| 1 | /* |
| 2 | * Copyright (C) 2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 14 | * its contributors may be used to endorse or promote products derived |
| 15 | * from this software without specific prior written permission. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #pragma once |
| 30 | |
| 31 | #include <wtf/ConcurrentBuffer.h> |
| 32 | #include <wtf/Noncopyable.h> |
| 33 | |
| 34 | namespace WTF { |
| 35 | |
| 36 | // An iterator for ConcurrentVector. It supports only the pre ++ operator |
| 37 | template <typename T, size_t SegmentSize = 8> class ConcurrentVector; |
| 38 | template <typename T, size_t SegmentSize = 8> class ConcurrentVectorIterator { |
| 39 | private: |
| 40 | friend class ConcurrentVector<T, SegmentSize>; |
| 41 | public: |
| 42 | typedef ConcurrentVectorIterator<T, SegmentSize> Iterator; |
| 43 | |
| 44 | ~ConcurrentVectorIterator() { } |
| 45 | |
| 46 | T& operator*() const { return m_vector.at(m_index); } |
| 47 | T* operator->() const { return &m_vector.at(m_index); } |
| 48 | |
| 49 | // Only prefix ++ operator supported |
| 50 | Iterator& operator++() |
| 51 | { |
| 52 | m_index++; |
| 53 | return *this; |
| 54 | } |
| 55 | |
| 56 | bool operator==(const Iterator& other) const |
| 57 | { |
| 58 | return m_index == other.m_index && &m_vector == &other.m_vector; |
| 59 | } |
| 60 | |
| 61 | bool operator!=(const Iterator& other) const |
| 62 | { |
| 63 | return m_index != other.m_index || &m_vector != &other.m_vector; |
| 64 | } |
| 65 | |
| 66 | ConcurrentVectorIterator& operator=(const ConcurrentVectorIterator<T, SegmentSize>& other) |
| 67 | { |
| 68 | m_vector = other.m_vector; |
| 69 | m_index = other.m_index; |
| 70 | return *this; |
| 71 | } |
| 72 | |
| 73 | private: |
| 74 | ConcurrentVectorIterator(ConcurrentVector<T, SegmentSize>& vector, size_t index) |
| 75 | : m_vector(vector) |
| 76 | , m_index(index) |
| 77 | { |
| 78 | } |
| 79 | |
| 80 | ConcurrentVector<T, SegmentSize>& m_vector; |
| 81 | size_t m_index; |
| 82 | }; |
| 83 | |
| 84 | // ConcurrentVector is like SegmentedVector, but suitable for scenarios where one thread appends |
| 85 | // elements and another thread continues to access elements at lower indices. Only one thread can |
| 86 | // append at a time, so that activity still needs locking. size() and last() are racy with append(), |
| 87 | // in the sense that last() may crash if an append() is running concurrently because size()-1 does yet |
| 88 | // have a segment. |
| 89 | // |
| 90 | // Typical users of ConcurrentVector already have some way of ensuring that by the time someone is |
| 91 | // trying to use an index, some synchronization has happened to ensure that this index contains fully |
| 92 | // initialized data. Thereafter, the keeper of that index is allowed to use it on this vector without |
| 93 | // any locking other than what is needed to protect the integrity of the element at that index. This |
| 94 | // works because we guarantee shrinking the vector is impossible and that growing the vector doesn't |
| 95 | // delete old vector spines. |
| 96 | template <typename T, size_t SegmentSize> |
| 97 | class ConcurrentVector { |
| 98 | friend class ConcurrentVectorIterator<T, SegmentSize>; |
| 99 | WTF_MAKE_NONCOPYABLE(ConcurrentVector); |
| 100 | WTF_MAKE_FAST_ALLOCATED; |
| 101 | |
| 102 | public: |
| 103 | typedef ConcurrentVectorIterator<T, SegmentSize> Iterator; |
| 104 | |
| 105 | ConcurrentVector() = default; |
| 106 | |
| 107 | ~ConcurrentVector() |
| 108 | { |
| 109 | } |
| 110 | |
| 111 | // This may return a size that is bigger than the underlying storage, since this does not fence |
| 112 | // manipulations of size. So if you access at size()-1, you may crash because this hasn't |
| 113 | // allocated storage for that index yet. |
| 114 | size_t size() const { return m_size; } |
| 115 | |
| 116 | bool isEmpty() const { return !size(); } |
| 117 | |
| 118 | T& at(size_t index) |
| 119 | { |
| 120 | ASSERT_WITH_SECURITY_IMPLICATION(index < m_size); |
