GetFromArguments: { |
| 1456 | fixEdge<KnownCellUse>(node->child1()); |
| 1457 | break; |
| 1458 | } |
| 1459 | |
| 1460 | case PutClosureVar: |
| 1461 | case PutToArguments: { |
| 1462 | fixEdge<KnownCellUse>(node->child1()); |
| 1463 | speculateForBarrier(node->child2()); |
| 1464 | break; |
| 1465 | } |
| 1466 | |
| 1467 | case SkipScope: |
| 1468 | case GetScope: |
| 1469 | case GetGetter: |
| 1470 | case GetSetter: |
| 1471 | case GetGlobalObject: { |
| 1472 | fixEdge<KnownCellUse>(node->child1()); |
| 1473 | break; |
| 1474 | } |
| 1475 | |
| 1476 | case AllocatePropertyStorage: |
| 1477 | case ReallocatePropertyStorage: { |
| 1478 | fixEdge<KnownCellUse>(node->child1()); |
| 1479 | break; |
| 1480 | } |
| 1481 | |
| 1482 | case NukeStructureAndSetButterfly: { |
| 1483 | fixEdge<KnownCellUse>(node->child1()); |
| 1484 | break; |
| 1485 | } |
| 1486 | |
| 1487 | case TryGetById: { |
| 1488 | if (node->child1()->shouldSpeculateCell()) |
| 1489 | fixEdge<CellUse>(node->child1()); |
| 1490 | break; |
| 1491 | } |
| 1492 | |
| 1493 | case GetByIdDirect: |
| 1494 | case GetByIdDirectFlush: { |
| 1495 | if (node->child1()->shouldSpeculateCell()) |
| 1496 | fixEdge<CellUse>(node->child1()); |
| 1497 | break; |
| 1498 | } |
| 1499 | |
| 1500 | case GetById: |
| 1501 | case GetByIdFlush: { |
| 1502 | // FIXME: This should be done in the ByteCodeParser based on reading the |
| 1503 | // PolymorphicAccess, which will surely tell us that this is a AccessCase::ArrayLength. |
| 1504 | // https://bugs.webkit.org/show_bug.cgi?id=154990 |
| 1505 | auto uid = m_graph.identifiers()[node->identifierNumber()]; |
| 1506 | if (node->child1()->shouldSpeculateCellOrOther() |
| 1507 | && !m_graph.hasExitSite(node->origin.semantic, BadType) |
| 1508 | && !m_graph.hasExitSite(node->origin.semantic, BadCache) |
| 1509 | && !m_graph.hasExitSite(node->origin.semantic, BadIndexingType) |
| 1510 | && !m_graph.hasExitSite(node->origin.semantic, ExoticObjectMode)) { |
| 1511 | |
| 1512 | if (uid == vm().propertyNames->length.impl()) { |
| 1513 | attemptToMakeGetArrayLength(node); |
| 1514 | break; |
| 1515 | } |
| 1516 | |
| 1517 | if (uid == vm().propertyNames->lastIndex.impl() |
| 1518 | && node->child1()->shouldSpeculateRegExpObject()) { |
| 1519 | node->setOp(GetRegExpObjectLastIndex); |
| 1520 | node->clearFlags(NodeMustGenerate); |
| 1521 | fixEdge<RegExpObjectUse>(node->child1()); |
| 1522 | break; |
| 1523 | } |
| 1524 | } |
| 1525 | |
| 1526 | if (node->child1()->shouldSpeculateNumber()) { |
| 1527 | if (uid == vm().propertyNames->toString.impl()) { |
| 1528 | if (m_graph.isWatchingNumberToStringWatchpoint(node)) { |
| 1529 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| 1530 | if (node->child1()->shouldSpeculateInt32()) { |
| 1531 | insertCheck<Int32Use>(node->child1().node()); |
| 1532 | m_graph.convertToConstant(node, m_graph.freeze(globalObject->numberProtoToStringFunction())); |
| 1533 | break; |
| 1534 | } |
| 1535 | |
| 1536 | if (node->child1()->shouldSpeculateInt52()) { |
| 1537 | insertCheck<Int52RepUse>(node->child1().node()); |
| 1538 | m_graph.convertToConstant(node, m_graph.freeze(globalObject->numberProtoToStringFunction())); |
| 1539 | break; |
| 1540 | } |
| 1541 | |
| 1542 | ASSERT(node->child1()->shouldSpeculateNumber()); |
| 1543 | insertCheck<DoubleRepUse>(node->child1().node()); |
| 1544 | m_graph.convertToConstant(node, m_graph.freeze(globalObject->numberProtoToStringFunction())); |
| 1545 | break; |
| 1546 | } |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | if (node->child1()->shouldSpeculateCell()) |
| 1551 | fixEdge<CellUse>(node->child1()); |
| 1552 | break; |
| 1553 | } |
| 1554 | |
| 1555 | case GetByIdWithThis: { |
| 1556 | if (node->child1()->shouldSpeculateCell() && node->child2()->shouldSpeculateCell()) { |
| 1557 | fixEdge<CellUse>(node->child1()); |
| 1558 | fixEdge<CellUse>(node->child2()); |
| 1559 | } |
| 1560 | break; |
| 1561 | } |
| 1562 | |
| 1563 | case PutById: |
| 1564 | case PutByIdFlush: |
| 1565 | case PutByIdDirect: { |
| 1566 | if (node->child1()->shouldSpeculateCellOrOther() |
| 1567 | && !m_graph.hasExitSite(node->origin.semantic, BadType) |
| 1568 | && !m_graph.hasExitSite(node->origin.semantic, BadCache) |
| 1569 | && !m_graph.hasExitSite(node->origin.semantic, BadIndexingType) |
| 1570 | && !m_graph.hasExitSite(node->origin.semantic, ExoticObjectMode)) { |
| 1571 | |
| 1572 | auto uid = m_graph.identifiers()[node->identifierNumber()]; |
| 1573 | |
| 1574 | if (uid == vm().propertyNames->lastIndex.impl() |
| 1575 | && node->child1()->shouldSpeculateRegExpObject()) { |
| 1576 | node->convertToSetRegExpObjectLastIndex(); |
| 1577 | fixEdge<RegExpObjectUse>(node->child1()); |
| 1578 | speculateForBarrier(node->child2()); |
| 1579 | break; |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | fixEdge<CellUse>(node->child1()); |
| 1584 | break; |
| 1585 | } |
| 1586 | |
| 1587 | case PutGetterById: |
| 1588 | case PutSetterById: { |
| 1589 | fixEdge<KnownCellUse>(node->child1()); |
| 1590 | fixEdge<KnownCellUse>(node->child2()); |
| 1591 | break; |
| 1592 | } |
| 1593 | |
| 1594 | case PutGetterSetterById: { |
| 1595 | fixEdge<KnownCellUse>(node->child1()); |
| 1596 | break; |
| 1597 | } |
| 1598 | |
| 1599 | case PutGetterByVal: |
| 1600 | case PutSetterByVal: { |
| 1601 | fixEdge<KnownCellUse>(node->child1()); |
| 1602 | fixEdge<KnownCellUse>(node->child3()); |
| 1603 | break; |
| 1604 | } |
| 1605 | |
| 1606 | case GetExecutable: { |
| 1607 | fixEdge<FunctionUse>(node->child1()); |
| 1608 | break; |
| 1609 | } |
| 1610 | |
| 1611 | case OverridesHasInstance: |
| 1612 | case CheckStructure: |
| 1613 | case CheckCell: |
| 1614 | case CreateThis: |
| 1615 | case GetButterfly: { |
| 1616 | fixEdge<CellUse>(node->child1()); |
| 1617 | break; |
| 1618 | } |
| 1619 | |
| 1620 | case ObjectCreate: { |
| 1621 | if (node->child1()->shouldSpeculateObject()) { |
| 1622 | fixEdge<ObjectUse>(node->child1()); |
| 1623 | node->clearFlags(NodeMustGenerate); |
| 1624 | break; |
| 1625 | } |
| 1626 | break; |
| 1627 | } |
| 1628 | |
| 1629 | case ObjectKeys: { |
| 1630 | if (node->child1()->shouldSpeculateObject()) { |
| 1631 | watchHavingABadTime(node); |
| 1632 | fixEdge<ObjectUse>(node->child1()); |
| 1633 | } |
| 1634 | break; |
| 1635 | } |
| 1636 | |
| 1637 | case CheckStringIdent: { |
| 1638 | fixEdge<StringIdentUse>(node->child1()); |
| 1639 | break; |
| 1640 | } |
| 1641 | |
| 1642 | case Arrayify: |
| 1643 | case ArrayifyToStructure: { |
| 1644 | fixEdge<CellUse>(node->child1()); |
| 1645 | if (node->child2()) |
| 1646 | fixEdge<Int32Use>(node->child2()); |
| 1647 | break; |
| 1648 | } |
| 1649 | |
| 1650 | case GetByOffset: |
| 1651 | case GetGetterSetterByOffset: { |
| 1652 | if (!node->child1()->hasStorageResult()) |
| 1653 | fixEdge<KnownCellUse>(node->child1()); |
| 1654 | fixEdge<KnownCellUse>(node->child2()); |
| 1655 | break; |
| 1656 | } |
| 1657 | |
| 1658 | case MultiGetByOffset: { |
| 1659 | fixEdge<CellUse>(node->child1()); |
| 1660 | break; |
| 1661 | } |
| 1662 | |
| 1663 | case PutByOffset: { |
| 1664 | if (!node->child1()->hasStorageResult()) |
| 1665 | fixEdge<KnownCellUse>(node->child1()); |
| 1666 | fixEdge<KnownCellUse>(node->child2()); |
| 1667 | speculateForBarrier(node->child3()); |
| 1668 | break; |
| 1669 | } |
| 1670 | |
| 1671 | case MultiPutByOffset: { |
| 1672 | fixEdge<CellUse>(node->child1()); |
| 1673 | break; |
| 1674 | } |
| 1675 | |
| 1676 | case MatchStructure: { |
| 1677 | // FIXME: Introduce a variant of MatchStructure that doesn't do a cell check. |
| 1678 | // https://bugs.webkit.org/show_bug.cgi?id=185784 |
| 1679 | fixEdge<CellUse>(node->child1()); |
| 1680 | break; |
| 1681 | } |
| 1682 | |
| 1683 | case InstanceOf: { |
| 1684 | if (node->child1()->shouldSpeculateCell() |
| 1685 | && node->child2()->shouldSpeculateCell() |
| 1686 | && is64Bit()) { |
| 1687 | fixEdge<CellUse>(node->child1()); |
| 1688 | fixEdge<CellUse>(node->child2()); |
| 1689 | break; |
| 1690 | } |
| 1691 | break; |
| 1692 | } |
| 1693 | |
| 1694 | case InstanceOfCustom: |
| 1695 | fixEdge<CellUse>(node->child2()); |
| 1696 | break; |
| 1697 | |
| 1698 | case InById: { |
| 1699 | fixEdge<CellUse>(node->child1()); |
| 1700 | break; |
| 1701 | } |
| 1702 | |
| 1703 | case InByVal: { |
| 1704 | if (node->child2()->shouldSpeculateInt32()) { |
| 1705 | convertToHasIndexedProperty(node); |
| 1706 | break; |
| 1707 | } |
| 1708 | |
| 1709 | fixEdge<CellUse>(node->child1()); |
| 1710 | break; |
| 1711 | } |
| 1712 | |
| 1713 | case HasOwnProperty: { |
| 1714 | fixEdge<ObjectUse>(node->child1()); |
| 1715 | #if CPU(X86) |
| 1716 | // We don't have enough registers to do anything interesting on x86 and mips. |
| 1717 | fixEdge<UntypedUse>(node->child2()); |
| 1718 | #else |
| 1719 | if (node->child2()->shouldSpeculateString()) |
| 1720 | fixEdge<StringUse>(node->child2()); |
| 1721 | else if (node->child2()->shouldSpeculateSymbol()) |
| 1722 | fixEdge<SymbolUse>(node->child2()); |
| 1723 | else |
| 1724 | fixEdge<UntypedUse>(node->child2()); |
| 1725 | #endif |
| 1726 | break; |
| 1727 | } |
| 1728 | |
| 1729 | case CheckVarargs: |
| 1730 | case Check: { |
| 1731 | m_graph.doToChildren( |
| 1732 | node, |
| 1733 | [&] (Edge& edge) { |
| 1734 | switch (edge.useKind()) { |
| 1735 | case NumberUse: |
| 1736 | if (edge->shouldSpeculateInt32ForArithmetic()) |
| 1737 | edge.setUseKind(Int32Use); |
| 1738 | break; |
| 1739 | default: |
| 1740 | break; |
| 1741 | } |
| 1742 | observeUseKindOnEdge(edge); |
| 1743 | }); |
| 1744 | break; |
| 1745 | } |
| 1746 | |
| 1747 | case Phantom: |
| 1748 | // Phantoms are meaningless past Fixup. We recreate them on-demand in the backend. |
| 1749 | node->remove(m_graph); |
| 1750 | break; |
| 1751 | |
| 1752 | case FiatInt52: { |
| 1753 | RELEASE_ASSERT(enableInt52()); |
| 1754 | node->convertToIdentity(); |
| 1755 | fixEdge<Int52RepUse>(node->child1()); |
| 1756 | node->setResult(NodeResultInt52); |
| 1757 | break; |
| 1758 | } |
| 1759 | |
| 1760 | case GetArrayLength: { |
| 1761 | fixEdge<KnownCellUse>(node->child1()); |
| 1762 | break; |
| 1763 | } |
| 1764 | |
| 1765 | case GetTypedArrayByteOffset: { |
| 1766 | fixEdge<KnownCellUse>(node->child1()); |
| 1767 | break; |
| 1768 | } |
| 1769 | |
| 1770 | case CompareBelow: |
| 1771 | case CompareBelowEq: { |
| 1772 | fixEdge<Int32Use>(node->child1()); |
| 1773 | fixEdge<Int32Use>(node->child2()); |
| 1774 | break; |
| 1775 | } |
| 1776 | |
| 1777 | case GetPrototypeOf: { |
| 1778 | fixupGetPrototypeOf(node); |
| 1779 | break; |
| 1780 | } |
| 1781 | |
| 1782 | case Phi: |
| 1783 | case Upsilon: |
| 1784 | case EntrySwitch: |
| 1785 | case GetIndexedPropertyStorage: |
| 1786 | case LastNodeType: |
| 1787 | case CheckTierUpInLoop: |
| 1788 | case CheckTierUpAtReturn: |
| 1789 | case CheckTierUpAndOSREnter: |
| 1790 | case CheckArray: |
| 1791 | case CheckInBounds: |
| 1792 | case ConstantStoragePointer: |
| 1793 | case DoubleAsInt32: |
| 1794 | case ValueToInt32: |
| 1795 | case DoubleRep: |
| 1796 | case ValueRep: |
| 1797 | case Int52Rep: |
| 1798 | case Int52Constant: |
| 1799 | case Identity: // This should have been cleaned up. |
| 1800 | case BooleanToNumber: |
| 1801 | case PhantomNewObject: |
| 1802 | case PhantomNewFunction: |
| 1803 | case PhantomNewGeneratorFunction: |
| 1804 | case PhantomNewAsyncGeneratorFunction: |
| 1805 | case PhantomNewAsyncFunction: |
| 1806 | case PhantomCreateActivation: |
| 1807 | case PhantomDirectArguments: |
| 1808 | case PhantomCreateRest: |
| 1809 | case PhantomSpread: |
| 1810 | case PhantomNewArrayWithSpread: |
| 1811 | case PhantomNewArrayBuffer: |
| 1812 | case PhantomClonedArguments: |
| 1813 | case PhantomNewRegexp: |
| 1814 | case GetMyArgumentByVal: |
| 1815 | case GetMyArgumentByValOutOfBounds: |
| 1816 | case GetVectorLength: |
| 1817 | case PutHint: |
| 1818 | case CheckStructureImmediate: |
| 1819 | case CheckStructureOrEmpty: |
| 1820 | case MaterializeNewObject: |
| 1821 | case MaterializeCreateActivation: |
| 1822 | case PutStack: |
| 1823 | case KillStack: |
