| 1 | /* |
| 2 | * Copyright (C) 2008-2018 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #pragma once |
| 27 | |
| 28 | #if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64)) |
| 29 | |
| 30 | #include "AssemblerBuffer.h" |
| 31 | #include "AssemblerCommon.h" |
| 32 | #include "JITCompilationEffort.h" |
| 33 | #include <limits.h> |
| 34 | #include <stdint.h> |
| 35 | #include <wtf/Assertions.h> |
| 36 | #include <wtf/Vector.h> |
| 37 | |
| 38 | namespace JSC { |
| 39 | |
| 40 | inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; } |
| 41 | |
| 42 | namespace X86Registers { |
| 43 | |
| 44 | #if COMPILER(MSVC) |
| 45 | #define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE |
| 46 | #else |
| 47 | #define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE : int8_t |
| 48 | #endif |
| 49 | |
| 50 | typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE { |
| 51 | eax, |
| 52 | ecx, |
| 53 | edx, |
| 54 | ebx, |
| 55 | esp, |
| 56 | ebp, |
| 57 | esi, |
| 58 | edi, |
| 59 | #if CPU(X86_64) |
| 60 | r8, |
| 61 | r9, |
| 62 | r10, |
| 63 | r11, |
| 64 | r12, |
| 65 | r13, |
| 66 | r14, |
| 67 | r15, |
| 68 | #endif |
| 69 | InvalidGPRReg = -1, |
| 70 | } RegisterID; |
| 71 | |
| 72 | typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE { |
| 73 | eip, |
| 74 | eflags |
| 75 | } SPRegisterID; |
| 76 | |
| 77 | typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE { |
| 78 | xmm0, |
| 79 | xmm1, |
| 80 | xmm2, |
| 81 | xmm3, |
| 82 | xmm4, |
| 83 | xmm5, |
| 84 | xmm6, |
| 85 | xmm7, |
| 86 | #if CPU(X86_64) |
| 87 | xmm8, |
| 88 | xmm9, |
| 89 | xmm10, |
| 90 | xmm11, |
| 91 | xmm12, |
| 92 | xmm13, |
| 93 | xmm14, |
| 94 | xmm15, |
| 95 | #endif |
| 96 | InvalidFPRReg = -1, |
| 97 | } XMMRegisterID; |
| 98 | |
| 99 | } // namespace X86Register |
| 100 | |
| 101 | class X86Assembler { |
| 102 | public: |
| 103 | typedef X86Registers::RegisterID RegisterID; |
| 104 | |
| 105 | static constexpr RegisterID firstRegister() { return X86Registers::eax; } |
| 106 | static constexpr RegisterID lastRegister() |
| 107 | { |
| 108 | #if CPU(X86_64) |
| 109 | return X86Registers::r15; |
| 110 | #else |
| 111 | return X86Registers::edi; |
| 112 | #endif |
| 113 | } |
| 114 | static constexpr unsigned numberOfRegisters() { return lastRegister() - firstRegister() + 1; } |
| 115 | |
| 116 | typedef X86Registers::SPRegisterID SPRegisterID; |
| 117 | |
| 118 | static constexpr SPRegisterID firstSPRegister() { return X86Registers::eip; } |
| 119 | static constexpr SPRegisterID lastSPRegister() { return X86Registers::eflags; } |
| 120 | static constexpr unsigned numberOfSPRegisters() { return lastSPRegister() - firstSPRegister() + 1; } |
| 121 | |
| 122 | typedef X86Registers::XMMRegisterID XMMRegisterID; |
| 123 | typedef XMMRegisterID FPRegisterID; |
| 124 | |
| 125 | static constexpr FPRegisterID firstFPRegister() { return X86Registers::xmm0; } |
| 126 | static constexpr FPRegisterID lastFPRegister() |
| 127 | { |
| 128 | #if CPU(X86_64) |
| 129 | return X86Registers::xmm15; |
| 130 | #else |
| 131 | return X86Registers::xmm7; |
| 132 | #endif |
| 133 | } |
| 134 | static constexpr unsigned numberOfFPRegisters() { return lastFPRegister() - firstFPRegister() + 1; } |
| 135 | |
| 136 | static const char* gprName(RegisterID id) |
| 137 | { |
| 138 | ASSERT(id >= firstRegister() && id <= lastRegister()); |
| 139 | static const char* const nameForRegister[numberOfRegisters()] = { |
| 140 | #if CPU(X86_64) |
| 141 | "rax" , "rcx" , "rdx" , "rbx" , |
| 142 | "rsp" , "rbp" , "rsi" , "rdi" , |
| 143 | "r8" , "r9" , "r10" , "r11" , |
| 144 | "r12" , "r13" , "r14" , "r15" |
| 145 | #else |
| 146 | "eax" , "ecx" , "edx" , "ebx" , |
| 147 | "esp" , "ebp" , "esi" , "edi" , |
| 148 | #endif |
| 149 | }; |
| 150 | return nameForRegister[id]; |
| 151 | } |
| 152 | |
| 153 | static const char* sprName(SPRegisterID id) |
| 154 | { |
| 155 | ASSERT(id >= firstSPRegister() && id <= lastSPRegister()); |
| 156 | static const char* const nameForRegister[numberOfSPRegisters()] = { |
| 157 | #if CPU(X86_64) |
| 158 | "rip" , "rflags" |
| 159 | #else |
| 160 | "eip" , "eflags" |
| 161 | #endif |
| 162 | }; |
| 163 | return nameForRegister[id]; |
| 164 | } |
| 165 | |
| 166 | static const char* fprName(FPRegisterID reg) |
| 167 | { |
| 168 | ASSERT(reg >= firstFPRegister() && reg <= lastFPRegister()); |
| 169 | static const char* const nameForRegister[numberOfFPRegisters()] = { |
| 170 | "xmm0" , "xmm1" , "xmm2" , "xmm3" , |
| 171 | "xmm4" , "xmm5" , "xmm6" , "xmm7" , |
| 172 | #if CPU(X86_64) |
| 173 | "xmm8" , "xmm9" , "xmm10" , "xmm11" , |
| 174 | "xmm12" , "xmm13" , "xmm14" , "xmm15" |
| 175 | #endif |
| 176 | }; |
| 177 | return nameForRegister[reg]; |
| 178 | } |
| 179 | |
| 180 | typedef enum { |
| 181 | ConditionO, |
| 182 | ConditionNO, |
| 183 | ConditionB, |
| 184 | ConditionAE, |
| 185 | ConditionE, |
| 186 | ConditionNE, |
| 187 | ConditionBE, |
| 188 | ConditionA, |
| 189 | ConditionS, |
| 190 | ConditionNS, |
| 191 | ConditionP, |
| 192 | ConditionNP, |
| 193 | ConditionL, |
| 194 | ConditionGE, |
| 195 | ConditionLE, |
| 196 | ConditionG, |
| 197 | |
| 198 | ConditionC = ConditionB, |
| 199 | ConditionNC = ConditionAE, |
| 200 | } Condition; |
| 201 | |
| 202 | private: |
| 203 | // OneByteOpcodeID defines the bytecode for 1 byte instruction. It also contains the prefixes |
| 204 | // for two bytes instructions. |
| 205 | // TwoByteOpcodeID, ThreeByteOpcodeID define the opcodes for the multibytes instructions. |
| 206 | // |
| 207 | // The encoding for each instruction can be found in the Intel Architecture Manual in the appendix |
| 208 | // "Opcode Map." |
| 209 | // |
| 210 | // Each opcode can have a suffix describing the type of argument. The full list of suffixes is |
| 211 | // in the "Key to Abbreviations" section of the "Opcode Map". |
| 212 | // The most common argument types are: |
| 213 | // -E: The argument is either a GPR or a memory address. |
| 214 | // -G: The argument is a GPR. |
| 215 | // -I: The argument is an immediate. |
| 216 | // The most common sizes are: |
| 217 | // -v: 32 or 64bit depending on the operand-size attribute. |
| 218 | // -z: 32bit in both 32bit and 64bit mode. Common for immediate values. |
| 219 | typedef enum { |
| 220 | OP_ADD_EbGb = 0x00, |
| 221 | OP_ADD_EvGv = 0x01, |
| 222 | OP_ADD_GvEv = 0x03, |
| 223 | OP_ADD_EAXIv = 0x05, |
| 224 | OP_OR_EvGb = 0x08, |
| 225 | OP_OR_EvGv = 0x09, |
| 226 | OP_OR_GvEv = 0x0B, |
| 227 | OP_OR_EAXIv = 0x0D, |
| 228 | OP_2BYTE_ESCAPE = 0x0F, |
| 229 | OP_AND_EvGb = 0x20, |
| 230 | OP_AND_EvGv = 0x21, |
| 231 | OP_AND_GvEv = 0x23, |
| 232 | OP_SUB_EvGb = 0x28, |
| 233 | OP_SUB_EvGv = 0x29, |
| 234 | OP_SUB_GvEv = 0x2B, |
| 235 | OP_SUB_EAXIv = 0x2D, |
| 236 | PRE_PREDICT_BRANCH_NOT_TAKEN = 0x2E, |
| 237 | OP_XOR_EvGb = 0x30, |
| 238 | OP_XOR_EvGv = 0x31, |
| 239 | OP_XOR_GvEv = 0x33, |
| 240 | OP_XOR_EAXIv = 0x35, |
| 241 | OP_CMP_EvGv = 0x39, |
| 242 | OP_CMP_GvEv = 0x3B, |
| 243 | OP_CMP_EAXIv = 0x3D, |
| 244 | #if CPU(X86_64) |
| 245 | PRE_REX = 0x40, |
| 246 | #endif |
| 247 | OP_PUSH_EAX = 0x50, |
| 248 | OP_POP_EAX = 0x58, |
| 249 | #if CPU(X86_64) |
| 250 | OP_MOVSXD_GvEv = 0x63, |
| 251 | #endif |
| 252 | PRE_GS = 0x65, |
| 253 | PRE_OPERAND_SIZE = 0x66, |
| 254 | PRE_SSE_66 = 0x66, |
| 255 | OP_PUSH_Iz = 0x68, |
| 256 | OP_IMUL_GvEvIz = 0x69, |
| 257 | OP_GROUP1_EbIb = 0x80, |
| 258 | OP_GROUP1_EvIz = 0x81, |
| 259 | OP_GROUP1_EvIb = 0x83, |
| 260 | OP_TEST_EbGb = 0x84, |
| 261 | OP_TEST_EvGv = 0x85, |
| 262 | OP_XCHG_EvGb = 0x86, |
| 263 | OP_XCHG_EvGv = 0x87, |
| 264 | OP_MOV_EbGb = 0x88, |
| 265 | OP_MOV_EvGv = 0x89, |
| 266 | OP_MOV_GvEv = 0x8B, |
| 267 | OP_LEA = 0x8D, |
| 268 | OP_GROUP1A_Ev = 0x8F, |
| 269 | OP_NOP = 0x90, |
| 270 | OP_XCHG_EAX = 0x90, |
| 271 | OP_PAUSE = 0x90, |
| 272 | OP_CDQ = 0x99, |
| 273 | OP_MOV_EAXOv = 0xA1, |
| 274 | OP_MOV_OvEAX = 0xA3, |
| 275 | OP_TEST_ALIb = 0xA8, |
| 276 | OP_TEST_EAXIv = 0xA9, |
| 277 | OP_MOV_EAXIv = 0xB8, |
| 278 | OP_GROUP2_EvIb = 0xC1, |
| 279 | OP_RET = 0xC3, |
| 280 | OP_GROUP11_EvIb = 0xC6, |
| 281 | OP_GROUP11_EvIz = 0xC7, |
| 282 | OP_INT3 = 0xCC, |
| 283 | OP_GROUP2_Ev1 = 0xD1, |
| 284 | OP_GROUP2_EvCL = 0xD3, |
| 285 | OP_ESCAPE_D9 = 0xD9, |
| 286 | OP_ESCAPE_DD = 0xDD, |
| 287 | OP_CALL_rel32 = 0xE8, |
| 288 | OP_JMP_rel32 = 0xE9, |
| 289 | PRE_LOCK = 0xF0, |
| 290 | PRE_SSE_F2 = 0xF2, |
| 291 | PRE_SSE_F3 = 0xF3, |
| 292 | OP_HLT = 0xF4, |
| 293 | OP_GROUP3_Eb = 0xF6, |
| 294 | OP_GROUP3_EbIb = 0xF6, |
| 295 | OP_GROUP3_Ev = 0xF7, |
| 296 | OP_GROUP3_EvIz = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test. |
| 297 | OP_GROUP5_Ev = 0xFF, |
| 298 | } OneByteOpcodeID; |
| 299 | |
| 300 | typedef enum { |
| 301 | OP2_UD2 = 0xB, |
| 302 | OP2_MOVSD_VsdWsd = 0x10, |
| 303 | OP2_MOVSD_WsdVsd = 0x11, |
| 304 | OP2_MOVSS_VsdWsd = 0x10, |
| 305 | OP2_MOVSS_WsdVsd = 0x11, |
| 306 | OP2_MOVAPD_VpdWpd = 0x28, |
| 307 | OP2_MOVAPS_VpdWpd = 0x28, |
| 308 | OP2_CVTSI2SD_VsdEd = 0x2A, |
| 309 | OP2_CVTTSD2SI_GdWsd = 0x2C, |
| 310 | OP2_CVTTSS2SI_GdWsd = 0x2C, |
| 311 | OP2_UCOMISD_VsdWsd = 0x2E, |
| 312 | OP2_RDTSC = 0x31, |
| 313 | OP2_3BYTE_ESCAPE_3A = 0x3A, |
| 314 | OP2_CMOVCC = 0x40, |
| 315 | OP2_ADDSD_VsdWsd = 0x58, |
| 316 | OP2_MULSD_VsdWsd = 0x59, |
| 317 | OP2_CVTSD2SS_VsdWsd = 0x5A, |
| 318 | OP2_CVTSS2SD_VsdWsd = 0x5A, |
| 319 | OP2_SUBSD_VsdWsd = 0x5C, |
| 320 | OP2_DIVSD_VsdWsd = 0x5E, |
| 321 | OP2_MOVMSKPD_VdEd = 0x50, |
| 322 | OP2_SQRTSD_VsdWsd = 0x51, |
| 323 | OP2_ANDPS_VpdWpd = 0x54, |
| 324 | OP2_ANDNPD_VpdWpd = 0x55, |
| 325 | OP2_ORPS_VpdWpd = 0x56, |
| 326 | OP2_XORPD_VpdWpd = 0x57, |
| 327 | OP2_MOVD_VdEd = 0x6E, |
| 328 | OP2_MOVD_EdVd = 0x7E, |
| 329 | OP2_JCC_rel32 = 0x80, |
| 330 | OP_SETCC = 0x90, |
| 331 | OP2_CPUID = 0xA2, |
| 332 | OP2_3BYTE_ESCAPE_AE = 0xAE, |
| 333 | OP2_IMUL_GvEv = 0xAF, |
| 334 | OP2_CMPXCHGb = 0xB0, |
| 335 | OP2_CMPXCHG = 0xB1, |
| 336 | OP2_MOVZX_GvEb = 0xB6, |
| 337 | OP2_POPCNT = 0xB8, |
| 338 | OP2_BSF = 0xBC, |
| 339 | OP2_TZCNT = 0xBC, |
| 340 | OP2_BSR = 0xBD, |
| 341 | OP2_LZCNT = 0xBD, |
| 342 | OP2_MOVSX_GvEb = 0xBE, |
| 343 | OP2_MOVZX_GvEw = 0xB7, |
| 344 | OP2_MOVSX_GvEw = 0xBF, |
| 345 | OP2_XADDb = 0xC0, |
| 346 | OP2_XADD = 0xC1, |
| 347 | OP2_PEXTRW_GdUdIb = 0xC5, |
| 348 | OP2_BSWAP = 0xC8, |
| 349 | OP2_PSLLQ_UdqIb = 0x73, |
| 350 | OP2_PSRLQ_UdqIb = 0x73, |
| 351 | OP2_POR_VdqWdq = 0XEB, |
| 352 | } TwoByteOpcodeID; |
| 353 | |
| 354 | typedef enum { |
| 355 | OP3_ROUNDSS_VssWssIb = 0x0A, |
| 356 | OP3_ROUNDSD_VsdWsdIb = 0x0B, |
| 357 | OP3_LFENCE = 0xE8, |
| 358 | OP3_MFENCE = 0xF0, |
| 359 | OP3_SFENCE = 0xF8, |
| 360 | } ThreeByteOpcodeID; |
| 361 | |
| 362 | struct VexPrefix { |
| 363 | enum : uint8_t { |
| 364 | TwoBytes = 0xC5, |
| 365 | ThreeBytes = 0xC4 |
| 366 | }; |
| 367 | }; |
| 368 | enum class VexImpliedBytes : uint8_t { |
| 369 | TwoBytesOp = 1, |
| 370 | ThreeBytesOp38 = 2, |
| 371 | ThreeBytesOp3A = 3 |
| 372 | }; |
| 373 | |
| 374 | TwoByteOpcodeID cmovcc(Condition cond) |
| 375 | { |
| 376 | return (TwoByteOpcodeID)(OP2_CMOVCC + cond); |
| 377 | } |
| 378 | |
| 379 | TwoByteOpcodeID jccRel32(Condition cond) |
| 380 | { |
| 381 | return (TwoByteOpcodeID)(OP2_JCC_rel32 + cond); |
| 382 | } |
| 383 | |
| 384 | TwoByteOpcodeID setccOpcode(Condition cond) |
| 385 | { |
| 386 | return (TwoByteOpcodeID)(OP_SETCC + cond); |
| 387 | } |
| 388 | |
| 389 | typedef enum { |
| 390 | GROUP1_OP_ADD = 0, |
| 391 | GROUP1_OP_OR = 1, |
| 392 | GROUP1_OP_ADC = 2, |
| 393 | GROUP1_OP_AND = 4, |
| 394 | GROUP1_OP_SUB = 5, |
| 395 | GROUP1_OP_XOR = 6, |
| 396 | GROUP1_OP_CMP = 7, |
| 397 | |
| 398 | GROUP1A_OP_POP = 0, |
| 399 | |
| 400 | GROUP2_OP_ROL = 0, |
| 401 | GROUP2_OP_ROR = 1, |
| 402 | GROUP2_OP_RCL = 2, |
| 403 | GROUP2_OP_RCR = 3, |
| 404 | |
| 405 | GROUP2_OP_SHL = 4, |
| 406 | GROUP2_OP_SHR = 5, |
| 407 | GROUP2_OP_SAR = 7, |
| 408 | |
| 409 | GROUP3_OP_TEST = 0, |
| 410 | GROUP3_OP_NOT = 2, |
| 411 | GROUP3_OP_NEG = 3, |
| 412 | GROUP3_OP_DIV = 6, |
| 413 | GROUP3_OP_IDIV = 7, |
| 414 | |
| 415 | GROUP5_OP_CALLN = 2, |
| 416 | GROUP5_OP_JMPN = 4, |
| 417 | GROUP5_OP_PUSH = 6, |
| 418 | |
| 419 | GROUP11_MOV = 0, |
| 420 | |
| 421 | GROUP14_OP_PSLLQ = 6, |
| 422 | GROUP14_OP_PSRLQ = 2, |
| 423 | |
| 424 | ESCAPE_D9_FSTP_singleReal = 3, |
| 425 | ESCAPE_DD_FSTP_doubleReal = 3, |
| 426 | } GroupOpcodeID; |
| 427 | |
| 428 | class X86InstructionFormatter; |
| 429 | public: |
| 430 | |
| 431 | X86Assembler() |
| 432 | : m_indexOfLastWatchpoint(INT_MIN) |
| 433 | , m_indexOfTailOfLastWatchpoint(INT_MIN) |
| 434 | { |
| 435 | } |
| 436 | |
| 437 | AssemblerBuffer& buffer() { return m_formatter.m_buffer; } |
| 438 | |
| 439 | // Stack operations: |
| 440 | |
| 441 | void push_r(RegisterID reg) |
| 442 | { |
| 443 | m_formatter.oneByteOp(OP_PUSH_EAX, reg); |
| 444 | } |
| 445 | |
| 446 | void pop_r(RegisterID reg) |
| 447 | { |
| 448 | m_formatter.oneByteOp(OP_POP_EAX, reg); |
| 449 | } |
| 450 | |
| 451 | void push_i32(int imm) |
| 452 | { |
