| 1 | /* |
| 2 | * Copyright (C) 2010, 2011 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 14 | * its contributors may be used to endorse or promote products derived |
| 15 | * from this software without specific prior written permission. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #pragma once |
| 30 | |
| 31 | #include <wtf/Assertions.h> |
| 32 | #include <wtf/Noncopyable.h> |
| 33 | |
| 34 | namespace WTF { |
| 35 | |
| 36 | // This implements a red-black tree with the following properties: |
| 37 | // - The allocation of nodes in the tree is entirely up to the user. |
| 38 | // - If you are in possession of a pointer to a node, you can delete |
| 39 | // it from the tree. The tree will subsequently no longer have a |
| 40 | // reference to this node. |
| 41 | // - The key type must implement operator< and ==. |
| 42 | |
| 43 | template<class NodeType, typename KeyType> |
| 44 | class RedBlackTree { |
| 45 | WTF_MAKE_NONCOPYABLE(RedBlackTree); |
| 46 | private: |
| 47 | enum Color { |
| 48 | Red = 1, |
| 49 | Black |
| 50 | }; |
| 51 | |
| 52 | public: |
| 53 | class Node { |
| 54 | friend class RedBlackTree; |
| 55 | |
| 56 | public: |
| 57 | const NodeType* successor() const |
| 58 | { |
| 59 | const Node* x = this; |
| 60 | if (x->right()) |
| 61 | return treeMinimum(x->right()); |
| 62 | const NodeType* y = x->parent(); |
| 63 | while (y && x == y->right()) { |
| 64 | x = y; |
| 65 | y = y->parent(); |
| 66 | } |
| 67 | return y; |
| 68 | } |
| 69 | |
| 70 | const NodeType* predecessor() const |
| 71 | { |
| 72 | const Node* x = this; |
| 73 | if (x->left()) |
| 74 | return treeMaximum(x->left()); |
| 75 | const NodeType* y = x->parent(); |
| 76 | while (y && x == y->left()) { |
| 77 | x = y; |
| 78 | y = y->parent(); |
| 79 | } |
| 80 | return y; |
| 81 | } |
| 82 | |
| 83 | NodeType* successor() |
| 84 | { |
| 85 | return const_cast<NodeType*>(const_cast<const Node*>(this)->successor()); |
| 86 | } |
| 87 | |
| 88 | NodeType* predecessor() |
| 89 | { |
| 90 | return const_cast<NodeType*>(const_cast<const Node*>(this)->predecessor()); |
| 91 | } |
| 92 | |
| 93 | private: |
| 94 | void reset() |
| 95 | { |
| 96 | m_left = 0; |
| 97 | m_right = 0; |
| 98 | m_parentAndRed = 1; // initialize to red |
| 99 | } |
| 100 | |
| 101 | // NOTE: these methods should pack the parent and red into a single |
| 102 | // word. But doing so appears to reveal a bug in the compiler. |
| 103 | NodeType* parent() const |
| 104 | { |
| 105 | return reinterpret_cast<NodeType*>(m_parentAndRed & ~static_cast<uintptr_t>(1)); |
| 106 | } |
| 107 | |
| 108 | void setParent(NodeType* newParent) |
| 109 | { |
| 110 | m_parentAndRed = reinterpret_cast<uintptr_t>(newParent) | (m_parentAndRed & 1); |
| 111 | } |
| 112 | |
| 113 | NodeType* left() const |
| 114 | { |
| 115 | return m_left; |
| 116 | } |
| 117 | |
| 118 | void setLeft(NodeType* node) |
| 119 | { |
| 120 | m_left = node; |
| 121 | } |
| 122 | |
| 123 | NodeType* right() const |
| 124 | { |
| 125 | return m_right; |
| 126 | } |
| 127 | |
| 128 | void setRight(NodeType* node) |
| 129 | { |
