| 1 | /* |
| 2 | * Copyright (C) 2015-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "AirAllocateRegistersByGraphColoring.h" |
| 28 | |
| 29 | #if ENABLE(B3_JIT) |
| 30 | |
| 31 | #include "AirCode.h" |
| 32 | #include "AirFixSpillsAfterTerminals.h" |
| 33 | #include "AirInsertionSet.h" |
| 34 | #include "AirInstInlines.h" |
| 35 | #include "AirLiveness.h" |
| 36 | #include "AirPadInterference.h" |
| 37 | #include "AirPhaseScope.h" |
| 38 | #include "AirTmpInlines.h" |
| 39 | #include "AirTmpWidth.h" |
| 40 | #include "AirUseCounts.h" |
| 41 | #include <wtf/ListDump.h> |
| 42 | |
| 43 | namespace JSC { namespace B3 { namespace Air { |
| 44 | |
| 45 | namespace { |
| 46 | |
| 47 | bool debug = false; |
| 48 | bool traceDebug = false; |
| 49 | bool reportStats = false; |
| 50 | |
| 51 | // The AbstractColoringAllocator defines all the code that is independant |
| 52 | // from the bank or register and can be shared when allocating registers. |
| 53 | template<typename IndexType, typename TmpMapper> |
| 54 | class AbstractColoringAllocator { |
| 55 | public: |
| 56 | AbstractColoringAllocator(Code& code, const Vector<Reg>& regsInPriorityOrder, IndexType lastPrecoloredRegisterIndex, unsigned tmpArraySize, const HashSet<unsigned>& unspillableTmps, const UseCounts<Tmp>& useCounts) |
| 57 | : m_regsInPriorityOrder(regsInPriorityOrder) |
| 58 | , m_lastPrecoloredRegisterIndex(lastPrecoloredRegisterIndex) |
| 59 | , m_unspillableTmps(unspillableTmps) |
| 60 | , m_useCounts(useCounts) |
| 61 | , m_code(code) |
| 62 | { |
| 63 | initializeDegrees(tmpArraySize); |
| 64 | |
| 65 | m_adjacencyList.resize(tmpArraySize); |
| 66 | m_moveList.resize(tmpArraySize); |
| 67 | m_coalescedTmps.fill(0, tmpArraySize); |
| 68 | m_isOnSelectStack.ensureSize(tmpArraySize); |
| 69 | m_spillWorklist.ensureSize(tmpArraySize); |
| 70 | } |
| 71 | |
| 72 | protected: |
| 73 | |
| 74 | unsigned registerCount() const { return m_regsInPriorityOrder.size(); } |
| 75 | |
| 76 | IndexType getAlias(IndexType tmpIndex) const |
| 77 | { |
| 78 | IndexType alias = tmpIndex; |
| 79 | while (IndexType nextAlias = m_coalescedTmps[alias]) |
| 80 | alias = nextAlias; |
| 81 | return alias; |
| 82 | } |
| 83 | |
| 84 | void addEdge(IndexType a, IndexType b) |
| 85 | { |
| 86 | if (a == b) |
| 87 | return; |
| 88 | addEdgeDistinct(a, b); |
| 89 | } |
| 90 | |
| 91 | void addToSpill(unsigned toSpill) |
| 92 | { |
| 93 | if (m_unspillableTmps.contains(toSpill)) |
| 94 | return; |
| 95 | |
| 96 | m_spillWorklist.add(toSpill); |
| 97 | } |
| 98 | |
| 99 | bool isPrecolored(IndexType tmpIndex) |
| 100 | { |
| 101 | return tmpIndex <= m_lastPrecoloredRegisterIndex; |
| 102 | } |
| 103 | |
| 104 | void initializeDegrees(unsigned tmpArraySize) |
| 105 | { |
| 106 | m_degrees.resize(tmpArraySize); |
| 107 | |
| 108 | // All precolored registers have an "infinite" degree. |
| 109 | unsigned firstNonRegIndex = m_lastPrecoloredRegisterIndex + 1; |
| 110 | for (unsigned i = 0; i < firstNonRegIndex; ++i) |
| 111 | m_degrees[i] = std::numeric_limits<unsigned>::max(); |
| 112 | |
| 113 | memset(m_degrees.data() + firstNonRegIndex, 0, (tmpArraySize - firstNonRegIndex) * sizeof(unsigned)); |
| 114 | } |
| 115 | |
| 116 | void addEdgeDistinct(IndexType a, IndexType b) |
| 117 | { |
| 118 | ASSERT(a != b); |
| 119 | bool isNewEdge = addInterferenceEdge(InterferenceEdge(a, b)); |
| 120 | if (isNewEdge) { |
| 121 | if (!isPrecolored(a)) { |
| 122 | ASSERT(!m_adjacencyList[a].contains(b)); |
| 123 | m_adjacencyList[a].append(b); |
| 124 | m_degrees[a]++; |
| 125 | } |
| 126 | |
| 127 | if (!isPrecolored(b)) { |
| 128 | ASSERT(!m_adjacencyList[b].contains(a)); |
| 129 | m_adjacencyList[b].append(a); |
| 130 | m_degrees[b]++; |
| 131 | } |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | bool addEdgeDistinctWithoutDegreeChange(IndexType a, IndexType b) |
| 136 | { |
| 137 | ASSERT(a != b); |
| 138 | bool isNewEdge = addInterferenceEdge(InterferenceEdge(a, b)); |
| 139 | if (isNewEdge) { |
| 140 | if (!isPrecolored(a)) { |
| 141 | ASSERT(!m_adjacencyList[a].contains(b)); |
| 142 | m_adjacencyList[a].append(b); |
| 143 | } |
| 144 | |
| 145 | if (!isPrecolored(b)) { |
| 146 | ASSERT(!m_adjacencyList[b].contains(a)); |
| 147 | m_adjacencyList[b].append(a); |
| 148 | } |
| 149 | return true; |
| 150 | } |
| 151 | return false; |
| 152 | } |
| 153 | |
| 154 | template<typename Function> |
| 155 | void forEachAdjacent(IndexType tmpIndex, Function function) |
| 156 | { |
| 157 | for (IndexType adjacentTmpIndex : m_adjacencyList[tmpIndex]) { |
| 158 | if (!hasBeenSimplified(adjacentTmpIndex)) |
| 159 | function(adjacentTmpIndex); |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | bool hasBeenSimplified(IndexType tmpIndex) |
| 164 | { |
| 165 | if (!ASSERT_DISABLED) { |
| 166 | if (!!m_coalescedTmps[tmpIndex]) |
| 167 | ASSERT(getAlias(tmpIndex) != tmpIndex); |
| 168 | } |
| 169 | |
| 170 | return m_isOnSelectStack.quickGet(tmpIndex) || !!m_coalescedTmps[tmpIndex]; |
| 171 | } |
| 172 | |
| 173 | bool canBeSafelyCoalesced(IndexType u, IndexType v) |
| 174 | { |
| 175 | ASSERT(!isPrecolored(v)); |
| 176 | if (isPrecolored(u)) |
| 177 | return precoloredCoalescingHeuristic(u, v); |
| 178 | return conservativeHeuristic(u, v); |
| 179 | } |
| 180 | |
| 181 | bool conservativeHeuristic(IndexType u, IndexType v) |
| 182 | { |
| 183 | // This is using the Briggs' conservative coalescing rule: |
| 184 | // If the number of combined adjacent node with a degree >= K is less than K, |
| 185 | // it is safe to combine the two nodes. The reason is that we know that if the graph |
| 186 | // is colorable, we have fewer than K adjacents with high order and there is a color |
| 187 | // for the current node. |
| 188 | ASSERT(u != v); |
| 189 | ASSERT(!isPrecolored(u)); |
| 190 | ASSERT(!isPrecolored(v)); |
| 191 | |
| 192 | const auto& adjacentsOfU = m_adjacencyList[u]; |
| 193 | const auto& adjacentsOfV = m_adjacencyList[v]; |
| 194 | |
| 195 | if (adjacentsOfU.size() + adjacentsOfV.size() < registerCount()) { |
| 196 | // Shortcut: if the total number of adjacents is less than the number of register, the condition is always met. |
| 197 | return true; |
| 198 | } |
| 199 | |
| 200 | HashSet<IndexType> highOrderAdjacents; |
| 201 | |
| 202 | for (IndexType adjacentTmpIndex : adjacentsOfU) { |
| 203 | ASSERT(adjacentTmpIndex != v); |
| 204 | ASSERT(adjacentTmpIndex != u); |
| 205 | if (!hasBeenSimplified(adjacentTmpIndex) && m_degrees[adjacentTmpIndex] >= registerCount()) { |
| 206 | auto addResult = highOrderAdjacents.add(adjacentTmpIndex); |
| 207 | if (addResult.isNewEntry && highOrderAdjacents.size() >= registerCount()) |
| 208 | return false; |
| 209 | } |
| 210 | } |
| 211 | for (IndexType adjacentTmpIndex : adjacentsOfV) { |
| 212 | ASSERT(adjacentTmpIndex != u); |
| 213 | ASSERT(adjacentTmpIndex != v); |
| 214 | if (!hasBeenSimplified(adjacentTmpIndex) && m_degrees[adjacentTmpIndex] >= registerCount()) { |
| 215 | auto addResult = highOrderAdjacents.add(adjacentTmpIndex); |
| 216 | if (addResult.isNewEntry && highOrderAdjacents.size() >= registerCount()) |
| 217 | return false; |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | ASSERT(highOrderAdjacents.size() < registerCount()); |
| 222 | return true; |
| 223 | } |
| 224 | |
| 225 | bool precoloredCoalescingHeuristic(IndexType u, IndexType v) |
| 226 | { |
| 227 | if (traceDebug) |
| 228 | dataLog(" Checking precoloredCoalescingHeuristic\n" ); |
| 229 | ASSERT(isPrecolored(u)); |
| 230 | ASSERT(!isPrecolored(v)); |
| 231 | |
| 232 | // If any adjacent of the non-colored node is not an adjacent of the colored node AND has a degree >= K |
| 233 | // there is a risk that this node needs to have the same color as our precolored node. If we coalesce such |
| 234 | // move, we may create an uncolorable graph. |
| 235 | const auto& adjacentsOfV = m_adjacencyList[v]; |
| 236 | for (unsigned adjacentTmpIndex : adjacentsOfV) { |
| 237 | if (!isPrecolored(adjacentTmpIndex) |
| 238 | && !hasBeenSimplified(adjacentTmpIndex) |
| 239 | && m_degrees[adjacentTmpIndex] >= registerCount() |
| 240 | && !hasInterferenceEdge(InterferenceEdge(u, adjacentTmpIndex))) |
| 241 | return false; |
| 242 | } |
| 243 | return true; |
| 244 | } |
| 245 | |
| 246 | void addBias(IndexType u, IndexType v) |
| 247 | { |
| 248 | // We implement biased coloring as proposed by Briggs. See section |
| 249 | // 5.3.3 of his thesis for more information: http://www.cs.utexas.edu/users/mckinley/380C/lecs/briggs-thesis-1992.pdf |
| 250 | // The main idea of biased coloring is this: |
| 251 | // We try to coalesce a move between u and v, but the conservative heuristic |
| 252 | // fails. We don't want coalesce the move because we don't want to risk |
| 253 | // creating an uncolorable graph. However, if the conservative heuristic fails, |
| 254 | // it's not proof that the graph is uncolorable if the move were indeed coalesced. |
| 255 | // So, when we go to color the tmps, we'll remember that we really want the |
| 256 | // same register for u and v, and if legal, we will assign them to the same register. |
| 257 | if (!isPrecolored(u)) |
| 258 | m_biases.add(u, IndexTypeSet()).iterator->value.add(v); |
| 259 | if (!isPrecolored(v)) |
| 260 | m_biases.add(v, IndexTypeSet()).iterator->value.add(u); |
| 261 | } |
| 262 | |
| 263 | IndexType selectSpill() |
| 264 | { |
| 265 | if (!m_hasSelectedSpill) { |
| 266 | m_hasSelectedSpill = true; |
| 267 | |
| 268 | if (m_hasCoalescedNonTrivialMove) |
| 269 | m_coalescedTmpsAtSpill = m_coalescedTmps; |
| 270 | } |
| 271 | |
| 272 | auto iterator = m_spillWorklist.begin(); |
| 273 | |
| 274 | RELEASE_ASSERT_WITH_MESSAGE(iterator != m_spillWorklist.end(), "selectSpill() called when there was no spill." ); |
| 275 | RELEASE_ASSERT_WITH_MESSAGE(!m_unspillableTmps.contains(*iterator), "trying to spill unspillable tmp" ); |
| 276 | |
| 277 | // Higher score means more desirable to spill. Lower scores maximize the likelihood that a tmp |
| 278 | // gets a register. |
| 279 | auto score = [&] (Tmp tmp) -> double { |
| 280 | // Air exposes the concept of "fast tmps", and we interpret that to mean that the tmp |
| 281 | // should always be in a register. |
| 282 | if (m_code.isFastTmp(tmp)) |
| 283 | return 0; |
| 284 | |
| 285 | // All else being equal, the score should be directly related to the degree. |
| 286 | double degree = static_cast<double>(m_degrees[TmpMapper::absoluteIndex(tmp)]); |
| 287 | |