| 453 | m_formatter.oneByteOp(OP_PUSH_Iz); |
| 454 | m_formatter.immediate32(imm); |
| 455 | } |
| 456 | |
| 457 | void push_m(int offset, RegisterID base) |
| 458 | { |
| 459 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_PUSH, base, offset); |
| 460 | } |
| 461 | |
| 462 | void pop_m(int offset, RegisterID base) |
| 463 | { |
| 464 | m_formatter.oneByteOp(OP_GROUP1A_Ev, GROUP1A_OP_POP, base, offset); |
| 465 | } |
| 466 | |
| 467 | // Arithmetic operations: |
| 468 | |
| 469 | #if !CPU(X86_64) |
| 470 | void adcl_im(int imm, const void* addr) |
| 471 | { |
| 472 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 473 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr)); |
| 474 | m_formatter.immediate8(imm); |
| 475 | } else { |
| 476 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr)); |
| 477 | m_formatter.immediate32(imm); |
| 478 | } |
| 479 | } |
| 480 | #endif |
| 481 | |
| 482 | void addl_rr(RegisterID src, RegisterID dst) |
| 483 | { |
| 484 | m_formatter.oneByteOp(OP_ADD_EvGv, src, dst); |
| 485 | } |
| 486 | |
| 487 | void addl_mr(int offset, RegisterID base, RegisterID dst) |
| 488 | { |
| 489 | m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, offset); |
| 490 | } |
| 491 | |
| 492 | void addl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 493 | { |
| 494 | m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, index, scale, offset); |
| 495 | } |
| 496 | |
| 497 | #if !CPU(X86_64) |
| 498 | void addl_mr(const void* addr, RegisterID dst) |
| 499 | { |
| 500 | m_formatter.oneByteOpAddr(OP_ADD_GvEv, dst, bitwise_cast<uint32_t>(addr)); |
| 501 | } |
| 502 | #endif |
| 503 | |
| 504 | void addl_rm(RegisterID src, int offset, RegisterID base) |
| 505 | { |
| 506 | m_formatter.oneByteOp(OP_ADD_EvGv, src, base, offset); |
| 507 | } |
| 508 | |
| 509 | void addl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 510 | { |
| 511 | m_formatter.oneByteOp(OP_ADD_EvGv, src, base, index, scale, offset); |
| 512 | } |
| 513 | |
| 514 | void addb_rm(RegisterID src, int offset, RegisterID base) |
| 515 | { |
| 516 | m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, offset); |
| 517 | } |
| 518 | |
| 519 | void addb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 520 | { |
| 521 | m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, index, scale, offset); |
| 522 | } |
| 523 | |
| 524 | void addw_rm(RegisterID src, int offset, RegisterID base) |
| 525 | { |
| 526 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 527 | m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, offset); |
| 528 | } |
| 529 | |
| 530 | void addw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 531 | { |
| 532 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 533 | m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, index, scale, offset); |
| 534 | } |
| 535 | |
| 536 | void addl_ir(int imm, RegisterID dst) |
| 537 | { |
| 538 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 539 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); |
| 540 | m_formatter.immediate8(imm); |
| 541 | } else { |
| 542 | if (dst == X86Registers::eax) |
| 543 | m_formatter.oneByteOp(OP_ADD_EAXIv); |
| 544 | else |
| 545 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); |
| 546 | m_formatter.immediate32(imm); |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | void addl_im(int imm, int offset, RegisterID base) |
| 551 | { |
| 552 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 553 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); |
| 554 | m_formatter.immediate8(imm); |
| 555 | } else { |
| 556 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); |
| 557 | m_formatter.immediate32(imm); |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | void addl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 562 | { |
| 563 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 564 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset); |
| 565 | m_formatter.immediate8(imm); |
| 566 | } else { |
| 567 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset); |
| 568 | m_formatter.immediate32(imm); |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | void addb_im(int imm, int offset, RegisterID base) |
| 573 | { |
| 574 | m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, offset); |
| 575 | m_formatter.immediate8(imm); |
| 576 | } |
| 577 | |
| 578 | void addb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 579 | { |
| 580 | m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, index, scale, offset); |
| 581 | m_formatter.immediate8(imm); |
| 582 | } |
| 583 | |
| 584 | void addw_im(int imm, int offset, RegisterID base) |
| 585 | { |
| 586 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 587 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 588 | m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); |
| 589 | m_formatter.immediate8(imm); |
| 590 | } else { |
| 591 | m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); |
| 592 | m_formatter.immediate16(imm); |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | void addw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 597 | { |
| 598 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 599 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 600 | m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset); |
| 601 | m_formatter.immediate8(imm); |
| 602 | } else { |
| 603 | m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset); |
| 604 | m_formatter.immediate16(imm); |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | #if CPU(X86_64) |
| 609 | void addq_rr(RegisterID src, RegisterID dst) |
| 610 | { |
| 611 | m_formatter.oneByteOp64(OP_ADD_EvGv, src, dst); |
| 612 | } |
| 613 | |
| 614 | void addq_mr(int offset, RegisterID base, RegisterID dst) |
| 615 | { |
| 616 | m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, offset); |
| 617 | } |
| 618 | |
| 619 | void addq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 620 | { |
| 621 | m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, index, scale, offset); |
| 622 | } |
| 623 | |
| 624 | void addq_rm(RegisterID src, int offset, RegisterID base) |
| 625 | { |
| 626 | m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, offset); |
| 627 | } |
| 628 | |
| 629 | void addq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 630 | { |
| 631 | m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, index, scale, offset); |
| 632 | } |
| 633 | |
| 634 | void addq_ir(int imm, RegisterID dst) |
| 635 | { |
| 636 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 637 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); |
| 638 | m_formatter.immediate8(imm); |
| 639 | } else { |
| 640 | if (dst == X86Registers::eax) |
| 641 | m_formatter.oneByteOp64(OP_ADD_EAXIv); |
| 642 | else |
| 643 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); |
| 644 | m_formatter.immediate32(imm); |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | void addq_im(int imm, int offset, RegisterID base) |
| 649 | { |
| 650 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 651 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); |
| 652 | m_formatter.immediate8(imm); |
| 653 | } else { |
| 654 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); |
| 655 | m_formatter.immediate32(imm); |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | void addq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 660 | { |
| 661 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 662 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset); |
| 663 | m_formatter.immediate8(imm); |
| 664 | } else { |
| 665 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset); |
| 666 | m_formatter.immediate32(imm); |
| 667 | } |
| 668 | } |
| 669 | #else |
| 670 | void addl_im(int imm, const void* addr) |
| 671 | { |
| 672 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 673 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr)); |
| 674 | m_formatter.immediate8(imm); |
| 675 | } else { |
| 676 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr)); |
| 677 | m_formatter.immediate32(imm); |
| 678 | } |
| 679 | } |
| 680 | #endif |
| 681 | |
| 682 | void andl_rr(RegisterID src, RegisterID dst) |
| 683 | { |
| 684 | m_formatter.oneByteOp(OP_AND_EvGv, src, dst); |
| 685 | } |
| 686 | |
| 687 | void andl_mr(int offset, RegisterID base, RegisterID dst) |
| 688 | { |
| 689 | m_formatter.oneByteOp(OP_AND_GvEv, dst, base, offset); |
| 690 | } |
| 691 | |
| 692 | void andl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 693 | { |
| 694 | m_formatter.oneByteOp(OP_AND_GvEv, dst, base, index, scale, offset); |
| 695 | } |
| 696 | |
| 697 | void andw_mr(int offset, RegisterID base, RegisterID dst) |
| 698 | { |
| 699 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 700 | andl_mr(offset, base, dst); |
| 701 | } |
| 702 | |
| 703 | void andw_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 704 | { |
| 705 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 706 | andl_mr(offset, base, index, scale, dst); |
| 707 | } |
| 708 | |
| 709 | void andl_rm(RegisterID src, int offset, RegisterID base) |
| 710 | { |
| 711 | m_formatter.oneByteOp(OP_AND_EvGv, src, base, offset); |
| 712 | } |
| 713 | |
| 714 | void andl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 715 | { |
| 716 | m_formatter.oneByteOp(OP_AND_EvGv, src, base, index, scale, offset); |
| 717 | } |
| 718 | |
| 719 | void andw_rm(RegisterID src, int offset, RegisterID base) |
| 720 | { |
| 721 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 722 | andl_rm(src, offset, base); |
| 723 | } |
| 724 | |
| 725 | void andw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 726 | { |
| 727 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 728 | andl_rm(src, offset, base, index, scale); |
| 729 | } |
| 730 | |
| 731 | void andb_rm(RegisterID src, int offset, RegisterID base) |
| 732 | { |
| 733 | m_formatter.oneByteOp(OP_AND_EvGb, src, base, offset); |
| 734 | } |
| 735 | |
| 736 | void andb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 737 | { |
| 738 | m_formatter.oneByteOp(OP_AND_EvGb, src, base, index, scale, offset); |
| 739 | } |
| 740 | |
| 741 | void andl_ir(int imm, RegisterID dst) |
| 742 | { |
| 743 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 744 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); |
| 745 | m_formatter.immediate8(imm); |
| 746 | } else { |
| 747 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); |
| 748 | m_formatter.immediate32(imm); |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | void andl_im(int imm, int offset, RegisterID base) |
| 753 | { |
| 754 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 755 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); |
| 756 | m_formatter.immediate8(imm); |
| 757 | } else { |
| 758 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); |
| 759 | m_formatter.immediate32(imm); |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | void andl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 764 | { |
| 765 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 766 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset); |
| 767 | m_formatter.immediate8(imm); |
| 768 | } else { |
| 769 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset); |
| 770 | m_formatter.immediate32(imm); |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | void andw_im(int imm, int offset, RegisterID base) |
| 775 | { |
| 776 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 777 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 778 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); |
| 779 | m_formatter.immediate8(imm); |
| 780 | } else { |
| 781 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); |
| 782 | m_formatter.immediate16(imm); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | void andw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 787 | { |
| 788 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 789 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 790 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset); |
| 791 | m_formatter.immediate8(imm); |
| 792 | } else { |
| 793 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset); |
| 794 | m_formatter.immediate16(imm); |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | void andb_im(int imm, int offset, RegisterID base) |
| 799 | { |
| 800 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, offset); |
| 801 | m_formatter.immediate8(imm); |
| 802 | } |
| 803 | |
| 804 | void andb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 805 | { |
| 806 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, index, scale, offset); |
| 807 | m_formatter.immediate8(imm); |
| 808 | } |
| 809 | |
| 810 | #if CPU(X86_64) |
| 811 | void andq_rr(RegisterID src, RegisterID dst) |
| 812 | { |
| 813 | m_formatter.oneByteOp64(OP_AND_EvGv, src, dst); |
| 814 | } |
| 815 | |
| 816 | void andq_ir(int imm, RegisterID dst) |
| 817 | { |