| 130 | m_right = node; |
| 131 | } |
| 132 | |
| 133 | Color color() const |
| 134 | { |
| 135 | if (m_parentAndRed & 1) |
| 136 | return Red; |
| 137 | return Black; |
| 138 | } |
| 139 | |
| 140 | void setColor(Color value) |
| 141 | { |
| 142 | if (value == Red) |
| 143 | m_parentAndRed |= 1; |
| 144 | else |
| 145 | m_parentAndRed &= ~static_cast<uintptr_t>(1); |
| 146 | } |
| 147 | |
| 148 | NodeType* m_left; |
| 149 | NodeType* m_right; |
| 150 | uintptr_t m_parentAndRed; |
| 151 | }; |
| 152 | |
| 153 | RedBlackTree() |
| 154 | : m_root(0) |
| 155 | { |
| 156 | } |
| 157 | |
| 158 | void insert(NodeType* x) |
| 159 | { |
| 160 | x->reset(); |
| 161 | treeInsert(x); |
| 162 | x->setColor(Red); |
| 163 | |
| 164 | while (x != m_root && x->parent()->color() == Red) { |
| 165 | if (x->parent() == x->parent()->parent()->left()) { |
| 166 | NodeType* y = x->parent()->parent()->right(); |
| 167 | if (y && y->color() == Red) { |
| 168 | // Case 1 |
| 169 | x->parent()->setColor(Black); |
| 170 | y->setColor(Black); |
| 171 | x->parent()->parent()->setColor(Red); |
| 172 | x = x->parent()->parent(); |
| 173 | } else { |
| 174 | if (x == x->parent()->right()) { |
| 175 | // Case 2 |
| 176 | x = x->parent(); |
| 177 | leftRotate(x); |
| 178 | } |
| 179 | // Case 3 |
| 180 | x->parent()->setColor(Black); |
| 181 | x->parent()->parent()->setColor(Red); |
| 182 | rightRotate(x->parent()->parent()); |
| 183 | } |
| 184 | } else { |
| 185 | // Same as "then" clause with "right" and "left" exchanged. |
| 186 | NodeType* y = x->parent()->parent()->left(); |
| 187 | if (y && y->color() == Red) { |
| 188 | // Case 1 |
| 189 | x->parent()->setColor(Black); |
| 190 | y->setColor(Black); |
| 191 | x->parent()->parent()->setColor(Red); |
| 192 | x = x->parent()->parent(); |
| 193 | } else { |
| 194 | if (x == x->parent()->left()) { |
| 195 | // Case 2 |
| 196 | x = x->parent(); |
| 197 | rightRotate(x); |
| 198 | } |
| 199 | // Case 3 |
| 200 | x->parent()->setColor(Black); |
| 201 | x->parent()->parent()->setColor(Red); |
| 202 | leftRotate(x->parent()->parent()); |
| 203 | } |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | m_root->setColor(Black); |
| 208 | } |
| 209 | |
| 210 | NodeType* remove(NodeType* z) |
| 211 | { |
| 212 | ASSERT(z); |
| 213 | ASSERT(z->parent() || z == m_root); |
| 214 | |
| 215 | // Y is the node to be unlinked from the tree. |
| 216 | NodeType* y; |
| 217 | if (!z->left() || !z->right()) |
| 218 | y = z; |
| 219 | else |
| 220 | y = z->successor(); |
| 221 | |
| 222 | // Y is guaranteed to be non-null at this point. |
| 223 | NodeType* x; |
| 224 | if (y->left()) |
| 225 | x = y->left(); |
| 226 | else |
| 227 | x = y->right(); |
| 228 | |
| 229 | // X is the child of y which might potentially replace y in |
| 230 | // the tree. X might be null at this point. |
| 231 | NodeType* xParent; |
| 232 | if (x) { |
| 233 | x->setParent(y->parent()); |
| 234 | xParent = x->parent(); |
| 235 | } else |
| 236 | xParent = y->parent(); |
| 237 | if (!y->parent()) |
| 238 | m_root = x; |
| 239 | else { |
| 240 | if (y == y->parent()->left()) |
