| 1 | /* |
| 2 | * Copyright (C) 2013-2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #include <wtf/Dominators.h> |
| 29 | |
| 30 | namespace WTF { |
| 31 | |
| 32 | template<typename Graph> |
| 33 | class NaturalLoops; |
| 34 | |
| 35 | template<typename Graph> |
| 36 | class NaturalLoop { |
| 37 | public: |
| 38 | NaturalLoop() |
| 39 | : m_graph(nullptr) |
| 40 | , m_header(nullptr) |
| 41 | , m_outerLoopIndex(UINT_MAX) |
| 42 | { |
| 43 | } |
| 44 | |
| 45 | NaturalLoop(Graph& graph, typename Graph::Node , unsigned index) |
| 46 | : m_graph(&graph) |
| 47 | , m_header(header) |
| 48 | , m_outerLoopIndex(UINT_MAX) |
| 49 | , m_index(index) |
| 50 | { |
| 51 | } |
| 52 | |
| 53 | Graph* graph() const { return m_graph; } |
| 54 | |
| 55 | typename Graph::Node () const { return m_header; } |
| 56 | |
| 57 | unsigned size() const { return m_body.size(); } |
| 58 | typename Graph::Node at(unsigned i) const { return m_body[i]; } |
| 59 | typename Graph::Node operator[](unsigned i) const { return at(i); } |
| 60 | |
| 61 | // This is the slower, but simpler, way of asking if a block belongs to |
| 62 | // a natural loop. It's faster to call NaturalLoops::belongsTo(), which |
| 63 | // tries to be O(loop depth) rather than O(loop size). Loop depth is |
| 64 | // almost always smaller than loop size. A *lot* smaller. |
| 65 | bool contains(typename Graph::Node block) const |
| 66 | { |
| 67 | for (unsigned i = m_body.size(); i--;) { |
| 68 | if (m_body[i] == block) |
| 69 | return true; |
| 70 | } |
| 71 | ASSERT(block != header()); // Header should be contained. |
| 72 | return false; |
| 73 | } |
| 74 | |
| 75 | // The index of this loop in NaturalLoops. |
| 76 | unsigned index() const { return m_index; } |
| 77 | |
| 78 | bool isOuterMostLoop() const { return m_outerLoopIndex == UINT_MAX; } |
| 79 | |
| 80 | void dump(PrintStream& out) const |
| 81 | { |
| 82 | if (!m_graph) { |
| 83 | out.print("<null>" ); |
| 84 | return; |
| 85 | } |
| 86 | |
| 87 | out.print("[Header: " , m_graph->dump(header()), ", Body:" ); |
| 88 | for (unsigned i = 0; i < m_body.size(); ++i) |
| 89 | out.print(" " , m_graph->dump(m_body[i])); |
| 90 | out.print("]" ); |
| 91 | } |
| 92 | |
| 93 | private: |
| 94 | template<typename> |
| 95 | friend class NaturalLoops; |
| 96 | |
| 97 | void addBlock(typename Graph::Node block) |
| 98 | { |
| 99 | ASSERT(!m_body.contains(block)); // The NaturalLoops algorithm relies on blocks being unique in this vector. |
| 100 | m_body.append(block); |
| 101 | } |
| 102 | |
| 103 | Graph* m_graph; |
| 104 | typename Graph::Node ; |
| 105 | Vector<typename Graph::Node, 4> m_body; |
| 106 | unsigned m_outerLoopIndex; |
| 107 | unsigned m_index; |
| 108 | }; |
| 109 | |
| 110 | template<typename Graph> |
| 111 | class NaturalLoops { |
| 112 | public: |
| 113 | typedef std::array<unsigned, 2> InnerMostLoopIndices; |
| 114 | |
| 115 | NaturalLoops(Graph& graph, Dominators<Graph>& dominators, bool selfCheck = false) |
| 116 | : m_graph(graph) |
| 117 | , m_innerMostLoopIndices(graph.template newMap<InnerMostLoopIndices>()) |
| 118 | { |
| 119 | // Implement the classic dominator-based natural loop finder. The first |
| 120 | // step is to find all control flow edges A -> B where B dominates A. |
| 121 | // Then B is a loop header and A is a backward branching block. We will |
| 122 | // then accumulate, for each loop header, multiple backward branching |
| 123 | // blocks. Then we backwards graph search from the backward branching |
| 124 | // blocks to their loop headers, which gives us all of the blocks in the |
| 125 | // loop body. |
| 126 | |
| 127 | static const bool verbose = false; |
| 128 | |
| 129 | if (verbose) { |
| 130 | dataLog("Dominators:\n" ); |
| 131 | dominators.dump(WTF::dataFile()); |
| 132 | } |
| 133 | |
| 134 | m_loops.shrink(0); |
| 135 | |
| 136 | for (unsigned blockIndex = graph.numNodes(); blockIndex--;) { |
| 137 | typename Graph::Node = graph.node(blockIndex); |
| 138 | if (!header) |
| 139 | continue; |
| 140 | |