| 818 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 819 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); |
| 820 | m_formatter.immediate8(imm); |
| 821 | } else { |
| 822 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); |
| 823 | m_formatter.immediate32(imm); |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | void andq_mr(int offset, RegisterID base, RegisterID dst) |
| 828 | { |
| 829 | m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, offset); |
| 830 | } |
| 831 | |
| 832 | void andq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 833 | { |
| 834 | m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, index, scale, offset); |
| 835 | } |
| 836 | |
| 837 | void andq_rm(RegisterID src, int offset, RegisterID base) |
| 838 | { |
| 839 | m_formatter.oneByteOp64(OP_AND_EvGv, src, base, offset); |
| 840 | } |
| 841 | |
| 842 | void andq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 843 | { |
| 844 | m_formatter.oneByteOp64(OP_AND_EvGv, src, base, index, scale, offset); |
| 845 | } |
| 846 | |
| 847 | void andq_im(int imm, int offset, RegisterID base) |
| 848 | { |
| 849 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 850 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); |
| 851 | m_formatter.immediate8(imm); |
| 852 | } else { |
| 853 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); |
| 854 | m_formatter.immediate32(imm); |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | void andq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 859 | { |
| 860 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 861 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset); |
| 862 | m_formatter.immediate8(imm); |
| 863 | } else { |
| 864 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset); |
| 865 | m_formatter.immediate32(imm); |
| 866 | } |
| 867 | } |
| 868 | #else |
| 869 | void andl_im(int imm, const void* addr) |
| 870 | { |
| 871 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 872 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr)); |
| 873 | m_formatter.immediate8(imm); |
| 874 | } else { |
| 875 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr)); |
| 876 | m_formatter.immediate32(imm); |
| 877 | } |
| 878 | } |
| 879 | #endif |
| 880 | |
| 881 | void dec_r(RegisterID dst) |
| 882 | { |
| 883 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_OR, dst); |
| 884 | } |
| 885 | |
| 886 | #if CPU(X86_64) |
| 887 | void decq_r(RegisterID dst) |
| 888 | { |
| 889 | m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_OR, dst); |
| 890 | } |
| 891 | #endif // CPU(X86_64) |
| 892 | |
| 893 | // Only used for testing purposes. |
| 894 | void illegalInstruction() |
| 895 | { |
| 896 | m_formatter.twoByteOp(OP2_UD2); |
| 897 | } |
| 898 | |
| 899 | void inc_r(RegisterID dst) |
| 900 | { |
| 901 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_ADD, dst); |
| 902 | } |
| 903 | |
| 904 | #if CPU(X86_64) |
| 905 | void incq_r(RegisterID dst) |
| 906 | { |
| 907 | m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, dst); |
| 908 | } |
| 909 | |
| 910 | void incq_m(int offset, RegisterID base) |
| 911 | { |
| 912 | m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, offset); |
| 913 | } |
| 914 | |
| 915 | void incq_m(int offset, RegisterID base, RegisterID index, int scale) |
| 916 | { |
| 917 | m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, index, scale, offset); |
| 918 | } |
| 919 | #endif // CPU(X86_64) |
| 920 | |
| 921 | void negl_r(RegisterID dst) |
| 922 | { |
| 923 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, dst); |
| 924 | } |
| 925 | |
| 926 | #if CPU(X86_64) |
| 927 | void negq_r(RegisterID dst) |
| 928 | { |
| 929 | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, dst); |
| 930 | } |
| 931 | |
| 932 | void negq_m(int offset, RegisterID base) |
| 933 | { |
| 934 | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset); |
| 935 | } |
| 936 | |
| 937 | void negq_m(int offset, RegisterID base, RegisterID index, int scale) |
| 938 | { |
| 939 | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset); |
| 940 | } |
| 941 | #endif |
| 942 | |
| 943 | void negl_m(int offset, RegisterID base) |
| 944 | { |
| 945 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset); |
| 946 | } |
| 947 | |
| 948 | void negl_m(int offset, RegisterID base, RegisterID index, int scale) |
| 949 | { |
| 950 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset); |
| 951 | } |
| 952 | |
| 953 | void negw_m(int offset, RegisterID base) |
| 954 | { |
| 955 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 956 | negl_m(offset, base); |
| 957 | } |
| 958 | |
| 959 | void negw_m(int offset, RegisterID base, RegisterID index, int scale) |
| 960 | { |
| 961 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 962 | negl_m(offset, base, index, scale); |
| 963 | } |
| 964 | |
| 965 | void negb_m(int offset, RegisterID base) |
| 966 | { |
| 967 | m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, offset); |
| 968 | } |
| 969 | |
| 970 | void negb_m(int offset, RegisterID base, RegisterID index, int scale) |
| 971 | { |
| 972 | m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, index, scale, offset); |
| 973 | } |
| 974 | |
| 975 | void notl_r(RegisterID dst) |
| 976 | { |
| 977 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, dst); |
| 978 | } |
| 979 | |
| 980 | void notl_m(int offset, RegisterID base) |
| 981 | { |
| 982 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset); |
| 983 | } |
| 984 | |
| 985 | void notl_m(int offset, RegisterID base, RegisterID index, int scale) |
| 986 | { |
| 987 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset); |
| 988 | } |
| 989 | |
| 990 | void notw_m(int offset, RegisterID base) |
| 991 | { |
| 992 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 993 | notl_m(offset, base); |
| 994 | } |
| 995 | |
| 996 | void notw_m(int offset, RegisterID base, RegisterID index, int scale) |
| 997 | { |
| 998 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 999 | notl_m(offset, base, index, scale); |
| 1000 | } |
| 1001 | |
| 1002 | void notb_m(int offset, RegisterID base) |
| 1003 | { |
| 1004 | m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, offset); |
| 1005 | } |
| 1006 | |
| 1007 | void notb_m(int offset, RegisterID base, RegisterID index, int scale) |
| 1008 | { |
| 1009 | m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, index, scale, offset); |
| 1010 | } |
| 1011 | |
| 1012 | #if CPU(X86_64) |
| 1013 | void notq_r(RegisterID dst) |
| 1014 | { |
| 1015 | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, dst); |
| 1016 | } |
| 1017 | |
| 1018 | void notq_m(int offset, RegisterID base) |
| 1019 | { |
| 1020 | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset); |
| 1021 | } |
| 1022 | |
| 1023 | void notq_m(int offset, RegisterID base, RegisterID index, int scale) |
| 1024 | { |
| 1025 | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset); |
| 1026 | } |
| 1027 | #endif |
| 1028 | |
| 1029 | void orl_rr(RegisterID src, RegisterID dst) |
| 1030 | { |
| 1031 | m_formatter.oneByteOp(OP_OR_EvGv, src, dst); |
| 1032 | } |
| 1033 | |
| 1034 | void orl_mr(int offset, RegisterID base, RegisterID dst) |
| 1035 | { |
| 1036 | m_formatter.oneByteOp(OP_OR_GvEv, dst, base, offset); |
| 1037 | } |
| 1038 | |
| 1039 | void orl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1040 | { |
| 1041 | m_formatter.oneByteOp(OP_OR_GvEv, dst, base, index, scale, offset); |
| 1042 | } |
| 1043 | |
| 1044 | void orl_rm(RegisterID src, int offset, RegisterID base) |
| 1045 | { |
| 1046 | m_formatter.oneByteOp(OP_OR_EvGv, src, base, offset); |
| 1047 | } |
| 1048 | |
| 1049 | void orl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1050 | { |
| 1051 | m_formatter.oneByteOp(OP_OR_EvGv, src, base, index, scale, offset); |
| 1052 | } |
| 1053 | |
| 1054 | void orw_rm(RegisterID src, int offset, RegisterID base) |
| 1055 | { |
| 1056 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1057 | orl_rm(src, offset, base); |
| 1058 | } |
| 1059 | |
| 1060 | void orw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1061 | { |
| 1062 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1063 | orl_rm(src, offset, base, index, scale); |
| 1064 | } |
| 1065 | |
| 1066 | void orb_rm(RegisterID src, int offset, RegisterID base) |
| 1067 | { |
| 1068 | m_formatter.oneByteOp(OP_OR_EvGb, src, base, offset); |
| 1069 | } |
| 1070 | |
| 1071 | void orb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1072 | { |
| 1073 | m_formatter.oneByteOp(OP_OR_EvGb, src, base, index, scale, offset); |
| 1074 | } |
| 1075 | |
| 1076 | void orl_ir(int imm, RegisterID dst) |
| 1077 | { |
| 1078 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1079 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); |
| 1080 | m_formatter.immediate8(imm); |
| 1081 | } else { |
| 1082 | if (dst == X86Registers::eax) |
| 1083 | m_formatter.oneByteOp(OP_OR_EAXIv); |
| 1084 | else |
| 1085 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); |
| 1086 | m_formatter.immediate32(imm); |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | void orl_im(int imm, int offset, RegisterID base) |
| 1091 | { |
| 1092 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1093 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); |
| 1094 | m_formatter.immediate8(imm); |
| 1095 | } else { |
| 1096 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); |
| 1097 | m_formatter.immediate32(imm); |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | void orl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1102 | { |
| 1103 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1104 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset); |
| 1105 | m_formatter.immediate8(imm); |
| 1106 | } else { |
| 1107 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset); |
| 1108 | m_formatter.immediate32(imm); |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | void orw_im(int imm, int offset, RegisterID base) |
| 1113 | { |
| 1114 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1115 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1116 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); |
| 1117 | m_formatter.immediate8(imm); |
| 1118 | } else { |
| 1119 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); |
| 1120 | m_formatter.immediate16(imm); |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | void orw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1125 | { |
| 1126 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1127 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1128 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset); |
| 1129 | m_formatter.immediate8(imm); |
| 1130 | } else { |
| 1131 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset); |
| 1132 | m_formatter.immediate16(imm); |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | void orb_im(int imm, int offset, RegisterID base) |
| 1137 | { |
| 1138 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, offset); |
| 1139 | m_formatter.immediate8(imm); |
| 1140 | } |
| 1141 | |
| 1142 | void orb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1143 | { |
| 1144 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, index, scale, offset); |
| 1145 | m_formatter.immediate8(imm); |
| 1146 | } |
| 1147 | |
| 1148 | #if CPU(X86_64) |
| 1149 | void orq_rr(RegisterID src, RegisterID dst) |
| 1150 | { |
| 1151 | m_formatter.oneByteOp64(OP_OR_EvGv, src, dst); |
| 1152 | } |
| 1153 | |
| 1154 | void orq_mr(int offset, RegisterID base, RegisterID dst) |
| 1155 | { |
| 1156 | m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, offset); |
| 1157 | } |
| 1158 | |
| 1159 | void orq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1160 | { |
| 1161 | m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, index, scale, offset); |
| 1162 | } |
| 1163 | |
| 1164 | void orq_rm(RegisterID src, int offset, RegisterID base) |
| 1165 | { |
| 1166 | m_formatter.oneByteOp64(OP_OR_EvGv, src, base, offset); |
| 1167 | } |
| 1168 | |
| 1169 | void orq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1170 | { |
| 1171 | m_formatter.oneByteOp64(OP_OR_EvGv, src, base, index, scale, offset); |
| 1172 | } |
| 1173 | |
| 1174 | void orq_im(int imm, int offset, RegisterID base) |
| 1175 | { |
| 1176 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1177 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); |
| 1178 | m_formatter.immediate8(imm); |
| 1179 | } else { |
| 1180 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); |
| 1181 | m_formatter.immediate32(imm); |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | void orq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1186 | { |
| 1187 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1188 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset); |
| 1189 | m_formatter.immediate8(imm); |
| 1190 | } else { |
| 1191 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset); |