| 288 | // All else being equal, the score should be inversely related to the number of warm uses and |
| 289 | // defs. |
| 290 | const UseCounts<Tmp>::Counts* counts = m_useCounts[tmp]; |
| 291 | if (!counts) |
| 292 | return std::numeric_limits<double>::infinity(); |
| 293 | |
| 294 | double uses = counts->numWarmUses + counts->numDefs; |
| 295 | |
| 296 | // If it's a constant, then it's not as bad to spill. We can rematerialize it in many |
| 297 | // cases. |
| 298 | if (counts->numConstDefs == 1 && counts->numDefs == 1) |
| 299 | uses /= 2; |
| 300 | |
| 301 | return degree / uses; |
| 302 | }; |
| 303 | |
| 304 | auto victimIterator = iterator; |
| 305 | double maxScore = score(TmpMapper::tmpFromAbsoluteIndex(*iterator)); |
| 306 | |
| 307 | ++iterator; |
| 308 | for (;iterator != m_spillWorklist.end(); ++iterator) { |
| 309 | double tmpScore = score(TmpMapper::tmpFromAbsoluteIndex(*iterator)); |
| 310 | if (tmpScore > maxScore) { |
| 311 | ASSERT(!m_unspillableTmps.contains(*iterator)); |
| 312 | victimIterator = iterator; |
| 313 | maxScore = tmpScore; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | IndexType victimIndex = *victimIterator; |
| 318 | if (traceDebug) |
| 319 | dataLogLn("Selecting spill " , victimIndex); |
| 320 | ASSERT(!isPrecolored(victimIndex)); |
| 321 | return victimIndex; |
| 322 | } |
| 323 | |
| 324 | void assignColors() |
| 325 | { |
| 326 | ASSERT(m_simplifyWorklist.isEmpty()); |
| 327 | ASSERT(m_spillWorklist.isEmpty()); |
| 328 | |
| 329 | // Reclaim as much memory as possible. |
| 330 | m_interferenceEdges.clear(); |
| 331 | |
| 332 | m_degrees.clear(); |
| 333 | m_moveList.clear(); |
| 334 | m_simplifyWorklist.clear(); |
| 335 | m_spillWorklist.clearAll(); |
| 336 | |
| 337 | // Try to color the Tmp on the stack. |
| 338 | m_coloredTmp.resize(m_adjacencyList.size()); |
| 339 | |
| 340 | { |
| 341 | Vector<IndexType, 4> nowAliasedBiases; |
| 342 | for (IndexType key : m_biases.keys()) { |
| 343 | if (key != getAlias(key)) |
| 344 | nowAliasedBiases.append(key); |
| 345 | } |
| 346 | for (IndexType key : nowAliasedBiases) { |
| 347 | IndexTypeSet keysBiases(m_biases.take(key)); |
| 348 | auto addResult = m_biases.add(getAlias(key), IndexTypeSet()); |
| 349 | if (addResult.isNewEntry) { |
| 350 | ASSERT(!addResult.iterator->value.size()); |
| 351 | addResult.iterator->value = WTFMove(keysBiases); |
| 352 | } else { |
| 353 | IndexTypeSet& setToAddTo = addResult.iterator->value; |
| 354 | for (IndexType tmp : keysBiases) |
| 355 | setToAddTo.add(tmp); |
| 356 | } |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | while (!m_selectStack.isEmpty()) { |
| 361 | unsigned tmpIndex = m_selectStack.takeLast(); |
| 362 | ASSERT(!isPrecolored(tmpIndex)); |
| 363 | ASSERT(!m_coloredTmp[tmpIndex]); |
| 364 | ASSERT(getAlias(tmpIndex) == tmpIndex); |
| 365 | |
| 366 | RegisterSet coloredRegisters; |
| 367 | for (IndexType adjacentTmpIndex : m_adjacencyList[tmpIndex]) { |
| 368 | IndexType aliasTmpIndex = getAlias(adjacentTmpIndex); |
| 369 | Reg reg = m_coloredTmp[aliasTmpIndex]; |
| 370 | |
| 371 | ASSERT(!isPrecolored(aliasTmpIndex) || (isPrecolored(aliasTmpIndex) && reg)); |
| 372 | |
| 373 | if (reg) |
| 374 | coloredRegisters.set(reg); |
| 375 | } |
| 376 | |
| 377 | bool colorAssigned = false; |
| 378 | auto iter = m_biases.find(tmpIndex); |
| 379 | if (iter != m_biases.end()) { |
| 380 | for (IndexType desiredBias : iter->value) { |
| 381 | if (Reg desiredColor = m_coloredTmp[getAlias(desiredBias)]) { |
| 382 | if (!coloredRegisters.get(desiredColor)) { |
| 383 | m_coloredTmp[tmpIndex] = desiredColor; |
| 384 | colorAssigned = true; |
| 385 | break; |
| 386 | } |
| 387 | } |
| 388 | } |
| 389 | } |
| 390 | if (!colorAssigned) { |
| 391 | for (Reg reg : m_regsInPriorityOrder) { |
| 392 | if (!coloredRegisters.get(reg)) { |
| 393 | m_coloredTmp[tmpIndex] = reg; |
| 394 | colorAssigned = true; |
| 395 | break; |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | if (!colorAssigned) |
| 401 | m_spilledTmps.append(tmpIndex); |
| 402 | } |
| 403 | |
| 404 | m_selectStack.clear(); |
| 405 | |
| 406 | if (m_spilledTmps.isEmpty()) |
| 407 | m_coalescedTmpsAtSpill.clear(); |
| 408 | else |
| 409 | m_coloredTmp.clear(); |
| 410 | } |
| 411 | |
| 412 | void dumpInterferenceGraphInDot(PrintStream& out) |
| 413 | { |
| 414 | out.print("graph InterferenceGraph { \n" ); |
| 415 | |
| 416 | HashSet<Tmp> tmpsWithInterferences; |
| 417 | for (const auto& edge : m_interferenceEdges) { |
| 418 | tmpsWithInterferences.add(TmpMapper::tmpFromAbsoluteIndex(edge.first())); |
| 419 | tmpsWithInterferences.add(TmpMapper::tmpFromAbsoluteIndex(edge.second())); |
| 420 | } |
| 421 | |
| 422 | for (const auto& tmp : tmpsWithInterferences) { |
| 423 | unsigned tmpIndex = TmpMapper::absoluteIndex(tmp); |
| 424 | if (tmpIndex < m_degrees.size()) |
| 425 | out.print(" " , tmp.internalValue(), " [label=\"" , tmp, " (" , m_degrees[tmpIndex], ")\"];\n" ); |
| 426 | else |
| 427 | out.print(" " , tmp.internalValue(), " [label=\"" , tmp, "\"];\n" ); |
| 428 | } |
| 429 | |
| 430 | for (const auto& edge : m_interferenceEdges) |
| 431 | out.print(" " , edge.first(), " -- " , edge.second(), ";\n" ); |
| 432 | out.print("}\n" ); |
| 433 | } |
| 434 | |
| 435 | // Interference edges are not directed. An edge between any two Tmps is represented |
| 436 | // by the concatenated values of the smallest Tmp followed by the bigger Tmp. |
| 437 | class InterferenceEdge { |
| 438 | public: |
| 439 | InterferenceEdge() |
| 440 | { |
| 441 | } |
| 442 | |
| 443 | InterferenceEdge(IndexType a, IndexType b) |
| 444 | { |
| 445 | ASSERT(a); |
| 446 | ASSERT(b); |
| 447 | ASSERT_WITH_MESSAGE(a != b, "A Tmp can never interfere with itself. Doing so would force it to be the superposition of two registers." ); |
| 448 | |
| 449 | if (b < a) |
| 450 | std::swap(a, b); |
| 451 | m_value = static_cast<uint64_t>(a) << 32 | b; |
| 452 | } |
| 453 | |
| 454 | InterferenceEdge(WTF::HashTableDeletedValueType) |
| 455 | : m_value(std::numeric_limits<uint64_t>::max()) |
| 456 | { |
| 457 | } |
| 458 | |
| 459 | IndexType first() const |
| 460 | { |
| 461 | return m_value >> 32 & 0xffffffff; |
| 462 | } |
| 463 | |
| 464 | IndexType second() const |
| 465 | { |
| 466 | return m_value & 0xffffffff; |
| 467 | } |
| 468 | |
| 469 | bool operator==(const InterferenceEdge& other) const |
| 470 | { |
| 471 | return m_value == other.m_value; |
| 472 | } |
| 473 | |
| 474 | bool isHashTableDeletedValue() const |
| 475 | { |
| 476 | return *this == InterferenceEdge(WTF::HashTableDeletedValue); |
| 477 | } |
| 478 | |
| 479 | unsigned hash() const |
| 480 | { |
| 481 | return WTF::IntHash<uint64_t>::hash(m_value); |
| 482 | } |
| 483 | |
| 484 | void dump(PrintStream& out) const |
| 485 | { |
| 486 | out.print(first(), "<=>" , second()); |
| 487 | } |
| 488 | |
| 489 | private: |
| 490 | uint64_t m_value { 0 }; |
| 491 | }; |
| 492 | |
| 493 | bool addInterferenceEdge(InterferenceEdge edge) |
| 494 | { |
| 495 | return m_interferenceEdges.add(edge).isNewEntry; |
| 496 | } |
| 497 | |
| 498 | bool hasInterferenceEdge(InterferenceEdge edge) |
| 499 | { |
| 500 | return m_interferenceEdges.contains(edge); |
| 501 | } |
| 502 | |
| 503 | struct InterferenceEdgeHash { |
| 504 | static unsigned hash(const InterferenceEdge& key) { return key.hash(); } |
| 505 | static bool equal(const InterferenceEdge& a, const InterferenceEdge& b) { return a == b; } |
| 506 | static const bool safeToCompareToEmptyOrDeleted = true; |
| 507 | }; |
| 508 | typedef SimpleClassHashTraits<InterferenceEdge> InterferenceEdgeHashTraits; |
| 509 | |
| 510 | Vector<Reg> m_regsInPriorityOrder; |
| 511 | IndexType m_lastPrecoloredRegisterIndex { 0 }; |
| 512 | |
| 513 | // The interference graph. |
| 514 | HashSet<InterferenceEdge, InterferenceEdgeHash, InterferenceEdgeHashTraits> m_interferenceEdges; |
| 515 | |
| 516 | Vector<Vector<IndexType, 0, UnsafeVectorOverflow, 4>, 0, UnsafeVectorOverflow> m_adjacencyList; |
| 517 | Vector<IndexType, 0, UnsafeVectorOverflow> m_degrees; |
| 518 | |
| 519 | using IndexTypeSet = HashSet<IndexType, typename DefaultHash<IndexType>::Hash, WTF::UnsignedWithZeroKeyHashTraits<IndexType>>; |
| 520 | |
| 521 | HashMap<IndexType, IndexTypeSet, typename DefaultHash<IndexType>::Hash, WTF::UnsignedWithZeroKeyHashTraits<IndexType>> m_biases; |
| 522 | |
| 523 | // Instead of keeping track of the move instructions, we just keep their operands around and use the index |
| 524 | // in the vector as the "identifier" for the move. |
| 525 | struct MoveOperands { |
| 526 | IndexType srcIndex; |
| 527 | IndexType dstIndex; |
| 528 | }; |
| 529 | Vector<MoveOperands, 0, UnsafeVectorOverflow> m_coalescingCandidates; |
| 530 | |
| 531 | // List of every move instruction associated with a Tmp. |
| 532 | Vector<IndexTypeSet> m_moveList; |
| 533 | |
| 534 | // Colors. |
| 535 | Vector<Reg, 0, UnsafeVectorOverflow> m_coloredTmp; |
| 536 | Vector<IndexType> m_spilledTmps; |
| 537 | |
| 538 | // Values that have been coalesced with an other value. |
| 539 | Vector<IndexType, 0, UnsafeVectorOverflow> m_coalescedTmps; |
| 540 | |
| 541 | // The stack of Tmp removed from the graph and ready for coloring. |
| 542 | BitVector m_isOnSelectStack; |
| 543 | Vector<IndexType> m_selectStack; |
| 544 | |
| 545 | // Low-degree, non-Move related. |
| 546 | Vector<IndexType> m_simplifyWorklist; |
| 547 | // High-degree Tmp. |
| 548 | BitVector m_spillWorklist; |
| 549 | |
| 550 | bool m_hasSelectedSpill { false }; |
| 551 | bool m_hasCoalescedNonTrivialMove { false }; |
| 552 | |
| 553 | // The mapping of Tmp to their alias for Moves that are always coalescing regardless of spilling. |
| 554 | Vector<IndexType, 0, UnsafeVectorOverflow> m_coalescedTmpsAtSpill; |
| 555 | |
| 556 | const HashSet<unsigned>& m_unspillableTmps; |
| 557 | const UseCounts<Tmp>& m_useCounts; |
| 558 | Code& m_code; |
| 559 | |
| 560 | Vector<Tmp, 4> m_pinnedRegs; |
| 561 | }; |
| 562 | |
| 563 | template <typename IndexType, typename TmpMapper> |
| 564 | class Briggs : public AbstractColoringAllocator<IndexType, TmpMapper> { |
| 565 | using Base = AbstractColoringAllocator<IndexType, TmpMapper>; |
| 566 | protected: |
| 567 | using Base::m_isOnSelectStack; |
| 568 | using Base::m_selectStack; |
| 569 | using Base::m_simplifyWorklist; |
| 570 | using Base::m_spillWorklist; |
| 571 | using Base::m_hasSelectedSpill; |
| 572 | using Base::m_hasCoalescedNonTrivialMove; |
| 573 | using Base::m_degrees; |
| 574 | using Base::registerCount; |