| 241 | y->parent()->setLeft(x); |
| 242 | else |
| 243 | y->parent()->setRight(x); |
| 244 | } |
| 245 | |
| 246 | if (y != z) { |
| 247 | if (y->color() == Black) |
| 248 | removeFixup(x, xParent); |
| 249 | |
| 250 | y->setParent(z->parent()); |
| 251 | y->setColor(z->color()); |
| 252 | y->setLeft(z->left()); |
| 253 | y->setRight(z->right()); |
| 254 | |
| 255 | if (z->left()) |
| 256 | z->left()->setParent(y); |
| 257 | if (z->right()) |
| 258 | z->right()->setParent(y); |
| 259 | if (z->parent()) { |
| 260 | if (z->parent()->left() == z) |
| 261 | z->parent()->setLeft(y); |
| 262 | else |
| 263 | z->parent()->setRight(y); |
| 264 | } else { |
| 265 | ASSERT(m_root == z); |
| 266 | m_root = y; |
| 267 | } |
| 268 | } else if (y->color() == Black) |
| 269 | removeFixup(x, xParent); |
| 270 | |
| 271 | return z; |
| 272 | } |
| 273 | |
| 274 | NodeType* remove(const KeyType& key) |
| 275 | { |
| 276 | NodeType* result = findExact(key); |
| 277 | if (!result) |
| 278 | return 0; |
| 279 | return remove(result); |
| 280 | } |
| 281 | |
| 282 | NodeType* findExact(const KeyType& key) const |
| 283 | { |
| 284 | for (NodeType* current = m_root; current;) { |
| 285 | if (current->key() == key) |
| 286 | return current; |
| 287 | if (key < current->key()) |
| 288 | current = current->left(); |
| 289 | else |
| 290 | current = current->right(); |
| 291 | } |
| 292 | return 0; |
| 293 | } |
| 294 | |
| 295 | NodeType* findLeastGreaterThanOrEqual(const KeyType& key) const |
| 296 | { |
| 297 | NodeType* best = 0; |
| 298 | for (NodeType* current = m_root; current;) { |
| 299 | if (current->key() == key) |
| 300 | return current; |
| 301 | if (current->key() < key) |
| 302 | current = current->right(); |
| 303 | else { |
| 304 | best = current; |
| 305 | current = current->left(); |
| 306 | } |
| 307 | } |
| 308 | return best; |
| 309 | } |
| 310 | |
| 311 | NodeType* findGreatestLessThanOrEqual(const KeyType& key) const |
| 312 | { |
| 313 | NodeType* best = 0; |
| 314 | for (NodeType* current = m_root; current;) { |
| 315 | if (current->key() == key) |
| 316 | return current; |
| 317 | if (current->key() > key) |
| 318 | current = current->left(); |
| 319 | else { |
| 320 | best = current; |
| 321 | current = current->right(); |
| 322 | } |
| 323 | } |
| 324 | return best; |
| 325 | } |
| 326 | |
| 327 | NodeType* first() const |
| 328 | { |
| 329 | if (!m_root) |
| 330 | return 0; |
| 331 | return treeMinimum(m_root); |
| 332 | } |
| 333 | |
| 334 | NodeType* last() const |
| 335 | { |
| 336 | if (!m_root) |
| 337 | return 0; |
| 338 | return treeMaximum(m_root); |
| 339 | } |
| 340 | |
| 341 | // This is an O(n) operation. |
| 342 | size_t size() |
| 343 | { |
| 344 | size_t result = 0; |
| 345 | for (NodeType* current = first(); current; current = current->successor()) |
| 346 | result++; |
| 347 | return result; |
| 348 | } |
| 349 | |
| 350 | // This is an O(1) operation. |
| 351 | bool isEmpty() |
| 352 | { |
| 353 | return !m_root; |
| 354 | } |
| 355 | |
| 356 | private: |
| 357 | // Finds the minimum element in the sub-tree rooted at the given |