| 1192 | m_formatter.immediate32(imm); |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | void orq_ir(int imm, RegisterID dst) |
| 1197 | { |
| 1198 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1199 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); |
| 1200 | m_formatter.immediate8(imm); |
| 1201 | } else { |
| 1202 | if (dst == X86Registers::eax) |
| 1203 | m_formatter.oneByteOp64(OP_OR_EAXIv); |
| 1204 | else |
| 1205 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); |
| 1206 | m_formatter.immediate32(imm); |
| 1207 | } |
| 1208 | } |
| 1209 | #else |
| 1210 | void orl_im(int imm, const void* addr) |
| 1211 | { |
| 1212 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1213 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr)); |
| 1214 | m_formatter.immediate8(imm); |
| 1215 | } else { |
| 1216 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr)); |
| 1217 | m_formatter.immediate32(imm); |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | void orl_rm(RegisterID src, const void* addr) |
| 1222 | { |
| 1223 | m_formatter.oneByteOpAddr(OP_OR_EvGv, src, bitwise_cast<uint32_t>(addr)); |
| 1224 | } |
| 1225 | #endif |
| 1226 | |
| 1227 | void subl_rr(RegisterID src, RegisterID dst) |
| 1228 | { |
| 1229 | m_formatter.oneByteOp(OP_SUB_EvGv, src, dst); |
| 1230 | } |
| 1231 | |
| 1232 | void subl_mr(int offset, RegisterID base, RegisterID dst) |
| 1233 | { |
| 1234 | m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, offset); |
| 1235 | } |
| 1236 | |
| 1237 | void subl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1238 | { |
| 1239 | m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, index, scale, offset); |
| 1240 | } |
| 1241 | |
| 1242 | void subl_rm(RegisterID src, int offset, RegisterID base) |
| 1243 | { |
| 1244 | m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset); |
| 1245 | } |
| 1246 | |
| 1247 | void subl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1248 | { |
| 1249 | m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset); |
| 1250 | } |
| 1251 | |
| 1252 | void subw_rm(RegisterID src, int offset, RegisterID base) |
| 1253 | { |
| 1254 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1255 | m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset); |
| 1256 | } |
| 1257 | |
| 1258 | void subw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1259 | { |
| 1260 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1261 | m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset); |
| 1262 | } |
| 1263 | |
| 1264 | void subb_rm(RegisterID src, int offset, RegisterID base) |
| 1265 | { |
| 1266 | m_formatter.oneByteOp(OP_SUB_EvGb, src, base, offset); |
| 1267 | } |
| 1268 | |
| 1269 | void subb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1270 | { |
| 1271 | m_formatter.oneByteOp(OP_SUB_EvGb, src, base, index, scale, offset); |
| 1272 | } |
| 1273 | |
| 1274 | void subl_ir(int imm, RegisterID dst) |
| 1275 | { |
| 1276 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1277 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); |
| 1278 | m_formatter.immediate8(imm); |
| 1279 | } else { |
| 1280 | if (dst == X86Registers::eax) |
| 1281 | m_formatter.oneByteOp(OP_SUB_EAXIv); |
| 1282 | else |
| 1283 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); |
| 1284 | m_formatter.immediate32(imm); |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | void subl_im(int imm, int offset, RegisterID base) |
| 1289 | { |
| 1290 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1291 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); |
| 1292 | m_formatter.immediate8(imm); |
| 1293 | } else { |
| 1294 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); |
| 1295 | m_formatter.immediate32(imm); |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | void subl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1300 | { |
| 1301 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1302 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset); |
| 1303 | m_formatter.immediate8(imm); |
| 1304 | } else { |
| 1305 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset); |
| 1306 | m_formatter.immediate32(imm); |
| 1307 | } |
| 1308 | } |
| 1309 | |
| 1310 | void subw_im(int imm, int offset, RegisterID base) |
| 1311 | { |
| 1312 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1313 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1314 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); |
| 1315 | m_formatter.immediate8(imm); |
| 1316 | } else { |
| 1317 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); |
| 1318 | m_formatter.immediate16(imm); |
| 1319 | } |
| 1320 | } |
| 1321 | |
| 1322 | void subw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1323 | { |
| 1324 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1325 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1326 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset); |
| 1327 | m_formatter.immediate8(imm); |
| 1328 | } else { |
| 1329 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset); |
| 1330 | m_formatter.immediate16(imm); |
| 1331 | } |
| 1332 | } |
| 1333 | |
| 1334 | void subb_im(int imm, int offset, RegisterID base) |
| 1335 | { |
| 1336 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, offset); |
| 1337 | m_formatter.immediate8(imm); |
| 1338 | } |
| 1339 | |
| 1340 | void subb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1341 | { |
| 1342 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, index, scale, offset); |
| 1343 | m_formatter.immediate8(imm); |
| 1344 | } |
| 1345 | |
| 1346 | #if CPU(X86_64) |
| 1347 | void subq_rr(RegisterID src, RegisterID dst) |
| 1348 | { |
| 1349 | m_formatter.oneByteOp64(OP_SUB_EvGv, src, dst); |
| 1350 | } |
| 1351 | |
| 1352 | void subq_mr(int offset, RegisterID base, RegisterID dst) |
| 1353 | { |
| 1354 | m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, offset); |
| 1355 | } |
| 1356 | |
| 1357 | void subq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1358 | { |
| 1359 | m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, index, scale, offset); |
| 1360 | } |
| 1361 | |
| 1362 | void subq_rm(RegisterID src, int offset, RegisterID base) |
| 1363 | { |
| 1364 | m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, offset); |
| 1365 | } |
| 1366 | |
| 1367 | void subq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1368 | { |
| 1369 | m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, index, scale, offset); |
| 1370 | } |
| 1371 | |
| 1372 | void subq_ir(int imm, RegisterID dst) |
| 1373 | { |
| 1374 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1375 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); |
| 1376 | m_formatter.immediate8(imm); |
| 1377 | } else { |
| 1378 | if (dst == X86Registers::eax) |
| 1379 | m_formatter.oneByteOp64(OP_SUB_EAXIv); |
| 1380 | else |
| 1381 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); |
| 1382 | m_formatter.immediate32(imm); |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | void subq_im(int imm, int offset, RegisterID base) |
| 1387 | { |
| 1388 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1389 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); |
| 1390 | m_formatter.immediate8(imm); |
| 1391 | } else { |
| 1392 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); |
| 1393 | m_formatter.immediate32(imm); |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | void subq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1398 | { |
| 1399 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1400 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset); |
| 1401 | m_formatter.immediate8(imm); |
| 1402 | } else { |
| 1403 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset); |
| 1404 | m_formatter.immediate32(imm); |
| 1405 | } |
| 1406 | } |
| 1407 | #else |
| 1408 | void subl_im(int imm, const void* addr) |
| 1409 | { |
| 1410 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1411 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr)); |
| 1412 | m_formatter.immediate8(imm); |
| 1413 | } else { |
| 1414 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr)); |
| 1415 | m_formatter.immediate32(imm); |
| 1416 | } |
| 1417 | } |
| 1418 | #endif |
| 1419 | |
| 1420 | void xorl_rr(RegisterID src, RegisterID dst) |
| 1421 | { |
| 1422 | m_formatter.oneByteOp(OP_XOR_EvGv, src, dst); |
| 1423 | } |
| 1424 | |
| 1425 | void xorl_mr(int offset, RegisterID base, RegisterID dst) |
| 1426 | { |
| 1427 | m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, offset); |
| 1428 | } |
| 1429 | |
| 1430 | void xorl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 1431 | { |
| 1432 | m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, index, scale, offset); |
| 1433 | } |
| 1434 | |
| 1435 | void xorl_rm(RegisterID src, int offset, RegisterID base) |
| 1436 | { |
| 1437 | m_formatter.oneByteOp(OP_XOR_EvGv, src, base, offset); |
| 1438 | } |
| 1439 | |
| 1440 | void xorl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1441 | { |
| 1442 | m_formatter.oneByteOp(OP_XOR_EvGv, src, base, index, scale, offset); |
| 1443 | } |
| 1444 | |
| 1445 | void xorl_im(int imm, int offset, RegisterID base) |
| 1446 | { |
| 1447 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1448 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); |
| 1449 | m_formatter.immediate8(imm); |
| 1450 | } else { |
| 1451 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); |
| 1452 | m_formatter.immediate32(imm); |
| 1453 | } |
| 1454 | } |
| 1455 | |
| 1456 | void xorl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1457 | { |
| 1458 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1459 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset); |
| 1460 | m_formatter.immediate8(imm); |
| 1461 | } else { |
| 1462 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset); |
| 1463 | m_formatter.immediate32(imm); |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | void xorw_rm(RegisterID src, int offset, RegisterID base) |
| 1468 | { |
| 1469 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1470 | xorl_rm(src, offset, base); |
| 1471 | } |
| 1472 | |
| 1473 | void xorw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1474 | { |
| 1475 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1476 | xorl_rm(src, offset, base, index, scale); |
| 1477 | } |
| 1478 | |
| 1479 | void xorw_im(int imm, int offset, RegisterID base) |
| 1480 | { |
| 1481 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1482 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1483 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); |
| 1484 | m_formatter.immediate8(imm); |
| 1485 | } else { |
| 1486 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); |
| 1487 | m_formatter.immediate16(imm); |
| 1488 | } |
| 1489 | } |
| 1490 | |
| 1491 | void xorw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1492 | { |
| 1493 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1494 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1495 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset); |
| 1496 | m_formatter.immediate8(imm); |
| 1497 | } else { |
| 1498 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset); |
| 1499 | m_formatter.immediate16(imm); |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | void xorb_rm(RegisterID src, int offset, RegisterID base) |
| 1504 | { |
| 1505 | m_formatter.oneByteOp(OP_XOR_EvGb, src, base, offset); |
| 1506 | } |
| 1507 | |
| 1508 | void xorb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1509 | { |
| 1510 | m_formatter.oneByteOp(OP_XOR_EvGb, src, base, index, scale, offset); |
| 1511 | } |
| 1512 | |
| 1513 | void xorb_im(int imm, int offset, RegisterID base) |
| 1514 | { |
| 1515 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, offset); |
| 1516 | m_formatter.immediate8(imm); |
| 1517 | } |
| 1518 | |
| 1519 | void xorb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1520 | { |
| 1521 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, index, scale, offset); |
| 1522 | m_formatter.immediate8(imm); |
| 1523 | } |
| 1524 | |
| 1525 | void xorl_ir(int imm, RegisterID dst) |
| 1526 | { |
| 1527 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1528 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); |
| 1529 | m_formatter.immediate8(imm); |
| 1530 | } else { |
| 1531 | if (dst == X86Registers::eax) |
| 1532 | m_formatter.oneByteOp(OP_XOR_EAXIv); |
| 1533 | else |
| 1534 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); |
| 1535 | m_formatter.immediate32(imm); |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | #if CPU(X86_64) |
| 1540 | void xorq_rr(RegisterID src, RegisterID dst) |
| 1541 | { |
| 1542 | m_formatter.oneByteOp64(OP_XOR_EvGv, src, dst); |
| 1543 | } |
| 1544 | |
| 1545 | void xorq_ir(int imm, RegisterID dst) |
| 1546 | { |
| 1547 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1548 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); |
| 1549 | m_formatter.immediate8(imm); |
| 1550 | } else { |