| 575 | using Base::m_coalescedTmps; |
| 576 | using Base::m_moveList; |
| 577 | using Base::m_useCounts; |
| 578 | using Base::m_coalescedTmpsAtSpill; |
| 579 | using Base::m_spilledTmps; |
| 580 | using MoveOperands = typename Base::MoveOperands; |
| 581 | using Base::m_coalescingCandidates; |
| 582 | using Base::m_lastPrecoloredRegisterIndex; |
| 583 | using Base::m_coloredTmp; |
| 584 | using Base::m_code; |
| 585 | using InterferenceEdge = typename Base::InterferenceEdge; |
| 586 | using Base::m_unspillableTmps; |
| 587 | using Base::hasInterferenceEdge; |
| 588 | using Base::getAlias; |
| 589 | using Base::addEdge; |
| 590 | using Base::isPrecolored; |
| 591 | using Base::canBeSafelyCoalesced; |
| 592 | using Base::addEdgeDistinctWithoutDegreeChange; |
| 593 | using Base::forEachAdjacent; |
| 594 | using Base::hasBeenSimplified; |
| 595 | using Base::addToSpill; |
| 596 | using Base::m_interferenceEdges; |
| 597 | using Base::addBias; |
| 598 | using Base::m_pinnedRegs; |
| 599 | using Base::m_regsInPriorityOrder; |
| 600 | |
| 601 | public: |
| 602 | Briggs(Code& code, const Vector<Reg>& regsInPriorityOrder, IndexType lastPrecoloredRegisterIndex, unsigned tmpArraySize, const HashSet<unsigned>& unspillableTmps, const UseCounts<Tmp>& useCounts) |
| 603 | : Base(code, regsInPriorityOrder, lastPrecoloredRegisterIndex, tmpArraySize, unspillableTmps, useCounts) |
| 604 | { |
| 605 | } |
| 606 | |
| 607 | void allocate() |
| 608 | { |
| 609 | bool changed = false; |
| 610 | |
| 611 | auto coalesceMove = [&] (unsigned& move) { |
| 612 | bool coalesced = coalesce(move); |
| 613 | if (coalesced) { |
| 614 | changed = true; |
| 615 | // We won't need to handle this move in the future since it's already coalesced. |
| 616 | move = UINT_MAX; |
| 617 | } |
| 618 | }; |
| 619 | |
| 620 | // We first coalesce until we can't coalesce any more. |
| 621 | do { |
| 622 | changed = false; |
| 623 | m_worklistMoves.forEachMove(coalesceMove); |
| 624 | } while (changed); |
| 625 | do { |
| 626 | changed = false; |
| 627 | m_worklistMoves.forEachLowPriorityMove(coalesceMove); |
| 628 | } while (changed); |
| 629 | |
| 630 | // Then we create our select stack. The invariant we start with here is that nodes in |
| 631 | // the interference graph with degree >= k are on the spill list. Nodes with degree < k |
| 632 | // are on the simplify worklist. A node can move from the spill list to the simplify |
| 633 | // list (but not the other way around, note that this is different than IRC because IRC |
| 634 | // runs this while coalescing, but we do all our coalescing before this). Once a node is |
| 635 | // added to the select stack, it's not on either list, but only on the select stack. |
| 636 | // Once on the select stack, logically, it's no longer in the interference graph. |
| 637 | auto assertInvariants = [&] () { |
| 638 | if (ASSERT_DISABLED) |
| 639 | return; |
| 640 | if (!shouldValidateIRAtEachPhase()) |
| 641 | return; |
| 642 | |
| 643 | IndexType firstNonRegIndex = m_lastPrecoloredRegisterIndex + 1; |
| 644 | unsigned registerCount = this->registerCount(); |
| 645 | for (IndexType i = firstNonRegIndex; i < m_degrees.size(); ++i) { |
| 646 | if (getAlias(i) != i) |
| 647 | continue; |
| 648 | if (m_isOnSelectStack.contains(i)) { |
| 649 | ASSERT(!m_simplifyWorklist.contains(i) && !m_spillWorklist.contains(i)); |
| 650 | continue; |
| 651 | } |
| 652 | unsigned degree = m_degrees[i]; |
| 653 | if (degree >= registerCount) { |
| 654 | ASSERT(m_unspillableTmps.contains(i) || m_spillWorklist.contains(i)); |
| 655 | ASSERT(!m_simplifyWorklist.contains(i)); |
| 656 | continue; |
| 657 | } |
| 658 | ASSERT(m_simplifyWorklist.contains(i)); |
| 659 | } |
| 660 | }; |
| 661 | |
| 662 | makeInitialWorklist(); |
| 663 | assertInvariants(); |
| 664 | do { |
| 665 | changed = false; |
| 666 | |
| 667 | while (m_simplifyWorklist.size()) { |
| 668 | simplify(); |
| 669 | assertInvariants(); |
| 670 | } |
| 671 | |
| 672 | if (!m_spillWorklist.isEmpty()) { |
| 673 | selectSpill(); |
| 674 | changed = true; |
| 675 | ASSERT(m_simplifyWorklist.size() == 1); |
| 676 | } |
| 677 | } while (changed); |
| 678 | |
| 679 | if (!ASSERT_DISABLED) { |
| 680 | ASSERT(!m_simplifyWorklist.size()); |
| 681 | ASSERT(m_spillWorklist.isEmpty()); |
| 682 | IndexType firstNonRegIndex = m_lastPrecoloredRegisterIndex + 1; |
| 683 | for (IndexType i = firstNonRegIndex; i < m_degrees.size(); ++i) |
| 684 | ASSERT(hasBeenSimplified(i)); |
| 685 | } |
| 686 | |
| 687 | assignColors(); |
| 688 | } |
| 689 | |
| 690 | protected: |
| 691 | |
| 692 | bool coalesce(unsigned& moveIndex) |
| 693 | { |
| 694 | const MoveOperands& moveOperands = m_coalescingCandidates[moveIndex]; |
| 695 | IndexType u = getAlias(moveOperands.srcIndex); |
| 696 | IndexType v = getAlias(moveOperands.dstIndex); |
| 697 | |
| 698 | if (isPrecolored(v)) |
| 699 | std::swap(u, v); |
| 700 | |
| 701 | if (traceDebug) |
| 702 | dataLog("Coalescing move at index " , moveIndex, " u = " , TmpMapper::tmpFromAbsoluteIndex(u), " v = " , TmpMapper::tmpFromAbsoluteIndex(v), " " ); |
| 703 | |
| 704 | if (u == v) { |
| 705 | if (traceDebug) |
| 706 | dataLog("Already Coalesced. They're equal.\n" ); |
| 707 | return false; |
| 708 | } |
| 709 | |
| 710 | if (isPrecolored(v) |
| 711 | || hasInterferenceEdge(InterferenceEdge(u, v))) { |
| 712 | |
| 713 | // No need to ever consider this move again if it interferes. |
| 714 | // No coalescing will remove the interference. |
| 715 | moveIndex = UINT_MAX; |
| 716 | |
| 717 | if (!ASSERT_DISABLED) { |
| 718 | if (isPrecolored(v)) |
| 719 | ASSERT(isPrecolored(u)); |
| 720 | } |
| 721 | |
| 722 | if (traceDebug) |
| 723 | dataLog("Constrained\n" ); |
| 724 | |
| 725 | return false; |
| 726 | } |
| 727 | |
| 728 | if (canBeSafelyCoalesced(u, v)) { |
| 729 | combine(u, v); |
| 730 | m_hasCoalescedNonTrivialMove = true; |
| 731 | |
| 732 | if (traceDebug) |
| 733 | dataLog(" Safe Coalescing\n" ); |
| 734 | return true; |
| 735 | } |
| 736 | |
| 737 | addBias(u, v); |
| 738 | |
| 739 | if (traceDebug) |
| 740 | dataLog(" Failed coalescing.\n" ); |
| 741 | |
| 742 | return false; |
| 743 | } |
| 744 | |
| 745 | void combine(IndexType u, IndexType v) |
| 746 | { |
| 747 | ASSERT(!m_coalescedTmps[v]); |
| 748 | m_coalescedTmps[v] = u; |
| 749 | |
| 750 | auto& vMoves = m_moveList[v]; |
| 751 | m_moveList[u].add(vMoves.begin(), vMoves.end()); |
| 752 | |
| 753 | forEachAdjacent(v, [this, u] (IndexType adjacentTmpIndex) { |
| 754 | if (addEdgeDistinctWithoutDegreeChange(adjacentTmpIndex, u)) { |
| 755 | // If we added a new edge between the adjacentTmp and u, it replaces the edge |
| 756 | // that existed with v. |
| 757 | // The degree of adjacentTmp remains the same since the edge just changed from u to v. |
| 758 | // All we need to do is update the degree of u. |
| 759 | if (!isPrecolored(u)) |
| 760 | m_degrees[u]++; |
| 761 | } else { |
| 762 | // If we already had an edge between the adjacentTmp and u, the degree of u |
| 763 | // is already correct. The degree of the adjacentTmp decreases since the edge |
| 764 | // with v is no longer relevant (we can think of it as merged with the edge with u). |
| 765 | decrementDegree(adjacentTmpIndex); |
| 766 | } |
| 767 | }); |
| 768 | } |
| 769 | |
| 770 | |
| 771 | void makeInitialWorklist() |
| 772 | { |
| 773 | m_simplifyWorklist.clear(); |
| 774 | m_spillWorklist.clearAll(); |
| 775 | |
| 776 | if (traceDebug) |
| 777 | dataLogLn("------------------\nMaking initial worklist" ); |
| 778 | |
| 779 | IndexType firstNonRegIndex = m_lastPrecoloredRegisterIndex + 1; |
| 780 | unsigned registerCount = this->registerCount(); |
| 781 | for (IndexType i = firstNonRegIndex; i < m_degrees.size(); ++i) { |
| 782 | ASSERT(!isPrecolored(i)); |
| 783 | if (hasBeenSimplified(i)) |
| 784 | continue; |
| 785 | unsigned degree = m_degrees[i]; |
| 786 | if (degree < registerCount) { |
| 787 | if (traceDebug) |
| 788 | dataLogLn("Adding " , TmpMapper::tmpFromAbsoluteIndex(i), " to simplify worklist" ); |
| 789 | m_simplifyWorklist.append(i); |
| 790 | } else { |
| 791 | if (traceDebug) |
| 792 | dataLogLn("Adding " , TmpMapper::tmpFromAbsoluteIndex(i), " to spill worklist" ); |
| 793 | addToSpill(i); |
| 794 | } |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | // Low-degree vertex can always be colored: just pick any of the color taken by any |
| 799 | // other adjacent verices. |
| 800 | // The "Simplify" phase takes a low-degree out of the interference graph to simplify it. |
| 801 | void simplify() |
| 802 | { |
| 803 | IndexType lastIndex = m_simplifyWorklist.takeLast(); |
| 804 | |
| 805 | ASSERT(!m_selectStack.contains(lastIndex)); |
| 806 | ASSERT(!m_isOnSelectStack.get(lastIndex)); |
| 807 | ASSERT(!m_spillWorklist.contains(lastIndex)); |
| 808 | |
| 809 | m_selectStack.append(lastIndex); |
| 810 | m_isOnSelectStack.quickSet(lastIndex); |
| 811 | |
| 812 | if (traceDebug) |
| 813 | dataLogLn("Simplifying " , lastIndex, " by adding it to select stack" ); |
| 814 | |
| 815 | forEachAdjacent(lastIndex, [this](IndexType adjacentTmpIndex) { |
| 816 | decrementDegreeInSimplification(adjacentTmpIndex); |
| 817 | }); |
| 818 | } |
| 819 | |
| 820 | void selectSpill() |
| 821 | { |
| 822 | IndexType victimIndex = Base::selectSpill(); |
| 823 | m_spillWorklist.quickClear(victimIndex); |
| 824 | m_simplifyWorklist.append(victimIndex); |
| 825 | } |
| 826 | |
| 827 | struct MoveSet { |
| 828 | unsigned addMove() |
| 829 | { |
| 830 | ASSERT(m_lowPriorityMoveList.isEmpty()); |
| 831 | |
| 832 | unsigned nextIndex = m_positionInMoveList++; |
| 833 | m_moveList.append(nextIndex); |
| 834 | return nextIndex; |
| 835 | } |
| 836 | |
| 837 | void startAddingLowPriorityMoves() |
| 838 | { |
| 839 | ASSERT(m_lowPriorityMoveList.isEmpty()); |
| 840 | } |
| 841 | |
| 842 | unsigned addLowPriorityMove() |
| 843 | { |
| 844 | unsigned nextIndex = m_positionInMoveList++; |
| 845 | m_lowPriorityMoveList.append(nextIndex); |
| 846 | |
| 847 | return nextIndex; |
| 848 | } |
| 849 | |
| 850 | // We use references to moves here because the function |
| 851 | // may do coalescing, indicating it doesn't need to see |
| 852 | // the move again. |
| 853 | template <typename Function> |
| 854 | void forEachMove(Function function) |
| 855 | { |
| 856 | for (unsigned& move : m_moveList) { |
| 857 | if (move != UINT_MAX) |
| 858 | function(move); |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | template <typename Function> |
