| 1 | /* |
| 2 | * Copyright (C) 2008, 2016 Apple Inc. All rights reserved. |
| 3 | * Copyright (C) 2009 Jian Li <jianli@chromium.org> |
| 4 | * Copyright (C) 2012 Patrick Gansterer <paroga@paroga.com> |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions |
| 8 | * are met: |
| 9 | * |
| 10 | * 1. Redistributions of source code must retain the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer. |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in the |
| 14 | * documentation and/or other materials provided with the distribution. |
| 15 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 16 | * its contributors may be used to endorse or promote products derived |
| 17 | * from this software without specific prior written permission. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 20 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 21 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 22 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 23 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 24 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 25 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 26 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 28 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 | */ |
| 30 | |
| 31 | /* Thread local storage is implemented by using either pthread API or Windows |
| 32 | * native API. There is subtle semantic discrepancy for the cleanup function |
| 33 | * implementation as noted below: |
| 34 | * @ In pthread implementation, the destructor function will be called |
| 35 | * repeatedly if there is still non-NULL value associated with the function. |
| 36 | * @ In Windows native implementation, the destructor function will be called |
| 37 | * only once. |
| 38 | * This semantic discrepancy does not impose any problem because nowhere in |
| 39 | * WebKit the repeated call bahavior is utilized. |
| 40 | */ |
| 41 | |
| 42 | #pragma once |
| 43 | |
| 44 | #include <wtf/MainThread.h> |
| 45 | #include <wtf/Noncopyable.h> |
| 46 | #include <wtf/StdLibExtras.h> |
| 47 | #include <wtf/Threading.h> |
| 48 | |
| 49 | namespace WTF { |
| 50 | |
| 51 | enum class CanBeGCThread { |
| 52 | False, |
| 53 | True |
| 54 | }; |
| 55 | |
| 56 | template<typename T, CanBeGCThread canBeGCThread = CanBeGCThread::False> class ThreadSpecific { |
| 57 | WTF_MAKE_NONCOPYABLE(ThreadSpecific); |
| 58 | public: |
| 59 | ThreadSpecific(); |
| 60 | bool isSet(); // Useful as a fast check to see if this thread has set this value. |
| 61 | T* operator->(); |
| 62 | operator T*(); |
| 63 | T& operator*(); |
| 64 | |
| 65 | private: |
| 66 | // Not implemented. It's technically possible to destroy a thread specific key, but one would need |
| 67 | // to make sure that all values have been destroyed already (usually, that all threads that used it |
| 68 | // have exited). It's unlikely that any user of this call will be in that situation - and having |
| 69 | // a destructor defined can be confusing, given that it has such strong pre-requisites to work correctly. |
| 70 | ~ThreadSpecific(); |
| 71 | |
| 72 | struct Data { |
| 73 | WTF_MAKE_NONCOPYABLE(Data); |
| 74 | WTF_MAKE_FAST_ALLOCATED; |
| 75 | public: |
| 76 | using PointerType = typename std::remove_const<T>::type*; |
| 77 | |
| 78 | Data(ThreadSpecific<T, canBeGCThread>* owner) |
| 79 | : owner(owner) |
| 80 | { |
| 81 | // Set up thread-specific value's memory pointer before invoking constructor, in case any function it calls |
| 82 | // needs to access the value, to avoid recursion. |
| 83 | owner->setInTLS(this); |
| 84 | new (NotNull, storagePointer()) T(); |
| 85 | } |
| 86 | |
| 87 | ~Data() |
| 88 | { |
| 89 | storagePointer()->~T(); |
| 90 | owner->setInTLS(nullptr); |
| 91 | } |
| 92 | |
| 93 | PointerType storagePointer() const { return const_cast<PointerType>(reinterpret_cast<const T*>(&m_storage)); } |
| 94 | |
| 95 | typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type m_storage; |
| 96 | ThreadSpecific<T, canBeGCThread>* owner; |
| 97 | }; |
| 98 | |
| 99 | T* get(); |
| 100 | T* set(); |
| 101 | void setInTLS(Data*); |
| 102 | void static THREAD_SPECIFIC_CALL destroy(void* ptr); |
| 103 | |
| 104 | #if USE(PTHREADS) |
| 105 | pthread_key_t m_key { }; |
| 106 | #elif OS(WINDOWS) |
| 107 | int m_index; |
| 108 | #endif |
| 109 | }; |
| 110 | |
| 111 | #if USE(PTHREADS) |
| 112 | |
| 113 | template<typename T, CanBeGCThread canBeGCThread> |
| 114 | inline ThreadSpecific<T, canBeGCThread>::ThreadSpecific() |