| 1551 | if (dst == X86Registers::eax) |
| 1552 | m_formatter.oneByteOp64(OP_XOR_EAXIv); |
| 1553 | else |
| 1554 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); |
| 1555 | m_formatter.immediate32(imm); |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | void xorq_im(int imm, int offset, RegisterID base) |
| 1560 | { |
| 1561 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1562 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); |
| 1563 | m_formatter.immediate8(imm); |
| 1564 | } else { |
| 1565 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); |
| 1566 | m_formatter.immediate32(imm); |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | void xorq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1571 | { |
| 1572 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1573 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset); |
| 1574 | m_formatter.immediate8(imm); |
| 1575 | } else { |
| 1576 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset); |
| 1577 | m_formatter.immediate32(imm); |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | void xorq_rm(RegisterID src, int offset, RegisterID base) |
| 1582 | { |
| 1583 | m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, offset); |
| 1584 | } |
| 1585 | |
| 1586 | void xorq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 1587 | { |
| 1588 | m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, index, scale, offset); |
| 1589 | } |
| 1590 | |
| 1591 | void xorq_mr(int offset, RegisterID base, RegisterID dest) |
| 1592 | { |
| 1593 | m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, offset); |
| 1594 | } |
| 1595 | |
| 1596 | void xorq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dest) |
| 1597 | { |
| 1598 | m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, index, scale, offset); |
| 1599 | } |
| 1600 | #endif |
| 1601 | |
| 1602 | void lzcnt_rr(RegisterID src, RegisterID dst) |
| 1603 | { |
| 1604 | m_formatter.prefix(PRE_SSE_F3); |
| 1605 | m_formatter.twoByteOp(OP2_LZCNT, dst, src); |
| 1606 | } |
| 1607 | |
| 1608 | void lzcnt_mr(int offset, RegisterID base, RegisterID dst) |
| 1609 | { |
| 1610 | m_formatter.prefix(PRE_SSE_F3); |
| 1611 | m_formatter.twoByteOp(OP2_LZCNT, dst, base, offset); |
| 1612 | } |
| 1613 | |
| 1614 | #if CPU(X86_64) |
| 1615 | void lzcntq_rr(RegisterID src, RegisterID dst) |
| 1616 | { |
| 1617 | m_formatter.prefix(PRE_SSE_F3); |
| 1618 | m_formatter.twoByteOp64(OP2_LZCNT, dst, src); |
| 1619 | } |
| 1620 | |
| 1621 | void lzcntq_mr(int offset, RegisterID base, RegisterID dst) |
| 1622 | { |
| 1623 | m_formatter.prefix(PRE_SSE_F3); |
| 1624 | m_formatter.twoByteOp64(OP2_LZCNT, dst, base, offset); |
| 1625 | } |
| 1626 | #endif |
| 1627 | |
| 1628 | void bsr_rr(RegisterID src, RegisterID dst) |
| 1629 | { |
| 1630 | m_formatter.twoByteOp(OP2_BSR, dst, src); |
| 1631 | } |
| 1632 | |
| 1633 | void bsr_mr(int offset, RegisterID base, RegisterID dst) |
| 1634 | { |
| 1635 | m_formatter.twoByteOp(OP2_BSR, dst, base, offset); |
| 1636 | } |
| 1637 | |
| 1638 | #if CPU(X86_64) |
| 1639 | void bsrq_rr(RegisterID src, RegisterID dst) |
| 1640 | { |
| 1641 | m_formatter.twoByteOp64(OP2_BSR, dst, src); |
| 1642 | } |
| 1643 | |
| 1644 | void bsrq_mr(int offset, RegisterID base, RegisterID dst) |
| 1645 | { |
| 1646 | m_formatter.twoByteOp64(OP2_BSR, dst, base, offset); |
| 1647 | } |
| 1648 | #endif |
| 1649 | |
| 1650 | void bswapl_r(RegisterID dst) |
| 1651 | { |
| 1652 | m_formatter.twoByteOp(OP2_BSWAP, dst); |
| 1653 | } |
| 1654 | |
| 1655 | #if CPU(X86_64) |
| 1656 | void bswapq_r(RegisterID dst) |
| 1657 | { |
| 1658 | m_formatter.twoByteOp64(OP2_BSWAP, dst); |
| 1659 | } |
| 1660 | #endif |
| 1661 | |
| 1662 | void tzcnt_rr(RegisterID src, RegisterID dst) |
| 1663 | { |
| 1664 | m_formatter.prefix(PRE_SSE_F3); |
| 1665 | m_formatter.twoByteOp(OP2_TZCNT, dst, src); |
| 1666 | } |
| 1667 | |
| 1668 | #if CPU(X86_64) |
| 1669 | void tzcntq_rr(RegisterID src, RegisterID dst) |
| 1670 | { |
| 1671 | m_formatter.prefix(PRE_SSE_F3); |
| 1672 | m_formatter.twoByteOp64(OP2_TZCNT, dst, src); |
| 1673 | } |
| 1674 | #endif |
| 1675 | |
| 1676 | void bsf_rr(RegisterID src, RegisterID dst) |
| 1677 | { |
| 1678 | m_formatter.twoByteOp(OP2_BSF, dst, src); |
| 1679 | } |
| 1680 | |
| 1681 | #if CPU(X86_64) |
| 1682 | void bsfq_rr(RegisterID src, RegisterID dst) |
| 1683 | { |
| 1684 | m_formatter.twoByteOp64(OP2_BSF, dst, src); |
| 1685 | } |
| 1686 | #endif |
| 1687 | |
| 1688 | void popcnt_rr(RegisterID src, RegisterID dst) |
| 1689 | { |
| 1690 | m_formatter.prefix(PRE_SSE_F3); |
| 1691 | m_formatter.twoByteOp(OP2_POPCNT, dst, src); |
| 1692 | } |
| 1693 | |
| 1694 | void popcnt_mr(int offset, RegisterID base, RegisterID dst) |
| 1695 | { |
| 1696 | m_formatter.prefix(PRE_SSE_F3); |
| 1697 | m_formatter.twoByteOp(OP2_POPCNT, dst, base, offset); |
| 1698 | } |
| 1699 | |
| 1700 | #if CPU(X86_64) |
| 1701 | void popcntq_rr(RegisterID src, RegisterID dst) |
| 1702 | { |
| 1703 | m_formatter.prefix(PRE_SSE_F3); |
| 1704 | m_formatter.twoByteOp64(OP2_POPCNT, dst, src); |
| 1705 | } |
| 1706 | |
| 1707 | void popcntq_mr(int offset, RegisterID base, RegisterID dst) |
| 1708 | { |
| 1709 | m_formatter.prefix(PRE_SSE_F3); |
| 1710 | m_formatter.twoByteOp64(OP2_POPCNT, dst, base, offset); |
| 1711 | } |
| 1712 | #endif |
| 1713 | |
| 1714 | private: |
| 1715 | template<GroupOpcodeID op> |
| 1716 | void shiftInstruction32(int imm, RegisterID dst) |
| 1717 | { |
| 1718 | if (imm == 1) |
| 1719 | m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst); |
| 1720 | else { |
| 1721 | m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst); |
| 1722 | m_formatter.immediate8(imm); |
| 1723 | } |
| 1724 | } |
| 1725 | |
| 1726 | template<GroupOpcodeID op> |
| 1727 | void shiftInstruction16(int imm, RegisterID dst) |
| 1728 | { |
| 1729 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 1730 | if (imm == 1) |
| 1731 | m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst); |
| 1732 | else { |
| 1733 | m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst); |
| 1734 | m_formatter.immediate8(imm); |
| 1735 | } |
| 1736 | } |
| 1737 | public: |
| 1738 | |
| 1739 | void sarl_i8r(int imm, RegisterID dst) |
| 1740 | { |
| 1741 | shiftInstruction32<GROUP2_OP_SAR>(imm, dst); |
| 1742 | } |
| 1743 | |
| 1744 | void sarl_CLr(RegisterID dst) |
| 1745 | { |
| 1746 | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); |
| 1747 | } |
| 1748 | |
| 1749 | void shrl_i8r(int imm, RegisterID dst) |
| 1750 | { |
| 1751 | shiftInstruction32<GROUP2_OP_SHR>(imm, dst); |
| 1752 | } |
| 1753 | |
| 1754 | void shrl_CLr(RegisterID dst) |
| 1755 | { |
| 1756 | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst); |
| 1757 | } |
| 1758 | |
| 1759 | void shll_i8r(int imm, RegisterID dst) |
| 1760 | { |
| 1761 | shiftInstruction32<GROUP2_OP_SHL>(imm, dst); |
| 1762 | } |
| 1763 | |
| 1764 | void shll_CLr(RegisterID dst) |
| 1765 | { |
| 1766 | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst); |
| 1767 | } |
| 1768 | |
| 1769 | void rorl_i8r(int imm, RegisterID dst) |
| 1770 | { |
| 1771 | shiftInstruction32<GROUP2_OP_ROR>(imm, dst); |
| 1772 | } |
| 1773 | |
| 1774 | void rorl_CLr(RegisterID dst) |
| 1775 | { |
| 1776 | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst); |
| 1777 | } |
| 1778 | |
| 1779 | void roll_i8r(int imm, RegisterID dst) |
| 1780 | { |
| 1781 | shiftInstruction32<GROUP2_OP_ROL>(imm, dst); |
| 1782 | } |
| 1783 | |
| 1784 | void roll_CLr(RegisterID dst) |
| 1785 | { |
| 1786 | m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst); |
| 1787 | } |
| 1788 | |
| 1789 | void rolw_i8r(int imm, RegisterID dst) |
| 1790 | { |
| 1791 | shiftInstruction16<GROUP2_OP_ROL>(imm, dst); |
| 1792 | } |
| 1793 | |
| 1794 | #if CPU(X86_64) |
| 1795 | private: |
| 1796 | template<GroupOpcodeID op> |
| 1797 | void shiftInstruction64(int imm, RegisterID dst) |
| 1798 | { |
| 1799 | if (imm == 1) |
| 1800 | m_formatter.oneByteOp64(OP_GROUP2_Ev1, op, dst); |
| 1801 | else { |
| 1802 | m_formatter.oneByteOp64(OP_GROUP2_EvIb, op, dst); |
| 1803 | m_formatter.immediate8(imm); |
| 1804 | } |
| 1805 | } |
| 1806 | public: |
| 1807 | void sarq_CLr(RegisterID dst) |
| 1808 | { |
| 1809 | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); |
| 1810 | } |
| 1811 | |
| 1812 | void sarq_i8r(int imm, RegisterID dst) |
| 1813 | { |
| 1814 | shiftInstruction64<GROUP2_OP_SAR>(imm, dst); |
| 1815 | } |
| 1816 | |
| 1817 | void shrq_i8r(int imm, RegisterID dst) |
| 1818 | { |
| 1819 | shiftInstruction64<GROUP2_OP_SHR>(imm, dst); |
| 1820 | } |
| 1821 | |
| 1822 | void shrq_CLr(RegisterID dst) |
| 1823 | { |
| 1824 | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst); |
| 1825 | } |
| 1826 | |
| 1827 | void shlq_i8r(int imm, RegisterID dst) |
| 1828 | { |
| 1829 | shiftInstruction64<GROUP2_OP_SHL>(imm, dst); |
| 1830 | } |
| 1831 | |
| 1832 | void shlq_CLr(RegisterID dst) |
| 1833 | { |
| 1834 | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst); |
| 1835 | } |
| 1836 | |
| 1837 | void rorq_i8r(int imm, RegisterID dst) |
| 1838 | { |
| 1839 | shiftInstruction64<GROUP2_OP_ROR>(imm, dst); |
| 1840 | } |
| 1841 | |
| 1842 | void rorq_CLr(RegisterID dst) |
| 1843 | { |
| 1844 | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst); |
| 1845 | } |
| 1846 | |
| 1847 | void rolq_i8r(int imm, RegisterID dst) |
| 1848 | { |
| 1849 | shiftInstruction64<GROUP2_OP_ROL>(imm, dst); |
| 1850 | } |
| 1851 | |
| 1852 | void rolq_CLr(RegisterID dst) |
| 1853 | { |
| 1854 | m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst); |
| 1855 | } |
| 1856 | #endif // CPU(X86_64) |
| 1857 | |
| 1858 | void imull_rr(RegisterID src, RegisterID dst) |
| 1859 | { |
| 1860 | m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, src); |
| 1861 | } |
| 1862 | |
| 1863 | #if CPU(X86_64) |
| 1864 | void imulq_rr(RegisterID src, RegisterID dst) |
| 1865 | { |
| 1866 | m_formatter.twoByteOp64(OP2_IMUL_GvEv, dst, src); |
| 1867 | } |
| 1868 | #endif // CPU(X86_64) |
| 1869 | |
| 1870 | void imull_mr(int offset, RegisterID base, RegisterID dst) |
| 1871 | { |
| 1872 | m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, base, offset); |
| 1873 | } |
| 1874 | |
| 1875 | void imull_i32r(RegisterID src, int32_t value, RegisterID dst) |
| 1876 | { |
| 1877 | m_formatter.oneByteOp(OP_IMUL_GvEvIz, dst, src); |
| 1878 | m_formatter.immediate32(value); |
| 1879 | } |
| 1880 | |
| 1881 | void divl_r(RegisterID dst) |
| 1882 | { |
| 1883 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_DIV, dst); |
| 1884 | } |
| 1885 | |
| 1886 | void idivl_r(RegisterID dst) |
| 1887 | { |
| 1888 | m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst); |
| 1889 | } |
| 1890 | |
| 1891 | #if CPU(X86_64) |
| 1892 | void divq_r(RegisterID dst) |
| 1893 | { |
| 1894 | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_DIV, dst); |
| 1895 | } |
| 1896 | |
| 1897 | void idivq_r(RegisterID dst) |
| 1898 | { |
| 1899 | m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst); |
| 1900 | } |
| 1901 | #endif // CPU(X86_64) |
| 1902 | |
| 1903 | // Comparisons: |
| 1904 | |
| 1905 | void cmpl_rr(RegisterID src, RegisterID dst) |
| 1906 | { |
| 1907 | m_formatter.oneByteOp(OP_CMP_EvGv, src, dst); |
| 1908 | } |
| 1909 | |
| 1910 | void cmpl_rm(RegisterID src, int offset, RegisterID base) |
| 1911 | { |
| 1912 | m_formatter.oneByteOp(OP_CMP_EvGv, src, base, offset); |
| 1913 | } |
| 1914 | |
| 1915 | void cmpl_mr(int offset, RegisterID base, RegisterID src) |
| 1916 | { |
| 1917 | m_formatter.oneByteOp(OP_CMP_GvEv, src, base, offset); |
| 1918 | } |
| 1919 | |
| 1920 | void cmpl_ir(int imm, RegisterID dst) |
| 1921 | { |
| 1922 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1923 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); |
| 1924 | m_formatter.immediate8(imm); |
| 1925 | } else { |
| 1926 | if (dst == X86Registers::eax) |
| 1927 | m_formatter.oneByteOp(OP_CMP_EAXIv); |
| 1928 | else |
| 1929 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); |
| 1930 | m_formatter.immediate32(imm); |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | void cmpl_ir_force32(int imm, RegisterID dst) |
| 1935 | { |
| 1936 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); |
| 1937 | m_formatter.immediate32(imm); |
| 1938 | } |
| 1939 | |
| 1940 | void cmpl_im(int imm, int offset, RegisterID base) |
| 1941 | { |
| 1942 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1943 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); |
| 1944 | m_formatter.immediate8(imm); |
| 1945 | } else { |
| 1946 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); |
| 1947 | m_formatter.immediate32(imm); |
| 1948 | } |
| 1949 | } |
| 1950 | |
| 1951 | void cmpb_im(int imm, int offset, RegisterID base) |
| 1952 | { |
| 1953 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, offset); |
| 1954 | m_formatter.immediate8(imm); |
| 1955 | } |
| 1956 | |
| 1957 | void cmpb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1958 | { |