| 1824 | case GetStack: |
| 1825 | case StoreBarrier: |
| 1826 | case FencedStoreBarrier: |
| 1827 | case GetRegExpObjectLastIndex: |
| 1828 | case SetRegExpObjectLastIndex: |
| 1829 | case RecordRegExpCachedResult: |
| 1830 | case RegExpExecNonGlobalOrSticky: |
| 1831 | case RegExpMatchFastGlobal: |
| 1832 | // These are just nodes that we don't currently expect to see during fixup. |
| 1833 | // If we ever wanted to insert them prior to fixup, then we just have to create |
| 1834 | // fixup rules for them. |
| 1835 | DFG_CRASH(m_graph, node, "Unexpected node during fixup" ); |
| 1836 | break; |
| 1837 | |
| 1838 | case PutGlobalVariable: { |
| 1839 | fixEdge<CellUse>(node->child1()); |
| 1840 | speculateForBarrier(node->child2()); |
| 1841 | break; |
| 1842 | } |
| 1843 | |
| 1844 | case IsObject: |
| 1845 | if (node->child1()->shouldSpeculateObject()) { |
| 1846 | m_insertionSet.insertNode( |
| 1847 | m_indexInBlock, SpecNone, Check, node->origin, |
| 1848 | Edge(node->child1().node(), ObjectUse)); |
| 1849 | m_graph.convertToConstant(node, jsBoolean(true)); |
| 1850 | observeUseKindOnNode<ObjectUse>(node); |
| 1851 | } |
| 1852 | break; |
| 1853 | |
| 1854 | case IsCellWithType: { |
| 1855 | fixupIsCellWithType(node); |
| 1856 | break; |
| 1857 | } |
| 1858 | |
| 1859 | case GetEnumerableLength: { |
| 1860 | fixEdge<CellUse>(node->child1()); |
| 1861 | break; |
| 1862 | } |
| 1863 | case HasGenericProperty: { |
| 1864 | fixEdge<CellUse>(node->child2()); |
| 1865 | break; |
| 1866 | } |
| 1867 | case HasStructureProperty: { |
| 1868 | fixEdge<StringUse>(node->child2()); |
| 1869 | fixEdge<KnownCellUse>(node->child3()); |
| 1870 | break; |
| 1871 | } |
| 1872 | case HasIndexedProperty: { |
| 1873 | node->setArrayMode( |
| 1874 | node->arrayMode().refine( |
| 1875 | m_graph, node, |
| 1876 | m_graph.varArgChild(node, 0)->prediction(), |
| 1877 | m_graph.varArgChild(node, 1)->prediction(), |
| 1878 | SpecNone)); |
| 1879 | |
| 1880 | blessArrayOperation(m_graph.varArgChild(node, 0), m_graph.varArgChild(node, 1), m_graph.varArgChild(node, 2)); |
| 1881 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); |
| 1882 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
| 1883 | break; |
| 1884 | } |
| 1885 | case GetDirectPname: { |
| 1886 | Edge& base = m_graph.varArgChild(node, 0); |
| 1887 | Edge& property = m_graph.varArgChild(node, 1); |
| 1888 | Edge& index = m_graph.varArgChild(node, 2); |
| 1889 | Edge& enumerator = m_graph.varArgChild(node, 3); |
| 1890 | fixEdge<CellUse>(base); |
| 1891 | fixEdge<KnownCellUse>(property); |
| 1892 | fixEdge<Int32Use>(index); |
| 1893 | fixEdge<KnownCellUse>(enumerator); |
| 1894 | break; |
| 1895 | } |
| 1896 | case GetPropertyEnumerator: { |
| 1897 | if (node->child1()->shouldSpeculateCell()) |
| 1898 | fixEdge<CellUse>(node->child1()); |
| 1899 | break; |
| 1900 | } |
| 1901 | case GetEnumeratorStructurePname: { |
| 1902 | fixEdge<KnownCellUse>(node->child1()); |
| 1903 | fixEdge<Int32Use>(node->child2()); |
| 1904 | break; |
| 1905 | } |
| 1906 | case GetEnumeratorGenericPname: { |
| 1907 | fixEdge<KnownCellUse>(node->child1()); |
| 1908 | fixEdge<Int32Use>(node->child2()); |
| 1909 | break; |
| 1910 | } |
| 1911 | case ToIndexString: { |
| 1912 | fixEdge<Int32Use>(node->child1()); |
| 1913 | break; |
| 1914 | } |
| 1915 | case ProfileType: { |
| 1916 | // We want to insert type checks based on the instructionTypeSet of the TypeLocation, not the globalTypeSet. |
| 1917 | // Because the instructionTypeSet is contained in globalTypeSet, if we produce a type check for |
| 1918 | // type T for the instructionTypeSet, the global type set must also have information for type T. |
| 1919 | // So if it the type check succeeds for type T in the instructionTypeSet, a type check for type T |
| 1920 | // in the globalTypeSet would've also succeeded. |
| 1921 | // (The other direction does not hold in general). |
| 1922 | |
| 1923 | RefPtr<TypeSet> typeSet = node->typeLocation()->m_instructionTypeSet; |
| 1924 | RuntimeTypeMask seenTypes = typeSet->seenTypes(); |
| 1925 | if (typeSet->doesTypeConformTo(TypeAnyInt)) { |
| 1926 | if (node->child1()->shouldSpeculateInt32()) { |
| 1927 | fixEdge<Int32Use>(node->child1()); |
| 1928 | node->remove(m_graph); |
| 1929 | break; |
| 1930 | } |
| 1931 | |
| 1932 | if (enableInt52()) { |
| 1933 | fixEdge<AnyIntUse>(node->child1()); |
| 1934 | node->remove(m_graph); |
| 1935 | break; |
| 1936 | } |
| 1937 | |
| 1938 | // Must not perform fixEdge<NumberUse> here since the type set only includes TypeAnyInt. Double values should be logged. |
| 1939 | } |
| 1940 | |
| 1941 | if (typeSet->doesTypeConformTo(TypeNumber | TypeAnyInt)) { |
| 1942 | fixEdge<NumberUse>(node->child1()); |
| 1943 | node->remove(m_graph); |
| 1944 | } else if (typeSet->doesTypeConformTo(TypeString)) { |
| 1945 | fixEdge<StringUse>(node->child1()); |
| 1946 | node->remove(m_graph); |
| 1947 | } else if (typeSet->doesTypeConformTo(TypeBoolean)) { |
| 1948 | fixEdge<BooleanUse>(node->child1()); |
| 1949 | node->remove(m_graph); |
| 1950 | } else if (typeSet->doesTypeConformTo(TypeUndefined | TypeNull) && (seenTypes & TypeUndefined) && (seenTypes & TypeNull)) { |
| 1951 | fixEdge<OtherUse>(node->child1()); |
| 1952 | node->remove(m_graph); |
| 1953 | } else if (typeSet->doesTypeConformTo(TypeObject)) { |
| 1954 | StructureSet set; |
| 1955 | { |
| 1956 | ConcurrentJSLocker locker(typeSet->m_lock); |
| 1957 | set = typeSet->structureSet(locker); |
| 1958 | } |
| 1959 | if (!set.isEmpty()) { |
| 1960 | fixEdge<CellUse>(node->child1()); |
| 1961 | node->convertToCheckStructureOrEmpty(m_graph.addStructureSet(set)); |
| 1962 | } |
| 1963 | } |
| 1964 | |
| 1965 | break; |
| 1966 | } |
| 1967 | |
| 1968 | case CreateClonedArguments: { |
| 1969 | watchHavingABadTime(node); |
| 1970 | break; |
| 1971 | } |
| 1972 | |
| 1973 | case CreateScopedArguments: |
| 1974 | case CreateActivation: |
| 1975 | case NewFunction: |
| 1976 | case NewGeneratorFunction: |
| 1977 | case NewAsyncGeneratorFunction: |
| 1978 | case NewAsyncFunction: { |
| 1979 | // Child 1 is always the current scope, which is guaranteed to be an object |
| 1980 | // FIXME: should be KnownObjectUse once that exists (https://bugs.webkit.org/show_bug.cgi?id=175689) |
| 1981 | fixEdge<KnownCellUse>(node->child1()); |
| 1982 | break; |
| 1983 | } |
| 1984 | |
| 1985 | case PushWithScope: { |
| 1986 | // Child 1 is always the current scope, which is guaranteed to be an object |
| 1987 | // FIXME: should be KnownObjectUse once that exists (https://bugs.webkit.org/show_bug.cgi?id=175689) |
| 1988 | fixEdge<KnownCellUse>(node->child1()); |
| 1989 | if (node->child2()->shouldSpeculateObject()) |
| 1990 | fixEdge<ObjectUse>(node->child2()); |
| 1991 | break; |
| 1992 | } |
| 1993 | |
| 1994 | case SetFunctionName: { |
| 1995 | // The first child is guaranteed to be a cell because op_set_function_name is only used |
| 1996 | // on a newly instantiated function object (the first child). |
| 1997 | fixEdge<KnownCellUse>(node->child1()); |
| 1998 | fixEdge<UntypedUse>(node->child2()); |
| 1999 | break; |
| 2000 | } |
| 2001 | |
| 2002 | case CreateRest: { |
| 2003 | watchHavingABadTime(node); |
| 2004 | fixEdge<Int32Use>(node->child1()); |
| 2005 | break; |
| 2006 | } |
| 2007 | |
| 2008 | case ResolveScopeForHoistingFuncDeclInEval: { |
| 2009 | fixEdge<KnownCellUse>(node->child1()); |
| 2010 | break; |
| 2011 | } |
| 2012 | case ResolveScope: |
| 2013 | case GetDynamicVar: |
| 2014 | case PutDynamicVar: { |
| 2015 | fixEdge<KnownCellUse>(node->child1()); |
| 2016 | break; |
| 2017 | } |
| 2018 | |
| 2019 | case LogShadowChickenPrologue: { |
| 2020 | fixEdge<KnownCellUse>(node->child1()); |
| 2021 | break; |
| 2022 | } |
| 2023 | case LogShadowChickenTail: { |
| 2024 | fixEdge<UntypedUse>(node->child1()); |
| 2025 | fixEdge<KnownCellUse>(node->child2()); |
| 2026 | break; |
| 2027 | } |
| 2028 | |
| 2029 | case GetMapBucket: |
| 2030 | if (node->child1().useKind() == MapObjectUse) |
| 2031 | fixEdge<MapObjectUse>(node->child1()); |
| 2032 | else if (node->child1().useKind() == SetObjectUse) |
| 2033 | fixEdge<SetObjectUse>(node->child1()); |
| 2034 | else |
| 2035 | RELEASE_ASSERT_NOT_REACHED(); |
| 2036 | |
| 2037 | #if USE(JSVALUE64) |
| 2038 | if (node->child2()->shouldSpeculateBoolean()) |
| 2039 | fixEdge<BooleanUse>(node->child2()); |
| 2040 | else if (node->child2()->shouldSpeculateInt32()) |
| 2041 | fixEdge<Int32Use>(node->child2()); |
| 2042 | else if (node->child2()->shouldSpeculateSymbol()) |
| 2043 | fixEdge<SymbolUse>(node->child2()); |
| 2044 | else if (node->child2()->shouldSpeculateObject()) |
| 2045 | fixEdge<ObjectUse>(node->child2()); |
| 2046 | else if (node->child2()->shouldSpeculateString()) |
| 2047 | fixEdge<StringUse>(node->child2()); |
| 2048 | else if (node->child2()->shouldSpeculateCell()) |
| 2049 | fixEdge<CellUse>(node->child2()); |
| 2050 | else |
| 2051 | fixEdge<UntypedUse>(node->child2()); |
| 2052 | #else |
| 2053 | fixEdge<UntypedUse>(node->child2()); |
| 2054 | #endif // USE(JSVALUE64) |
| 2055 | |
| 2056 | fixEdge<Int32Use>(node->child3()); |
| 2057 | break; |
| 2058 | |
| 2059 | case GetMapBucketHead: |
| 2060 | if (node->child1().useKind() == MapObjectUse) |
| 2061 | fixEdge<MapObjectUse>(node->child1()); |
| 2062 | else if (node->child1().useKind() == SetObjectUse) |
| 2063 | fixEdge<SetObjectUse>(node->child1()); |
| 2064 | else |
| 2065 | RELEASE_ASSERT_NOT_REACHED(); |
| 2066 | break; |
| 2067 | |
| 2068 | case GetMapBucketNext: |
| 2069 | case LoadKeyFromMapBucket: |
| 2070 | case LoadValueFromMapBucket: |
| 2071 | fixEdge<CellUse>(node->child1()); |
| 2072 | break; |
| 2073 | |
| 2074 | case MapHash: { |
| 2075 | #if USE(JSVALUE64) |
| 2076 | if (node->child1()->shouldSpeculateBoolean()) { |
| 2077 | fixEdge<BooleanUse>(node->child1()); |
| 2078 | break; |
| 2079 | } |
| 2080 | |
| 2081 | if (node->child1()->shouldSpeculateInt32()) { |
| 2082 | fixEdge<Int32Use>(node->child1()); |
| 2083 | break; |
| 2084 | } |
| 2085 | |
| 2086 | if (node->child1()->shouldSpeculateSymbol()) { |
| 2087 | fixEdge<SymbolUse>(node->child1()); |
| 2088 | break; |
| 2089 | } |
| 2090 | |
| 2091 | if (node->child1()->shouldSpeculateObject()) { |
| 2092 | fixEdge<ObjectUse>(node->child1()); |
| 2093 | break; |
| 2094 | } |
| 2095 | |
| 2096 | if (node->child1()->shouldSpeculateString()) { |
| 2097 | fixEdge<StringUse>(node->child1()); |
| 2098 | break; |
| 2099 | } |
| 2100 | |
| 2101 | if (node->child1()->shouldSpeculateCell()) { |
| 2102 | fixEdge<CellUse>(node->child1()); |
| 2103 | break; |
| 2104 | } |
| 2105 | |
| 2106 | fixEdge<UntypedUse>(node->child1()); |
| 2107 | #else |
| 2108 | fixEdge<UntypedUse>(node->child1()); |
| 2109 | #endif // USE(JSVALUE64) |
| 2110 | break; |
| 2111 | } |
| 2112 | |
| 2113 | case NormalizeMapKey: { |
| 2114 | fixupNormalizeMapKey(node); |
| 2115 | break; |
| 2116 | } |
| 2117 | |
| 2118 | case WeakMapGet: { |
| 2119 | if (node->child1().useKind() == WeakMapObjectUse) |
| 2120 | fixEdge<WeakMapObjectUse>(node->child1()); |
| 2121 | else if (node->child1().useKind() == WeakSetObjectUse) |
| 2122 | fixEdge<WeakSetObjectUse>(node->child1()); |
| 2123 | else |
| 2124 | RELEASE_ASSERT_NOT_REACHED(); |
| 2125 | fixEdge<ObjectUse>(node->child2()); |
| 2126 | fixEdge<Int32Use>(node->child3()); |
| 2127 | break; |
| 2128 | } |
| 2129 | |
| 2130 | case SetAdd: { |
| 2131 | fixEdge<SetObjectUse>(node->child1()); |
| 2132 | fixEdge<Int32Use>(node->child3()); |
| 2133 | break; |
| 2134 | } |
| 2135 | |
| 2136 | case MapSet: { |
| 2137 | fixEdge<MapObjectUse>(m_graph.varArgChild(node, 0)); |
| 2138 | fixEdge<Int32Use>(m_graph.varArgChild(node, 3)); |
| 2139 | break; |
| 2140 | } |
| 2141 | |
| 2142 | case WeakSetAdd: { |
| 2143 | fixEdge<WeakSetObjectUse>(node->child1()); |
| 2144 | fixEdge<ObjectUse>(node->child2()); |
| 2145 | fixEdge<Int32Use>(node->child3()); |
| 2146 | break; |
| 2147 | } |
| 2148 | |
| 2149 | case WeakMapSet: { |
| 2150 | fixEdge<WeakMapObjectUse>(m_graph.varArgChild(node, 0)); |