| 863 | void forEachLowPriorityMove(Function function) |
| 864 | { |
| 865 | for (unsigned& move : m_lowPriorityMoveList) { |
| 866 | if (move != UINT_MAX) |
| 867 | function(move); |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | void clear() |
| 872 | { |
| 873 | m_positionInMoveList = 0; |
| 874 | m_moveList.clear(); |
| 875 | m_lowPriorityMoveList.clear(); |
| 876 | } |
| 877 | |
| 878 | private: |
| 879 | unsigned m_positionInMoveList; |
| 880 | Vector<unsigned, 0, UnsafeVectorOverflow> m_moveList; |
| 881 | Vector<unsigned, 0, UnsafeVectorOverflow> m_lowPriorityMoveList; |
| 882 | }; |
| 883 | |
| 884 | void decrementDegree(IndexType tmpIndex) |
| 885 | { |
| 886 | ASSERT(m_degrees[tmpIndex]); |
| 887 | --m_degrees[tmpIndex]; |
| 888 | } |
| 889 | |
| 890 | void decrementDegreeInSimplification(IndexType tmpIndex) |
| 891 | { |
| 892 | ASSERT(m_degrees[tmpIndex]); |
| 893 | unsigned oldDegree = m_degrees[tmpIndex]--; |
| 894 | |
| 895 | if (oldDegree == registerCount()) { |
| 896 | ASSERT(m_degrees[tmpIndex] < registerCount()); |
| 897 | if (traceDebug) |
| 898 | dataLogLn("Moving tmp " , tmpIndex, " from spill list to simplify list because it's degree is now less than k" ); |
| 899 | |
| 900 | if (!ASSERT_DISABLED) |
| 901 | ASSERT(m_unspillableTmps.contains(tmpIndex) || m_spillWorklist.contains(tmpIndex)); |
| 902 | m_spillWorklist.quickClear(tmpIndex); |
| 903 | |
| 904 | ASSERT(!m_simplifyWorklist.contains(tmpIndex)); |
| 905 | m_simplifyWorklist.append(tmpIndex); |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | void assignColors() |
| 910 | { |
| 911 | m_worklistMoves.clear(); |
| 912 | Base::assignColors(); |
| 913 | } |
| 914 | |
| 915 | // Set of "move" enabled for possible coalescing. |
| 916 | MoveSet m_worklistMoves; |
| 917 | }; |
| 918 | |
| 919 | template <typename IndexType, typename TmpMapper> |
| 920 | class IRC : public AbstractColoringAllocator<IndexType, TmpMapper> { |
| 921 | using Base = AbstractColoringAllocator<IndexType, TmpMapper>; |
| 922 | protected: |
| 923 | using Base::m_isOnSelectStack; |
| 924 | using Base::m_selectStack; |
| 925 | using Base::m_simplifyWorklist; |
| 926 | using Base::m_spillWorklist; |
| 927 | using Base::m_hasSelectedSpill; |
| 928 | using Base::m_hasCoalescedNonTrivialMove; |
| 929 | using Base::m_degrees; |
| 930 | using Base::registerCount; |
| 931 | using Base::m_coalescedTmps; |
| 932 | using Base::m_moveList; |
| 933 | using Base::m_useCounts; |
| 934 | using Base::m_coalescedTmpsAtSpill; |
| 935 | using Base::m_spilledTmps; |
| 936 | using MoveOperands = typename Base::MoveOperands; |
| 937 | using Base::m_coalescingCandidates; |
| 938 | using Base::m_lastPrecoloredRegisterIndex; |
| 939 | using Base::m_coloredTmp; |
| 940 | using Base::m_code; |
| 941 | using InterferenceEdge = typename Base::InterferenceEdge; |
| 942 | using Base::m_unspillableTmps; |
| 943 | using Base::hasInterferenceEdge; |
| 944 | using Base::getAlias; |
| 945 | using Base::addEdge; |
| 946 | using Base::isPrecolored; |
| 947 | using Base::canBeSafelyCoalesced; |
| 948 | using Base::addEdgeDistinctWithoutDegreeChange; |
| 949 | using Base::forEachAdjacent; |
| 950 | using Base::hasBeenSimplified; |
| 951 | using Base::addToSpill; |
| 952 | using Base::m_interferenceEdges; |
| 953 | using Base::m_adjacencyList; |
| 954 | using Base::dumpInterferenceGraphInDot; |
| 955 | using Base::addBias; |
| 956 | using Base::m_pinnedRegs; |
| 957 | using Base::m_regsInPriorityOrder; |
| 958 | |
| 959 | public: |
| 960 | IRC(Code& code, const Vector<Reg>& regsInPriorityOrder, IndexType lastPrecoloredRegisterIndex, unsigned tmpArraySize, const HashSet<unsigned>& unspillableTmps, const UseCounts<Tmp>& useCounts) |
| 961 | : Base(code, regsInPriorityOrder, lastPrecoloredRegisterIndex, tmpArraySize, unspillableTmps, useCounts) |
| 962 | { |
| 963 | } |
| 964 | |
| 965 | void allocate() |
| 966 | { |
| 967 | m_activeMoves.ensureSize(m_worklistMoves.totalNumberOfMoves()); |
| 968 | ASSERT_WITH_MESSAGE(m_activeMoves.size() >= m_coalescingCandidates.size(), "The activeMove set should be big enough for the quick operations of BitVector." ); |
| 969 | |
| 970 | makeWorkList(); |
| 971 | |
| 972 | if (debug) { |
| 973 | dumpInterferenceGraphInDot(WTF::dataFile()); |
| 974 | dataLog("Coalescing candidates:\n" ); |
| 975 | for (MoveOperands& moveOp : m_coalescingCandidates) { |
| 976 | dataLog(" " , TmpMapper::tmpFromAbsoluteIndex(moveOp.srcIndex), |
| 977 | " -> " , TmpMapper::tmpFromAbsoluteIndex(moveOp.dstIndex), "\n" ); |
| 978 | } |
| 979 | dataLog("Initial work list\n" ); |
| 980 | dumpWorkLists(WTF::dataFile()); |
| 981 | } |
| 982 | |
| 983 | do { |
| 984 | if (traceDebug) { |
| 985 | dataLog("Before Graph simplification iteration\n" ); |
| 986 | dumpWorkLists(WTF::dataFile()); |
| 987 | } |
| 988 | |
| 989 | if (!m_simplifyWorklist.isEmpty()) |
| 990 | simplify(); |
| 991 | else if (!m_worklistMoves.isEmpty()) |
| 992 | coalesce(); |
| 993 | else if (!m_freezeWorklist.isEmpty()) |
| 994 | freeze(); |
| 995 | else if (!m_spillWorklist.isEmpty()) |
| 996 | selectSpill(); |
| 997 | |
| 998 | if (traceDebug) { |
| 999 | dataLog("After Graph simplification iteration\n" ); |
| 1000 | dumpWorkLists(WTF::dataFile()); |
| 1001 | } |
| 1002 | } while (!m_simplifyWorklist.isEmpty() || !m_worklistMoves.isEmpty() || !m_freezeWorklist.isEmpty() || !m_spillWorklist.isEmpty()); |
| 1003 | |
| 1004 | assignColors(); |
| 1005 | } |
| 1006 | |
| 1007 | protected: |
| 1008 | |
| 1009 | void makeWorkList() |
| 1010 | { |
| 1011 | IndexType firstNonRegIndex = m_lastPrecoloredRegisterIndex + 1; |
| 1012 | for (IndexType i = firstNonRegIndex; i < m_degrees.size(); ++i) { |
| 1013 | unsigned degree = m_degrees[i]; |
| 1014 | if (degree >= registerCount()) |
| 1015 | addToSpill(i); |
| 1016 | else if (!m_moveList[i].isEmpty()) |
| 1017 | m_freezeWorklist.add(i); |
| 1018 | else |
| 1019 | m_simplifyWorklist.append(i); |
| 1020 | } |
| 1021 | } |
| 1022 | |
| 1023 | // Low-degree vertex can always be colored: just pick any of the color taken by any |
| 1024 | // other adjacent verices. |
| 1025 | // The "Simplify" phase takes a low-degree out of the interference graph to simplify it. |
| 1026 | void simplify() |
| 1027 | { |
| 1028 | IndexType lastIndex = m_simplifyWorklist.takeLast(); |
| 1029 | |
| 1030 | ASSERT(!m_selectStack.contains(lastIndex)); |
| 1031 | ASSERT(!m_isOnSelectStack.get(lastIndex)); |
| 1032 | m_selectStack.append(lastIndex); |
| 1033 | m_isOnSelectStack.quickSet(lastIndex); |
| 1034 | |
| 1035 | forEachAdjacent(lastIndex, [this](IndexType adjacentTmpIndex) { |
| 1036 | decrementDegree(adjacentTmpIndex); |
| 1037 | }); |
| 1038 | } |
| 1039 | |
| 1040 | void coalesce() |
| 1041 | { |
| 1042 | unsigned moveIndex = m_worklistMoves.takeLastMove(); |
| 1043 | const MoveOperands& moveOperands = m_coalescingCandidates[moveIndex]; |
| 1044 | IndexType u = getAlias(moveOperands.srcIndex); |
| 1045 | IndexType v = getAlias(moveOperands.dstIndex); |
| 1046 | |
| 1047 | if (isPrecolored(v)) |
| 1048 | std::swap(u, v); |
| 1049 | |
| 1050 | if (traceDebug) |
| 1051 | dataLog("Coalescing move at index " , moveIndex, " u = " , u, " v = " , v, "\n" ); |
| 1052 | |
| 1053 | if (u == v) { |
| 1054 | addWorkList(u); |
| 1055 | |
| 1056 | if (traceDebug) |
| 1057 | dataLog(" Coalesced\n" ); |
| 1058 | } else if (isPrecolored(v) |
| 1059 | || hasInterferenceEdge(InterferenceEdge(u, v))) { |
| 1060 | addWorkList(u); |
| 1061 | addWorkList(v); |
| 1062 | |
| 1063 | if (traceDebug) |
| 1064 | dataLog(" Constrained\n" ); |
| 1065 | } else if (canBeSafelyCoalesced(u, v)) { |
| 1066 | combine(u, v); |
| 1067 | addWorkList(u); |
| 1068 | m_hasCoalescedNonTrivialMove = true; |
| 1069 | |
| 1070 | if (traceDebug) |
| 1071 | dataLog(" Safe Coalescing\n" ); |
| 1072 | } else { |
| 1073 | m_activeMoves.quickSet(moveIndex); |
| 1074 | if (traceDebug) |
| 1075 | dataLog(" Failed coalescing, added to active moves.\n" ); |
| 1076 | |
| 1077 | addBias(u, v); |
| 1078 | } |
| 1079 | } |
| 1080 | |
| 1081 | void addWorkList(IndexType tmpIndex) |
| 1082 | { |
| 1083 | if (!isPrecolored(tmpIndex) && m_degrees[tmpIndex] < registerCount() && !isMoveRelated(tmpIndex)) { |
| 1084 | m_freezeWorklist.remove(tmpIndex); |
| 1085 | m_simplifyWorklist.append(tmpIndex); |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | void combine(IndexType u, IndexType v) |
| 1090 | { |
| 1091 | if (!m_freezeWorklist.remove(v)) |
| 1092 | m_spillWorklist.quickClear(v); |
| 1093 | |
| 1094 | ASSERT(!m_coalescedTmps[v]); |
| 1095 | m_coalescedTmps[v] = u; |
| 1096 | |
| 1097 | auto& vMoves = m_moveList[v]; |
| 1098 | m_moveList[u].add(vMoves.begin(), vMoves.end()); |
| 1099 | |
| 1100 | forEachAdjacent(v, [this, u] (IndexType adjacentTmpIndex) { |
| 1101 | if (addEdgeDistinctWithoutDegreeChange(adjacentTmpIndex, u)) { |
| 1102 | // If we added a new edge between the adjacentTmp and u, it replaces the edge |
| 1103 | // that existed with v. |
| 1104 | // The degree of adjacentTmp remains the same since the edge just changed from u to v. |
| 1105 | // All we need to do is update the degree of u. |
| 1106 | if (!isPrecolored(u)) |
| 1107 | m_degrees[u]++; |
| 1108 | } else { |
| 1109 | // If we already had an edge between the adjacentTmp and u, the degree of u |
| 1110 | // is already correct. The degree of the adjacentTmp decreases since the edge |
| 1111 | // with v is no longer relevant (we can think of it as merged with the edge with u). |
| 1112 | decrementDegree(adjacentTmpIndex); |
| 1113 | } |
| 1114 | }); |
| 1115 | |
| 1116 | if (m_degrees[u] >= registerCount() && m_freezeWorklist.remove(u)) |
| 1117 | addToSpill(u); |
| 1118 | } |
| 1119 | |
| 1120 | void freeze() |
| 1121 | { |
| 1122 | IndexType victimIndex = m_freezeWorklist.takeAny(); |
| 1123 | ASSERT_WITH_MESSAGE(getAlias(victimIndex) == victimIndex, "coalesce() should not leave aliased Tmp in the worklist." ); |
| 1124 | m_simplifyWorklist.append(victimIndex); |
| 1125 | freezeMoves(victimIndex); |
| 1126 | } |
| 1127 | |
| 1128 | void freezeMoves(IndexType tmpIndex) |
| 1129 | { |
| 1130 | forEachNodeMoves(tmpIndex, [this, tmpIndex] (IndexType moveIndex) { |
| 1131 | if (!m_activeMoves.quickClear(moveIndex)) |
| 1132 | m_worklistMoves.takeMove(moveIndex); |
| 1133 | |
| 1134 | const MoveOperands& moveOperands = m_coalescingCandidates[moveIndex]; |
| 1135 | IndexType srcTmpIndex = moveOperands.srcIndex; |
| 1136 | IndexType dstTmpIndex = moveOperands.dstIndex; |