| 1959 | m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, index, scale, offset); |
| 1960 | m_formatter.immediate8(imm); |
| 1961 | } |
| 1962 | |
| 1963 | #if CPU(X86) |
| 1964 | void cmpb_im(int imm, const void* addr) |
| 1965 | { |
| 1966 | m_formatter.oneByteOpAddr(OP_GROUP1_EbIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr)); |
| 1967 | m_formatter.immediate8(imm); |
| 1968 | } |
| 1969 | #endif |
| 1970 | |
| 1971 | void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 1972 | { |
| 1973 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 1974 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); |
| 1975 | m_formatter.immediate8(imm); |
| 1976 | } else { |
| 1977 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); |
| 1978 | m_formatter.immediate32(imm); |
| 1979 | } |
| 1980 | } |
| 1981 | |
| 1982 | void cmpl_im_force32(int imm, int offset, RegisterID base) |
| 1983 | { |
| 1984 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); |
| 1985 | m_formatter.immediate32(imm); |
| 1986 | } |
| 1987 | |
| 1988 | #if CPU(X86_64) |
| 1989 | void cmpq_rr(RegisterID src, RegisterID dst) |
| 1990 | { |
| 1991 | m_formatter.oneByteOp64(OP_CMP_EvGv, src, dst); |
| 1992 | } |
| 1993 | |
| 1994 | void cmpq_rm(RegisterID src, int offset, RegisterID base) |
| 1995 | { |
| 1996 | m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, offset); |
| 1997 | } |
| 1998 | |
| 1999 | void cmpq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2000 | { |
| 2001 | m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, index, scale, offset); |
| 2002 | } |
| 2003 | |
| 2004 | void cmpq_mr(int offset, RegisterID base, RegisterID src) |
| 2005 | { |
| 2006 | m_formatter.oneByteOp64(OP_CMP_GvEv, src, base, offset); |
| 2007 | } |
| 2008 | |
| 2009 | void cmpq_ir(int imm, RegisterID dst) |
| 2010 | { |
| 2011 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 2012 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); |
| 2013 | m_formatter.immediate8(imm); |
| 2014 | } else { |
| 2015 | if (dst == X86Registers::eax) |
| 2016 | m_formatter.oneByteOp64(OP_CMP_EAXIv); |
| 2017 | else |
| 2018 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); |
| 2019 | m_formatter.immediate32(imm); |
| 2020 | } |
| 2021 | } |
| 2022 | |
| 2023 | void cmpq_im(int imm, int offset, RegisterID base) |
| 2024 | { |
| 2025 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 2026 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); |
| 2027 | m_formatter.immediate8(imm); |
| 2028 | } else { |
| 2029 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); |
| 2030 | m_formatter.immediate32(imm); |
| 2031 | } |
| 2032 | } |
| 2033 | |
| 2034 | void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 2035 | { |
| 2036 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 2037 | m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); |
| 2038 | m_formatter.immediate8(imm); |
| 2039 | } else { |
| 2040 | m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); |
| 2041 | m_formatter.immediate32(imm); |
| 2042 | } |
| 2043 | } |
| 2044 | #else |
| 2045 | void cmpl_rm(RegisterID reg, const void* addr) |
| 2046 | { |
| 2047 | m_formatter.oneByteOpAddr(OP_CMP_EvGv, reg, bitwise_cast<uint32_t>(addr)); |
| 2048 | } |
| 2049 | |
| 2050 | void cmpl_im(int imm, const void* addr) |
| 2051 | { |
| 2052 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 2053 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr)); |
| 2054 | m_formatter.immediate8(imm); |
| 2055 | } else { |
| 2056 | m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr)); |
| 2057 | m_formatter.immediate32(imm); |
| 2058 | } |
| 2059 | } |
| 2060 | #endif |
| 2061 | |
| 2062 | void cmpw_ir(int imm, RegisterID dst) |
| 2063 | { |
| 2064 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 2065 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2066 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); |
| 2067 | m_formatter.immediate8(imm); |
| 2068 | } else { |
| 2069 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2070 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); |
| 2071 | m_formatter.immediate16(imm); |
| 2072 | } |
| 2073 | } |
| 2074 | |
| 2075 | void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2076 | { |
| 2077 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2078 | m_formatter.oneByteOp(OP_CMP_EvGv, src, base, index, scale, offset); |
| 2079 | } |
| 2080 | |
| 2081 | void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 2082 | { |
| 2083 | if (CAN_SIGN_EXTEND_8_32(imm)) { |
| 2084 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2085 | m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); |
| 2086 | m_formatter.immediate8(imm); |
| 2087 | } else { |
| 2088 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2089 | m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); |
| 2090 | m_formatter.immediate16(imm); |
| 2091 | } |
| 2092 | } |
| 2093 | |
| 2094 | void testl_rr(RegisterID src, RegisterID dst) |
| 2095 | { |
| 2096 | m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); |
| 2097 | } |
| 2098 | |
| 2099 | void testl_i32r(int imm, RegisterID dst) |
| 2100 | { |
| 2101 | if (dst == X86Registers::eax) |
| 2102 | m_formatter.oneByteOp(OP_TEST_EAXIv); |
| 2103 | else |
| 2104 | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); |
| 2105 | m_formatter.immediate32(imm); |
| 2106 | } |
| 2107 | |
| 2108 | void testl_i32m(int imm, int offset, RegisterID base) |
| 2109 | { |
| 2110 | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); |
| 2111 | m_formatter.immediate32(imm); |
| 2112 | } |
| 2113 | |
| 2114 | void testb_rr(RegisterID src, RegisterID dst) |
| 2115 | { |
| 2116 | m_formatter.oneByteOp8(OP_TEST_EbGb, src, dst); |
| 2117 | } |
| 2118 | |
| 2119 | void testb_im(int imm, int offset, RegisterID base) |
| 2120 | { |
| 2121 | m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, offset); |
| 2122 | m_formatter.immediate8(imm); |
| 2123 | } |
| 2124 | |
| 2125 | void testb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 2126 | { |
| 2127 | m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, index, scale, offset); |
| 2128 | m_formatter.immediate8(imm); |
| 2129 | } |
| 2130 | |
| 2131 | #if CPU(X86) |
| 2132 | void testb_im(int imm, const void* addr) |
| 2133 | { |
| 2134 | m_formatter.oneByteOpAddr(OP_GROUP3_EbIb, GROUP3_OP_TEST, bitwise_cast<uint32_t>(addr)); |
| 2135 | m_formatter.immediate8(imm); |
| 2136 | } |
| 2137 | #endif |
| 2138 | |
| 2139 | void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 2140 | { |
| 2141 | m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); |
| 2142 | m_formatter.immediate32(imm); |
| 2143 | } |
| 2144 | |
| 2145 | #if CPU(X86_64) |
| 2146 | void testq_rr(RegisterID src, RegisterID dst) |
| 2147 | { |
| 2148 | m_formatter.oneByteOp64(OP_TEST_EvGv, src, dst); |
| 2149 | } |
| 2150 | |
| 2151 | void testq_rm(RegisterID src, int offset, RegisterID base) |
| 2152 | { |
| 2153 | m_formatter.oneByteOp64(OP_TEST_EvGv, src, base, offset); |
| 2154 | } |
| 2155 | |
| 2156 | void testq_i32r(int imm, RegisterID dst) |
| 2157 | { |
| 2158 | if (dst == X86Registers::eax) |
| 2159 | m_formatter.oneByteOp64(OP_TEST_EAXIv); |
| 2160 | else |
| 2161 | m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); |
| 2162 | m_formatter.immediate32(imm); |
| 2163 | } |
| 2164 | |
| 2165 | void testq_i32m(int imm, int offset, RegisterID base) |
| 2166 | { |
| 2167 | m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); |
| 2168 | m_formatter.immediate32(imm); |
| 2169 | } |
| 2170 | |
| 2171 | void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 2172 | { |
| 2173 | m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); |
| 2174 | m_formatter.immediate32(imm); |
| 2175 | } |
| 2176 | #endif |
| 2177 | |
| 2178 | void testw_rr(RegisterID src, RegisterID dst) |
| 2179 | { |
| 2180 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2181 | m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); |
| 2182 | } |
| 2183 | |
| 2184 | void testb_i8r(int imm, RegisterID dst) |
| 2185 | { |
| 2186 | if (dst == X86Registers::eax) |
| 2187 | m_formatter.oneByteOp(OP_TEST_ALIb); |
| 2188 | else |
| 2189 | m_formatter.oneByteOp8(OP_GROUP3_EbIb, GROUP3_OP_TEST, dst); |
| 2190 | m_formatter.immediate8(imm); |
| 2191 | } |
| 2192 | |
| 2193 | void setCC_r(Condition cond, RegisterID dst) |
| 2194 | { |
| 2195 | m_formatter.twoByteOp8(setccOpcode(cond), (GroupOpcodeID)0, dst); |
| 2196 | } |
| 2197 | |
| 2198 | void sete_r(RegisterID dst) |
| 2199 | { |
| 2200 | m_formatter.twoByteOp8(setccOpcode(ConditionE), (GroupOpcodeID)0, dst); |
| 2201 | } |
| 2202 | |
| 2203 | void setz_r(RegisterID dst) |
| 2204 | { |
| 2205 | sete_r(dst); |
| 2206 | } |
| 2207 | |
| 2208 | void setne_r(RegisterID dst) |
| 2209 | { |
| 2210 | m_formatter.twoByteOp8(setccOpcode(ConditionNE), (GroupOpcodeID)0, dst); |
| 2211 | } |
| 2212 | |
| 2213 | void setnz_r(RegisterID dst) |
| 2214 | { |
| 2215 | setne_r(dst); |
| 2216 | } |
| 2217 | |
| 2218 | void setnp_r(RegisterID dst) |
| 2219 | { |
| 2220 | m_formatter.twoByteOp8(setccOpcode(ConditionNP), (GroupOpcodeID)0, dst); |
| 2221 | } |
| 2222 | |
| 2223 | void setp_r(RegisterID dst) |
| 2224 | { |
| 2225 | m_formatter.twoByteOp8(setccOpcode(ConditionP), (GroupOpcodeID)0, dst); |
| 2226 | } |
| 2227 | |
| 2228 | // Various move ops: |
| 2229 | |
| 2230 | void cdq() |
| 2231 | { |
| 2232 | m_formatter.oneByteOp(OP_CDQ); |
| 2233 | } |
| 2234 | |
| 2235 | #if CPU(X86_64) |
| 2236 | void cqo() |
| 2237 | { |
| 2238 | m_formatter.oneByteOp64(OP_CDQ); |
| 2239 | } |
| 2240 | #endif |
| 2241 | |
| 2242 | void fstps(int offset, RegisterID base) |
| 2243 | { |
| 2244 | m_formatter.oneByteOp(OP_ESCAPE_D9, ESCAPE_D9_FSTP_singleReal, base, offset); |
| 2245 | } |
| 2246 | |
| 2247 | void fstpl(int offset, RegisterID base) |
| 2248 | { |
| 2249 | m_formatter.oneByteOp(OP_ESCAPE_DD, ESCAPE_DD_FSTP_doubleReal, base, offset); |
| 2250 | } |
| 2251 | |
| 2252 | void xchgl_rr(RegisterID src, RegisterID dst) |
| 2253 | { |
| 2254 | if (src == X86Registers::eax) |
| 2255 | m_formatter.oneByteOp(OP_XCHG_EAX, dst); |
| 2256 | else if (dst == X86Registers::eax) |
| 2257 | m_formatter.oneByteOp(OP_XCHG_EAX, src); |
| 2258 | else |
| 2259 | m_formatter.oneByteOp(OP_XCHG_EvGv, src, dst); |
| 2260 | } |
| 2261 | |
| 2262 | void xchgb_rm(RegisterID src, int offset, RegisterID base) |
| 2263 | { |
| 2264 | m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, offset); |
| 2265 | } |
| 2266 | |
| 2267 | void xchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2268 | { |
| 2269 | m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, index, scale, offset); |
| 2270 | } |
| 2271 | |
| 2272 | void xchgw_rm(RegisterID src, int offset, RegisterID base) |
| 2273 | { |
| 2274 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2275 | m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset); |
| 2276 | } |
| 2277 | |
| 2278 | void xchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2279 | { |
| 2280 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2281 | m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset); |
| 2282 | } |
| 2283 | |
| 2284 | void xchgl_rm(RegisterID src, int offset, RegisterID base) |
| 2285 | { |
| 2286 | m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset); |
| 2287 | } |
| 2288 | |
| 2289 | void xchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2290 | { |
| 2291 | m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset); |
| 2292 | } |
| 2293 | |
| 2294 | #if CPU(X86_64) |
| 2295 | void xchgq_rr(RegisterID src, RegisterID dst) |
| 2296 | { |
| 2297 | if (src == X86Registers::eax) |
| 2298 | m_formatter.oneByteOp64(OP_XCHG_EAX, dst); |
| 2299 | else if (dst == X86Registers::eax) |
| 2300 | m_formatter.oneByteOp64(OP_XCHG_EAX, src); |
| 2301 | else |
| 2302 | m_formatter.oneByteOp64(OP_XCHG_EvGv, src, dst); |
| 2303 | } |
| 2304 | |
| 2305 | void xchgq_rm(RegisterID src, int offset, RegisterID base) |
| 2306 | { |
| 2307 | m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, offset); |
| 2308 | } |
| 2309 | |
| 2310 | void xchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2311 | { |
| 2312 | m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, index, scale, offset); |
| 2313 | } |
| 2314 | #endif |
| 2315 | |
| 2316 | void movl_rr(RegisterID src, RegisterID dst) |
| 2317 | { |
| 2318 | m_formatter.oneByteOp(OP_MOV_EvGv, src, dst); |
| 2319 | } |
| 2320 | |
| 2321 | void movl_rm(RegisterID src, int offset, RegisterID base) |
| 2322 | { |
| 2323 | m_formatter.oneByteOp(OP_MOV_EvGv, src, base, offset); |
| 2324 | } |
| 2325 | |
| 2326 | void movl_rm_disp32(RegisterID src, int offset, RegisterID base) |
| 2327 | { |
| 2328 | m_formatter.oneByteOp_disp32(OP_MOV_EvGv, src, base, offset); |
| 2329 | } |
| 2330 | |
| 2331 | void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2332 | { |
| 2333 | m_formatter.oneByteOp(OP_MOV_EvGv, src, base, index, scale, offset); |