| 141 | for (unsigned i = graph.predecessors(header).size(); i--;) { |
| 142 | typename Graph::Node = graph.predecessors(header)[i]; |
| 143 | if (!dominators.dominates(header, footer)) |
| 144 | continue; |
| 145 | // At this point, we've proven 'header' is actually a loop header and |
| 146 | // that 'footer' is a loop footer. |
| 147 | bool found = false; |
| 148 | for (unsigned j = m_loops.size(); j--;) { |
| 149 | if (m_loops[j].header() == header) { |
| 150 | m_loops[j].addBlock(footer); |
| 151 | found = true; |
| 152 | break; |
| 153 | } |
| 154 | } |
| 155 | if (found) |
| 156 | continue; |
| 157 | NaturalLoop<Graph> loop(graph, header, m_loops.size()); |
| 158 | loop.addBlock(footer); |
| 159 | m_loops.append(loop); |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | if (verbose) |
| 164 | dataLog("After bootstrap: " , *this, "\n" ); |
| 165 | |
| 166 | FastBitVector seenBlocks; |
| 167 | Vector<typename Graph::Node, 4> blockWorklist; |
| 168 | seenBlocks.resize(graph.numNodes()); |
| 169 | |
| 170 | for (unsigned i = m_loops.size(); i--;) { |
| 171 | NaturalLoop<Graph>& loop = m_loops[i]; |
| 172 | |
| 173 | seenBlocks.clearAll(); |
| 174 | ASSERT(blockWorklist.isEmpty()); |
| 175 | |
| 176 | if (verbose) |
| 177 | dataLog("Dealing with loop " , loop, "\n" ); |
| 178 | |
| 179 | for (unsigned j = loop.size(); j--;) { |
| 180 | seenBlocks[graph.index(loop[j])] = true; |
| 181 | blockWorklist.append(loop[j]); |
| 182 | } |
| 183 | |
| 184 | while (!blockWorklist.isEmpty()) { |
| 185 | typename Graph::Node block = blockWorklist.takeLast(); |
| 186 | |
| 187 | if (verbose) |
| 188 | dataLog(" Dealing with " , graph.dump(block), "\n" ); |
| 189 | |
| 190 | if (block == loop.header()) |
| 191 | continue; |
| 192 | |
| 193 | for (unsigned j = graph.predecessors(block).size(); j--;) { |
| 194 | typename Graph::Node predecessor = graph.predecessors(block)[j]; |
| 195 | if (seenBlocks[graph.index(predecessor)]) |
| 196 | continue; |
| 197 | |
| 198 | loop.addBlock(predecessor); |
| 199 | blockWorklist.append(predecessor); |
| 200 | seenBlocks[graph.index(predecessor)] = true; |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | // Figure out reverse mapping from blocks to loops. |
| 206 | for (unsigned blockIndex = graph.numNodes(); blockIndex--;) { |
| 207 | typename Graph::Node block = graph.node(blockIndex); |
| 208 | if (!block) |
| 209 | continue; |
| 210 | for (unsigned i = std::tuple_size<InnerMostLoopIndices>::value; i--;) |
| 211 | m_innerMostLoopIndices[block][i] = UINT_MAX; |
| 212 | } |
| 213 | for (unsigned loopIndex = m_loops.size(); loopIndex--;) { |
| 214 | NaturalLoop<Graph>& loop = m_loops[loopIndex]; |
| 215 | |
| 216 | for (unsigned blockIndexInLoop = loop.size(); blockIndexInLoop--;) { |
| 217 | typename Graph::Node block = loop[blockIndexInLoop]; |
| 218 | |
| 219 | for (unsigned i = 0; i < std::tuple_size<InnerMostLoopIndices>::value; ++i) { |
| 220 | unsigned thisIndex = m_innerMostLoopIndices[block][i]; |
| 221 | if (thisIndex == UINT_MAX || loop.size() < m_loops[thisIndex].size()) { |
| 222 | insertIntoBoundedVector( |
| 223 | m_innerMostLoopIndices[block], std::tuple_size<InnerMostLoopIndices>::value, |
| 224 | loopIndex, i); |
| 225 | break; |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | // Now each block knows its inner-most loop and its next-to-inner-most loop. Use |
| 232 | // this to figure out loop parenting. |
| 233 | for (unsigned i = m_loops.size(); i--;) { |
| 234 | NaturalLoop<Graph>& loop = m_loops[i]; |
| 235 | RELEASE_ASSERT(m_innerMostLoopIndices[loop.header()][0] == i); |
| 236 | |
| 237 | loop.m_outerLoopIndex = m_innerMostLoopIndices[loop.header()][1]; |
| 238 | } |
| 239 | |
| 240 | if (selfCheck) { |
| 241 | // Do some self-verification that we've done some of this correctly. |
| 242 | |
| 243 | for (unsigned blockIndex = graph.numNodes(); blockIndex--;) { |
| 244 | typename Graph::Node block = graph.node(blockIndex); |
| 245 | if (!block) |
| 246 | continue; |
| 247 | |
| 248 | Vector<const NaturalLoop<Graph>*> simpleLoopsOf; |