| 1137 | |
| 1138 | IndexType originalOtherTmp = srcTmpIndex != tmpIndex ? srcTmpIndex : dstTmpIndex; |
| 1139 | IndexType otherTmpIndex = getAlias(originalOtherTmp); |
| 1140 | if (m_degrees[otherTmpIndex] < registerCount() && !isMoveRelated(otherTmpIndex)) { |
| 1141 | if (m_freezeWorklist.remove(otherTmpIndex)) |
| 1142 | m_simplifyWorklist.append(otherTmpIndex); |
| 1143 | } |
| 1144 | }); |
| 1145 | } |
| 1146 | |
| 1147 | void decrementDegree(IndexType tmpIndex) |
| 1148 | { |
| 1149 | ASSERT(m_degrees[tmpIndex]); |
| 1150 | |
| 1151 | unsigned oldDegree = m_degrees[tmpIndex]--; |
| 1152 | if (oldDegree == registerCount()) { |
| 1153 | enableMovesOnValueAndAdjacents(tmpIndex); |
| 1154 | m_spillWorklist.quickClear(tmpIndex); |
| 1155 | if (isMoveRelated(tmpIndex)) |
| 1156 | m_freezeWorklist.add(tmpIndex); |
| 1157 | else |
| 1158 | m_simplifyWorklist.append(tmpIndex); |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | void selectSpill() |
| 1163 | { |
| 1164 | IndexType victimIndex = Base::selectSpill(); |
| 1165 | m_spillWorklist.quickClear(victimIndex); |
| 1166 | m_simplifyWorklist.append(victimIndex); |
| 1167 | freezeMoves(victimIndex); |
| 1168 | } |
| 1169 | |
| 1170 | void assignColors() |
| 1171 | { |
| 1172 | ASSERT(m_freezeWorklist.isEmpty()); |
| 1173 | m_worklistMoves.clear(); |
| 1174 | Base::assignColors(); |
| 1175 | } |
| 1176 | |
| 1177 | |
| 1178 | bool isMoveRelated(IndexType tmpIndex) |
| 1179 | { |
| 1180 | for (unsigned moveIndex : m_moveList[tmpIndex]) { |
| 1181 | if (m_activeMoves.quickGet(moveIndex) || m_worklistMoves.contains(moveIndex)) |
| 1182 | return true; |
| 1183 | } |
| 1184 | return false; |
| 1185 | } |
| 1186 | |
| 1187 | template<typename Function> |
| 1188 | void forEachNodeMoves(IndexType tmpIndex, Function function) |
| 1189 | { |
| 1190 | for (unsigned moveIndex : m_moveList[tmpIndex]) { |
| 1191 | if (m_activeMoves.quickGet(moveIndex) || m_worklistMoves.contains(moveIndex)) |
| 1192 | function(moveIndex); |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | void enableMovesOnValue(IndexType tmpIndex) |
| 1197 | { |
| 1198 | for (unsigned moveIndex : m_moveList[tmpIndex]) { |
| 1199 | if (m_activeMoves.quickClear(moveIndex)) |
| 1200 | m_worklistMoves.returnMove(moveIndex); |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | void enableMovesOnValueAndAdjacents(IndexType tmpIndex) |
| 1205 | { |
| 1206 | enableMovesOnValue(tmpIndex); |
| 1207 | |
| 1208 | forEachAdjacent(tmpIndex, [this] (IndexType adjacentTmpIndex) { |
| 1209 | enableMovesOnValue(adjacentTmpIndex); |
| 1210 | }); |
| 1211 | } |
| 1212 | |
| 1213 | struct OrderedMoveSet { |
| 1214 | unsigned addMove() |
| 1215 | { |
| 1216 | ASSERT(m_lowPriorityMoveList.isEmpty()); |
| 1217 | ASSERT(!m_firstLowPriorityMoveIndex); |
| 1218 | |
| 1219 | unsigned nextIndex = m_positionInMoveList.size(); |
| 1220 | unsigned position = m_moveList.size(); |
| 1221 | m_moveList.append(nextIndex); |
| 1222 | m_positionInMoveList.append(position); |
| 1223 | return nextIndex; |
| 1224 | } |
| 1225 | |
| 1226 | void startAddingLowPriorityMoves() |
| 1227 | { |
| 1228 | ASSERT(m_lowPriorityMoveList.isEmpty()); |
| 1229 | m_firstLowPriorityMoveIndex = m_moveList.size(); |
| 1230 | } |
| 1231 | |
| 1232 | unsigned addLowPriorityMove() |
| 1233 | { |
| 1234 | ASSERT(m_firstLowPriorityMoveIndex == m_moveList.size()); |
| 1235 | |
| 1236 | unsigned nextIndex = m_positionInMoveList.size(); |
| 1237 | unsigned position = m_lowPriorityMoveList.size(); |
| 1238 | m_lowPriorityMoveList.append(nextIndex); |
| 1239 | m_positionInMoveList.append(position); |
| 1240 | |
| 1241 | ASSERT(nextIndex >= m_firstLowPriorityMoveIndex); |
| 1242 | |
| 1243 | return nextIndex; |
| 1244 | } |
| 1245 | |
| 1246 | bool isEmpty() const |
| 1247 | { |
| 1248 | return m_moveList.isEmpty() && m_lowPriorityMoveList.isEmpty(); |
| 1249 | } |
| 1250 | |
| 1251 | bool contains(unsigned index) |
| 1252 | { |
| 1253 | return m_positionInMoveList[index] != std::numeric_limits<unsigned>::max(); |
| 1254 | } |
| 1255 | |
| 1256 | void takeMove(unsigned moveIndex) |
| 1257 | { |
| 1258 | unsigned positionInMoveList = m_positionInMoveList[moveIndex]; |
| 1259 | if (positionInMoveList == std::numeric_limits<unsigned>::max()) |
| 1260 | return; |
| 1261 | |
| 1262 | if (moveIndex < m_firstLowPriorityMoveIndex) { |
| 1263 | ASSERT(m_moveList[positionInMoveList] == moveIndex); |
| 1264 | unsigned lastIndex = m_moveList.last(); |
| 1265 | m_positionInMoveList[lastIndex] = positionInMoveList; |
| 1266 | m_moveList[positionInMoveList] = lastIndex; |
| 1267 | m_moveList.removeLast(); |
| 1268 | } else { |
| 1269 | ASSERT(m_lowPriorityMoveList[positionInMoveList] == moveIndex); |
| 1270 | unsigned lastIndex = m_lowPriorityMoveList.last(); |
| 1271 | m_positionInMoveList[lastIndex] = positionInMoveList; |
| 1272 | m_lowPriorityMoveList[positionInMoveList] = lastIndex; |
| 1273 | m_lowPriorityMoveList.removeLast(); |
| 1274 | } |
| 1275 | |
| 1276 | m_positionInMoveList[moveIndex] = std::numeric_limits<unsigned>::max(); |
| 1277 | |
| 1278 | ASSERT(!contains(moveIndex)); |
| 1279 | } |
| 1280 | |
| 1281 | unsigned takeLastMove() |
| 1282 | { |
| 1283 | ASSERT(!isEmpty()); |
| 1284 | |
| 1285 | unsigned lastIndex; |
| 1286 | if (!m_moveList.isEmpty()) { |
| 1287 | lastIndex = m_moveList.takeLast(); |
| 1288 | ASSERT(m_positionInMoveList[lastIndex] == m_moveList.size()); |
| 1289 | } else { |
| 1290 | lastIndex = m_lowPriorityMoveList.takeLast(); |
| 1291 | ASSERT(m_positionInMoveList[lastIndex] == m_lowPriorityMoveList.size()); |
| 1292 | } |
| 1293 | m_positionInMoveList[lastIndex] = std::numeric_limits<unsigned>::max(); |
| 1294 | |
| 1295 | ASSERT(!contains(lastIndex)); |
| 1296 | return lastIndex; |
| 1297 | } |
| 1298 | |
| 1299 | void returnMove(unsigned index) |
| 1300 | { |
| 1301 | // This assertion is a bit strict but that is how the move list should be used. The only kind of moves that can |
| 1302 | // return to the list are the ones that we previously failed to coalesce with the conservative heuristics. |
| 1303 | // Values should not be added back if they were never taken out when attempting coalescing. |
| 1304 | ASSERT(!contains(index)); |
| 1305 | |
| 1306 | if (index < m_firstLowPriorityMoveIndex) { |
| 1307 | unsigned position = m_moveList.size(); |
| 1308 | m_moveList.append(index); |
| 1309 | m_positionInMoveList[index] = position; |
| 1310 | } else { |
| 1311 | unsigned position = m_lowPriorityMoveList.size(); |
| 1312 | m_lowPriorityMoveList.append(index); |
| 1313 | m_positionInMoveList[index] = position; |
| 1314 | } |
| 1315 | |
| 1316 | ASSERT(contains(index)); |
| 1317 | } |
| 1318 | |
| 1319 | void clear() |
| 1320 | { |
| 1321 | m_positionInMoveList.clear(); |
| 1322 | m_moveList.clear(); |
| 1323 | m_lowPriorityMoveList.clear(); |
| 1324 | } |
| 1325 | |
| 1326 | unsigned totalNumberOfMoves() |
| 1327 | { |
| 1328 | return m_moveList.size() + m_lowPriorityMoveList.size(); |
| 1329 | } |
| 1330 | |
| 1331 | private: |
| 1332 | Vector<unsigned, 0, UnsafeVectorOverflow> m_positionInMoveList; |
| 1333 | Vector<unsigned, 0, UnsafeVectorOverflow> m_moveList; |
| 1334 | Vector<unsigned, 0, UnsafeVectorOverflow> m_lowPriorityMoveList; |
| 1335 | unsigned m_firstLowPriorityMoveIndex { 0 }; |
| 1336 | }; |
| 1337 | |
| 1338 | void dumpWorkLists(PrintStream& out) |
| 1339 | { |
| 1340 | out.print("Simplify work list:\n" ); |
| 1341 | for (unsigned tmpIndex : m_simplifyWorklist) |
| 1342 | out.print(" " , TmpMapper::tmpFromAbsoluteIndex(tmpIndex), "\n" ); |
| 1343 | out.printf("Moves work list is empty? %d\n" , m_worklistMoves.isEmpty()); |
| 1344 | out.print("Freeze work list:\n" ); |
| 1345 | for (unsigned tmpIndex : m_freezeWorklist) |
| 1346 | out.print(" " , TmpMapper::tmpFromAbsoluteIndex(tmpIndex), "\n" ); |
| 1347 | out.print("Spill work list:\n" ); |
| 1348 | for (unsigned tmpIndex : m_spillWorklist) |
| 1349 | out.print(" " , TmpMapper::tmpFromAbsoluteIndex(tmpIndex), "\n" ); |
| 1350 | } |
| 1351 | |
| 1352 | // Work lists. |
| 1353 | // Low-degree, Move related. |
| 1354 | HashSet<IndexType> m_freezeWorklist; |
| 1355 | // Set of "move" enabled for possible coalescing. |
| 1356 | OrderedMoveSet m_worklistMoves; |
| 1357 | // Set of "move" not yet ready for coalescing. |
| 1358 | BitVector m_activeMoves; |
| 1359 | }; |
| 1360 | |
| 1361 | // This perform all the tasks that are specific to certain register type. |
| 1362 | template<Bank bank, template<typename, typename> class AllocatorType> |
| 1363 | class ColoringAllocator : public AllocatorType<unsigned, AbsoluteTmpMapper<bank>> { |
| 1364 | using TmpMapper = AbsoluteTmpMapper<bank>; |
| 1365 | using Base = AllocatorType<unsigned, TmpMapper>; |
| 1366 | using Base::m_isOnSelectStack; |
| 1367 | using Base::m_selectStack; |
| 1368 | using Base::m_simplifyWorklist; |
| 1369 | using Base::m_spillWorklist; |
| 1370 | using Base::m_hasSelectedSpill; |
| 1371 | using Base::m_hasCoalescedNonTrivialMove; |
| 1372 | using Base::m_degrees; |
| 1373 | using Base::registerCount; |
| 1374 | using Base::m_coalescedTmps; |
| 1375 | using Base::m_moveList; |
| 1376 | using Base::m_useCounts; |
| 1377 | using Base::m_coalescedTmpsAtSpill; |
| 1378 | using Base::m_spilledTmps; |
| 1379 | using MoveOperands = typename Base::MoveOperands; |
| 1380 | using Base::m_coalescingCandidates; |
| 1381 | using Base::m_lastPrecoloredRegisterIndex; |
| 1382 | using Base::m_coloredTmp; |
| 1383 | using Base::m_code; |
| 1384 | using InterferenceEdge = typename Base::InterferenceEdge; |
| 1385 | using Base::m_worklistMoves; |
| 1386 | using Base::hasInterferenceEdge; |
| 1387 | using Base::getAlias; |
| 1388 | using Base::addEdge; |
| 1389 | using Base::m_interferenceEdges; |
| 1390 | using Base::m_pinnedRegs; |
| 1391 | using Base::m_regsInPriorityOrder; |
| 1392 | |
| 1393 | public: |
| 1394 | |
| 1395 | ColoringAllocator(Code& code, TmpWidth& tmpWidth, const UseCounts<Tmp>& useCounts, const HashSet<unsigned>& unspillableTmp) |
| 1396 | : Base(code, code.regsInPriorityOrder(bank), TmpMapper::lastMachineRegisterIndex(), tmpArraySize(code), unspillableTmp, useCounts) |
| 1397 | , m_tmpWidth(tmpWidth) |
| 1398 | { |
| 1399 | for (Reg reg : code.pinnedRegisters()) { |
| 1400 | if ((bank == GP && reg.isGPR()) || (bank == FP && reg.isFPR())) { |
| 1401 | m_pinnedRegs.append(Tmp(reg)); |
| 1402 | ASSERT(!m_regsInPriorityOrder.contains(reg)); |
| 1403 | m_regsInPriorityOrder.append(reg); |
| 1404 | } |