| 2334 | } |
| 2335 | |
| 2336 | void movl_mEAX(const void* addr) |
| 2337 | { |
| 2338 | m_formatter.oneByteOp(OP_MOV_EAXOv); |
| 2339 | #if CPU(X86_64) |
| 2340 | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
| 2341 | #else |
| 2342 | m_formatter.immediate32(reinterpret_cast<int>(addr)); |
| 2343 | #endif |
| 2344 | } |
| 2345 | |
| 2346 | void movl_mr(int offset, RegisterID base, RegisterID dst) |
| 2347 | { |
| 2348 | m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, offset); |
| 2349 | } |
| 2350 | |
| 2351 | void movl_mr_disp32(int offset, RegisterID base, RegisterID dst) |
| 2352 | { |
| 2353 | m_formatter.oneByteOp_disp32(OP_MOV_GvEv, dst, base, offset); |
| 2354 | } |
| 2355 | |
| 2356 | void movl_mr_disp8(int offset, RegisterID base, RegisterID dst) |
| 2357 | { |
| 2358 | m_formatter.oneByteOp_disp8(OP_MOV_GvEv, dst, base, offset); |
| 2359 | } |
| 2360 | |
| 2361 | void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2362 | { |
| 2363 | m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, index, scale, offset); |
| 2364 | } |
| 2365 | |
| 2366 | void movl_i32r(int imm, RegisterID dst) |
| 2367 | { |
| 2368 | m_formatter.oneByteOp(OP_MOV_EAXIv, dst); |
| 2369 | m_formatter.immediate32(imm); |
| 2370 | } |
| 2371 | |
| 2372 | void movl_i32m(int imm, int offset, RegisterID base) |
| 2373 | { |
| 2374 | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); |
| 2375 | m_formatter.immediate32(imm); |
| 2376 | } |
| 2377 | |
| 2378 | void movl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 2379 | { |
| 2380 | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset); |
| 2381 | m_formatter.immediate32(imm); |
| 2382 | } |
| 2383 | |
| 2384 | #if !CPU(X86_64) |
| 2385 | void movb_i8m(int imm, const void* addr) |
| 2386 | { |
| 2387 | ASSERT(-128 <= imm && imm < 128); |
| 2388 | m_formatter.oneByteOpAddr(OP_GROUP11_EvIb, GROUP11_MOV, bitwise_cast<uint32_t>(addr)); |
| 2389 | m_formatter.immediate8(imm); |
| 2390 | } |
| 2391 | #endif |
| 2392 | |
| 2393 | void movb_i8m(int imm, int offset, RegisterID base) |
| 2394 | { |
| 2395 | ASSERT(-128 <= imm && imm < 128); |
| 2396 | m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, offset); |
| 2397 | m_formatter.immediate8(imm); |
| 2398 | } |
| 2399 | |
| 2400 | void movb_i8m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 2401 | { |
| 2402 | ASSERT(-128 <= imm && imm < 128); |
| 2403 | m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, index, scale, offset); |
| 2404 | m_formatter.immediate8(imm); |
| 2405 | } |
| 2406 | |
| 2407 | #if !CPU(X86_64) |
| 2408 | void movb_rm(RegisterID src, const void* addr) |
| 2409 | { |
| 2410 | m_formatter.oneByteOpAddr(OP_MOV_EbGb, src, bitwise_cast<uint32_t>(addr)); |
| 2411 | } |
| 2412 | #endif |
| 2413 | |
| 2414 | void movb_rm(RegisterID src, int offset, RegisterID base) |
| 2415 | { |
| 2416 | m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, offset); |
| 2417 | } |
| 2418 | |
| 2419 | void movb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2420 | { |
| 2421 | m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, index, scale, offset); |
| 2422 | } |
| 2423 | |
| 2424 | void movw_rm(RegisterID src, int offset, RegisterID base) |
| 2425 | { |
| 2426 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2427 | |
| 2428 | // FIXME: We often use oneByteOp8 for 16-bit operations. It's not clear that this is |
| 2429 | // necessary. https://bugs.webkit.org/show_bug.cgi?id=153433 |
| 2430 | m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, offset); |
| 2431 | } |
| 2432 | |
| 2433 | void movw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2434 | { |
| 2435 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2436 | m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, index, scale, offset); |
| 2437 | } |
| 2438 | |
| 2439 | void movw_im(int imm, int offset, RegisterID base) |
| 2440 | { |
| 2441 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2442 | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); |
| 2443 | m_formatter.immediate16(imm); |
| 2444 | } |
| 2445 | |
| 2446 | void movw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 2447 | { |
| 2448 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 2449 | m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset); |
| 2450 | m_formatter.immediate16(imm); |
| 2451 | } |
| 2452 | |
| 2453 | void movl_EAXm(const void* addr) |
| 2454 | { |
| 2455 | m_formatter.oneByteOp(OP_MOV_OvEAX); |
| 2456 | #if CPU(X86_64) |
| 2457 | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
| 2458 | #else |
| 2459 | m_formatter.immediate32(reinterpret_cast<int>(addr)); |
| 2460 | #endif |
| 2461 | } |
| 2462 | |
| 2463 | void movl_mr(uint32_t addr, RegisterID dst) |
| 2464 | { |
| 2465 | m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, addr); |
| 2466 | } |
| 2467 | |
| 2468 | void movl_rm(RegisterID src, uint32_t addr) |
| 2469 | { |
| 2470 | m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, addr); |
| 2471 | } |
| 2472 | |
| 2473 | #if CPU(X86_64) |
| 2474 | void movq_rr(RegisterID src, RegisterID dst) |
| 2475 | { |
| 2476 | m_formatter.oneByteOp64(OP_MOV_EvGv, src, dst); |
| 2477 | } |
| 2478 | |
| 2479 | void movq_rm(RegisterID src, int offset, RegisterID base) |
| 2480 | { |
| 2481 | m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, offset); |
| 2482 | } |
| 2483 | |
| 2484 | void movq_rm_disp32(RegisterID src, int offset, RegisterID base) |
| 2485 | { |
| 2486 | m_formatter.oneByteOp64_disp32(OP_MOV_EvGv, src, base, offset); |
| 2487 | } |
| 2488 | |
| 2489 | void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 2490 | { |
| 2491 | m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, index, scale, offset); |
| 2492 | } |
| 2493 | |
| 2494 | void movq_rm(RegisterID src, int offset) |
| 2495 | { |
| 2496 | m_formatter.oneByteOp64Addr(OP_MOV_EvGv, src, offset); |
| 2497 | } |
| 2498 | |
| 2499 | void movq_mEAX(const void* addr) |
| 2500 | { |
| 2501 | m_formatter.oneByteOp64(OP_MOV_EAXOv); |
| 2502 | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
| 2503 | } |
| 2504 | |
| 2505 | void movq_EAXm(const void* addr) |
| 2506 | { |
| 2507 | m_formatter.oneByteOp64(OP_MOV_OvEAX); |
| 2508 | m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
| 2509 | } |
| 2510 | |
| 2511 | void movq_mr(int offset, RegisterID base, RegisterID dst) |
| 2512 | { |
| 2513 | m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, offset); |
| 2514 | } |
| 2515 | |
| 2516 | void movq_mr_disp32(int offset, RegisterID base, RegisterID dst) |
| 2517 | { |
| 2518 | m_formatter.oneByteOp64_disp32(OP_MOV_GvEv, dst, base, offset); |
| 2519 | } |
| 2520 | |
| 2521 | void movq_mr_disp8(int offset, RegisterID base, RegisterID dst) |
| 2522 | { |
| 2523 | m_formatter.oneByteOp64_disp8(OP_MOV_GvEv, dst, base, offset); |
| 2524 | } |
| 2525 | |
| 2526 | void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2527 | { |
| 2528 | m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, index, scale, offset); |
| 2529 | } |
| 2530 | |
| 2531 | void movq_mr(uint32_t addr, RegisterID dst) |
| 2532 | { |
| 2533 | m_formatter.oneByteOp64Addr(OP_MOV_GvEv, dst, addr); |
| 2534 | } |
| 2535 | |
| 2536 | void movq_i32m(int imm, int offset, RegisterID base) |
| 2537 | { |
| 2538 | m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); |
| 2539 | m_formatter.immediate32(imm); |
| 2540 | } |
| 2541 | |
| 2542 | void movq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| 2543 | { |
| 2544 | m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset); |
| 2545 | m_formatter.immediate32(imm); |
| 2546 | } |
| 2547 | |
| 2548 | void movq_i64r(int64_t imm, RegisterID dst) |
| 2549 | { |
| 2550 | m_formatter.oneByteOp64(OP_MOV_EAXIv, dst); |
| 2551 | m_formatter.immediate64(imm); |
| 2552 | } |
| 2553 | |
| 2554 | void mov_i32r(int32_t imm, RegisterID dst) |
| 2555 | { |
| 2556 | m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, dst); |
| 2557 | m_formatter.immediate32(imm); |
| 2558 | } |
| 2559 | |
| 2560 | void movsxd_rr(RegisterID src, RegisterID dst) |
| 2561 | { |
| 2562 | m_formatter.oneByteOp64(OP_MOVSXD_GvEv, dst, src); |
| 2563 | } |
| 2564 | #else |
| 2565 | void movl_mr(const void* addr, RegisterID dst) |
| 2566 | { |
| 2567 | if (dst == X86Registers::eax) |
| 2568 | movl_mEAX(addr); |
| 2569 | else |
| 2570 | m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, bitwise_cast<uint32_t>(addr)); |
| 2571 | } |
| 2572 | |
| 2573 | void movl_rm(RegisterID src, const void* addr) |
| 2574 | { |
| 2575 | if (src == X86Registers::eax) |
| 2576 | movl_EAXm(addr); |
| 2577 | else |
| 2578 | m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, bitwise_cast<uint32_t>(addr)); |
| 2579 | } |
| 2580 | |
| 2581 | void movl_i32m(int imm, const void* addr) |
| 2582 | { |
| 2583 | m_formatter.oneByteOpAddr(OP_GROUP11_EvIz, GROUP11_MOV, bitwise_cast<uint32_t>(addr)); |
| 2584 | m_formatter.immediate32(imm); |
| 2585 | } |
| 2586 | #endif |
| 2587 | |
| 2588 | void movzwl_mr(int offset, RegisterID base, RegisterID dst) |
| 2589 | { |
| 2590 | m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, offset); |
| 2591 | } |
| 2592 | |
| 2593 | void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2594 | { |
| 2595 | m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, index, scale, offset); |
| 2596 | } |
| 2597 | |
| 2598 | void movswl_mr(int offset, RegisterID base, RegisterID dst) |
| 2599 | { |
| 2600 | m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, offset); |
| 2601 | } |
| 2602 | |
| 2603 | void movswl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2604 | { |
| 2605 | m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, index, scale, offset); |
| 2606 | } |
| 2607 | |
| 2608 | void movzbl_mr(int offset, RegisterID base, RegisterID dst) |
| 2609 | { |
| 2610 | m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, offset); |
| 2611 | } |
| 2612 | |
| 2613 | void movzbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2614 | { |
| 2615 | m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, index, scale, offset); |
| 2616 | } |
| 2617 | |
| 2618 | #if !CPU(X86_64) |
| 2619 | void movzbl_mr(const void* address, RegisterID dst) |
| 2620 | { |
| 2621 | m_formatter.twoByteOpAddr(OP2_MOVZX_GvEb, dst, bitwise_cast<uint32_t>(address)); |
| 2622 | } |
| 2623 | #endif |
| 2624 | |
| 2625 | void movsbl_mr(int offset, RegisterID base, RegisterID dst) |
| 2626 | { |
| 2627 | m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, offset); |
| 2628 | } |
| 2629 | |
| 2630 | void movsbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2631 | { |
| 2632 | m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, index, scale, offset); |
| 2633 | } |
| 2634 | |
| 2635 | void movzbl_rr(RegisterID src, RegisterID dst) |
| 2636 | { |
| 2637 | // In 64-bit, this may cause an unnecessary REX to be planted (if the dst register |
| 2638 | // is in the range ESP-EDI, and the src would not have required a REX). Unneeded |
| 2639 | // REX prefixes are defined to be silently ignored by the processor. |
| 2640 | m_formatter.twoByteOp8(OP2_MOVZX_GvEb, dst, src); |
| 2641 | } |
| 2642 | |
| 2643 | void movsbl_rr(RegisterID src, RegisterID dst) |
| 2644 | { |
| 2645 | m_formatter.twoByteOp8(OP2_MOVSX_GvEb, dst, src); |
| 2646 | } |
| 2647 | |
| 2648 | void movzwl_rr(RegisterID src, RegisterID dst) |
| 2649 | { |
| 2650 | m_formatter.twoByteOp8(OP2_MOVZX_GvEw, dst, src); |
| 2651 | } |
| 2652 | |
| 2653 | void movswl_rr(RegisterID src, RegisterID dst) |
| 2654 | { |
| 2655 | m_formatter.twoByteOp8(OP2_MOVSX_GvEw, dst, src); |
| 2656 | } |
| 2657 | |
| 2658 | void cmovl_rr(Condition cond, RegisterID src, RegisterID dst) |
| 2659 | { |
| 2660 | m_formatter.twoByteOp(cmovcc(cond), dst, src); |
| 2661 | } |
| 2662 | |
| 2663 | void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID dst) |
| 2664 | { |
| 2665 | m_formatter.twoByteOp(cmovcc(cond), dst, base, offset); |
| 2666 | } |
| 2667 | |
| 2668 | void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2669 | { |
| 2670 | m_formatter.twoByteOp(cmovcc(cond), dst, base, index, scale, offset); |
| 2671 | } |
| 2672 | |
| 2673 | void cmovel_rr(RegisterID src, RegisterID dst) |
| 2674 | { |
| 2675 | m_formatter.twoByteOp(cmovcc(ConditionE), dst, src); |
| 2676 | } |
| 2677 | |
| 2678 | void cmovnel_rr(RegisterID src, RegisterID dst) |
| 2679 | { |
| 2680 | m_formatter.twoByteOp(cmovcc(ConditionNE), dst, src); |
| 2681 | } |
| 2682 | |
| 2683 | void cmovpl_rr(RegisterID src, RegisterID dst) |
| 2684 | { |
| 2685 | m_formatter.twoByteOp(cmovcc(ConditionP), dst, src); |
| 2686 | } |
| 2687 | |
| 2688 | void cmovnpl_rr(RegisterID src, RegisterID dst) |
| 2689 | { |
| 2690 | m_formatter.twoByteOp(cmovcc(ConditionNP), dst, src); |
| 2691 | } |
| 2692 | |
| 2693 | #if CPU(X86_64) |
| 2694 | void cmovq_rr(Condition cond, RegisterID src, RegisterID dst) |
| 2695 | { |
| 2696 | m_formatter.twoByteOp64(cmovcc(cond), dst, src); |
| 2697 | } |
| 2698 | |