| 249 | |
| 250 | for (unsigned i = m_loops.size(); i--;) { |
| 251 | if (m_loops[i].contains(block)) |
| 252 | simpleLoopsOf.append(&m_loops[i]); |
| 253 | } |
| 254 | |
| 255 | Vector<const NaturalLoop<Graph>*> fancyLoopsOf = loopsOf(block); |
| 256 | |
| 257 | std::sort(simpleLoopsOf.begin(), simpleLoopsOf.end()); |
| 258 | std::sort(fancyLoopsOf.begin(), fancyLoopsOf.end()); |
| 259 | |
| 260 | RELEASE_ASSERT(simpleLoopsOf == fancyLoopsOf); |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | if (verbose) |
| 265 | dataLog("Results: " , *this, "\n" ); |
| 266 | } |
| 267 | |
| 268 | Graph& graph() { return m_graph; } |
| 269 | |
| 270 | unsigned numLoops() const |
| 271 | { |
| 272 | return m_loops.size(); |
| 273 | } |
| 274 | const NaturalLoop<Graph>& loop(unsigned i) const |
| 275 | { |
| 276 | return m_loops[i]; |
| 277 | } |
| 278 | |
| 279 | // Return either null if the block isn't a loop header, or the |
| 280 | // loop it belongs to. |
| 281 | const NaturalLoop<Graph>* (typename Graph::Node block) const |
| 282 | { |
| 283 | const NaturalLoop<Graph>* loop = innerMostLoopOf(block); |
| 284 | if (!loop) |
| 285 | return nullptr; |
| 286 | if (loop->header() == block) |
| 287 | return loop; |
| 288 | if (!ASSERT_DISABLED) { |
| 289 | for (; loop; loop = innerMostOuterLoop(*loop)) |
| 290 | ASSERT(loop->header() != block); |
| 291 | } |
| 292 | return nullptr; |
| 293 | } |
| 294 | |
| 295 | const NaturalLoop<Graph>* innerMostLoopOf(typename Graph::Node block) const |
| 296 | { |
| 297 | unsigned index = m_innerMostLoopIndices[block][0]; |
| 298 | if (index == UINT_MAX) |
| 299 | return nullptr; |
| 300 | return &m_loops[index]; |
| 301 | } |
| 302 | |
| 303 | const NaturalLoop<Graph>* innerMostOuterLoop(const NaturalLoop<Graph>& loop) const |
| 304 | { |
| 305 | if (loop.m_outerLoopIndex == UINT_MAX) |
| 306 | return nullptr; |
| 307 | return &m_loops[loop.m_outerLoopIndex]; |
| 308 | } |
| 309 | |
| 310 | bool belongsTo(typename Graph::Node block, const NaturalLoop<Graph>& candidateLoop) const |
| 311 | { |
| 312 | // It's faster to do this test using the loop itself, if it's small. |
| 313 | if (candidateLoop.size() < 4) |
| 314 | return candidateLoop.contains(block); |
| 315 | |
| 316 | for (const NaturalLoop<Graph>* loop = innerMostLoopOf(block); loop; loop = innerMostOuterLoop(*loop)) { |
| 317 | if (loop == &candidateLoop) |
| 318 | return true; |
| 319 | } |
| 320 | return false; |
| 321 | } |
| 322 | |
| 323 | unsigned loopDepth(typename Graph::Node block) const |
| 324 | { |
| 325 | unsigned depth = 0; |
| 326 | for (const NaturalLoop<Graph>* loop = innerMostLoopOf(block); loop; loop = innerMostOuterLoop(*loop)) |
| 327 | depth++; |
| 328 | return depth; |
| 329 | } |
| 330 | |
| 331 | // Return all loops this belongs to. The first entry in the vector is the innermost loop. The last is the |
| 332 | // outermost loop. |
| 333 | Vector<const NaturalLoop<Graph>*> loopsOf(typename Graph::Node block) const |
| 334 | { |
| 335 | Vector<const NaturalLoop<Graph>*> result; |
| 336 | for (const NaturalLoop<Graph>* loop = innerMostLoopOf(block); loop; loop = innerMostOuterLoop(*loop)) |
| 337 | result.append(loop); |
| 338 | return result; |
| 339 | } |
| 340 | |
| 341 | void dump(PrintStream& out) const |
| 342 | { |
| 343 | out.print("NaturalLoops:{" ); |
| 344 | CommaPrinter comma; |
| 345 | for (unsigned i = 0; i < m_loops.size(); ++i) |
| 346 | out.print(comma, m_loops[i]); |
| 347 | out.print("}" ); |
| 348 | } |
| 349 | |
| 350 | private: |
| 351 | Graph& m_graph; |
| 352 | |
| 353 | // If we ever had a scalability problem in our natural loop finder, we could |
| 354 | // use some HashMap's here. But it just feels a heck of a lot less convenient. |
| 355 | Vector<NaturalLoop<Graph>, 4> m_loops; |
| 356 | |
| 357 | typename Graph::template Map<InnerMostLoopIndices> m_innerMostLoopIndices; |
| 358 | }; |
| 359 | |
| 360 | } // namespace WTF |
| 361 | |
| 362 | using WTF::NaturalLoop; |
| 363 | using WTF::NaturalLoops; |
| 364 | |