| 2151 | fixEdge<ObjectUse>(m_graph.varArgChild(node, 1)); |
| 2152 | fixEdge<Int32Use>(m_graph.varArgChild(node, 3)); |
| 2153 | break; |
| 2154 | } |
| 2155 | |
| 2156 | case DefineDataProperty: { |
| 2157 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); |
| 2158 | Edge& propertyEdge = m_graph.varArgChild(node, 1); |
| 2159 | if (propertyEdge->shouldSpeculateSymbol()) |
| 2160 | fixEdge<SymbolUse>(propertyEdge); |
| 2161 | else if (propertyEdge->shouldSpeculateStringIdent()) |
| 2162 | fixEdge<StringIdentUse>(propertyEdge); |
| 2163 | else if (propertyEdge->shouldSpeculateString()) |
| 2164 | fixEdge<StringUse>(propertyEdge); |
| 2165 | else |
| 2166 | fixEdge<UntypedUse>(propertyEdge); |
| 2167 | fixEdge<UntypedUse>(m_graph.varArgChild(node, 2)); |
| 2168 | fixEdge<Int32Use>(m_graph.varArgChild(node, 3)); |
| 2169 | break; |
| 2170 | } |
| 2171 | |
| 2172 | case StringValueOf: { |
| 2173 | fixupStringValueOf(node); |
| 2174 | break; |
| 2175 | } |
| 2176 | |
| 2177 | case StringSlice: { |
| 2178 | fixEdge<StringUse>(node->child1()); |
| 2179 | fixEdge<Int32Use>(node->child2()); |
| 2180 | if (node->child3()) |
| 2181 | fixEdge<Int32Use>(node->child3()); |
| 2182 | break; |
| 2183 | } |
| 2184 | |
| 2185 | case ToLowerCase: { |
| 2186 | // We currently only support StringUse since that will ensure that |
| 2187 | // ToLowerCase is a pure operation. If we decide to update this with |
| 2188 | // more types in the future, we need to ensure that the clobberize rules |
| 2189 | // are correct. |
| 2190 | fixEdge<StringUse>(node->child1()); |
| 2191 | break; |
| 2192 | } |
| 2193 | |
| 2194 | case NumberToStringWithRadix: { |
| 2195 | if (node->child1()->shouldSpeculateInt32()) |
| 2196 | fixEdge<Int32Use>(node->child1()); |
| 2197 | else if (node->child1()->shouldSpeculateInt52()) |
| 2198 | fixEdge<Int52RepUse>(node->child1()); |
| 2199 | else |
| 2200 | fixEdge<DoubleRepUse>(node->child1()); |
| 2201 | fixEdge<Int32Use>(node->child2()); |
| 2202 | break; |
| 2203 | } |
| 2204 | |
| 2205 | case DefineAccessorProperty: { |
| 2206 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); |
| 2207 | Edge& propertyEdge = m_graph.varArgChild(node, 1); |
| 2208 | if (propertyEdge->shouldSpeculateSymbol()) |
| 2209 | fixEdge<SymbolUse>(propertyEdge); |
| 2210 | else if (propertyEdge->shouldSpeculateStringIdent()) |
| 2211 | fixEdge<StringIdentUse>(propertyEdge); |
| 2212 | else if (propertyEdge->shouldSpeculateString()) |
| 2213 | fixEdge<StringUse>(propertyEdge); |
| 2214 | else |
| 2215 | fixEdge<UntypedUse>(propertyEdge); |
| 2216 | fixEdge<CellUse>(m_graph.varArgChild(node, 2)); |
| 2217 | fixEdge<CellUse>(m_graph.varArgChild(node, 3)); |
| 2218 | fixEdge<Int32Use>(m_graph.varArgChild(node, 4)); |
| 2219 | break; |
| 2220 | } |
| 2221 | |
| 2222 | case CheckSubClass: { |
| 2223 | fixupCheckSubClass(node); |
| 2224 | break; |
| 2225 | } |
| 2226 | |
| 2227 | case CallDOMGetter: { |
| 2228 | DOMJIT::CallDOMGetterSnippet* snippet = node->callDOMGetterData()->snippet; |
| 2229 | fixEdge<CellUse>(node->child1()); // DOM. |
| 2230 | if (snippet && snippet->requireGlobalObject) |
| 2231 | fixEdge<KnownCellUse>(node->child2()); // GlobalObject. |
| 2232 | break; |
| 2233 | } |
| 2234 | |
| 2235 | case CallDOM: { |
| 2236 | fixupCallDOM(node); |
| 2237 | break; |
| 2238 | } |
| 2239 | |
| 2240 | case Call: { |
| 2241 | attemptToMakeCallDOM(node); |
| 2242 | break; |
| 2243 | } |
| 2244 | |
| 2245 | case ParseInt: { |
| 2246 | if (node->child1()->shouldSpeculateInt32() && !node->child2()) { |
| 2247 | fixEdge<Int32Use>(node->child1()); |
| 2248 | node->convertToIdentity(); |
| 2249 | break; |
| 2250 | } |
| 2251 | |
| 2252 | if (node->child1()->shouldSpeculateString()) { |
| 2253 | fixEdge<StringUse>(node->child1()); |
| 2254 | node->clearFlags(NodeMustGenerate); |
| 2255 | } |
| 2256 | |
| 2257 | if (node->child2()) |
| 2258 | fixEdge<Int32Use>(node->child2()); |
| 2259 | |
| 2260 | break; |
| 2261 | } |
| 2262 | |
| 2263 | case IdentityWithProfile: { |
| 2264 | node->clearFlags(NodeMustGenerate); |
| 2265 | break; |
| 2266 | } |
| 2267 | |
| 2268 | case ThrowStaticError: |
| 2269 | fixEdge<StringUse>(node->child1()); |
| 2270 | break; |
| 2271 | |
| 2272 | case NumberIsInteger: |
| 2273 | if (node->child1()->shouldSpeculateInt32()) { |
| 2274 | m_insertionSet.insertNode( |
| 2275 | m_indexInBlock, SpecNone, Check, node->origin, |
| 2276 | Edge(node->child1().node(), Int32Use)); |
| 2277 | m_graph.convertToConstant(node, jsBoolean(true)); |
| 2278 | break; |
| 2279 | } |
| 2280 | break; |
| 2281 | |
| 2282 | case SetCallee: |
| 2283 | fixEdge<CellUse>(node->child1()); |
| 2284 | break; |
| 2285 | |
| 2286 | case DataViewGetInt: |
| 2287 | case DataViewGetFloat: { |
| 2288 | fixEdge<DataViewObjectUse>(node->child1()); |
| 2289 | fixEdge<Int32Use>(node->child2()); |
| 2290 | if (node->child3()) |
| 2291 | fixEdge<BooleanUse>(node->child3()); |
| 2292 | |
| 2293 | if (node->op() == DataViewGetInt) { |
| 2294 | DataViewData data = node->dataViewData(); |
| 2295 | switch (data.byteSize) { |
| 2296 | case 1: |
| 2297 | case 2: |
| 2298 | node->setResult(NodeResultInt32); |
| 2299 | break; |
| 2300 | case 4: |
| 2301 | if (data.isSigned) |
| 2302 | node->setResult(NodeResultInt32); |
| 2303 | else |
| 2304 | node->setResult(NodeResultInt52); |
| 2305 | break; |
| 2306 | default: |
| 2307 | RELEASE_ASSERT_NOT_REACHED(); |
| 2308 | } |
| 2309 | } |
| 2310 | break; |
| 2311 | } |
| 2312 | |
| 2313 | case DataViewSet: { |
| 2314 | fixEdge<DataViewObjectUse>(m_graph.varArgChild(node, 0)); |
| 2315 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
| 2316 | if (m_graph.varArgChild(node, 3)) |
| 2317 | fixEdge<BooleanUse>(m_graph.varArgChild(node, 3)); |
| 2318 | |
| 2319 | DataViewData data = node->dataViewData(); |
| 2320 | Edge& valueToStore = m_graph.varArgChild(node, 2); |
| 2321 | if (data.isFloatingPoint) |
| 2322 | fixEdge<DoubleRepUse>(valueToStore); |
| 2323 | else { |
| 2324 | switch (data.byteSize) { |
| 2325 | case 1: |
| 2326 | case 2: |
| 2327 | fixEdge<Int32Use>(valueToStore); |
| 2328 | break; |
| 2329 | case 4: |
| 2330 | if (data.isSigned) |
| 2331 | fixEdge<Int32Use>(valueToStore); |
| 2332 | else |
| 2333 | fixEdge<Int52RepUse>(valueToStore); |
| 2334 | break; |
| 2335 | } |
| 2336 | } |
| 2337 | break; |
| 2338 | } |
| 2339 | |
| 2340 | #if !ASSERT_DISABLED |
| 2341 | // Have these no-op cases here to ensure that nobody forgets to add handlers for new opcodes. |
| 2342 | case SetArgumentDefinitely: |
| 2343 | case SetArgumentMaybe: |
| 2344 | case JSConstant: |
| 2345 | case LazyJSConstant: |
| 2346 | case DoubleConstant: |
| 2347 | case GetLocal: |
| 2348 | case GetCallee: |
| 2349 | case GetArgumentCountIncludingThis: |
| 2350 | case SetArgumentCountIncludingThis: |
| 2351 | case GetRestLength: |
| 2352 | case GetArgument: |
| 2353 | case Flush: |
| 2354 | case PhantomLocal: |
| 2355 | case GetGlobalVar: |
| 2356 | case GetGlobalLexicalVariable: |
| 2357 | case NotifyWrite: |
| 2358 | case DirectCall: |
| 2359 | case CheckTypeInfoFlags: |
| 2360 | case TailCallInlinedCaller: |
| 2361 | case DirectTailCallInlinedCaller: |
| 2362 | case Construct: |
| 2363 | case DirectConstruct: |
| 2364 | case CallVarargs: |
| 2365 | case CallEval: |
| 2366 | case TailCallVarargsInlinedCaller: |
| 2367 | case ConstructVarargs: |
| 2368 | case CallForwardVarargs: |
| 2369 | case ConstructForwardVarargs: |
| 2370 | case TailCallForwardVarargs: |
| 2371 | case TailCallForwardVarargsInlinedCaller: |
| 2372 | case LoadVarargs: |
| 2373 | case ForwardVarargs: |
| 2374 | case ProfileControlFlow: |
| 2375 | case NewObject: |
| 2376 | case NewRegexp: |
| 2377 | case DeleteById: |
| 2378 | case DeleteByVal: |
| 2379 | case IsTypedArrayView: |
| 2380 | case IsEmpty: |
| 2381 | case IsUndefined: |
| 2382 | case IsUndefinedOrNull: |
| 2383 | case IsBoolean: |
| 2384 | case IsNumber: |
| 2385 | case IsObjectOrNull: |
| 2386 | case IsFunction: |
| 2387 | case CreateDirectArguments: |
| 2388 | case Jump: |
| 2389 | case Return: |
| 2390 | case TailCall: |
| 2391 | case DirectTailCall: |
| 2392 | case TailCallVarargs: |
| 2393 | case Throw: |
| 2394 | case CountExecution: |
| 2395 | case SuperSamplerBegin: |
| 2396 | case SuperSamplerEnd: |
| 2397 | case ForceOSRExit: |
| 2398 | case CheckBadCell: |
| 2399 | case CheckNotEmpty: |
| 2400 | case AssertNotEmpty: |
| 2401 | case CheckTraps: |
| 2402 | case Unreachable: |
| 2403 | case ExtractOSREntryLocal: |
| 2404 | case ExtractCatchLocal: |
| 2405 | case ClearCatchLocals: |
| 2406 | case LoopHint: |
| 2407 | case MovHint: |
| 2408 | case InitializeEntrypointArguments: |
| 2409 | case ZombieHint: |
| 2410 | case ExitOK: |
| 2411 | case BottomValue: |
| 2412 | case TypeOf: |
| 2413 | case PutByIdWithThis: |
| 2414 | case PutByValWithThis: |
| 2415 | case GetByValWithThis: |
| 2416 | case CompareEqPtr: |
| 2417 | case NumberToStringWithValidRadixConstant: |
| 2418 | case GetGlobalThis: |
| 2419 | case ExtractValueFromWeakMapGet: |
| 2420 | case CPUIntrinsic: |
| 2421 | case FilterCallLinkStatus: |
| 2422 | case FilterGetByIdStatus: |
| 2423 | case FilterPutByIdStatus: |
| 2424 | case FilterInByIdStatus: |
| 2425 | case InvalidationPoint: |
| 2426 | break; |
| 2427 | #else |
| 2428 | default: |
| 2429 | break; |
| 2430 | #endif |
| 2431 | } |
| 2432 | } |
| 2433 | |
| 2434 | void watchHavingABadTime(Node* node) |
| 2435 | { |
| 2436 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| 2437 | |
| 2438 | // If this global object is not having a bad time, watch it. We go down this path anytime the code |
| 2439 | // does an array allocation. The types of array allocations may change if we start to have a bad |
| 2440 | // time. It's easier to reason about this if we know that whenever the types change after we start |
| 2441 | // optimizing, the code just gets thrown out. Doing this at FixupPhase is just early enough, since |
| 2442 | // prior to this point nobody should have been doing optimizations based on the indexing type of |
| 2443 | // the allocation. |
| 2444 | if (!globalObject->isHavingABadTime()) { |
| 2445 | m_graph.watchpoints().addLazily(globalObject->havingABadTimeWatchpoint()); |
| 2446 | m_graph.freeze(globalObject); |
| 2447 | } |
| 2448 | } |
| 2449 | |
| 2450 | template<UseKind useKind> |
| 2451 | void createToString(Node* node, Edge& edge) |
| 2452 | { |
| 2453 | Node* toString = m_insertionSet.insertNode( |
| 2454 | m_indexInBlock, SpecString, ToString, node->origin, |
| 2455 | Edge(edge.node(), useKind)); |
| 2456 | switch (useKind) { |
| 2457 | case Int32Use: |
| 2458 | case Int52RepUse: |
| 2459 | case DoubleRepUse: |
| 2460 | case NotCellUse: |
| 2461 | toString->clearFlags(NodeMustGenerate); |
| 2462 | break; |
| 2463 | default: |
| 2464 | break; |
| 2465 | } |
| 2466 | edge.setNode(toString); |
| 2467 | } |
| 2468 | |
| 2469 | template<UseKind useKind> |
| 2470 | void attemptToForceStringArrayModeByToStringConversion(ArrayMode& arrayMode, Node* node) |
| 2471 | { |
| 2472 | ASSERT(arrayMode == ArrayMode(Array::Generic, Array::Read) || arrayMode == ArrayMode(Array::Generic, Array::OriginalNonArray, Array::Read)); |
| 2473 | |
| 2474 | if (!m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) |
| 2475 | return; |
| 2476 | |
| 2477 | addCheckStructureForOriginalStringObjectUse(useKind, node->origin, node->child1().node()); |
| 2478 | createToString<useKind>(node, node->child1()); |
| 2479 | arrayMode = ArrayMode(Array::String, Array::Read); |
| 2480 | } |
| 2481 | |
| 2482 | void addCheckStructureForOriginalStringObjectUse(UseKind useKind, const NodeOrigin& origin, Node* node) |
| 2483 | { |
| 2484 | RELEASE_ASSERT(useKind == StringObjectUse || useKind == StringOrStringObjectUse); |
| 2485 | |
| 2486 | StructureSet set; |
| 2487 | set.add(m_graph.globalObjectFor(node->origin.semantic)->stringObjectStructure()); |
| 2488 | if (useKind == StringOrStringObjectUse) |
| 2489 | set.add(vm().stringStructure.get()); |
| 2490 | |
| 2491 | m_insertionSet.insertNode( |
| 2492 | m_indexInBlock, SpecNone, CheckStructure, origin, |