| 1405 | } |
| 1406 | |
| 1407 | initializePrecoloredTmp(); |
| 1408 | build(); |
| 1409 | } |
| 1410 | |
| 1411 | Tmp getAlias(Tmp tmp) const |
| 1412 | { |
| 1413 | return TmpMapper::tmpFromAbsoluteIndex(getAlias(TmpMapper::absoluteIndex(tmp))); |
| 1414 | } |
| 1415 | |
| 1416 | // This tells you if a Move will be coalescable if the src and dst end up matching. This method |
| 1417 | // relies on an analysis that is invalidated by register allocation, so you it's only meaningful to |
| 1418 | // call this *before* replacing the Tmp's in this Inst with registers or spill slots. |
| 1419 | bool mayBeCoalescable(const Inst& inst) const |
| 1420 | { |
| 1421 | return mayBeCoalescableImpl(inst, &m_tmpWidth); |
| 1422 | } |
| 1423 | |
| 1424 | bool isUselessMove(const Inst& inst) const |
| 1425 | { |
| 1426 | return mayBeCoalescableImpl(inst, nullptr) && inst.args[0].tmp() == inst.args[1].tmp(); |
| 1427 | } |
| 1428 | |
| 1429 | Tmp getAliasWhenSpilling(Tmp tmp) const |
| 1430 | { |
| 1431 | ASSERT_WITH_MESSAGE(!m_spilledTmps.isEmpty(), "This function is only valid for coalescing during spilling." ); |
| 1432 | |
| 1433 | if (m_coalescedTmpsAtSpill.isEmpty()) |
| 1434 | return tmp; |
| 1435 | |
| 1436 | unsigned aliasIndex = TmpMapper::absoluteIndex(tmp); |
| 1437 | while (unsigned nextAliasIndex = m_coalescedTmpsAtSpill[aliasIndex]) |
| 1438 | aliasIndex = nextAliasIndex; |
| 1439 | |
| 1440 | Tmp alias = TmpMapper::tmpFromAbsoluteIndex(aliasIndex); |
| 1441 | |
| 1442 | ASSERT_WITH_MESSAGE(!m_spilledTmps.contains(aliasIndex) || alias == tmp, "The aliases at spill should always be colorable. Something went horribly wrong." ); |
| 1443 | |
| 1444 | return alias; |
| 1445 | } |
| 1446 | |
| 1447 | template<typename IndexIterator> |
| 1448 | class IndexToTmpIteratorAdaptor { |
| 1449 | public: |
| 1450 | IndexToTmpIteratorAdaptor(IndexIterator&& indexIterator) |
| 1451 | : m_indexIterator(WTFMove(indexIterator)) |
| 1452 | { |
| 1453 | } |
| 1454 | |
| 1455 | Tmp operator*() const { return TmpMapper::tmpFromAbsoluteIndex(*m_indexIterator); } |
| 1456 | IndexToTmpIteratorAdaptor& operator++() { ++m_indexIterator; return *this; } |
| 1457 | |
| 1458 | bool operator==(const IndexToTmpIteratorAdaptor& other) const |
| 1459 | { |
| 1460 | return m_indexIterator == other.m_indexIterator; |
| 1461 | } |
| 1462 | |
| 1463 | bool operator!=(const IndexToTmpIteratorAdaptor& other) const |
| 1464 | { |
| 1465 | return !(*this == other); |
| 1466 | } |
| 1467 | |
| 1468 | private: |
| 1469 | IndexIterator m_indexIterator; |
| 1470 | }; |
| 1471 | |
| 1472 | template<typename Collection> |
| 1473 | class IndexToTmpIterableAdaptor { |
| 1474 | public: |
| 1475 | IndexToTmpIterableAdaptor(const Collection& collection) |
| 1476 | : m_collection(collection) |
| 1477 | { |
| 1478 | } |
| 1479 | |
| 1480 | IndexToTmpIteratorAdaptor<typename Collection::const_iterator> begin() const |
| 1481 | { |
| 1482 | return m_collection.begin(); |
| 1483 | } |
| 1484 | |
| 1485 | IndexToTmpIteratorAdaptor<typename Collection::const_iterator> end() const |
| 1486 | { |
| 1487 | return m_collection.end(); |
| 1488 | } |
| 1489 | |
| 1490 | private: |
| 1491 | const Collection& m_collection; |
| 1492 | }; |
| 1493 | |
| 1494 | IndexToTmpIterableAdaptor<Vector<unsigned>> spilledTmps() const { return m_spilledTmps; } |
| 1495 | |
| 1496 | bool requiresSpilling() const { return !m_spilledTmps.isEmpty(); } |
| 1497 | |
| 1498 | Reg allocatedReg(Tmp tmp) const |
| 1499 | { |
| 1500 | ASSERT(!tmp.isReg()); |
| 1501 | ASSERT(m_coloredTmp.size()); |
| 1502 | ASSERT(tmp.isGP() == (bank == GP)); |
| 1503 | |
| 1504 | Reg reg = m_coloredTmp[TmpMapper::absoluteIndex(tmp)]; |
| 1505 | if (!reg) { |
| 1506 | dataLog("FATAL: No color for " , tmp, "\n" ); |
| 1507 | dataLog("Code:\n" ); |
| 1508 | dataLog(m_code); |
| 1509 | RELEASE_ASSERT_NOT_REACHED(); |
| 1510 | } |
| 1511 | return reg; |
| 1512 | } |
| 1513 | |
| 1514 | protected: |
| 1515 | static unsigned tmpArraySize(Code& code) |
| 1516 | { |
| 1517 | unsigned numTmps = code.numTmps(bank); |
| 1518 | return TmpMapper::absoluteIndex(numTmps); |
| 1519 | } |
| 1520 | |
| 1521 | void initializePrecoloredTmp() |
| 1522 | { |
| 1523 | m_coloredTmp.resize(m_lastPrecoloredRegisterIndex + 1); |
| 1524 | for (unsigned i = 1; i <= m_lastPrecoloredRegisterIndex; ++i) { |
| 1525 | Tmp tmp = TmpMapper::tmpFromAbsoluteIndex(i); |
| 1526 | ASSERT(tmp.isReg()); |
| 1527 | m_coloredTmp[i] = tmp.reg(); |
| 1528 | } |
| 1529 | } |
| 1530 | |
| 1531 | bool mayBeCoalesced(Arg left, Arg right) |
| 1532 | { |
| 1533 | if (!left.isTmp() || !right.isTmp()) |
| 1534 | return false; |
| 1535 | |
| 1536 | Tmp leftTmp = left.tmp(); |
| 1537 | Tmp rightTmp = right.tmp(); |
| 1538 | |
| 1539 | if (leftTmp == rightTmp) |
| 1540 | return false; |
| 1541 | |
| 1542 | if (leftTmp.isGP() != (bank == GP) || rightTmp.isGP() != (bank == GP)) |
| 1543 | return false; |
| 1544 | |
| 1545 | unsigned leftIndex = TmpMapper::absoluteIndex(leftTmp); |
| 1546 | unsigned rightIndex = TmpMapper::absoluteIndex(rightTmp); |
| 1547 | |
| 1548 | return !hasInterferenceEdge(InterferenceEdge(leftIndex, rightIndex)); |
| 1549 | } |
| 1550 | |
| 1551 | void addToLowPriorityCoalescingCandidates(Arg left, Arg right) |
| 1552 | { |
| 1553 | ASSERT(mayBeCoalesced(left, right)); |
| 1554 | Tmp leftTmp = left.tmp(); |
| 1555 | Tmp rightTmp = right.tmp(); |
| 1556 | |
| 1557 | unsigned leftIndex = TmpMapper::absoluteIndex(leftTmp); |
| 1558 | unsigned rightIndex = TmpMapper::absoluteIndex(rightTmp); |
| 1559 | |
| 1560 | unsigned nextMoveIndex = m_coalescingCandidates.size(); |
| 1561 | m_coalescingCandidates.append({ leftIndex, rightIndex }); |
| 1562 | |
| 1563 | unsigned newIndexInWorklist = m_worklistMoves.addLowPriorityMove(); |
| 1564 | ASSERT_UNUSED(newIndexInWorklist, newIndexInWorklist == nextMoveIndex); |
| 1565 | |
| 1566 | m_moveList[leftIndex].add(nextMoveIndex); |
| 1567 | m_moveList[rightIndex].add(nextMoveIndex); |
| 1568 | } |
| 1569 | |
| 1570 | void build() |
| 1571 | { |
| 1572 | m_coalescingCandidates.clear(); |
| 1573 | m_worklistMoves.clear(); |
| 1574 | |
| 1575 | // FIXME: It seems like we don't need to recompute liveness. We just need to update its data |
| 1576 | // structures so that it knows that the newly introduced temporaries are not live at any basic |
| 1577 | // block boundary. This should trivially be true for now. |
| 1578 | TmpLiveness<bank> liveness(m_code); |
| 1579 | for (BasicBlock* block : m_code) { |
| 1580 | typename TmpLiveness<bank>::LocalCalc localCalc(liveness, block); |
| 1581 | for (unsigned instIndex = block->size(); instIndex--;) { |
| 1582 | Inst& inst = block->at(instIndex); |
| 1583 | Inst* nextInst = block->get(instIndex + 1); |
| 1584 | build(&inst, nextInst, localCalc); |
| 1585 | localCalc.execute(instIndex); |
| 1586 | } |
| 1587 | build(nullptr, &block->at(0), localCalc); |
| 1588 | } |
| 1589 | buildLowPriorityMoveList(); |
| 1590 | } |
| 1591 | |
| 1592 | void build(Inst* prevInst, Inst* nextInst, const typename TmpLiveness<bank>::LocalCalc& localCalc) |
| 1593 | { |
| 1594 | if (traceDebug) |
| 1595 | dataLog("Building between " , pointerDump(prevInst), " and " , pointerDump(nextInst), ":\n" ); |
| 1596 | |
| 1597 | Inst::forEachDefWithExtraClobberedRegs<Tmp>( |
| 1598 | prevInst, nextInst, |
| 1599 | [&] (const Tmp& arg, Arg::Role, Bank argBank, Width) { |
| 1600 | if (argBank != bank) |
| 1601 | return; |
| 1602 | |
| 1603 | // All the Def()s interfere with each other and with all the extra clobbered Tmps. |
| 1604 | // We should not use forEachDefWithExtraClobberedRegs() here since colored Tmps |
| 1605 | // do not need interference edges in our implementation. |
| 1606 | Inst::forEachDef<Tmp>( |
| 1607 | prevInst, nextInst, |
| 1608 | [&] (Tmp& otherArg, Arg::Role, Bank argBank, Width) { |
| 1609 | if (argBank != bank) |
| 1610 | return; |
| 1611 | |
| 1612 | if (traceDebug) |
| 1613 | dataLog(" Adding def-def edge: " , arg, ", " , otherArg, "\n" ); |
| 1614 | this->addEdge(arg, otherArg); |
| 1615 | }); |
| 1616 | }); |
| 1617 | |
| 1618 | if (prevInst && mayBeCoalescable(*prevInst)) { |
| 1619 | // We do not want the Use() of this move to interfere with the Def(), even if it is live |
| 1620 | // after the Move. If we were to add the interference edge, it would be impossible to |
| 1621 | // coalesce the Move even if the two Tmp never interfere anywhere. |
| 1622 | Tmp defTmp; |
| 1623 | Tmp useTmp; |
| 1624 | prevInst->forEachTmp([&defTmp, &useTmp] (Tmp& argTmp, Arg::Role role, Bank, Width) { |
| 1625 | if (Arg::isLateDef(role)) |
| 1626 | defTmp = argTmp; |
| 1627 | else { |
| 1628 | ASSERT(Arg::isEarlyUse(role)); |
| 1629 | useTmp = argTmp; |
| 1630 | } |
| 1631 | }); |
| 1632 | ASSERT(defTmp); |
| 1633 | ASSERT(useTmp); |
| 1634 | |
| 1635 | unsigned nextMoveIndex = m_coalescingCandidates.size(); |
| 1636 | m_coalescingCandidates.append({ TmpMapper::absoluteIndex(useTmp), TmpMapper::absoluteIndex(defTmp) }); |
| 1637 | if (traceDebug) |
| 1638 | dataLogLn("Move at index " , nextMoveIndex, " is: " , *prevInst); |
| 1639 | |
| 1640 | unsigned newIndexInWorklist = m_worklistMoves.addMove(); |
| 1641 | ASSERT_UNUSED(newIndexInWorklist, newIndexInWorklist == nextMoveIndex); |
| 1642 | |
| 1643 | for (const Arg& arg : prevInst->args) { |
| 1644 | auto& list = m_moveList[TmpMapper::absoluteIndex(arg.tmp())]; |
| 1645 | list.add(nextMoveIndex); |
| 1646 | } |
| 1647 | |
| 1648 | auto considerEdge = [&] (const Tmp& liveTmp) { |
| 1649 | if (liveTmp != useTmp) { |
| 1650 | if (traceDebug) |
| 1651 | dataLog(" Adding def-live for coalescable: " , defTmp, ", " , liveTmp, "\n" ); |
| 1652 | addEdge(defTmp, liveTmp); |
| 1653 | } |
| 1654 | }; |
| 1655 | |
| 1656 | for (Tmp liveTmp : localCalc.live()) |
| 1657 | considerEdge(liveTmp); |
| 1658 | for (const Tmp& pinnedRegTmp : m_pinnedRegs) |
| 1659 | considerEdge(pinnedRegTmp); |
| 1660 | |
| 1661 | // The next instruction could have early clobbers or early def's. We need to consider |
| 1662 | // those now. |
| 1663 | addEdges(nullptr, nextInst, localCalc.live()); |
| 1664 | } else |
| 1665 | addEdges(prevInst, nextInst, localCalc.live()); |
| 1666 | } |
| 1667 | |
| 1668 | void buildLowPriorityMoveList() |
| 1669 | { |
| 1670 | if (!isX86()) |
| 1671 | return; |
| 1672 | |
| 1673 | m_worklistMoves.startAddingLowPriorityMoves(); |
| 1674 | for (BasicBlock* block : m_code) { |
| 1675 | for (Inst& inst : *block) { |