| 358 | // node. |
| 359 | static NodeType* treeMinimum(NodeType* x) |
| 360 | { |
| 361 | while (x->left()) |
| 362 | x = x->left(); |
| 363 | return x; |
| 364 | } |
| 365 | |
| 366 | static NodeType* treeMaximum(NodeType* x) |
| 367 | { |
| 368 | while (x->right()) |
| 369 | x = x->right(); |
| 370 | return x; |
| 371 | } |
| 372 | |
| 373 | static const NodeType* treeMinimum(const NodeType* x) |
| 374 | { |
| 375 | while (x->left()) |
| 376 | x = x->left(); |
| 377 | return x; |
| 378 | } |
| 379 | |
| 380 | static const NodeType* treeMaximum(const NodeType* x) |
| 381 | { |
| 382 | while (x->right()) |
| 383 | x = x->right(); |
| 384 | return x; |
| 385 | } |
| 386 | |
| 387 | void treeInsert(NodeType* z) |
| 388 | { |
| 389 | ASSERT(!z->left()); |
| 390 | ASSERT(!z->right()); |
| 391 | ASSERT(!z->parent()); |
| 392 | ASSERT(z->color() == Red); |
| 393 | |
| 394 | NodeType* y = 0; |
| 395 | NodeType* x = m_root; |
| 396 | while (x) { |
| 397 | y = x; |
| 398 | if (z->key() < x->key()) |
| 399 | x = x->left(); |
| 400 | else |
| 401 | x = x->right(); |
| 402 | } |
| 403 | z->setParent(y); |
| 404 | if (!y) |
| 405 | m_root = z; |
| 406 | else { |
| 407 | if (z->key() < y->key()) |
| 408 | y->setLeft(z); |
| 409 | else |
| 410 | y->setRight(z); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | //---------------------------------------------------------------------- |
| 415 | // Red-Black tree operations |
| 416 | // |
| 417 | |
| 418 | // Left-rotates the subtree rooted at x. |
| 419 | // Returns the new root of the subtree (x's right child). |
| 420 | NodeType* leftRotate(NodeType* x) |
| 421 | { |
| 422 | // Set y. |
| 423 | NodeType* y = x->right(); |
| 424 | |
| 425 | // Turn y's left subtree into x's right subtree. |
| 426 | x->setRight(y->left()); |
| 427 | if (y->left()) |
| 428 | y->left()->setParent(x); |
| 429 | |
| 430 | // Link x's parent to y. |
| 431 | y->setParent(x->parent()); |
| 432 | if (!x->parent()) |
| 433 | m_root = y; |
| 434 | else { |
| 435 | if (x == x->parent()->left()) |
| 436 | x->parent()->setLeft(y); |
| 437 | else |
| 438 | x->parent()->setRight(y); |
| 439 | } |
| 440 | |
| 441 | // Put x on y's left. |
| 442 | y->setLeft(x); |
| 443 | x->setParent(y); |
| 444 | |
| 445 | return y; |
| 446 | } |
| 447 | |
| 448 | // Right-rotates the subtree rooted at y. |
| 449 | // Returns the new root of the subtree (y's left child). |
| 450 | NodeType* rightRotate(NodeType* y) |
| 451 | { |
| 452 | // Set x. |
| 453 | NodeType* x = y->left(); |
| 454 | |
| 455 | // Turn x's right subtree into y's left subtree. |
| 456 | y->setLeft(x->right()); |
| 457 | if (x->right()) |
| 458 | x->right()->setParent(y); |
| 459 | |
| 460 | // Link y's parent to x. |
| 461 | x->setParent(y->parent()); |
| 462 | if (!y->parent()) |
| 463 | m_root = x; |
| 464 | else { |
| 465 | if (y == y->parent()->left()) |
| 466 | y->parent()->setLeft(x); |
| 467 | else |
| 468 | y->parent()->setRight(x); |
| 469 | } |
| 470 | |
| 471 | // Put y on x's right. |
| 472 | x->setRight(y); |
| 473 | y->setParent(x); |
| 474 | |
| 475 | return x; |