| 2493 | OpInfo(m_graph.addStructureSet(set)), Edge(node, CellUse)); |
| 2494 | } |
| 2495 | |
| 2496 | template<UseKind useKind> |
| 2497 | void convertStringAddUse(Node* node, Edge& edge) |
| 2498 | { |
| 2499 | if (useKind == StringUse) { |
| 2500 | observeUseKindOnNode<StringUse>(edge.node()); |
| 2501 | m_insertionSet.insertNode( |
| 2502 | m_indexInBlock, SpecNone, Check, node->origin, |
| 2503 | Edge(edge.node(), StringUse)); |
| 2504 | edge.setUseKind(KnownStringUse); |
| 2505 | return; |
| 2506 | } |
| 2507 | |
| 2508 | observeUseKindOnNode<useKind>(edge.node()); |
| 2509 | createToString<useKind>(node, edge); |
| 2510 | } |
| 2511 | |
| 2512 | void convertToMakeRope(Node* node) |
| 2513 | { |
| 2514 | node->setOpAndDefaultFlags(MakeRope); |
| 2515 | fixupMakeRope(node); |
| 2516 | } |
| 2517 | |
| 2518 | void fixupMakeRope(Node* node) |
| 2519 | { |
| 2520 | for (unsigned i = 0; i < AdjacencyList::Size; ++i) { |
| 2521 | Edge& edge = node->children.child(i); |
| 2522 | if (!edge) |
| 2523 | break; |
| 2524 | edge.setUseKind(KnownStringUse); |
| 2525 | JSString* string = edge->dynamicCastConstant<JSString*>(vm()); |
| 2526 | if (!string) |
| 2527 | continue; |
| 2528 | if (string->length()) |
| 2529 | continue; |
| 2530 | |
| 2531 | // Don't allow the MakeRope to have zero children. |
| 2532 | if (!i && !node->child2()) |
| 2533 | break; |
| 2534 | |
| 2535 | node->children.removeEdge(i--); |
| 2536 | } |
| 2537 | |
| 2538 | if (!node->child2()) { |
| 2539 | ASSERT(!node->child3()); |
| 2540 | node->convertToIdentity(); |
| 2541 | } |
| 2542 | } |
| 2543 | |
| 2544 | void fixupIsCellWithType(Node* node) |
| 2545 | { |
| 2546 | switch (node->speculatedTypeForQuery()) { |
| 2547 | case SpecString: |
| 2548 | if (node->child1()->shouldSpeculateString()) { |
| 2549 | m_insertionSet.insertNode( |
| 2550 | m_indexInBlock, SpecNone, Check, node->origin, |
| 2551 | Edge(node->child1().node(), StringUse)); |
| 2552 | m_graph.convertToConstant(node, jsBoolean(true)); |
| 2553 | observeUseKindOnNode<StringUse>(node); |
| 2554 | return; |
| 2555 | } |
| 2556 | break; |
| 2557 | |
| 2558 | case SpecProxyObject: |
| 2559 | if (node->child1()->shouldSpeculateProxyObject()) { |
| 2560 | m_insertionSet.insertNode( |
| 2561 | m_indexInBlock, SpecNone, Check, node->origin, |
| 2562 | Edge(node->child1().node(), ProxyObjectUse)); |
| 2563 | m_graph.convertToConstant(node, jsBoolean(true)); |
| 2564 | observeUseKindOnNode<ProxyObjectUse>(node); |
| 2565 | return; |
| 2566 | } |
| 2567 | break; |
| 2568 | |
| 2569 | case SpecRegExpObject: |
| 2570 | if (node->child1()->shouldSpeculateRegExpObject()) { |
| 2571 | m_insertionSet.insertNode( |
| 2572 | m_indexInBlock, SpecNone, Check, node->origin, |
| 2573 | Edge(node->child1().node(), RegExpObjectUse)); |
| 2574 | m_graph.convertToConstant(node, jsBoolean(true)); |
| 2575 | observeUseKindOnNode<RegExpObjectUse>(node); |
| 2576 | return; |
| 2577 | } |
| 2578 | break; |
| 2579 | |
| 2580 | case SpecArray: |
| 2581 | if (node->child1()->shouldSpeculateArray()) { |
| 2582 | m_insertionSet.insertNode( |
| 2583 | m_indexInBlock, SpecNone, Check, node->origin, |
| 2584 | Edge(node->child1().node(), ArrayUse)); |
| 2585 | m_graph.convertToConstant(node, jsBoolean(true)); |
| 2586 | observeUseKindOnNode<ArrayUse>(node); |
| 2587 | return; |
| 2588 | } |
| 2589 | break; |
| 2590 | |
| 2591 | case SpecDerivedArray: |
| 2592 | if (node->child1()->shouldSpeculateDerivedArray()) { |
| 2593 | m_insertionSet.insertNode( |
| 2594 | m_indexInBlock, SpecNone, Check, node->origin, |
| 2595 | Edge(node->child1().node(), DerivedArrayUse)); |
| 2596 | m_graph.convertToConstant(node, jsBoolean(true)); |
| 2597 | observeUseKindOnNode<DerivedArrayUse>(node); |
| 2598 | return; |
| 2599 | } |
| 2600 | break; |
| 2601 | } |
| 2602 | |
| 2603 | if (node->child1()->shouldSpeculateCell()) { |
| 2604 | fixEdge<CellUse>(node->child1()); |
| 2605 | return; |
| 2606 | } |
| 2607 | |
| 2608 | if (node->child1()->shouldSpeculateNotCell()) { |
| 2609 | m_insertionSet.insertNode( |
| 2610 | m_indexInBlock, SpecNone, Check, node->origin, |
| 2611 | Edge(node->child1().node(), NotCellUse)); |
| 2612 | m_graph.convertToConstant(node, jsBoolean(false)); |
| 2613 | observeUseKindOnNode<NotCellUse>(node); |
| 2614 | return; |
| 2615 | } |
| 2616 | } |
| 2617 | |
| 2618 | void fixupGetPrototypeOf(Node* node) |
| 2619 | { |
| 2620 | // Reflect.getPrototypeOf only accepts Objects. For Reflect.getPrototypeOf, ByteCodeParser attaches ObjectUse edge filter before fixup phase. |
| 2621 | if (node->child1().useKind() != ObjectUse) { |
| 2622 | if (node->child1()->shouldSpeculateString()) { |
| 2623 | insertCheck<StringUse>(node->child1().node()); |
| 2624 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->stringPrototype())); |
| 2625 | return; |
| 2626 | } |
| 2627 | if (node->child1()->shouldSpeculateInt32()) { |
| 2628 | insertCheck<Int32Use>(node->child1().node()); |
| 2629 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->numberPrototype())); |
| 2630 | return; |
| 2631 | } |
| 2632 | if (node->child1()->shouldSpeculateInt52()) { |
| 2633 | insertCheck<Int52RepUse>(node->child1().node()); |
| 2634 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->numberPrototype())); |
| 2635 | return; |
| 2636 | } |
| 2637 | if (node->child1()->shouldSpeculateNumber()) { |
| 2638 | insertCheck<NumberUse>(node->child1().node()); |
| 2639 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->numberPrototype())); |
| 2640 | return; |
| 2641 | } |
| 2642 | if (node->child1()->shouldSpeculateSymbol()) { |
| 2643 | insertCheck<SymbolUse>(node->child1().node()); |
| 2644 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->symbolPrototype())); |
| 2645 | return; |
| 2646 | } |
| 2647 | if (node->child1()->shouldSpeculateBoolean()) { |
| 2648 | insertCheck<BooleanUse>(node->child1().node()); |
| 2649 | m_graph.convertToConstant(node, m_graph.freeze(m_graph.globalObjectFor(node->origin.semantic)->booleanPrototype())); |
| 2650 | return; |
| 2651 | } |
| 2652 | } |
| 2653 | |
| 2654 | if (node->child1()->shouldSpeculateFinalObject()) { |
| 2655 | fixEdge<FinalObjectUse>(node->child1()); |
| 2656 | node->clearFlags(NodeMustGenerate); |
| 2657 | return; |
| 2658 | } |
| 2659 | if (node->child1()->shouldSpeculateArray()) { |
| 2660 | fixEdge<ArrayUse>(node->child1()); |
| 2661 | node->clearFlags(NodeMustGenerate); |
| 2662 | return; |
| 2663 | } |
| 2664 | if (node->child1()->shouldSpeculateFunction()) { |
| 2665 | fixEdge<FunctionUse>(node->child1()); |
| 2666 | node->clearFlags(NodeMustGenerate); |
| 2667 | return; |
| 2668 | } |
| 2669 | } |
| 2670 | |
| 2671 | void fixupToThis(Node* node) |
| 2672 | { |
| 2673 | bool isStrictMode = m_graph.isStrictModeFor(node->origin.semantic); |
| 2674 | |
| 2675 | if (isStrictMode) { |
| 2676 | if (node->child1()->shouldSpeculateBoolean()) { |
| 2677 | fixEdge<BooleanUse>(node->child1()); |
| 2678 | node->convertToIdentity(); |
| 2679 | return; |
| 2680 | } |
| 2681 | |
| 2682 | if (node->child1()->shouldSpeculateInt32()) { |
| 2683 | fixEdge<Int32Use>(node->child1()); |
| 2684 | node->convertToIdentity(); |
| 2685 | return; |
| 2686 | } |
| 2687 | |
| 2688 | if (node->child1()->shouldSpeculateInt52()) { |
| 2689 | fixEdge<Int52RepUse>(node->child1()); |
| 2690 | node->convertToIdentity(); |
| 2691 | node->setResult(NodeResultInt52); |
| 2692 | return; |
| 2693 | } |
| 2694 | |
| 2695 | if (node->child1()->shouldSpeculateNumber()) { |
| 2696 | fixEdge<DoubleRepUse>(node->child1()); |
| 2697 | node->convertToIdentity(); |
| 2698 | node->setResult(NodeResultDouble); |
| 2699 | return; |
| 2700 | } |
| 2701 | |
| 2702 | if (node->child1()->shouldSpeculateSymbol()) { |
| 2703 | fixEdge<SymbolUse>(node->child1()); |
| 2704 | node->convertToIdentity(); |
| 2705 | return; |
| 2706 | } |
| 2707 | |
| 2708 | if (node->child1()->shouldSpeculateStringIdent()) { |
| 2709 | fixEdge<StringIdentUse>(node->child1()); |
| 2710 | node->convertToIdentity(); |
| 2711 | return; |
| 2712 | } |
| 2713 | |
| 2714 | if (node->child1()->shouldSpeculateString()) { |
| 2715 | fixEdge<StringUse>(node->child1()); |
| 2716 | node->convertToIdentity(); |
| 2717 | return; |
| 2718 | } |
| 2719 | |
| 2720 | if (node->child1()->shouldSpeculateBigInt()) { |
| 2721 | fixEdge<BigIntUse>(node->child1()); |
| 2722 | node->convertToIdentity(); |
| 2723 | return; |
| 2724 | } |
| 2725 | } |
| 2726 | |
| 2727 | if (node->child1()->shouldSpeculateOther()) { |
| 2728 | if (isStrictMode) { |
| 2729 | fixEdge<OtherUse>(node->child1()); |
| 2730 | node->convertToIdentity(); |
| 2731 | return; |
| 2732 | } |
| 2733 | |
| 2734 | m_insertionSet.insertNode( |
| 2735 | m_indexInBlock, SpecNone, Check, node->origin, |
| 2736 | Edge(node->child1().node(), OtherUse)); |
| 2737 | observeUseKindOnNode<OtherUse>(node->child1().node()); |
| 2738 | m_graph.convertToConstant( |
| 2739 | node, m_graph.globalThisObjectFor(node->origin.semantic)); |
| 2740 | return; |
| 2741 | } |
| 2742 | |
| 2743 | // FIXME: This should cover other use cases but we don't have use kinds for them. It's not critical, |
| 2744 | // however, since we cover all the missing cases in constant folding. |
| 2745 | // https://bugs.webkit.org/show_bug.cgi?id=157213 |
| 2746 | if (node->child1()->shouldSpeculateStringObject()) { |
| 2747 | fixEdge<StringObjectUse>(node->child1()); |
| 2748 | node->convertToIdentity(); |
| 2749 | return; |
| 2750 | } |
| 2751 | |
| 2752 | if (isFinalObjectSpeculation(node->child1()->prediction())) { |
| 2753 | fixEdge<FinalObjectUse>(node->child1()); |
| 2754 | node->convertToIdentity(); |
| 2755 | return; |
| 2756 | } |
| 2757 | } |
| 2758 | |
| 2759 | void fixupToPrimitive(Node* node) |
| 2760 | { |
| 2761 | if (node->child1()->shouldSpeculateInt32()) { |
| 2762 | fixEdge<Int32Use>(node->child1()); |
| 2763 | node->convertToIdentity(); |
| 2764 | return; |
| 2765 | } |
| 2766 | |
| 2767 | if (node->child1()->shouldSpeculateString()) { |
| 2768 | fixEdge<StringUse>(node->child1()); |
| 2769 | node->convertToIdentity(); |
| 2770 | return; |
| 2771 | } |
| 2772 | |
| 2773 | if (node->child1()->shouldSpeculateStringObject() |
| 2774 | && m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
| 2775 | addCheckStructureForOriginalStringObjectUse(StringObjectUse, node->origin, node->child1().node()); |
| 2776 | fixEdge<StringObjectUse>(node->child1()); |
| 2777 | node->convertToToString(); |
| 2778 | return; |
| 2779 | } |
| 2780 | |
| 2781 | if (node->child1()->shouldSpeculateStringOrStringObject() |
| 2782 | && m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
| 2783 | addCheckStructureForOriginalStringObjectUse(StringOrStringObjectUse, node->origin, node->child1().node()); |
| 2784 | fixEdge<StringOrStringObjectUse>(node->child1()); |
| 2785 | node->convertToToString(); |
| 2786 | return; |
| 2787 | } |
| 2788 | } |
| 2789 | |
| 2790 | void fixupToNumber(Node* node) |
| 2791 | { |
| 2792 | // If the prediction of the child is Number, we attempt to convert ToNumber to Identity. |
| 2793 | if (node->child1()->shouldSpeculateNumber()) { |
| 2794 | if (isInt32Speculation(node->getHeapPrediction())) { |
| 2795 | // If the both predictions of this node and the child is Int32, we just convert ToNumber to Identity, that's simple. |
| 2796 | if (node->child1()->shouldSpeculateInt32()) { |
| 2797 | fixEdge<Int32Use>(node->child1()); |
| 2798 | node->convertToIdentity(); |
| 2799 | return; |
| 2800 | } |
| 2801 | |
| 2802 | // The another case is that the predicted type of the child is Int32, but the heap prediction tell the users that this will produce non Int32 values. |
| 2803 | // In that case, let's receive the child value as a Double value and convert it to Int32. This case happens in misc-bugs-847389-jpeg2000. |
| 2804 | fixEdge<DoubleRepUse>(node->child1()); |
| 2805 | node->setOp(DoubleAsInt32); |
| 2806 | if (bytecodeCanIgnoreNegativeZero(node->arithNodeFlags())) |
| 2807 | node->setArithMode(Arith::CheckOverflow); |
| 2808 | else |
| 2809 | node->setArithMode(Arith::CheckOverflowAndNegativeZero); |