| 115 | { |
| 116 | int error = pthread_key_create(&m_key, destroy); |
| 117 | if (error) |
| 118 | CRASH(); |
| 119 | } |
| 120 | |
| 121 | template<typename T, CanBeGCThread canBeGCThread> |
| 122 | inline T* ThreadSpecific<T, canBeGCThread>::get() |
| 123 | { |
| 124 | Data* data = static_cast<Data*>(pthread_getspecific(m_key)); |
| 125 | if (data) |
| 126 | return data->storagePointer(); |
| 127 | return nullptr; |
| 128 | } |
| 129 | |
| 130 | template<typename T, CanBeGCThread canBeGCThread> |
| 131 | inline void ThreadSpecific<T, canBeGCThread>::setInTLS(Data* data) |
| 132 | { |
| 133 | pthread_setspecific(m_key, data); |
| 134 | } |
| 135 | |
| 136 | #elif OS(WINDOWS) |
| 137 | |
| 138 | // The maximum number of FLS keys that can be created. For simplification, we assume that: |
| 139 | // 1) Once the instance of ThreadSpecific<> is created, it will not be destructed until the program dies. |
| 140 | // 2) We do not need to hold many instances of ThreadSpecific<> data. This fixed number should be far enough. |
| 141 | static constexpr int maxFlsKeySize = 128; |
| 142 | |
| 143 | WTF_EXPORT_PRIVATE long& flsKeyCount(); |
| 144 | WTF_EXPORT_PRIVATE DWORD* flsKeys(); |
| 145 | |
| 146 | template<typename T, CanBeGCThread canBeGCThread> |
| 147 | inline ThreadSpecific<T, canBeGCThread>::ThreadSpecific() |
| 148 | : m_index(-1) |
| 149 | { |
| 150 | DWORD flsKey = FlsAlloc(destroy); |
| 151 | if (flsKey == FLS_OUT_OF_INDEXES) |
| 152 | CRASH(); |
| 153 | |
| 154 | m_index = InterlockedIncrement(&flsKeyCount()) - 1; |
| 155 | if (m_index >= maxFlsKeySize) |
| 156 | CRASH(); |
| 157 | flsKeys()[m_index] = flsKey; |
| 158 | } |
| 159 | |
| 160 | template<typename T, CanBeGCThread canBeGCThread> |
| 161 | inline ThreadSpecific<T, canBeGCThread>::~ThreadSpecific() |
| 162 | { |
| 163 | FlsFree(flsKeys()[m_index]); |
| 164 | } |
| 165 | |
| 166 | template<typename T, CanBeGCThread canBeGCThread> |
| 167 | inline T* ThreadSpecific<T, canBeGCThread>::get() |
| 168 | { |
| 169 | Data* data = static_cast<Data*>(FlsGetValue(flsKeys()[m_index])); |
| 170 | if (data) |
| 171 | return data->storagePointer(); |
| 172 | return nullptr; |
| 173 | } |
| 174 | |
| 175 | template<typename T, CanBeGCThread canBeGCThread> |
| 176 | inline void ThreadSpecific<T, canBeGCThread>::setInTLS(Data* data) |
| 177 | { |
| 178 | FlsSetValue(flsKeys()[m_index], data); |
| 179 | } |
| 180 | |
| 181 | #else |
| 182 | #error ThreadSpecific is not implemented for this platform. |
| 183 | #endif |
| 184 | |
| 185 | template<typename T, CanBeGCThread canBeGCThread> |
| 186 | inline void THREAD_SPECIFIC_CALL ThreadSpecific<T, canBeGCThread>::destroy(void* ptr) |
| 187 | { |
| 188 | Data* data = static_cast<Data*>(ptr); |
| 189 | |
| 190 | #if USE(PTHREADS) |
| 191 | // We want get() to keep working while data destructor works, because it can be called indirectly by the destructor. |
| 192 | // Some pthreads implementations zero out the pointer before calling destroy(), so we temporarily reset it. |
| 193 | pthread_setspecific(data->owner->m_key, ptr); |
| 194 | #endif |
| 195 | |
| 196 | delete data; |
| 197 | } |
| 198 | |
| 199 | template<typename T, CanBeGCThread canBeGCThread> |
| 200 | inline T* ThreadSpecific<T, canBeGCThread>::set() |
| 201 | { |
| 202 | RELEASE_ASSERT(canBeGCThread == CanBeGCThread::True || !Thread::mayBeGCThread()); |
| 203 | ASSERT(!get()); |
| 204 | Data* data = new Data(this); // Data will set itself into TLS. |
| 205 | ASSERT(get() == data->storagePointer()); |
| 206 | return data->storagePointer(); |
| 207 | } |
| 208 | |
| 209 | template<typename T, CanBeGCThread canBeGCThread> |
| 210 | inline bool ThreadSpecific<T, canBeGCThread>::isSet() |
| 211 | { |
| 212 | return !!get(); |
| 213 | } |
| 214 | |
| 215 | template<typename T, CanBeGCThread canBeGCThread> |
| 216 | inline ThreadSpecific<T, canBeGCThread>::operator T*() |
| 217 | { |
| 218 | if (T* ptr = get()) |
| 219 | return ptr; |
| 220 | return set(); |
| 221 | } |
| 222 | |
| 223 | template<typename T, CanBeGCThread canBeGCThread> |
| 224 | inline T* ThreadSpecific<T, canBeGCThread>::operator->() |
| 225 | { |
| 226 | return operator T*(); |
| 227 | } |
| 228 | |
| 229 | template<typename T, CanBeGCThread canBeGCThread> |
| 230 | inline T& ThreadSpecific<T, canBeGCThread>::operator*() |
| 231 | { |
| 232 | return *operator T*(); |
| 233 | } |
| 234 | |
| 235 | } // namespace WTF |
| 236 | |
| 237 | using WTF::ThreadSpecific; |
| 238 | |