| 476 | } |
| 477 | |
| 478 | // Restores the red-black property to the tree after splicing out |
| 479 | // a node. Note that x may be null, which is why xParent must be |
| 480 | // supplied. |
| 481 | void removeFixup(NodeType* x, NodeType* xParent) |
| 482 | { |
| 483 | while (x != m_root && (!x || x->color() == Black)) { |
| 484 | if (x == xParent->left()) { |
| 485 | // Note: the text points out that w can not be null. |
| 486 | // The reason is not obvious from simply looking at |
| 487 | // the code; it comes about from the properties of the |
| 488 | // red-black tree. |
| 489 | NodeType* w = xParent->right(); |
| 490 | ASSERT(w); // x's sibling should not be null. |
| 491 | if (w->color() == Red) { |
| 492 | // Case 1 |
| 493 | w->setColor(Black); |
| 494 | xParent->setColor(Red); |
| 495 | leftRotate(xParent); |
| 496 | w = xParent->right(); |
| 497 | } |
| 498 | if ((!w->left() || w->left()->color() == Black) |
| 499 | && (!w->right() || w->right()->color() == Black)) { |
| 500 | // Case 2 |
| 501 | w->setColor(Red); |
| 502 | x = xParent; |
| 503 | xParent = x->parent(); |
| 504 | } else { |
| 505 | if (!w->right() || w->right()->color() == Black) { |
| 506 | // Case 3 |
| 507 | w->left()->setColor(Black); |
| 508 | w->setColor(Red); |
| 509 | rightRotate(w); |
| 510 | w = xParent->right(); |
| 511 | } |
| 512 | // Case 4 |
| 513 | w->setColor(xParent->color()); |
| 514 | xParent->setColor(Black); |
| 515 | if (w->right()) |
| 516 | w->right()->setColor(Black); |
| 517 | leftRotate(xParent); |
| 518 | x = m_root; |
| 519 | xParent = x->parent(); |
| 520 | } |
| 521 | } else { |
| 522 | // Same as "then" clause with "right" and "left" |
| 523 | // exchanged. |
| 524 | |
| 525 | // Note: the text points out that w can not be null. |
| 526 | // The reason is not obvious from simply looking at |
| 527 | // the code; it comes about from the properties of the |
| 528 | // red-black tree. |
| 529 | NodeType* w = xParent->left(); |
| 530 | ASSERT(w); // x's sibling should not be null. |
| 531 | if (w->color() == Red) { |
| 532 | // Case 1 |
| 533 | w->setColor(Black); |
| 534 | xParent->setColor(Red); |
| 535 | rightRotate(xParent); |
| 536 | w = xParent->left(); |
| 537 | } |
| 538 | if ((!w->right() || w->right()->color() == Black) |
| 539 | && (!w->left() || w->left()->color() == Black)) { |
| 540 | // Case 2 |
| 541 | w->setColor(Red); |
| 542 | x = xParent; |
| 543 | xParent = x->parent(); |
| 544 | } else { |
| 545 | if (!w->left() || w->left()->color() == Black) { |
| 546 | // Case 3 |
| 547 | w->right()->setColor(Black); |
| 548 | w->setColor(Red); |
| 549 | leftRotate(w); |
| 550 | w = xParent->left(); |
| 551 | } |
| 552 | // Case 4 |
| 553 | w->setColor(xParent->color()); |
| 554 | xParent->setColor(Black); |
| 555 | if (w->left()) |
| 556 | w->left()->setColor(Black); |
| 557 | rightRotate(xParent); |
| 558 | x = m_root; |
| 559 | xParent = x->parent(); |
| 560 | } |
| 561 | } |
| 562 | } |
| 563 | if (x) |
| 564 | x->setColor(Black); |
| 565 | } |
| 566 | |
| 567 | NodeType* m_root; |
| 568 | }; |
| 569 | |
| 570 | } |
| 571 | |