| 2810 | return; |
| 2811 | } |
| 2812 | |
| 2813 | fixEdge<DoubleRepUse>(node->child1()); |
| 2814 | node->convertToIdentity(); |
| 2815 | node->setResult(NodeResultDouble); |
| 2816 | return; |
| 2817 | } |
| 2818 | |
| 2819 | fixEdge<UntypedUse>(node->child1()); |
| 2820 | node->setResult(NodeResultJS); |
| 2821 | } |
| 2822 | |
| 2823 | void fixupToObject(Node* node) |
| 2824 | { |
| 2825 | if (node->child1()->shouldSpeculateObject()) { |
| 2826 | fixEdge<ObjectUse>(node->child1()); |
| 2827 | node->convertToIdentity(); |
| 2828 | return; |
| 2829 | } |
| 2830 | |
| 2831 | // ToObject(Null/Undefined) can throw an error. We can emit filters to convert ToObject to CallObjectConstructor. |
| 2832 | |
| 2833 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| 2834 | |
| 2835 | if (node->child1()->shouldSpeculateString()) { |
| 2836 | insertCheck<StringUse>(node->child1().node()); |
| 2837 | fixEdge<KnownStringUse>(node->child1()); |
| 2838 | node->convertToNewStringObject(m_graph.registerStructure(globalObject->stringObjectStructure())); |
| 2839 | return; |
| 2840 | } |
| 2841 | |
| 2842 | if (node->child1()->shouldSpeculateSymbol()) { |
| 2843 | insertCheck<SymbolUse>(node->child1().node()); |
| 2844 | node->convertToCallObjectConstructor(m_graph.freeze(globalObject)); |
| 2845 | return; |
| 2846 | } |
| 2847 | |
| 2848 | if (node->child1()->shouldSpeculateNumber()) { |
| 2849 | insertCheck<NumberUse>(node->child1().node()); |
| 2850 | node->convertToCallObjectConstructor(m_graph.freeze(globalObject)); |
| 2851 | return; |
| 2852 | } |
| 2853 | |
| 2854 | if (node->child1()->shouldSpeculateBoolean()) { |
| 2855 | insertCheck<BooleanUse>(node->child1().node()); |
| 2856 | node->convertToCallObjectConstructor(m_graph.freeze(globalObject)); |
| 2857 | return; |
| 2858 | } |
| 2859 | |
| 2860 | fixEdge<UntypedUse>(node->child1()); |
| 2861 | } |
| 2862 | |
| 2863 | void fixupCallObjectConstructor(Node* node) |
| 2864 | { |
| 2865 | if (node->child1()->shouldSpeculateObject()) { |
| 2866 | fixEdge<ObjectUse>(node->child1()); |
| 2867 | node->convertToIdentity(); |
| 2868 | return; |
| 2869 | } |
| 2870 | |
| 2871 | if (node->child1()->shouldSpeculateString()) { |
| 2872 | auto* globalObject = jsCast<JSGlobalObject*>(node->cellOperand()->cell()); |
| 2873 | insertCheck<StringUse>(node->child1().node()); |
| 2874 | fixEdge<KnownStringUse>(node->child1()); |
| 2875 | node->convertToNewStringObject(m_graph.registerStructure(globalObject->stringObjectStructure())); |
| 2876 | return; |
| 2877 | } |
| 2878 | |
| 2879 | // While ToObject(Null/Undefined) throws an error, CallObjectConstructor(Null/Undefined) generates a new empty object. |
| 2880 | if (node->child1()->shouldSpeculateOther()) { |
| 2881 | insertCheck<OtherUse>(node->child1().node()); |
| 2882 | node->convertToNewObject(m_graph.registerStructure(jsCast<JSGlobalObject*>(node->cellOperand()->cell())->objectStructureForObjectConstructor())); |
| 2883 | return; |
| 2884 | } |
| 2885 | |
| 2886 | fixEdge<UntypedUse>(node->child1()); |
| 2887 | } |
| 2888 | |
| 2889 | void fixupToStringOrCallStringConstructor(Node* node) |
| 2890 | { |
| 2891 | if (node->child1()->shouldSpeculateString()) { |
| 2892 | fixEdge<StringUse>(node->child1()); |
| 2893 | node->convertToIdentity(); |
| 2894 | return; |
| 2895 | } |
| 2896 | |
| 2897 | if (node->child1()->shouldSpeculateStringObject() |
| 2898 | && m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
| 2899 | addCheckStructureForOriginalStringObjectUse(StringObjectUse, node->origin, node->child1().node()); |
| 2900 | fixEdge<StringObjectUse>(node->child1()); |
| 2901 | return; |
| 2902 | } |
| 2903 | |
| 2904 | if (node->child1()->shouldSpeculateStringOrStringObject() |
| 2905 | && m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
| 2906 | addCheckStructureForOriginalStringObjectUse(StringOrStringObjectUse, node->origin, node->child1().node()); |
| 2907 | fixEdge<StringOrStringObjectUse>(node->child1()); |
| 2908 | return; |
| 2909 | } |
| 2910 | |
| 2911 | if (node->child1()->shouldSpeculateCell()) { |
| 2912 | fixEdge<CellUse>(node->child1()); |
| 2913 | return; |
| 2914 | } |
| 2915 | |
| 2916 | if (node->child1()->shouldSpeculateInt32()) { |
| 2917 | fixEdge<Int32Use>(node->child1()); |
| 2918 | node->clearFlags(NodeMustGenerate); |
| 2919 | return; |
| 2920 | } |
| 2921 | |
| 2922 | if (node->child1()->shouldSpeculateInt52()) { |
| 2923 | fixEdge<Int52RepUse>(node->child1()); |
| 2924 | node->clearFlags(NodeMustGenerate); |
| 2925 | return; |
| 2926 | } |
| 2927 | |
| 2928 | if (node->child1()->shouldSpeculateNumber()) { |
| 2929 | fixEdge<DoubleRepUse>(node->child1()); |
| 2930 | node->clearFlags(NodeMustGenerate); |
| 2931 | return; |
| 2932 | } |
| 2933 | |
| 2934 | // ToString(Symbol) throws an error. So if the child1 can include Symbols, |
| 2935 | // we need to care about it in the clobberize. In the following case, |
| 2936 | // since NotCellUse edge filter is used and this edge filters Symbols, |
| 2937 | // we can say that ToString never throws an error! |
| 2938 | if (node->child1()->shouldSpeculateNotCell()) { |
| 2939 | fixEdge<NotCellUse>(node->child1()); |
| 2940 | node->clearFlags(NodeMustGenerate); |
| 2941 | return; |
| 2942 | } |
| 2943 | } |
| 2944 | |
| 2945 | void fixupStringValueOf(Node* node) |
| 2946 | { |
| 2947 | if (node->child1()->shouldSpeculateString()) { |
| 2948 | fixEdge<StringUse>(node->child1()); |
| 2949 | node->convertToIdentity(); |
| 2950 | return; |
| 2951 | } |
| 2952 | |
| 2953 | if (node->child1()->shouldSpeculateStringObject()) { |
| 2954 | fixEdge<StringObjectUse>(node->child1()); |
| 2955 | node->convertToToString(); |
| 2956 | // It does not need to look up a toString property for the StringObject case. So we can clear NodeMustGenerate. |
| 2957 | node->clearFlags(NodeMustGenerate); |
| 2958 | return; |
| 2959 | } |
| 2960 | |
| 2961 | if (node->child1()->shouldSpeculateStringOrStringObject()) { |
| 2962 | fixEdge<StringOrStringObjectUse>(node->child1()); |
| 2963 | node->convertToToString(); |
| 2964 | // It does not need to look up a toString property for the StringObject case. So we can clear NodeMustGenerate. |
| 2965 | node->clearFlags(NodeMustGenerate); |
| 2966 | return; |
| 2967 | } |
| 2968 | } |
| 2969 | |
| 2970 | bool attemptToMakeFastStringAdd(Node* node) |
| 2971 | { |
| 2972 | bool goodToGo = true; |
| 2973 | m_graph.doToChildren( |
| 2974 | node, |
| 2975 | [&] (Edge& edge) { |
| 2976 | if (edge->shouldSpeculateString()) |
| 2977 | return; |
| 2978 | if (m_graph.canOptimizeStringObjectAccess(node->origin.semantic)) { |
| 2979 | if (edge->shouldSpeculateStringObject()) |
| 2980 | return; |
| 2981 | if (edge->shouldSpeculateStringOrStringObject()) |
| 2982 | return; |
| 2983 | } |
| 2984 | goodToGo = false; |
| 2985 | }); |
| 2986 | if (!goodToGo) |
| 2987 | return false; |
| 2988 | |
| 2989 | m_graph.doToChildren( |
| 2990 | node, |
| 2991 | [&] (Edge& edge) { |
| 2992 | if (edge->shouldSpeculateString()) { |
| 2993 | convertStringAddUse<StringUse>(node, edge); |
| 2994 | return; |
| 2995 | } |
| 2996 | if (!Options::useConcurrentJIT()) |
| 2997 | ASSERT(m_graph.canOptimizeStringObjectAccess(node->origin.semantic)); |
| 2998 | if (edge->shouldSpeculateStringObject()) { |
| 2999 | addCheckStructureForOriginalStringObjectUse(StringObjectUse, node->origin, edge.node()); |
| 3000 | convertStringAddUse<StringObjectUse>(node, edge); |
| 3001 | return; |
| 3002 | } |
| 3003 | if (edge->shouldSpeculateStringOrStringObject()) { |
| 3004 | addCheckStructureForOriginalStringObjectUse(StringOrStringObjectUse, node->origin, edge.node()); |
| 3005 | convertStringAddUse<StringOrStringObjectUse>(node, edge); |
| 3006 | return; |
| 3007 | } |
| 3008 | RELEASE_ASSERT_NOT_REACHED(); |
| 3009 | }); |
| 3010 | |
| 3011 | convertToMakeRope(node); |
| 3012 | return true; |
| 3013 | } |
| 3014 | |
| 3015 | void fixupGetAndSetLocalsInBlock(BasicBlock* block) |
| 3016 | { |
| 3017 | if (!block) |
| 3018 | return; |
| 3019 | ASSERT(block->isReachable); |
| 3020 | m_block = block; |
| 3021 | for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) { |
| 3022 | Node* node = m_currentNode = block->at(m_indexInBlock); |
| 3023 | if (node->op() != SetLocal && node->op() != GetLocal) |
| 3024 | continue; |
| 3025 | |
| 3026 | VariableAccessData* variable = node->variableAccessData(); |
| 3027 | switch (node->op()) { |
| 3028 | case GetLocal: |
| 3029 | switch (variable->flushFormat()) { |
| 3030 | case FlushedDouble: |
| 3031 | node->setResult(NodeResultDouble); |
| 3032 | break; |
| 3033 | case FlushedInt52: |
| 3034 | node->setResult(NodeResultInt52); |
| 3035 | break; |
| 3036 | default: |
| 3037 | break; |
| 3038 | } |
| 3039 | break; |
| 3040 | |
| 3041 | case SetLocal: |
| 3042 | // NOTE: Any type checks we put here may get hoisted by fixupChecksInBlock(). So, if we |
| 3043 | // add new type checking use kind for SetLocals, we need to modify that code as well. |
| 3044 | |
| 3045 | switch (variable->flushFormat()) { |
| 3046 | case FlushedJSValue: |
| 3047 | break; |
| 3048 | case FlushedDouble: |
| 3049 | fixEdge<DoubleRepUse>(node->child1()); |
| 3050 | break; |
| 3051 | case FlushedInt32: |
| 3052 | fixEdge<Int32Use>(node->child1()); |
| 3053 | break; |
| 3054 | case FlushedInt52: |
| 3055 | fixEdge<Int52RepUse>(node->child1()); |
| 3056 | break; |
| 3057 | case FlushedCell: |
| 3058 | fixEdge<CellUse>(node->child1()); |
| 3059 | break; |
| 3060 | case FlushedBoolean: |
| 3061 | fixEdge<BooleanUse>(node->child1()); |
| 3062 | break; |
| 3063 | default: |
| 3064 | RELEASE_ASSERT_NOT_REACHED(); |
| 3065 | break; |
| 3066 | } |
| 3067 | break; |
| 3068 | |
| 3069 | default: |
| 3070 | RELEASE_ASSERT_NOT_REACHED(); |
| 3071 | break; |
| 3072 | } |
| 3073 | } |
| 3074 | m_insertionSet.execute(block); |
| 3075 | } |
| 3076 | |
| 3077 | void addStringReplacePrimordialChecks(Node* searchRegExp) |
| 3078 | { |
| 3079 | Node* node = m_currentNode; |
| 3080 | |
| 3081 | // Check that structure of searchRegExp is RegExp object |
| 3082 | m_insertionSet.insertNode( |
| 3083 | m_indexInBlock, SpecNone, Check, node->origin, |
| 3084 | Edge(searchRegExp, RegExpObjectUse)); |
| 3085 | |
| 3086 | auto emitPrimordialCheckFor = [&] (JSValue primordialProperty, UniquedStringImpl* propertyUID) { |
| 3087 | unsigned index = m_graph.identifiers().ensure(propertyUID); |
| 3088 | |
| 3089 | Node* actualProperty = m_insertionSet.insertNode( |
| 3090 | m_indexInBlock, SpecNone, TryGetById, node->origin, |
| 3091 | OpInfo(index), OpInfo(SpecFunction), Edge(searchRegExp, CellUse)); |
| 3092 | |
| 3093 | m_insertionSet.insertNode( |
| 3094 | m_indexInBlock, SpecNone, CheckCell, node->origin, |
| 3095 | OpInfo(m_graph.freeze(primordialProperty)), Edge(actualProperty, CellUse)); |
| 3096 | }; |
| 3097 | |
| 3098 | JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| 3099 | |
| 3100 | // Check that searchRegExp.exec is the primordial RegExp.prototype.exec |
| 3101 | emitPrimordialCheckFor(globalObject->regExpProtoExecFunction(), vm().propertyNames->exec.impl()); |
| 3102 | // Check that searchRegExp.global is the primordial RegExp.prototype.global |
| 3103 | emitPrimordialCheckFor(globalObject->regExpProtoGlobalGetter(), vm().propertyNames->global.impl()); |
| 3104 | // Check that searchRegExp.unicode is the primordial RegExp.prototype.unicode |
| 3105 | emitPrimordialCheckFor(globalObject->regExpProtoUnicodeGetter(), vm().propertyNames->unicode.impl()); |
| 3106 | // Check that searchRegExp[Symbol.match] is the primordial RegExp.prototype[Symbol.replace] |
| 3107 | emitPrimordialCheckFor(globalObject->regExpProtoSymbolReplaceFunction(), vm().propertyNames->replaceSymbol.impl()); |
| 3108 | } |
| 3109 | |
| 3110 | Node* checkArray(ArrayMode arrayMode, const NodeOrigin& origin, Node* array, Node* index, bool (*storageCheck)(const ArrayMode&) = canCSEStorage) |
| 3111 | { |
| 3112 | ASSERT(arrayMode.isSpecific()); |
| 3113 | |
| 3114 | if (arrayMode.type() == Array::String) { |
| 3115 | m_insertionSet.insertNode( |