| 1676 | if (Optional<unsigned> defArgIndex = inst.shouldTryAliasingDef()) { |
| 1677 | Arg op1 = inst.args[*defArgIndex - 2]; |
| 1678 | Arg op2 = inst.args[*defArgIndex - 1]; |
| 1679 | Arg dest = inst.args[*defArgIndex]; |
| 1680 | |
| 1681 | if (op1 == dest || op2 == dest) |
| 1682 | continue; |
| 1683 | |
| 1684 | if (mayBeCoalesced(op1, dest)) |
| 1685 | addToLowPriorityCoalescingCandidates(op1, dest); |
| 1686 | if (op1 != op2 && mayBeCoalesced(op2, dest)) |
| 1687 | addToLowPriorityCoalescingCandidates(op2, dest); |
| 1688 | } |
| 1689 | } |
| 1690 | } |
| 1691 | } |
| 1692 | |
| 1693 | void addEdges(Inst* prevInst, Inst* nextInst, typename TmpLiveness<bank>::LocalCalc::Iterable liveTmps) |
| 1694 | { |
| 1695 | // All the Def()s interfere with everthing live. |
| 1696 | Inst::forEachDefWithExtraClobberedRegs<Tmp>( |
| 1697 | prevInst, nextInst, |
| 1698 | [&] (const Tmp& arg, Arg::Role, Bank argBank, Width) { |
| 1699 | if (argBank != bank) |
| 1700 | return; |
| 1701 | |
| 1702 | for (Tmp liveTmp : liveTmps) { |
| 1703 | ASSERT(liveTmp.isGP() == (bank == GP)); |
| 1704 | |
| 1705 | if (traceDebug) |
| 1706 | dataLog(" Adding def-live edge: " , arg, ", " , liveTmp, "\n" ); |
| 1707 | |
| 1708 | addEdge(arg, liveTmp); |
| 1709 | } |
| 1710 | for (const Tmp& pinnedRegTmp : m_pinnedRegs) |
| 1711 | addEdge(arg, pinnedRegTmp); |
| 1712 | }); |
| 1713 | } |
| 1714 | |
| 1715 | void addEdge(Tmp a, Tmp b) |
| 1716 | { |
| 1717 | ASSERT_WITH_MESSAGE(a.isGP() == b.isGP(), "An interference between registers of different types does not make sense, it can lead to non-colorable graphs." ); |
| 1718 | |
| 1719 | addEdge(TmpMapper::absoluteIndex(a), TmpMapper::absoluteIndex(b)); |
| 1720 | } |
| 1721 | |
| 1722 | // Calling this without a tmpWidth will perform a more conservative coalescing analysis that assumes |
| 1723 | // that Move32's are not coalescable. |
| 1724 | static bool mayBeCoalescableImpl(const Inst& inst, TmpWidth* tmpWidth) |
| 1725 | { |
| 1726 | switch (bank) { |
| 1727 | case GP: |
| 1728 | switch (inst.kind.opcode) { |
| 1729 | case Move: |
| 1730 | case Move32: |
| 1731 | break; |
| 1732 | default: |
| 1733 | return false; |
| 1734 | } |
| 1735 | break; |
| 1736 | case FP: |
| 1737 | switch (inst.kind.opcode) { |
| 1738 | case MoveFloat: |
| 1739 | case MoveDouble: |
| 1740 | break; |
| 1741 | default: |
| 1742 | return false; |
| 1743 | } |
| 1744 | break; |
| 1745 | } |
| 1746 | |
| 1747 | // Avoid the three-argument coalescable spill moves. |
| 1748 | if (inst.args.size() != 2) |
| 1749 | return false; |
| 1750 | |
| 1751 | if (!inst.args[0].isTmp() || !inst.args[1].isTmp()) |
| 1752 | return false; |
| 1753 | |
| 1754 | ASSERT(inst.args[0].bank() == bank); |
| 1755 | ASSERT(inst.args[1].bank() == bank); |
| 1756 | |
| 1757 | // We can coalesce a Move32 so long as either of the following holds: |
| 1758 | // - The input is already zero-filled. |
| 1759 | // - The output only cares about the low 32 bits. |
| 1760 | // |
| 1761 | // Note that the input property requires an analysis over ZDef's, so it's only valid so long |
| 1762 | // as the input gets a register. We don't know if the input gets a register, but we do know |
| 1763 | // that if it doesn't get a register then we will still emit this Move32. |
| 1764 | if (inst.kind.opcode == Move32) { |
| 1765 | if (!tmpWidth) |
| 1766 | return false; |
| 1767 | |
| 1768 | if (tmpWidth->defWidth(inst.args[0].tmp()) > Width32 |
| 1769 | && tmpWidth->useWidth(inst.args[1].tmp()) > Width32) |
| 1770 | return false; |
| 1771 | } |
| 1772 | |
| 1773 | return true; |
| 1774 | } |
| 1775 | |
| 1776 | TmpWidth& m_tmpWidth; |
| 1777 | }; |
| 1778 | |
| 1779 | class GraphColoringRegisterAllocation { |
| 1780 | public: |
| 1781 | GraphColoringRegisterAllocation(Code& code, UseCounts<Tmp>& useCounts) |
| 1782 | : m_code(code) |
| 1783 | , m_useCounts(useCounts) |
| 1784 | { |
| 1785 | } |
| 1786 | |
| 1787 | void run() |
| 1788 | { |
| 1789 | padInterference(m_code); |
| 1790 | |
| 1791 | allocateOnBank<GP>(); |
| 1792 | m_numIterations = 0; |
| 1793 | allocateOnBank<FP>(); |
| 1794 | |
| 1795 | fixSpillsAfterTerminals(m_code); |
| 1796 | |
| 1797 | if (reportStats) |
| 1798 | dataLog("Num iterations = " , m_numIterations, "\n" ); |
| 1799 | } |
| 1800 | |
| 1801 | private: |
| 1802 | template<Bank bank> |
| 1803 | void allocateOnBank() |
| 1804 | { |
| 1805 | HashSet<unsigned> unspillableTmps = computeUnspillableTmps<bank>(); |
| 1806 | |
| 1807 | // FIXME: If a Tmp is used only from a Scratch role and that argument is !admitsStack, then |
| 1808 | // we should add the Tmp to unspillableTmps. That will help avoid relooping only to turn the |
| 1809 | // Tmp into an unspillable Tmp. |
| 1810 | // https://bugs.webkit.org/show_bug.cgi?id=152699 |
| 1811 | |
| 1812 | while (true) { |
| 1813 | ++m_numIterations; |
| 1814 | |
| 1815 | if (traceDebug) |
| 1816 | dataLog("Code at iteration " , m_numIterations, ":\n" , m_code); |
| 1817 | |
| 1818 | // FIXME: One way to optimize this code is to remove the recomputation inside the fixpoint. |
| 1819 | // We need to recompute because spilling adds tmps, but we could just update tmpWidth when we |
| 1820 | // add those tmps. Note that one easy way to remove the recomputation is to make any newly |
| 1821 | // added Tmps get the same use/def widths that the original Tmp got. But, this may hurt the |
| 1822 | // spill code we emit. Since we currently recompute TmpWidth after spilling, the newly |
| 1823 | // created Tmps may get narrower use/def widths. On the other hand, the spiller already |
| 1824 | // selects which move instruction to use based on the original Tmp's widths, so it may not |
| 1825 | // matter than a subsequent iteration sees a coservative width for the new Tmps. Also, the |
| 1826 | // recomputation may not actually be a performance problem; it's likely that a better way to |
| 1827 | // improve performance of TmpWidth is to replace its HashMap with something else. It's |
| 1828 | // possible that most of the TmpWidth overhead is from queries of TmpWidth rather than the |
| 1829 | // recomputation, in which case speeding up the lookup would be a bigger win. |
| 1830 | // https://bugs.webkit.org/show_bug.cgi?id=152478 |
| 1831 | m_tmpWidth.recompute(m_code); |
| 1832 | |
| 1833 | auto doAllocation = [&] (auto& allocator) -> bool { |
| 1834 | allocator.allocate(); |
| 1835 | if (!allocator.requiresSpilling()) { |
| 1836 | this->assignRegistersToTmp<bank>(allocator); |
| 1837 | if (traceDebug) |
| 1838 | dataLog("Successfull allocation at iteration " , m_numIterations, ":\n" , m_code); |
| 1839 | |
| 1840 | return true; |
| 1841 | } |
| 1842 | |
| 1843 | this->addSpillAndFill<bank>(allocator, unspillableTmps); |
| 1844 | return false; |
| 1845 | }; |
| 1846 | |
| 1847 | bool done; |
| 1848 | if (useIRC()) { |
| 1849 | ColoringAllocator<bank, IRC> allocator(m_code, m_tmpWidth, m_useCounts, unspillableTmps); |
| 1850 | done = doAllocation(allocator); |
| 1851 | } else { |
| 1852 | ColoringAllocator<bank, Briggs> allocator(m_code, m_tmpWidth, m_useCounts, unspillableTmps); |
| 1853 | done = doAllocation(allocator); |
| 1854 | } |
| 1855 | if (done) |
| 1856 | return; |
| 1857 | } |
| 1858 | } |
| 1859 | |
| 1860 | template<Bank bank> |
| 1861 | HashSet<unsigned> computeUnspillableTmps() |
| 1862 | { |
| 1863 | |
| 1864 | HashSet<unsigned> unspillableTmps; |
| 1865 | |
| 1866 | struct Range { |
| 1867 | unsigned first { std::numeric_limits<unsigned>::max() }; |
| 1868 | unsigned last { 0 }; |
| 1869 | unsigned count { 0 }; |
| 1870 | unsigned admitStackCount { 0 }; |
| 1871 | }; |
| 1872 | |
| 1873 | unsigned numTmps = m_code.numTmps(bank); |
| 1874 | unsigned arraySize = AbsoluteTmpMapper<bank>::absoluteIndex(numTmps); |
| 1875 | |
| 1876 | Vector<Range, 0, UnsafeVectorOverflow> ranges; |
| 1877 | ranges.fill(Range(), arraySize); |
| 1878 | |
| 1879 | unsigned globalIndex = 0; |
| 1880 | for (BasicBlock* block : m_code) { |
| 1881 | for (Inst& inst : *block) { |
| 1882 | inst.forEachArg([&] (Arg& arg, Arg::Role, Bank argBank, Width) { |
| 1883 | if (arg.isTmp() && inst.admitsStack(arg)) { |
| 1884 | if (argBank != bank) |
| 1885 | return; |
| 1886 | |
| 1887 | Tmp tmp = arg.tmp(); |
| 1888 | Range& range = ranges[AbsoluteTmpMapper<bank>::absoluteIndex(tmp)]; |
| 1889 | range.count++; |
| 1890 | range.admitStackCount++; |
| 1891 | if (globalIndex < range.first) { |
| 1892 | range.first = globalIndex; |
| 1893 | range.last = globalIndex; |
| 1894 | } else |
| 1895 | range.last = globalIndex; |
| 1896 | |
| 1897 | return; |
| 1898 | } |
| 1899 | |
| 1900 | arg.forEachTmpFast([&] (Tmp& tmp) { |
| 1901 | if (tmp.isGP() != (bank == GP)) |
| 1902 | return; |
| 1903 | |
| 1904 | Range& range = ranges[AbsoluteTmpMapper<bank>::absoluteIndex(tmp)]; |
| 1905 | range.count++; |
| 1906 | if (globalIndex < range.first) { |
| 1907 | range.first = globalIndex; |
| 1908 | range.last = globalIndex; |
| 1909 | } else |
| 1910 | range.last = globalIndex; |
| 1911 | }); |
| 1912 | }); |
| 1913 | |
| 1914 | ++globalIndex; |
| 1915 | } |
| 1916 | ++globalIndex; |
| 1917 | } |
| 1918 | for (unsigned i = AbsoluteTmpMapper<bank>::lastMachineRegisterIndex() + 1; i < ranges.size(); ++i) { |
| 1919 | Range& range = ranges[i]; |
| 1920 | if (range.last - range.first <= 1 && range.count > range.admitStackCount) |
| 1921 | unspillableTmps.add(i); |
| 1922 | } |
| 1923 | |
| 1924 | return unspillableTmps; |
| 1925 | } |
| 1926 | |
| 1927 | template<Bank bank, typename AllocatorType> |
| 1928 | void assignRegistersToTmp(const AllocatorType& allocator) |
| 1929 | { |
| 1930 | for (BasicBlock* block : m_code) { |
| 1931 | // Give Tmp a valid register. |
| 1932 | for (unsigned instIndex = 0; instIndex < block->size(); ++instIndex) { |
| 1933 | Inst& inst = block->at(instIndex); |
| 1934 | |
| 1935 | // The mayBeCoalescable() method will change its mind for some operations after we |
| 1936 | // complete register allocation. So, we record this before starting. |
| 1937 | bool mayBeCoalescable = allocator.mayBeCoalescable(inst); |
| 1938 | |
| 1939 | // Move32 is cheaper if we know that it's equivalent to a Move. It's |
| 1940 | // equivalent if the destination's high bits are not observable or if the source's high |
| 1941 | // bits are all zero. Note that we don't have the opposite optimization for other |
| 1942 | // architectures, which may prefer Move over Move32, because Move is canonical already. |
| 1943 | if (bank == GP && inst.kind.opcode == Move |