| 121 | return segmentFor(index)->entries[subscriptFor(index)]; |
| 122 | } |
| 123 | |
| 124 | const T& at(size_t index) const |
| 125 | { |
| 126 | return const_cast<ConcurrentVector<T, SegmentSize>*>(this)->at(index); |
| 127 | } |
| 128 | |
| 129 | T& operator[](size_t index) |
| 130 | { |
| 131 | return at(index); |
| 132 | } |
| 133 | |
| 134 | const T& operator[](size_t index) const |
| 135 | { |
| 136 | return at(index); |
| 137 | } |
| 138 | |
| 139 | T& first() |
| 140 | { |
| 141 | ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); |
| 142 | return at(0); |
| 143 | } |
| 144 | const T& first() const |
| 145 | { |
| 146 | ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); |
| 147 | return at(0); |
| 148 | } |
| 149 | |
| 150 | // This may crash if run concurrently to append(). If you want to accurately track the size of |
| 151 | // this vector, you'll have to do it yourself, with your own fencing. |
| 152 | T& last() |
| 153 | { |
| 154 | ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); |
| 155 | return at(size() - 1); |
| 156 | } |
| 157 | const T& last() const |
| 158 | { |
| 159 | ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); |
| 160 | return at(size() - 1); |
| 161 | } |
| 162 | |
| 163 | T takeLast() |
| 164 | { |
| 165 | ASSERT_WITH_SECURITY_IMPLICATION(!isEmpty()); |
| 166 | T result = WTFMove(last()); |
| 167 | --m_size; |
| 168 | return result; |
| 169 | } |
| 170 | |
| 171 | template<typename... Args> |
| 172 | void append(Args&&... args) |
| 173 | { |
| 174 | ++m_size; |
| 175 | if (!segmentExistsFor(m_size - 1)) |
| 176 | allocateSegment(); |
| 177 | new (NotNull, &last()) T(std::forward<Args>(args)...); |
| 178 | } |
| 179 | |
| 180 | template<typename... Args> |
| 181 | T& alloc(Args&&... args) |
| 182 | { |
| 183 | append(std::forward<Args>(args)...); |
| 184 | return last(); |
| 185 | } |
| 186 | |
| 187 | void removeLast() |
| 188 | { |
| 189 | last().~T(); |
| 190 | --m_size; |
| 191 | } |
| 192 | |
| 193 | void grow(size_t size) |
| 194 | { |
| 195 | if (size == m_size) |
| 196 | return; |
| 197 | ASSERT(size > m_size); |
| 198 | ensureSegmentsFor(size); |
| 199 | size_t oldSize = m_size; |
| 200 | m_size = size; |
| 201 | for (size_t i = oldSize; i < m_size; ++i) |
| 202 | new (NotNull, &at(i)) T(); |
| 203 | } |
| 204 | |
| 205 | Iterator begin() |
| 206 | { |
| 207 | return Iterator(*this, 0); |
| 208 | } |
| 209 | |
| 210 | Iterator end() |
| 211 | { |
| 212 | return Iterator(*this, m_size); |
| 213 | } |
| 214 | |
| 215 | private: |
| 216 | struct Segment { |
| 217 | WTF_MAKE_STRUCT_FAST_ALLOCATED; |
| 218 | |
| 219 | T entries[SegmentSize]; |
| 220 | }; |
| 221 | |
| 222 | bool segmentExistsFor(size_t index) |
| 223 | { |
| 224 | return index / SegmentSize < m_numSegments; |
| 225 | } |
| 226 | |
| 227 | Segment* segmentFor(size_t index) |
| 228 | { |
| 229 | return m_segments[index / SegmentSize].get(); |
| 230 | } |
| 231 | |
| 232 | size_t subscriptFor(size_t index) |
| 233 | { |
| 234 | return index % SegmentSize; |
| 235 | } |
| 236 | |
| 237 | void ensureSegmentsFor(size_t size) |
| 238 | { |
| 239 | size_t segmentCount = (m_size + SegmentSize - 1) / SegmentSize; |
| 240 | size_t neededSegmentCount = (size + SegmentSize - 1) / SegmentSize; |
| 241 | |
| 242 | for (size_t i = segmentCount ? segmentCount - 1 : 0; i < neededSegmentCount; ++i) |
| 243 | ensureSegment(i); |
| 244 | } |
| 245 | |
| 246 | void ensureSegment(size_t segmentIndex) |
| 247 | { |
| 248 | ASSERT_WITH_SECURITY_IMPLICATION(segmentIndex <= m_numSegments); |
| 249 | if (segmentIndex == m_numSegments) |
| 250 | allocateSegment(); |
| 251 | } |
| 252 | |
| 253 | void allocateSegment() |
| 254 | { |
| 255 | m_segments.grow(m_numSegments + 1); |
| 256 | m_segments[m_numSegments++] = std::make_unique<Segment>(); |
| 257 | } |
| 258 | |
| 259 | size_t m_size { 0 }; |
| 260 | ConcurrentBuffer<std::unique_ptr<Segment>> m_segments; |
| 261 | size_t m_numSegments { 0 }; |
| 262 | }; |
| 263 | |
| 264 | } // namespace WTF |
| 265 | |
| 266 | using WTF::ConcurrentVector; |
| 267 | |