| 3116 | m_indexInBlock, SpecNone, Check, origin, Edge(array, StringUse)); |
| 3117 | } else { |
| 3118 | // Note that we only need to be using a structure check if we opt for SaneChain, since |
| 3119 | // that needs to protect against JSArray's __proto__ being changed. |
| 3120 | Structure* structure = arrayMode.originalArrayStructure(m_graph, origin.semantic); |
| 3121 | |
| 3122 | Edge indexEdge = index ? Edge(index, Int32Use) : Edge(); |
| 3123 | |
| 3124 | if (arrayMode.doesConversion()) { |
| 3125 | if (structure) { |
| 3126 | m_insertionSet.insertNode( |
| 3127 | m_indexInBlock, SpecNone, ArrayifyToStructure, origin, |
| 3128 | OpInfo(m_graph.registerStructure(structure)), OpInfo(arrayMode.asWord()), Edge(array, CellUse), indexEdge); |
| 3129 | } else { |
| 3130 | m_insertionSet.insertNode( |
| 3131 | m_indexInBlock, SpecNone, Arrayify, origin, |
| 3132 | OpInfo(arrayMode.asWord()), Edge(array, CellUse), indexEdge); |
| 3133 | } |
| 3134 | } else { |
| 3135 | if (structure) { |
| 3136 | m_insertionSet.insertNode( |
| 3137 | m_indexInBlock, SpecNone, CheckStructure, origin, |
| 3138 | OpInfo(m_graph.addStructureSet(structure)), Edge(array, CellUse)); |
| 3139 | } else { |
| 3140 | m_insertionSet.insertNode( |
| 3141 | m_indexInBlock, SpecNone, CheckArray, origin, |
| 3142 | OpInfo(arrayMode.asWord()), Edge(array, CellUse)); |
| 3143 | } |
| 3144 | } |
| 3145 | } |
| 3146 | |
| 3147 | if (!storageCheck(arrayMode)) |
| 3148 | return nullptr; |
| 3149 | |
| 3150 | if (arrayMode.usesButterfly()) { |
| 3151 | return m_insertionSet.insertNode( |
| 3152 | m_indexInBlock, SpecNone, GetButterfly, origin, Edge(array, CellUse)); |
| 3153 | } |
| 3154 | |
| 3155 | return m_insertionSet.insertNode( |
| 3156 | m_indexInBlock, SpecNone, GetIndexedPropertyStorage, origin, |
| 3157 | OpInfo(arrayMode.asWord()), Edge(array, KnownCellUse)); |
| 3158 | } |
| 3159 | |
| 3160 | void blessArrayOperation(Edge base, Edge index, Edge& storageChild) |
| 3161 | { |
| 3162 | Node* node = m_currentNode; |
| 3163 | |
| 3164 | switch (node->arrayMode().type()) { |
| 3165 | case Array::ForceExit: { |
| 3166 | m_insertionSet.insertNode( |
| 3167 | m_indexInBlock, SpecNone, ForceOSRExit, node->origin); |
| 3168 | return; |
| 3169 | } |
| 3170 | |
| 3171 | case Array::SelectUsingPredictions: |
| 3172 | case Array::Unprofiled: |
| 3173 | RELEASE_ASSERT_NOT_REACHED(); |
| 3174 | return; |
| 3175 | |
| 3176 | case Array::Generic: |
| 3177 | return; |
| 3178 | |
| 3179 | default: { |
| 3180 | Node* storage = checkArray(node->arrayMode(), node->origin, base.node(), index.node()); |
| 3181 | if (!storage) |
| 3182 | return; |
| 3183 | |
| 3184 | storageChild = Edge(storage); |
| 3185 | return; |
| 3186 | } } |
| 3187 | } |
| 3188 | |
| 3189 | bool alwaysUnboxSimplePrimitives() |
| 3190 | { |
| 3191 | #if USE(JSVALUE64) |
| 3192 | return false; |
| 3193 | #else |
| 3194 | // Any boolean, int, or cell value is profitable to unbox on 32-bit because it |
| 3195 | // reduces traffic. |
| 3196 | return true; |
| 3197 | #endif |
| 3198 | } |
| 3199 | |
| 3200 | template<UseKind useKind> |
| 3201 | void observeUseKindOnNode(Node* node) |
| 3202 | { |
| 3203 | if (useKind == UntypedUse) |
| 3204 | return; |
| 3205 | observeUseKindOnNode(node, useKind); |
| 3206 | } |
| 3207 | |
| 3208 | void observeUseKindOnEdge(Edge edge) |
| 3209 | { |
| 3210 | observeUseKindOnNode(edge.node(), edge.useKind()); |
| 3211 | } |
| 3212 | |
| 3213 | void observeUseKindOnNode(Node* node, UseKind useKind) |
| 3214 | { |
| 3215 | if (node->op() != GetLocal) |
| 3216 | return; |
| 3217 | |
| 3218 | // FIXME: The way this uses alwaysUnboxSimplePrimitives() is suspicious. |
| 3219 | // https://bugs.webkit.org/show_bug.cgi?id=121518 |
| 3220 | |
| 3221 | VariableAccessData* variable = node->variableAccessData(); |
| 3222 | switch (useKind) { |
| 3223 | case Int32Use: |
| 3224 | case KnownInt32Use: |
| 3225 | if (alwaysUnboxSimplePrimitives() |
| 3226 | || isInt32Speculation(variable->prediction())) |
| 3227 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 3228 | break; |
| 3229 | case NumberUse: |
| 3230 | case RealNumberUse: |
| 3231 | case DoubleRepUse: |
| 3232 | case DoubleRepRealUse: |
| 3233 | if (variable->doubleFormatState() == UsingDoubleFormat) |
| 3234 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 3235 | break; |
| 3236 | case BooleanUse: |
| 3237 | case KnownBooleanUse: |
| 3238 | if (alwaysUnboxSimplePrimitives() |
| 3239 | || isBooleanSpeculation(variable->prediction())) |
| 3240 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 3241 | break; |
| 3242 | case Int52RepUse: |
| 3243 | if (!isInt32Speculation(variable->prediction()) && isInt32OrInt52Speculation(variable->prediction())) |
| 3244 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 3245 | break; |
| 3246 | case CellUse: |
| 3247 | case KnownCellUse: |
| 3248 | case ObjectUse: |
| 3249 | case FunctionUse: |
| 3250 | case StringUse: |
| 3251 | case KnownStringUse: |
| 3252 | case SymbolUse: |
| 3253 | case BigIntUse: |
| 3254 | case StringObjectUse: |
| 3255 | case StringOrStringObjectUse: |
| 3256 | if (alwaysUnboxSimplePrimitives() |
| 3257 | || isCellSpeculation(variable->prediction())) |
| 3258 | m_profitabilityChanged |= variable->mergeIsProfitableToUnbox(true); |
| 3259 | break; |
| 3260 | default: |
| 3261 | break; |
| 3262 | } |
| 3263 | } |
| 3264 | |
| 3265 | template<UseKind useKind> |
| 3266 | void fixEdge(Edge& edge) |
| 3267 | { |
| 3268 | observeUseKindOnNode<useKind>(edge.node()); |
| 3269 | edge.setUseKind(useKind); |
| 3270 | } |
| 3271 | |
| 3272 | unsigned indexForChecks() |
| 3273 | { |
| 3274 | unsigned index = m_indexInBlock; |
| 3275 | while (!m_block->at(index)->origin.exitOK) |
| 3276 | index--; |
| 3277 | return index; |
| 3278 | } |
| 3279 | |
| 3280 | NodeOrigin originForCheck(unsigned index) |
| 3281 | { |
| 3282 | return m_block->at(index)->origin.withSemantic(m_currentNode->origin.semantic); |
| 3283 | } |
| 3284 | |
| 3285 | void speculateForBarrier(Edge value) |
| 3286 | { |
| 3287 | // Currently, the DFG won't take advantage of this speculation. But, we want to do it in |
| 3288 | // the DFG anyway because if such a speculation would be wrong, we want to know before |
| 3289 | // we do an expensive compile. |
| 3290 | |
| 3291 | if (value->shouldSpeculateInt32()) { |
| 3292 | insertCheck<Int32Use>(value.node()); |
| 3293 | return; |
| 3294 | } |
| 3295 | |
| 3296 | if (value->shouldSpeculateBoolean()) { |
| 3297 | insertCheck<BooleanUse>(value.node()); |
| 3298 | return; |
| 3299 | } |
| 3300 | |
| 3301 | if (value->shouldSpeculateOther()) { |
| 3302 | insertCheck<OtherUse>(value.node()); |
| 3303 | return; |
| 3304 | } |
| 3305 | |
| 3306 | if (value->shouldSpeculateNumber()) { |
| 3307 | insertCheck<NumberUse>(value.node()); |
| 3308 | return; |
| 3309 | } |
| 3310 | |
| 3311 | if (value->shouldSpeculateNotCell()) { |
| 3312 | insertCheck<NotCellUse>(value.node()); |
| 3313 | return; |
| 3314 | } |
| 3315 | } |
| 3316 | |
| 3317 | template<UseKind useKind> |
| 3318 | void insertCheck(Node* node) |
| 3319 | { |
| 3320 | observeUseKindOnNode<useKind>(node); |
| 3321 | unsigned index = indexForChecks(); |
| 3322 | m_insertionSet.insertNode(index, SpecNone, Check, originForCheck(index), Edge(node, useKind)); |
| 3323 | } |
| 3324 | |
| 3325 | void fixIntConvertingEdge(Edge& edge) |
| 3326 | { |
| 3327 | Node* node = edge.node(); |
| 3328 | if (node->shouldSpeculateInt32OrBoolean()) { |
| 3329 | fixIntOrBooleanEdge(edge); |
| 3330 | return; |
| 3331 | } |
| 3332 | |
| 3333 | UseKind useKind; |
| 3334 | if (node->shouldSpeculateInt52()) |
| 3335 | useKind = Int52RepUse; |
| 3336 | else if (node->shouldSpeculateNumber()) |
| 3337 | useKind = DoubleRepUse; |
| 3338 | else |
| 3339 | useKind = NotCellUse; |
| 3340 | Node* newNode = m_insertionSet.insertNode( |
| 3341 | m_indexInBlock, SpecInt32Only, ValueToInt32, m_currentNode->origin, |
| 3342 | Edge(node, useKind)); |
| 3343 | observeUseKindOnNode(node, useKind); |
| 3344 | |
| 3345 | edge = Edge(newNode, KnownInt32Use); |
| 3346 | } |
| 3347 | |
| 3348 | void fixIntOrBooleanEdge(Edge& edge) |
| 3349 | { |
| 3350 | Node* node = edge.node(); |
| 3351 | if (!node->sawBooleans()) { |
| 3352 | fixEdge<Int32Use>(edge); |
| 3353 | return; |
| 3354 | } |
| 3355 | |
| 3356 | UseKind useKind; |
| 3357 | if (node->shouldSpeculateBoolean()) |
| 3358 | useKind = BooleanUse; |
| 3359 | else |
| 3360 | useKind = UntypedUse; |
| 3361 | Node* newNode = m_insertionSet.insertNode( |
| 3362 | m_indexInBlock, SpecInt32Only, BooleanToNumber, m_currentNode->origin, |
| 3363 | Edge(node, useKind)); |
| 3364 | observeUseKindOnNode(node, useKind); |
| 3365 | |
| 3366 | edge = Edge(newNode, Int32Use); |
| 3367 | } |
| 3368 | |
| 3369 | void fixDoubleOrBooleanEdge(Edge& edge) |
| 3370 | { |
| 3371 | Node* node = edge.node(); |
| 3372 | if (!node->sawBooleans()) { |
| 3373 | fixEdge<DoubleRepUse>(edge); |
| 3374 | return; |
| 3375 | } |
| 3376 | |
| 3377 | UseKind useKind; |
| 3378 | if (node->shouldSpeculateBoolean()) |
| 3379 | useKind = BooleanUse; |
| 3380 | else |
| 3381 | useKind = UntypedUse; |
| 3382 | Node* newNode = m_insertionSet.insertNode( |
| 3383 | m_indexInBlock, SpecInt32Only, BooleanToNumber, m_currentNode->origin, |
| 3384 | Edge(node, useKind)); |
| 3385 | observeUseKindOnNode(node, useKind); |
| 3386 | |
| 3387 | edge = Edge(newNode, DoubleRepUse); |
| 3388 | } |
| 3389 | |
| 3390 | void truncateConstantToInt32(Edge& edge) |
| 3391 | { |
| 3392 | Node* oldNode = edge.node(); |
| 3393 | |
| 3394 | JSValue value = oldNode->asJSValue(); |
| 3395 | if (value.isInt32()) |
| 3396 | return; |
| 3397 | |
| 3398 | value = jsNumber(JSC::toInt32(value.asNumber())); |
| 3399 | ASSERT(value.isInt32()); |
| 3400 | edge.setNode(m_insertionSet.insertNode( |
| 3401 | m_indexInBlock, SpecInt32Only, JSConstant, m_currentNode->origin, |
| 3402 | OpInfo(m_graph.freeze(value)))); |
| 3403 | } |
| 3404 | |
| 3405 | void truncateConstantsIfNecessary(Node* node, AddSpeculationMode mode) |
| 3406 | { |
| 3407 | if (mode != SpeculateInt32AndTruncateConstants) |
| 3408 | return; |
| 3409 | |
| 3410 | ASSERT(node->child1()->hasConstant() || node->child2()->hasConstant()); |
| 3411 | if (node->child1()->hasConstant()) |
| 3412 | truncateConstantToInt32(node->child1()); |
| 3413 | else |
| 3414 | truncateConstantToInt32(node->child2()); |
| 3415 | } |
| 3416 | |
| 3417 | bool attemptToMakeIntegerAdd(Node* node) |
| 3418 | { |
| 3419 | AddSpeculationMode mode = m_graph.addSpeculationMode(node, FixupPass); |
| 3420 | if (mode != DontSpeculateInt32) { |
| 3421 | truncateConstantsIfNecessary(node, mode); |
| 3422 | fixIntOrBooleanEdge(node->child1()); |
| 3423 | fixIntOrBooleanEdge(node->child2()); |
| 3424 | if (bytecodeCanTruncateInteger(node->arithNodeFlags())) |
| 3425 | node->setArithMode(Arith::Unchecked); |
| 3426 | else |
| 3427 | node->setArithMode(Arith::CheckOverflow); |
| 3428 | return true; |
| 3429 | } |
| 3430 | |
| 3431 | if (m_graph.addShouldSpeculateInt52(node)) { |
| 3432 | fixEdge<Int52RepUse>(node->child1()); |
| 3433 | fixEdge<Int52RepUse>(node->child2()); |
| 3434 | node->setArithMode(Arith::CheckOverflow); |
| 3435 | node->setResult(NodeResultInt52); |
| 3436 | return true; |
| 3437 | } |
| 3438 | |
| 3439 | return false; |
| 3440 | } |
| 3441 | |
| 3442 | bool attemptToMakeGetArrayLength(Node* node) |
| 3443 | { |
| 3444 | if (!isInt32Speculation(node->prediction())) |
| 3445 | return false; |
| 3446 | CodeBlock* profiledBlock = m_graph.baselineCodeBlockFor(node->origin.semantic); |
| 3447 | ArrayProfile* arrayProfile = |
| 3448 | profiledBlock->getArrayProfile(node->origin.semantic.bytecodeIndex()); |
| 3449 | ArrayMode arrayMode = ArrayMode(Array::SelectUsingPredictions, Array::Read); |
| 3450 | if (arrayProfile) { |
| 3451 | ConcurrentJSLocker locker(profiledBlock->m_lock); |
| 3452 | arrayProfile->computeUpdatedPrediction(locker, profiledBlock); |
| 3453 | arrayMode = ArrayMode::fromObserved(locker, arrayProfile, Array::Read, false); |