| 1944 | && inst.args[0].isTmp() && inst.args[1].isTmp()) { |
| 1945 | if (m_tmpWidth.useWidth(inst.args[1].tmp()) <= Width32 |
| 1946 | || m_tmpWidth.defWidth(inst.args[0].tmp()) <= Width32) |
| 1947 | inst.kind.opcode = Move32; |
| 1948 | } |
| 1949 | |
| 1950 | inst.forEachTmpFast([&] (Tmp& tmp) { |
| 1951 | if (tmp.isReg() || tmp.bank() != bank) |
| 1952 | return; |
| 1953 | |
| 1954 | Tmp aliasTmp = allocator.getAlias(tmp); |
| 1955 | Tmp assignedTmp; |
| 1956 | if (aliasTmp.isReg()) |
| 1957 | assignedTmp = Tmp(aliasTmp.reg()); |
| 1958 | else { |
| 1959 | auto reg = allocator.allocatedReg(aliasTmp); |
| 1960 | ASSERT(reg); |
| 1961 | assignedTmp = Tmp(reg); |
| 1962 | } |
| 1963 | ASSERT(assignedTmp.isReg()); |
| 1964 | tmp = assignedTmp; |
| 1965 | }); |
| 1966 | |
| 1967 | if (mayBeCoalescable && inst.args[0].isTmp() && inst.args[1].isTmp() |
| 1968 | && inst.args[0].tmp() == inst.args[1].tmp()) |
| 1969 | inst = Inst(); |
| 1970 | } |
| 1971 | |
| 1972 | // Remove all the useless moves we created in this block. |
| 1973 | block->insts().removeAllMatching([&] (const Inst& inst) { |
| 1974 | return !inst; |
| 1975 | }); |
| 1976 | } |
| 1977 | } |
| 1978 | |
| 1979 | static unsigned stackSlotMinimumWidth(Width width) |
| 1980 | { |
| 1981 | return width <= Width32 ? 4 : 8; |
| 1982 | } |
| 1983 | |
| 1984 | template<Bank bank, typename AllocatorType> |
| 1985 | void addSpillAndFill(const AllocatorType& allocator, HashSet<unsigned>& unspillableTmps) |
| 1986 | { |
| 1987 | HashMap<Tmp, StackSlot*> stackSlots; |
| 1988 | for (Tmp tmp : allocator.spilledTmps()) { |
| 1989 | // All the spilled values become unspillable. |
| 1990 | unspillableTmps.add(AbsoluteTmpMapper<bank>::absoluteIndex(tmp)); |
| 1991 | |
| 1992 | // Allocate stack slot for each spilled value. |
| 1993 | StackSlot* stackSlot = m_code.addStackSlot( |
| 1994 | stackSlotMinimumWidth(m_tmpWidth.requiredWidth(tmp)), StackSlotKind::Spill); |
| 1995 | bool isNewTmp = stackSlots.add(tmp, stackSlot).isNewEntry; |
| 1996 | ASSERT_UNUSED(isNewTmp, isNewTmp); |
| 1997 | } |
| 1998 | |
| 1999 | // Rewrite the program to get rid of the spilled Tmp. |
| 2000 | InsertionSet insertionSet(m_code); |
| 2001 | for (BasicBlock* block : m_code) { |
| 2002 | bool hasAliasedTmps = false; |
| 2003 | |
| 2004 | for (unsigned instIndex = 0; instIndex < block->size(); ++instIndex) { |
| 2005 | Inst& inst = block->at(instIndex); |
| 2006 | |
| 2007 | // The TmpWidth analysis will say that a Move only stores 32 bits into the destination, |
| 2008 | // if the source only had 32 bits worth of non-zero bits. Same for the source: it will |
| 2009 | // only claim to read 32 bits from the source if only 32 bits of the destination are |
| 2010 | // read. Note that we only apply this logic if this turns into a load or store, since |
| 2011 | // Move is the canonical way to move data between GPRs. |
| 2012 | bool canUseMove32IfDidSpill = false; |
| 2013 | bool didSpill = false; |
| 2014 | bool needScratch = false; |
| 2015 | if (bank == GP && inst.kind.opcode == Move) { |
| 2016 | if ((inst.args[0].isTmp() && m_tmpWidth.width(inst.args[0].tmp()) <= Width32) |
| 2017 | || (inst.args[1].isTmp() && m_tmpWidth.width(inst.args[1].tmp()) <= Width32)) |
| 2018 | canUseMove32IfDidSpill = true; |
| 2019 | } |
| 2020 | |
| 2021 | // Try to replace the register use by memory use when possible. |
| 2022 | inst.forEachArg( |
| 2023 | [&] (Arg& arg, Arg::Role role, Bank argBank, Width width) { |
| 2024 | if (!arg.isTmp()) |
| 2025 | return; |
| 2026 | if (argBank != bank) |
| 2027 | return; |
| 2028 | if (arg.isReg()) |
| 2029 | return; |
| 2030 | |
| 2031 | auto stackSlotEntry = stackSlots.find(arg.tmp()); |
| 2032 | if (stackSlotEntry == stackSlots.end()) |
| 2033 | return; |
| 2034 | bool needScratchIfSpilledInPlace = false; |
| 2035 | if (!inst.admitsStack(arg)) { |
| 2036 | if (traceDebug) |
| 2037 | dataLog("Have an inst that won't admit stack: " , inst, "\n" ); |
| 2038 | switch (inst.kind.opcode) { |
| 2039 | case Move: |
| 2040 | case MoveDouble: |
| 2041 | case MoveFloat: |
| 2042 | case Move32: { |
| 2043 | unsigned argIndex = &arg - &inst.args[0]; |
| 2044 | unsigned otherArgIndex = argIndex ^ 1; |
| 2045 | Arg otherArg = inst.args[otherArgIndex]; |
| 2046 | if (inst.args.size() == 2 |
| 2047 | && otherArg.isStack() |
| 2048 | && otherArg.stackSlot()->isSpill()) { |
| 2049 | needScratchIfSpilledInPlace = true; |
| 2050 | break; |
| 2051 | } |
| 2052 | return; |
| 2053 | } |
| 2054 | default: |
| 2055 | return; |
| 2056 | } |
| 2057 | } |
| 2058 | |
| 2059 | // If the Tmp holds a constant then we want to rematerialize its |
| 2060 | // value rather than loading it from the stack. In order for that |
| 2061 | // optimization to kick in, we need to avoid placing the Tmp's stack |
| 2062 | // address into the instruction. |
| 2063 | if (!Arg::isColdUse(role)) { |
| 2064 | const UseCounts<Tmp>::Counts* counts = m_useCounts[arg.tmp()]; |
| 2065 | if (counts && counts->numConstDefs == 1 && counts->numDefs == 1) |
| 2066 | return; |
| 2067 | } |
| 2068 | |
| 2069 | Width spillWidth = m_tmpWidth.requiredWidth(arg.tmp()); |
| 2070 | if (Arg::isAnyDef(role) && width < spillWidth) { |
| 2071 | // Either there are users of this tmp who will use more than width, |
| 2072 | // or there are producers who will produce more than width non-zero |
| 2073 | // bits. |
| 2074 | // FIXME: It's not clear why we should have to return here. We have |
| 2075 | // a ZDef fixup in allocateStack. And if this isn't a ZDef, then it |
| 2076 | // doesn't seem like it matters what happens to the high bits. Note |
| 2077 | // that this isn't the case where we're storing more than what the |
| 2078 | // spill slot can hold - we already got that covered because we |
| 2079 | // stretch the spill slot on demand. One possibility is that it's ZDefs of |
| 2080 | // smaller width than 32-bit. |
| 2081 | // https://bugs.webkit.org/show_bug.cgi?id=169823 |
| 2082 | return; |
| 2083 | } |
| 2084 | ASSERT(inst.kind.opcode == Move || !(Arg::isAnyUse(role) && width > spillWidth)); |
| 2085 | |
| 2086 | if (spillWidth != Width32) |
| 2087 | canUseMove32IfDidSpill = false; |
| 2088 | |
| 2089 | stackSlotEntry->value->ensureSize( |
| 2090 | canUseMove32IfDidSpill ? 4 : bytes(width)); |
| 2091 | arg = Arg::stack(stackSlotEntry->value); |
| 2092 | didSpill = true; |
| 2093 | if (needScratchIfSpilledInPlace) |
| 2094 | needScratch = true; |
| 2095 | }); |
| 2096 | |
| 2097 | if (didSpill && canUseMove32IfDidSpill) |
| 2098 | inst.kind.opcode = Move32; |
| 2099 | |
| 2100 | if (needScratch) { |
| 2101 | Bank instBank; |
| 2102 | switch (inst.kind.opcode) { |
| 2103 | case Move: |
| 2104 | case Move32: |
| 2105 | instBank = GP; |
| 2106 | break; |
| 2107 | case MoveDouble: |
| 2108 | case MoveFloat: |
| 2109 | instBank = FP; |
| 2110 | break; |
| 2111 | default: |
| 2112 | RELEASE_ASSERT_NOT_REACHED(); |
| 2113 | instBank = GP; |
| 2114 | break; |
| 2115 | } |
| 2116 | |
| 2117 | RELEASE_ASSERT(instBank == bank); |
| 2118 | |
| 2119 | Tmp tmp = m_code.newTmp(bank); |
| 2120 | unspillableTmps.add(AbsoluteTmpMapper<bank>::absoluteIndex(tmp)); |
| 2121 | inst.args.append(tmp); |
| 2122 | RELEASE_ASSERT(inst.args.size() == 3); |
| 2123 | |
| 2124 | // Without this, a chain of spill moves would need two registers, not one, because |
| 2125 | // the scratch registers of successive moves would appear to interfere with each |
| 2126 | // other. As well, we need this if the previous instruction had any late effects, |
| 2127 | // since otherwise the scratch would appear to interfere with those. On the other |
| 2128 | // hand, the late use added at the end of this spill move (previously it was just a |
| 2129 | // late def) doesn't change the padding situation.: the late def would have already |
| 2130 | // caused it to report hasLateUseOrDef in Inst::needsPadding. |
| 2131 | insertionSet.insert(instIndex, Nop, inst.origin); |
| 2132 | continue; |
| 2133 | } |
| 2134 | |
| 2135 | // For every other case, add Load/Store as needed. |
| 2136 | inst.forEachTmp([&] (Tmp& tmp, Arg::Role role, Bank argBank, Width) { |
| 2137 | if (tmp.isReg() || argBank != bank) |
| 2138 | return; |
| 2139 | |
| 2140 | auto stackSlotEntry = stackSlots.find(tmp); |
| 2141 | if (stackSlotEntry == stackSlots.end()) { |
| 2142 | Tmp alias = allocator.getAliasWhenSpilling(tmp); |
| 2143 | if (alias != tmp) { |
| 2144 | tmp = alias; |
| 2145 | hasAliasedTmps = true; |
| 2146 | } |
| 2147 | return; |
| 2148 | } |
| 2149 | |
| 2150 | Width spillWidth = m_tmpWidth.requiredWidth(tmp); |
| 2151 | Opcode move = Oops; |
| 2152 | switch (stackSlotMinimumWidth(spillWidth)) { |
| 2153 | case 4: |
| 2154 | move = bank == GP ? Move32 : MoveFloat; |
| 2155 | break; |
| 2156 | case 8: |
| 2157 | move = bank == GP ? Move : MoveDouble; |
| 2158 | break; |
| 2159 | default: |
| 2160 | RELEASE_ASSERT_NOT_REACHED(); |
| 2161 | break; |
| 2162 | } |
| 2163 | |
| 2164 | tmp = m_code.newTmp(bank); |
| 2165 | unspillableTmps.add(AbsoluteTmpMapper<bank>::absoluteIndex(tmp)); |
| 2166 | |
| 2167 | if (role == Arg::Scratch) |
| 2168 | return; |
| 2169 | |
| 2170 | Arg arg = Arg::stack(stackSlotEntry->value); |
| 2171 | if (Arg::isAnyUse(role)) |
| 2172 | insertionSet.insert(instIndex, move, inst.origin, arg, tmp); |
| 2173 | if (Arg::isAnyDef(role)) |
| 2174 | insertionSet.insert(instIndex + 1, move, inst.origin, tmp, arg); |
| 2175 | }); |
| 2176 | } |
| 2177 | insertionSet.execute(block); |
| 2178 | |
| 2179 | if (hasAliasedTmps) { |
| 2180 | block->insts().removeAllMatching([&] (const Inst& inst) { |
| 2181 | return allocator.isUselessMove(inst); |
| 2182 | }); |
| 2183 | } |
| 2184 | } |
| 2185 | } |
| 2186 | |
| 2187 | Code& m_code; |
| 2188 | TmpWidth m_tmpWidth; |
| 2189 | UseCounts<Tmp>& m_useCounts; |
| 2190 | unsigned m_numIterations { 0 }; |
| 2191 | }; |
| 2192 | |
| 2193 | } // anonymous namespace |
| 2194 | |
| 2195 | void allocateRegistersByGraphColoring(Code& code) |
| 2196 | { |
| 2197 | PhaseScope phaseScope(code, "allocateRegistersByGraphColoring" ); |
| 2198 | |
| 2199 | if (false) |
| 2200 | dataLog("Code before graph coloring:\n" , code); |
| 2201 | |
| 2202 | UseCounts<Tmp> useCounts(code); |
| 2203 | GraphColoringRegisterAllocation graphColoringRegisterAllocation(code, useCounts); |
| 2204 | graphColoringRegisterAllocation.run(); |
| 2205 | } |
| 2206 | |
| 2207 | } } } // namespace JSC::B3::Air |
| 2208 | |
| 2209 | #endif // ENABLE(B3_JIT) |
| 2210 | |