| 3454 | if (arrayMode.type() == Array::Unprofiled) { |
| 3455 | // For normal array operations, it makes sense to treat Unprofiled |
| 3456 | // accesses as ForceExit and get more data rather than using |
| 3457 | // predictions and then possibly ending up with a Generic. But here, |
| 3458 | // we treat anything that is Unprofiled as Generic and keep the |
| 3459 | // GetById. I.e. ForceExit = Generic. So, there is no harm - and only |
| 3460 | // profit - from treating the Unprofiled case as |
| 3461 | // SelectUsingPredictions. |
| 3462 | arrayMode = ArrayMode(Array::SelectUsingPredictions, Array::Read); |
| 3463 | } |
| 3464 | } |
| 3465 | |
| 3466 | arrayMode = arrayMode.refine( |
| 3467 | m_graph, node, node->child1()->prediction(), node->prediction()); |
| 3468 | |
| 3469 | if (arrayMode.type() == Array::Generic) { |
| 3470 | // Check if the input is something that we can't get array length for, but for which we |
| 3471 | // could insert some conversions in order to transform it into something that we can do it |
| 3472 | // for. |
| 3473 | if (node->child1()->shouldSpeculateStringObject()) |
| 3474 | attemptToForceStringArrayModeByToStringConversion<StringObjectUse>(arrayMode, node); |
| 3475 | else if (node->child1()->shouldSpeculateStringOrStringObject()) |
| 3476 | attemptToForceStringArrayModeByToStringConversion<StringOrStringObjectUse>(arrayMode, node); |
| 3477 | } |
| 3478 | |
| 3479 | if (!arrayMode.supportsSelfLength()) |
| 3480 | return false; |
| 3481 | |
| 3482 | convertToGetArrayLength(node, arrayMode); |
| 3483 | return true; |
| 3484 | } |
| 3485 | |
| 3486 | void convertToGetArrayLength(Node* node, ArrayMode arrayMode) |
| 3487 | { |
| 3488 | node->setOp(GetArrayLength); |
| 3489 | node->clearFlags(NodeMustGenerate); |
| 3490 | fixEdge<KnownCellUse>(node->child1()); |
| 3491 | node->setArrayMode(arrayMode); |
| 3492 | |
| 3493 | Node* storage = checkArray(arrayMode, node->origin, node->child1().node(), 0, lengthNeedsStorage); |
| 3494 | if (!storage) |
| 3495 | return; |
| 3496 | |
| 3497 | node->child2() = Edge(storage); |
| 3498 | } |
| 3499 | |
| 3500 | Node* prependGetArrayLength(NodeOrigin origin, Node* child, ArrayMode arrayMode) |
| 3501 | { |
| 3502 | Node* storage = checkArray(arrayMode, origin, child, 0, lengthNeedsStorage); |
| 3503 | return m_insertionSet.insertNode( |
| 3504 | m_indexInBlock, SpecInt32Only, GetArrayLength, origin, |
| 3505 | OpInfo(arrayMode.asWord()), Edge(child, KnownCellUse), Edge(storage)); |
| 3506 | } |
| 3507 | |
| 3508 | void convertToHasIndexedProperty(Node* node) |
| 3509 | { |
| 3510 | node->setOp(HasIndexedProperty); |
| 3511 | node->clearFlags(NodeMustGenerate); |
| 3512 | |
| 3513 | { |
| 3514 | unsigned firstChild = m_graph.m_varArgChildren.size(); |
| 3515 | unsigned numChildren = 3; |
| 3516 | m_graph.m_varArgChildren.append(node->child1()); |
| 3517 | m_graph.m_varArgChildren.append(node->child2()); |
| 3518 | m_graph.m_varArgChildren.append(Edge()); |
| 3519 | node->mergeFlags(NodeHasVarArgs); |
| 3520 | node->children = AdjacencyList(AdjacencyList::Variable, firstChild, numChildren); |
| 3521 | } |
| 3522 | |
| 3523 | node->setArrayMode( |
| 3524 | node->arrayMode().refine( |
| 3525 | m_graph, node, |
| 3526 | m_graph.varArgChild(node, 0)->prediction(), |
| 3527 | m_graph.varArgChild(node, 1)->prediction(), |
| 3528 | SpecNone)); |
| 3529 | node->setInternalMethodType(PropertySlot::InternalMethodType::HasProperty); |
| 3530 | |
| 3531 | blessArrayOperation(m_graph.varArgChild(node, 0), m_graph.varArgChild(node, 1), m_graph.varArgChild(node, 2)); |
| 3532 | |
| 3533 | fixEdge<CellUse>(m_graph.varArgChild(node, 0)); |
| 3534 | fixEdge<Int32Use>(m_graph.varArgChild(node, 1)); |
| 3535 | } |
| 3536 | |
| 3537 | void fixupNormalizeMapKey(Node* node) |
| 3538 | { |
| 3539 | if (node->child1()->shouldSpeculateBoolean()) { |
| 3540 | fixEdge<BooleanUse>(node->child1()); |
| 3541 | node->convertToIdentity(); |
| 3542 | return; |
| 3543 | } |
| 3544 | |
| 3545 | if (node->child1()->shouldSpeculateInt32()) { |
| 3546 | fixEdge<Int32Use>(node->child1()); |
| 3547 | node->convertToIdentity(); |
| 3548 | return; |
| 3549 | } |
| 3550 | |
| 3551 | if (node->child1()->shouldSpeculateSymbol()) { |
| 3552 | fixEdge<SymbolUse>(node->child1()); |
| 3553 | node->convertToIdentity(); |
| 3554 | return; |
| 3555 | } |
| 3556 | |
| 3557 | if (node->child1()->shouldSpeculateObject()) { |
| 3558 | fixEdge<ObjectUse>(node->child1()); |
| 3559 | node->convertToIdentity(); |
| 3560 | return; |
| 3561 | } |
| 3562 | |
| 3563 | if (node->child1()->shouldSpeculateString()) { |
| 3564 | fixEdge<StringUse>(node->child1()); |
| 3565 | node->convertToIdentity(); |
| 3566 | return; |
| 3567 | } |
| 3568 | |
| 3569 | if (node->child1()->shouldSpeculateCell()) { |
| 3570 | fixEdge<CellUse>(node->child1()); |
| 3571 | node->convertToIdentity(); |
| 3572 | return; |
| 3573 | } |
| 3574 | |
| 3575 | fixEdge<UntypedUse>(node->child1()); |
| 3576 | } |
| 3577 | |
| 3578 | bool attemptToMakeCallDOM(Node* node) |
| 3579 | { |
| 3580 | if (m_graph.hasExitSite(node->origin.semantic, BadType)) |
| 3581 | return false; |
| 3582 | |
| 3583 | const DOMJIT::Signature* signature = node->signature(); |
| 3584 | if (!signature) |
| 3585 | return false; |
| 3586 | |
| 3587 | { |
| 3588 | unsigned index = 0; |
| 3589 | bool shouldConvertToCallDOM = true; |
| 3590 | m_graph.doToChildren(node, [&](Edge& edge) { |
| 3591 | // Callee. Ignore this. DFGByteCodeParser already emit appropriate checks. |
| 3592 | if (!index) |
| 3593 | return; |
| 3594 | |
| 3595 | if (index == 1) { |
| 3596 | // DOM node case. |
| 3597 | if (edge->shouldSpeculateNotCell()) |
| 3598 | shouldConvertToCallDOM = false; |
| 3599 | } else { |
| 3600 | switch (signature->arguments[index - 2]) { |
| 3601 | case SpecString: |
| 3602 | if (edge->shouldSpeculateNotString()) |
| 3603 | shouldConvertToCallDOM = false; |
| 3604 | break; |
| 3605 | case SpecInt32Only: |
| 3606 | if (edge->shouldSpeculateNotInt32()) |
| 3607 | shouldConvertToCallDOM = false; |
| 3608 | break; |
| 3609 | case SpecBoolean: |
| 3610 | if (edge->shouldSpeculateNotBoolean()) |
| 3611 | shouldConvertToCallDOM = false; |
| 3612 | break; |
| 3613 | default: |
| 3614 | RELEASE_ASSERT_NOT_REACHED(); |
| 3615 | break; |
| 3616 | } |
| 3617 | } |
| 3618 | ++index; |
| 3619 | }); |
| 3620 | if (!shouldConvertToCallDOM) |
| 3621 | return false; |
| 3622 | } |
| 3623 | |
| 3624 | Node* thisNode = m_graph.varArgChild(node, 1).node(); |
| 3625 | Node* checkSubClass = m_insertionSet.insertNode(m_indexInBlock, SpecNone, CheckSubClass, node->origin, OpInfo(signature->classInfo), Edge(thisNode)); |
| 3626 | node->convertToCallDOM(m_graph); |
| 3627 | fixupCheckSubClass(checkSubClass); |
| 3628 | fixupCallDOM(node); |
| 3629 | return true; |
| 3630 | } |
| 3631 | |
| 3632 | void fixupCheckSubClass(Node* node) |
| 3633 | { |
| 3634 | fixEdge<CellUse>(node->child1()); |
| 3635 | } |
| 3636 | |
| 3637 | void fixupCallDOM(Node* node) |
| 3638 | { |
| 3639 | const DOMJIT::Signature* signature = node->signature(); |
| 3640 | auto fixup = [&](Edge& edge, unsigned argumentIndex) { |
| 3641 | if (!edge) |
| 3642 | return; |
| 3643 | switch (signature->arguments[argumentIndex]) { |
| 3644 | case SpecString: |
| 3645 | fixEdge<StringUse>(edge); |
| 3646 | break; |
| 3647 | case SpecInt32Only: |
| 3648 | fixEdge<Int32Use>(edge); |
| 3649 | break; |
| 3650 | case SpecBoolean: |
| 3651 | fixEdge<BooleanUse>(edge); |
| 3652 | break; |
| 3653 | default: |
| 3654 | RELEASE_ASSERT_NOT_REACHED(); |
| 3655 | break; |
| 3656 | } |
| 3657 | }; |
| 3658 | fixEdge<CellUse>(node->child1()); // DOM. |
| 3659 | fixup(node->child2(), 0); |
| 3660 | fixup(node->child3(), 1); |
| 3661 | } |
| 3662 | |
| 3663 | void fixupArrayIndexOf(Node* node) |
| 3664 | { |
| 3665 | Edge& array = m_graph.varArgChild(node, 0); |
| 3666 | Edge& storage = m_graph.varArgChild(node, node->numChildren() == 3 ? 2 : 3); |
| 3667 | blessArrayOperation(array, Edge(), storage); |
| 3668 | ASSERT_WITH_MESSAGE(storage.node(), "blessArrayOperation for ArrayIndexOf must set Butterfly for storage edge." ); |
| 3669 | |
| 3670 | Edge& searchElement = m_graph.varArgChild(node, 1); |
| 3671 | |
| 3672 | // Constant folding. |
| 3673 | switch (node->arrayMode().type()) { |
| 3674 | case Array::Double: |
| 3675 | case Array::Int32: { |
| 3676 | if (searchElement->shouldSpeculateCell()) { |
| 3677 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, Edge(searchElement.node(), CellUse)); |
| 3678 | m_graph.convertToConstant(node, jsNumber(-1)); |
| 3679 | observeUseKindOnNode<CellUse>(searchElement.node()); |
| 3680 | return; |
| 3681 | } |
| 3682 | |
| 3683 | if (searchElement->shouldSpeculateOther()) { |
| 3684 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, Edge(searchElement.node(), OtherUse)); |
| 3685 | m_graph.convertToConstant(node, jsNumber(-1)); |
| 3686 | observeUseKindOnNode<OtherUse>(searchElement.node()); |
| 3687 | return; |
| 3688 | } |
| 3689 | |
| 3690 | if (searchElement->shouldSpeculateBoolean()) { |
| 3691 | m_insertionSet.insertNode(m_indexInBlock, SpecNone, Check, node->origin, Edge(searchElement.node(), BooleanUse)); |
| 3692 | m_graph.convertToConstant(node, jsNumber(-1)); |
| 3693 | observeUseKindOnNode<BooleanUse>(searchElement.node()); |
| 3694 | return; |
| 3695 | } |
| 3696 | break; |
| 3697 | } |
| 3698 | default: |
| 3699 | break; |
| 3700 | } |
| 3701 | |
| 3702 | fixEdge<KnownCellUse>(array); |
| 3703 | if (node->numChildren() == 4) |
| 3704 | fixEdge<Int32Use>(m_graph.varArgChild(node, 2)); |
| 3705 | |
| 3706 | switch (node->arrayMode().type()) { |
| 3707 | case Array::Double: { |
| 3708 | if (searchElement->shouldSpeculateNumber()) |
| 3709 | fixEdge<DoubleRepUse>(searchElement); |
| 3710 | return; |
| 3711 | } |
| 3712 | case Array::Int32: { |
| 3713 | if (searchElement->shouldSpeculateInt32()) |
| 3714 | fixEdge<Int32Use>(searchElement); |
| 3715 | return; |
| 3716 | } |
| 3717 | case Array::Contiguous: { |
| 3718 | if (searchElement->shouldSpeculateString()) |
| 3719 | fixEdge<StringUse>(searchElement); |
| 3720 | else if (searchElement->shouldSpeculateSymbol()) |
| 3721 | fixEdge<SymbolUse>(searchElement); |
| 3722 | else if (searchElement->shouldSpeculateOther()) |
| 3723 | fixEdge<OtherUse>(searchElement); |
| 3724 | else if (searchElement->shouldSpeculateObject()) |
| 3725 | fixEdge<ObjectUse>(searchElement); |
| 3726 | return; |
| 3727 | } |
| 3728 | default: |
| 3729 | RELEASE_ASSERT_NOT_REACHED(); |
| 3730 | return; |
| 3731 | } |
| 3732 | } |
| 3733 | |
| 3734 | void fixupCompareStrictEqAndSameValue(Node* node) |
| 3735 | { |
| 3736 | ASSERT(node->op() == SameValue || node->op() == CompareStrictEq); |
| 3737 | |
| 3738 | if (Node::shouldSpeculateBoolean(node->child1().node(), node->child2().node())) { |
| 3739 | fixEdge<BooleanUse>(node->child1()); |
| 3740 | fixEdge<BooleanUse>(node->child2()); |
| 3741 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3742 | return; |
| 3743 | } |
| 3744 | if (Node::shouldSpeculateInt32(node->child1().node(), node->child2().node())) { |
| 3745 | fixEdge<Int32Use>(node->child1()); |
| 3746 | fixEdge<Int32Use>(node->child2()); |
| 3747 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3748 | return; |
| 3749 | } |
| 3750 | if (Node::shouldSpeculateInt52(node->child1().node(), node->child2().node())) { |
| 3751 | fixEdge<Int52RepUse>(node->child1()); |
| 3752 | fixEdge<Int52RepUse>(node->child2()); |
| 3753 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3754 | return; |
| 3755 | } |
| 3756 | if (Node::shouldSpeculateNumber(node->child1().node(), node->child2().node())) { |
| 3757 | fixEdge<DoubleRepUse>(node->child1()); |
| 3758 | fixEdge<DoubleRepUse>(node->child2()); |
| 3759 | // Do not convert SameValue to CompareStrictEq in this case since SameValue(NaN, NaN) and SameValue(-0, +0) |
| 3760 | // are not the same to CompareStrictEq(NaN, NaN) and CompareStrictEq(-0, +0). |
| 3761 | return; |
| 3762 | } |
| 3763 | if (Node::shouldSpeculateSymbol(node->child1().node(), node->child2().node())) { |
| 3764 | fixEdge<SymbolUse>(node->child1()); |
| 3765 | fixEdge<SymbolUse>(node->child2()); |
| 3766 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3767 | return; |
| 3768 | } |
| 3769 | if (Node::shouldSpeculateBigInt(node->child1().node(), node->child2().node())) { |
| 3770 | fixEdge<BigIntUse>(node->child1()); |
| 3771 | fixEdge<BigIntUse>(node->child2()); |
| 3772 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3773 | return; |
| 3774 | } |
| 3775 | if (node->child1()->shouldSpeculateStringIdent() && node->child2()->shouldSpeculateStringIdent()) { |
| 3776 | fixEdge<StringIdentUse>(node->child1()); |
| 3777 | fixEdge<StringIdentUse>(node->child2()); |
| 3778 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3779 | return; |
| 3780 | } |
| 3781 | if (node->child1()->shouldSpeculateString() && node->child2()->shouldSpeculateString() && ((GPRInfo::numberOfRegisters >= 7) || m_graph.m_plan.isFTL())) { |
| 3782 | fixEdge<StringUse>(node->child1()); |
| 3783 | fixEdge<StringUse>(node->child2()); |
| 3784 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3785 | return; |
| 3786 | } |
| 3787 | |
| 3788 | if (node->op() == SameValue) { |
| 3789 | if (node->child1()->shouldSpeculateObject()) { |
| 3790 | fixEdge<ObjectUse>(node->child1()); |
| 3791 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3792 | return; |
| 3793 | } |
| 3794 | if (node->child2()->shouldSpeculateObject()) { |
| 3795 | fixEdge<ObjectUse>(node->child2()); |
| 3796 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3797 | return; |
| 3798 | } |
| 3799 | } else { |
| 3800 | WatchpointSet* masqueradesAsUndefinedWatchpoint = m_graph.globalObjectFor(node->origin.semantic)->masqueradesAsUndefinedWatchpoint(); |
| 3801 | if (masqueradesAsUndefinedWatchpoint->isStillValid()) { |
| 3802 | if (node->child1()->shouldSpeculateObject()) { |
| 3803 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
| 3804 | fixEdge<ObjectUse>(node->child1()); |
| 3805 | return; |
| 3806 | } |
| 3807 | if (node->child2()->shouldSpeculateObject()) { |
| 3808 | m_graph.watchpoints().addLazily(masqueradesAsUndefinedWatchpoint); |
| 3809 | fixEdge<ObjectUse>(node->child2()); |
| 3810 | return; |
| 3811 | } |
| 3812 | } else if (node->child1()->shouldSpeculateObject() && node->child2()->shouldSpeculateObject()) { |
| 3813 | fixEdge<ObjectUse>(node->child1()); |
| 3814 | fixEdge<ObjectUse>(node->child2()); |
| 3815 | return; |
| 3816 | } |
| 3817 | } |
| 3818 | |
| 3819 | if (node->child1()->shouldSpeculateSymbol()) { |
| 3820 | fixEdge<SymbolUse>(node->child1()); |
| 3821 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3822 | return; |
| 3823 | } |
| 3824 | if (node->child2()->shouldSpeculateSymbol()) { |
| 3825 | fixEdge<SymbolUse>(node->child2()); |
| 3826 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3827 | return; |
| 3828 | } |
| 3829 | if (node->child1()->shouldSpeculateMisc()) { |
| 3830 | fixEdge<MiscUse>(node->child1()); |
| 3831 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3832 | return; |
| 3833 | } |
| 3834 | if (node->child2()->shouldSpeculateMisc()) { |
| 3835 | fixEdge<MiscUse>(node->child2()); |
| 3836 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3837 | return; |
| 3838 | } |
| 3839 | if (node->child1()->shouldSpeculateStringIdent() |
| 3840 | && node->child2()->shouldSpeculateNotStringVar()) { |
| 3841 | fixEdge<StringIdentUse>(node->child1()); |
| 3842 | fixEdge<NotStringVarUse>(node->child2()); |
| 3843 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3844 | return; |
| 3845 | } |
| 3846 | if (node->child2()->shouldSpeculateStringIdent() |
| 3847 | && node->child1()->shouldSpeculateNotStringVar()) { |
| 3848 | fixEdge<StringIdentUse>(node->child2()); |
| 3849 | fixEdge<NotStringVarUse>(node->child1()); |
| 3850 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3851 | return; |
| 3852 | } |
| 3853 | if (node->child1()->shouldSpeculateString() && ((GPRInfo::numberOfRegisters >= 8) || m_graph.m_plan.isFTL())) { |
| 3854 | fixEdge<StringUse>(node->child1()); |
| 3855 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3856 | return; |
| 3857 | } |
| 3858 | if (node->child2()->shouldSpeculateString() && ((GPRInfo::numberOfRegisters >= 8) || m_graph.m_plan.isFTL())) { |
| 3859 | fixEdge<StringUse>(node->child2()); |
| 3860 | node->setOpAndDefaultFlags(CompareStrictEq); |
| 3861 | return; |
| 3862 | } |
| 3863 | } |
| 3864 | |
| 3865 | void fixupChecksInBlock(BasicBlock* block) |
| 3866 | { |
| 3867 | if (!block) |
| 3868 | return; |
| 3869 | ASSERT(block->isReachable); |
| 3870 | m_block = block; |
| 3871 | unsigned indexForChecks = UINT_MAX; |
| 3872 | NodeOrigin originForChecks; |
| 3873 | for (unsigned indexInBlock = 0; indexInBlock < block->size(); ++indexInBlock) { |
| 3874 | Node* node = block->at(indexInBlock); |
| 3875 | |
| 3876 | // If this is a node at which we could exit, then save its index. If nodes after this one |
| 3877 | // cannot exit, then we will hoist checks to here. |
| 3878 | if (node->origin.exitOK) { |
| 3879 | indexForChecks = indexInBlock; |
| 3880 | originForChecks = node->origin; |
| 3881 | } |
| 3882 | |
| 3883 | originForChecks = originForChecks.withSemantic(node->origin.semantic); |
| 3884 | |
| 3885 | // First, try to relax the representational demands of each node, in order to have |
| 3886 | // fewer conversions. |
| 3887 | switch (node->op()) { |
| 3888 | case MovHint: |
| 3889 | case Check: |
| 3890 | case CheckVarargs: |
| 3891 | m_graph.doToChildren( |
| 3892 | node, |
| 3893 | [&] (Edge& edge) { |
| 3894 | switch (edge.useKind()) { |
| 3895 | case DoubleRepUse: |
| 3896 | case DoubleRepRealUse: |
| 3897 | if (edge->hasDoubleResult()) |
| 3898 | break; |
| 3899 | |
| 3900 | if (edge->hasInt52Result()) |
| 3901 | edge.setUseKind(Int52RepUse); |
| 3902 | else if (edge.useKind() == DoubleRepUse) |
| 3903 | edge.setUseKind(NumberUse); |
| 3904 | break; |
| 3905 | |
| 3906 | case Int52RepUse: |
| 3907 | // Nothing we can really do. |
| 3908 | break; |
| 3909 | |
| 3910 | case UntypedUse: |
| 3911 | case NumberUse: |
| 3912 | if (edge->hasDoubleResult()) |
| 3913 | edge.setUseKind(DoubleRepUse); |
| 3914 | else if (edge->hasInt52Result()) |
| 3915 | edge.setUseKind(Int52RepUse); |
| 3916 | break; |
| 3917 | |
| 3918 | case RealNumberUse: |
| 3919 | if (edge->hasDoubleResult()) |
| 3920 | edge.setUseKind(DoubleRepRealUse); |
| 3921 | else if (edge->hasInt52Result()) |
| 3922 | edge.setUseKind(Int52RepUse); |
| 3923 | break; |
| 3924 | |
| 3925 | default: |
| 3926 | break; |
| 3927 | } |
| 3928 | }); |
| 3929 | break; |
| 3930 | |
| 3931 | case ValueToInt32: |
| 3932 | if (node->child1().useKind() == DoubleRepUse |
| 3933 | && !node->child1()->hasDoubleResult()) { |
| 3934 | node->child1().setUseKind(NumberUse); |
| 3935 | break; |
| 3936 | } |
| 3937 | break; |
| 3938 | |
| 3939 | default: |
| 3940 | break; |
| 3941 | } |
| 3942 | |
| 3943 | // Now, insert type conversions if necessary. |
| 3944 | m_graph.doToChildren( |
| 3945 | node, |
| 3946 | [&] (Edge& edge) { |
| 3947 | Node* result = nullptr; |
| 3948 | |
| 3949 | switch (edge.useKind()) { |
| 3950 | case DoubleRepUse: |
| 3951 | case DoubleRepRealUse: |
| 3952 | case DoubleRepAnyIntUse: { |
| 3953 | if (edge->hasDoubleResult()) |
| 3954 | break; |
| 3955 | |
| 3956 | ASSERT(indexForChecks != UINT_MAX); |
| 3957 | if (edge->isNumberConstant()) { |
| 3958 | result = m_insertionSet.insertNode( |
| 3959 | indexForChecks, SpecBytecodeDouble, DoubleConstant, originForChecks, |
| 3960 | OpInfo(m_graph.freeze(jsDoubleNumber(edge->asNumber())))); |
| 3961 | } else if (edge->hasInt52Result()) { |
| 3962 | result = m_insertionSet.insertNode( |
| 3963 | indexForChecks, SpecAnyIntAsDouble, DoubleRep, originForChecks, |
| 3964 | Edge(edge.node(), Int52RepUse)); |
| 3965 | } else { |
| 3966 | UseKind useKind; |
| 3967 | if (edge->shouldSpeculateDoubleReal()) |
| 3968 | useKind = RealNumberUse; |
| 3969 | else if (edge->shouldSpeculateNumber()) |
| 3970 | useKind = NumberUse; |
| 3971 | else |
| 3972 | useKind = NotCellUse; |
| 3973 | |
| 3974 | result = m_insertionSet.insertNode( |
| 3975 | indexForChecks, SpecBytecodeDouble, DoubleRep, originForChecks, |
| 3976 | Edge(edge.node(), useKind)); |
| 3977 | } |
| 3978 | |
| 3979 | edge.setNode(result); |
| 3980 | break; |
| 3981 | } |
| 3982 | |
| 3983 | case Int52RepUse: { |
| 3984 | if (edge->hasInt52Result()) |
| 3985 | break; |
| 3986 | |
| 3987 | ASSERT(indexForChecks != UINT_MAX); |
| 3988 | if (edge->isAnyIntConstant()) { |
| 3989 | result = m_insertionSet.insertNode( |
| 3990 | indexForChecks, SpecInt52Any, Int52Constant, originForChecks, |
| 3991 | OpInfo(edge->constant())); |
| 3992 | } else if (edge->hasDoubleResult()) { |
| 3993 | result = m_insertionSet.insertNode( |
| 3994 | indexForChecks, SpecInt52Any, Int52Rep, originForChecks, |
| 3995 | Edge(edge.node(), DoubleRepAnyIntUse)); |
| 3996 | } else if (edge->shouldSpeculateInt32ForArithmetic()) { |
| 3997 | result = m_insertionSet.insertNode( |
| 3998 | indexForChecks, SpecInt32Only, Int52Rep, originForChecks, |
| 3999 | Edge(edge.node(), Int32Use)); |
| 4000 | } else { |
| 4001 | result = m_insertionSet.insertNode( |
| 4002 | indexForChecks, SpecInt52Any, Int52Rep, originForChecks, |
| 4003 | Edge(edge.node(), AnyIntUse)); |
| 4004 | } |
| 4005 | |
| 4006 | edge.setNode(result); |
| 4007 | break; |
| 4008 | } |
| 4009 | |
| 4010 | default: { |
| 4011 | if (!edge->hasDoubleResult() && !edge->hasInt52Result()) |
| 4012 | break; |
| 4013 | |
| 4014 | ASSERT(indexForChecks != UINT_MAX); |
| 4015 | if (edge->hasDoubleResult()) { |
| 4016 | result = m_insertionSet.insertNode( |
| 4017 | indexForChecks, SpecBytecodeDouble, ValueRep, originForChecks, |
| 4018 | Edge(edge.node(), DoubleRepUse)); |
| 4019 | } else { |
| 4020 | result = m_insertionSet.insertNode( |
| 4021 | indexForChecks, SpecInt32Only | SpecAnyIntAsDouble, ValueRep, |
| 4022 | originForChecks, Edge(edge.node(), Int52RepUse)); |
| 4023 | } |
| 4024 | |
| 4025 | edge.setNode(result); |
| 4026 | break; |
| 4027 | } } |
| 4028 | |
| 4029 | // It's remotely possible that this node cannot do type checks, but we now have a |
| 4030 | // type check on this node. We don't have to handle the general form of this |
| 4031 | // problem. It only arises when ByteCodeParser emits an immediate SetLocal, rather |
| 4032 | // than a delayed one. So, we only worry about those checks that we may have put on |
| 4033 | // a SetLocal. Note that "indexForChecks != indexInBlock" is just another way of |
| 4034 | // saying "!node->origin.exitOK". |
| 4035 | if (indexForChecks != indexInBlock && mayHaveTypeCheck(edge.useKind())) { |
| 4036 | UseKind knownUseKind; |
| 4037 | |
| 4038 | switch (edge.useKind()) { |
| 4039 | case Int32Use: |
| 4040 | knownUseKind = KnownInt32Use; |
| 4041 | break; |
| 4042 | case CellUse: |
| 4043 | knownUseKind = KnownCellUse; |
| 4044 | break; |
| 4045 | case BooleanUse: |
| 4046 | knownUseKind = KnownBooleanUse; |
| 4047 | break; |
| 4048 | default: |
| 4049 | // This can only arise if we have a Check node, and in that case, we can |
| 4050 | // just remove the original check. |
| 4051 | DFG_ASSERT(m_graph, node, node->op() == Check, node->op(), edge.useKind()); |
| 4052 | knownUseKind = UntypedUse; |
| 4053 | break; |
| 4054 | } |
| 4055 | |
| 4056 | ASSERT(indexForChecks != UINT_MAX); |
| 4057 | m_insertionSet.insertNode( |
| 4058 | indexForChecks, SpecNone, Check, originForChecks, edge); |
| 4059 | |
| 4060 | edge.setUseKind(knownUseKind); |
| 4061 | } |
| 4062 | }); |
| 4063 | } |
| 4064 | |
| 4065 | m_insertionSet.execute(block); |
| 4066 | } |
| 4067 | |
| 4068 | BasicBlock* m_block; |
| 4069 | unsigned m_indexInBlock; |
| 4070 | Node* m_currentNode; |
| 4071 | InsertionSet m_insertionSet; |
| 4072 | bool m_profitabilityChanged; |
| 4073 | }; |
| 4074 | |
| 4075 | bool performFixup(Graph& graph) |
| 4076 | { |
| 4077 | return runPhase<FixupPhase>(graph); |
| 4078 | } |
| 4079 | |
| 4080 | } } // namespace JSC::DFG |
| 4081 | |
| 4082 | #endif // ENABLE(DFG_JIT) |
| 4083 | |
| 4084 | |