| 2699 | void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID dst) |
| 2700 | { |
| 2701 | m_formatter.twoByteOp64(cmovcc(cond), dst, base, offset); |
| 2702 | } |
| 2703 | |
| 2704 | void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2705 | { |
| 2706 | m_formatter.twoByteOp64(cmovcc(cond), dst, base, index, scale, offset); |
| 2707 | } |
| 2708 | |
| 2709 | void cmoveq_rr(RegisterID src, RegisterID dst) |
| 2710 | { |
| 2711 | m_formatter.twoByteOp64(cmovcc(ConditionE), dst, src); |
| 2712 | } |
| 2713 | |
| 2714 | void cmovneq_rr(RegisterID src, RegisterID dst) |
| 2715 | { |
| 2716 | m_formatter.twoByteOp64(cmovcc(ConditionNE), dst, src); |
| 2717 | } |
| 2718 | |
| 2719 | void cmovpq_rr(RegisterID src, RegisterID dst) |
| 2720 | { |
| 2721 | m_formatter.twoByteOp64(cmovcc(ConditionP), dst, src); |
| 2722 | } |
| 2723 | |
| 2724 | void cmovnpq_rr(RegisterID src, RegisterID dst) |
| 2725 | { |
| 2726 | m_formatter.twoByteOp64(cmovcc(ConditionNP), dst, src); |
| 2727 | } |
| 2728 | #else |
| 2729 | void cmovl_mr(Condition cond, const void* addr, RegisterID dst) |
| 2730 | { |
| 2731 | m_formatter.twoByteOpAddr(cmovcc(cond), dst, bitwise_cast<uint32_t>(addr)); |
| 2732 | } |
| 2733 | #endif |
| 2734 | |
| 2735 | void leal_mr(int offset, RegisterID base, RegisterID dst) |
| 2736 | { |
| 2737 | m_formatter.oneByteOp(OP_LEA, dst, base, offset); |
| 2738 | } |
| 2739 | |
| 2740 | void leal_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2741 | { |
| 2742 | m_formatter.oneByteOp(OP_LEA, dst, base, index, scale, offset); |
| 2743 | } |
| 2744 | |
| 2745 | #if CPU(X86_64) |
| 2746 | void leaq_mr(int offset, RegisterID base, RegisterID dst) |
| 2747 | { |
| 2748 | m_formatter.oneByteOp64(OP_LEA, dst, base, offset); |
| 2749 | } |
| 2750 | |
| 2751 | void leaq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| 2752 | { |
| 2753 | m_formatter.oneByteOp64(OP_LEA, dst, base, index, scale, offset); |
| 2754 | } |
| 2755 | #endif |
| 2756 | |
| 2757 | // Flow control: |
| 2758 | |
| 2759 | AssemblerLabel call() |
| 2760 | { |
| 2761 | m_formatter.oneByteOp(OP_CALL_rel32); |
| 2762 | return m_formatter.immediateRel32(); |
| 2763 | } |
| 2764 | |
| 2765 | AssemblerLabel call(RegisterID dst) |
| 2766 | { |
| 2767 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, dst); |
| 2768 | return m_formatter.label(); |
| 2769 | } |
| 2770 | |
| 2771 | void call_m(int offset, RegisterID base) |
| 2772 | { |
| 2773 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, base, offset); |
| 2774 | } |
| 2775 | |
| 2776 | AssemblerLabel jmp() |
| 2777 | { |
| 2778 | m_formatter.oneByteOp(OP_JMP_rel32); |
| 2779 | return m_formatter.immediateRel32(); |
| 2780 | } |
| 2781 | |
| 2782 | // Return a AssemblerLabel so we have a label to the jump, so we can use this |
| 2783 | // To make a tail recursive call on x86-64. The MacroAssembler |
| 2784 | // really shouldn't wrap this as a Jump, since it can't be linked. :-/ |
| 2785 | AssemblerLabel jmp_r(RegisterID dst) |
| 2786 | { |
| 2787 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, dst); |
| 2788 | return m_formatter.label(); |
| 2789 | } |
| 2790 | |
| 2791 | void jmp_m(int offset, RegisterID base) |
| 2792 | { |
| 2793 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, offset); |
| 2794 | } |
| 2795 | |
| 2796 | void jmp_m(int offset, RegisterID base, RegisterID index, int scale) |
| 2797 | { |
| 2798 | m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, index, scale, offset); |
| 2799 | } |
| 2800 | |
| 2801 | #if !CPU(X86_64) |
| 2802 | void jmp_m(const void* address) |
| 2803 | { |
| 2804 | m_formatter.oneByteOpAddr(OP_GROUP5_Ev, GROUP5_OP_JMPN, bitwise_cast<uint32_t>(address)); |
| 2805 | } |
| 2806 | #endif |
| 2807 | |
| 2808 | AssemblerLabel jne() |
| 2809 | { |
| 2810 | m_formatter.twoByteOp(jccRel32(ConditionNE)); |
| 2811 | return m_formatter.immediateRel32(); |
| 2812 | } |
| 2813 | |
| 2814 | AssemblerLabel jnz() |
| 2815 | { |
| 2816 | return jne(); |
| 2817 | } |
| 2818 | |
| 2819 | AssemblerLabel je() |
| 2820 | { |
| 2821 | m_formatter.twoByteOp(jccRel32(ConditionE)); |
| 2822 | return m_formatter.immediateRel32(); |
| 2823 | } |
| 2824 | |
| 2825 | AssemblerLabel jz() |
| 2826 | { |
| 2827 | return je(); |
| 2828 | } |
| 2829 | |
| 2830 | AssemblerLabel jl() |
| 2831 | { |
| 2832 | m_formatter.twoByteOp(jccRel32(ConditionL)); |
| 2833 | return m_formatter.immediateRel32(); |
| 2834 | } |
| 2835 | |
| 2836 | AssemblerLabel jb() |
| 2837 | { |
| 2838 | m_formatter.twoByteOp(jccRel32(ConditionB)); |
| 2839 | return m_formatter.immediateRel32(); |
| 2840 | } |
| 2841 | |
| 2842 | AssemblerLabel jle() |
| 2843 | { |
| 2844 | m_formatter.twoByteOp(jccRel32(ConditionLE)); |
| 2845 | return m_formatter.immediateRel32(); |
| 2846 | } |
| 2847 | |
| 2848 | AssemblerLabel jbe() |
| 2849 | { |
| 2850 | m_formatter.twoByteOp(jccRel32(ConditionBE)); |
| 2851 | return m_formatter.immediateRel32(); |
| 2852 | } |
| 2853 | |
| 2854 | AssemblerLabel jge() |
| 2855 | { |
| 2856 | m_formatter.twoByteOp(jccRel32(ConditionGE)); |
| 2857 | return m_formatter.immediateRel32(); |
| 2858 | } |
| 2859 | |
| 2860 | AssemblerLabel jg() |
| 2861 | { |
| 2862 | m_formatter.twoByteOp(jccRel32(ConditionG)); |
| 2863 | return m_formatter.immediateRel32(); |
| 2864 | } |
| 2865 | |
| 2866 | AssemblerLabel ja() |
| 2867 | { |
| 2868 | m_formatter.twoByteOp(jccRel32(ConditionA)); |
| 2869 | return m_formatter.immediateRel32(); |
| 2870 | } |
| 2871 | |
| 2872 | AssemblerLabel jae() |
| 2873 | { |
| 2874 | m_formatter.twoByteOp(jccRel32(ConditionAE)); |
| 2875 | return m_formatter.immediateRel32(); |
| 2876 | } |
| 2877 | |
| 2878 | AssemblerLabel jo() |
| 2879 | { |
| 2880 | m_formatter.twoByteOp(jccRel32(ConditionO)); |
| 2881 | return m_formatter.immediateRel32(); |
| 2882 | } |
| 2883 | |
| 2884 | AssemblerLabel jnp() |
| 2885 | { |
| 2886 | m_formatter.twoByteOp(jccRel32(ConditionNP)); |
| 2887 | return m_formatter.immediateRel32(); |
| 2888 | } |
| 2889 | |
| 2890 | AssemblerLabel jp() |
| 2891 | { |
| 2892 | m_formatter.twoByteOp(jccRel32(ConditionP)); |
| 2893 | return m_formatter.immediateRel32(); |
| 2894 | } |
| 2895 | |
| 2896 | AssemblerLabel js() |
| 2897 | { |
| 2898 | m_formatter.twoByteOp(jccRel32(ConditionS)); |
| 2899 | return m_formatter.immediateRel32(); |
| 2900 | } |
| 2901 | |
| 2902 | AssemblerLabel jCC(Condition cond) |
| 2903 | { |
| 2904 | m_formatter.twoByteOp(jccRel32(cond)); |
| 2905 | return m_formatter.immediateRel32(); |
| 2906 | } |
| 2907 | |
| 2908 | // SSE operations: |
| 2909 | |
| 2910 | void addsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 2911 | { |
| 2912 | m_formatter.prefix(PRE_SSE_F2); |
| 2913 | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 2914 | } |
| 2915 | |
| 2916 | void vaddsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| 2917 | { |
| 2918 | m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| 2919 | } |
| 2920 | |
| 2921 | void addsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 2922 | { |
| 2923 | m_formatter.prefix(PRE_SSE_F2); |
| 2924 | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset); |
| 2925 | } |
| 2926 | |
| 2927 | void addsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 2928 | { |
| 2929 | m_formatter.prefix(PRE_SSE_F2); |
| 2930 | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset); |
| 2931 | } |
| 2932 | |
| 2933 | void vaddsd_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) |
| 2934 | { |
| 2935 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| 2936 | } |
| 2937 | |
| 2938 | void vaddsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) |
| 2939 | { |
| 2940 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| 2941 | } |
| 2942 | |
| 2943 | void addss_rr(XMMRegisterID src, XMMRegisterID dst) |
| 2944 | { |
| 2945 | m_formatter.prefix(PRE_SSE_F3); |
| 2946 | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 2947 | } |
| 2948 | |
| 2949 | void vaddss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| 2950 | { |
| 2951 | m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| 2952 | } |
| 2953 | |
| 2954 | void addss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 2955 | { |
| 2956 | m_formatter.prefix(PRE_SSE_F3); |
| 2957 | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset); |
| 2958 | } |
| 2959 | |
| 2960 | void addss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 2961 | { |
| 2962 | m_formatter.prefix(PRE_SSE_F3); |
| 2963 | m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset); |
| 2964 | } |
| 2965 | |
| 2966 | void vaddss_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) |
| 2967 | { |
| 2968 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| 2969 | } |
| 2970 | |
| 2971 | void vaddss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) |
| 2972 | { |
| 2973 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| 2974 | } |
| 2975 | |
| 2976 | #if !CPU(X86_64) |
| 2977 | void addsd_mr(const void* address, XMMRegisterID dst) |
| 2978 | { |
| 2979 | m_formatter.prefix(PRE_SSE_F2); |
| 2980 | m_formatter.twoByteOpAddr(OP2_ADDSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); |
| 2981 | } |
| 2982 | #endif |
| 2983 | |
| 2984 | void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst) |
| 2985 | { |
| 2986 | m_formatter.prefix(PRE_SSE_F2); |
| 2987 | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); |
| 2988 | } |
| 2989 | |
| 2990 | void cvtsi2ss_rr(RegisterID src, XMMRegisterID dst) |
| 2991 | { |
| 2992 | m_formatter.prefix(PRE_SSE_F3); |
| 2993 | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); |
| 2994 | } |
| 2995 | |
| 2996 | #if CPU(X86_64) |
| 2997 | void cvtsi2sdq_rr(RegisterID src, XMMRegisterID dst) |
| 2998 | { |
| 2999 | m_formatter.prefix(PRE_SSE_F2); |
| 3000 | m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); |
| 3001 | } |
| 3002 | |
| 3003 | void cvtsi2ssq_rr(RegisterID src, XMMRegisterID dst) |
| 3004 | { |
| 3005 | m_formatter.prefix(PRE_SSE_F3); |
| 3006 | m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); |
| 3007 | } |
| 3008 | |
| 3009 | void cvtsi2sdq_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3010 | { |
| 3011 | m_formatter.prefix(PRE_SSE_F2); |
| 3012 | m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); |
| 3013 | } |
| 3014 | |
| 3015 | void cvtsi2ssq_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3016 | { |
| 3017 | m_formatter.prefix(PRE_SSE_F3); |
| 3018 | m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); |
| 3019 | } |
| 3020 | #endif |
| 3021 | |
| 3022 | void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3023 | { |
| 3024 | m_formatter.prefix(PRE_SSE_F2); |
| 3025 | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); |
| 3026 | } |
| 3027 | |
| 3028 | void cvtsi2ss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3029 | { |
| 3030 | m_formatter.prefix(PRE_SSE_F3); |
| 3031 | m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); |
| 3032 | } |
| 3033 | |
| 3034 | #if !CPU(X86_64) |
| 3035 | void cvtsi2sd_mr(const void* address, XMMRegisterID dst) |
| 3036 | { |
| 3037 | m_formatter.prefix(PRE_SSE_F2); |
| 3038 | m_formatter.twoByteOpAddr(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); |
| 3039 | } |
| 3040 | #endif |
| 3041 | |
| 3042 | void cvttsd2si_rr(XMMRegisterID src, RegisterID dst) |
| 3043 | { |
| 3044 | m_formatter.prefix(PRE_SSE_F2); |
| 3045 | m_formatter.twoByteOp(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src); |
| 3046 | } |
| 3047 | |
| 3048 | void cvttss2si_rr(XMMRegisterID src, RegisterID dst) |
| 3049 | { |
| 3050 | m_formatter.prefix(PRE_SSE_F3); |
| 3051 | m_formatter.twoByteOp(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src); |
| 3052 | } |
| 3053 | |
| 3054 | #if CPU(X86_64) |
| 3055 | void cvttss2siq_rr(XMMRegisterID src, RegisterID dst) |
| 3056 | { |
| 3057 | m_formatter.prefix(PRE_SSE_F3); |
| 3058 | m_formatter.twoByteOp64(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src); |
| 3059 | } |
| 3060 | #endif |
| 3061 | |
| 3062 | void cvtsd2ss_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3063 | { |
| 3064 | m_formatter.prefix(PRE_SSE_F2); |
| 3065 | m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, (RegisterID)src); |
| 3066 | } |
| 3067 | |
| 3068 | void cvtsd2ss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3069 | { |
| 3070 | m_formatter.prefix(PRE_SSE_F2); |
| 3071 | m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, base, offset); |
| 3072 | } |
| 3073 | |
| 3074 | void cvtss2sd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3075 | { |
| 3076 | m_formatter.prefix(PRE_SSE_F3); |
| 3077 | m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, (RegisterID)src); |
| 3078 | } |
| 3079 | |
| 3080 | void cvtss2sd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3081 | { |
| 3082 | m_formatter.prefix(PRE_SSE_F3); |
| 3083 | m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, base, offset); |
| 3084 | } |
| 3085 | |
| 3086 | #if CPU(X86_64) |
| 3087 | void cvttsd2siq_rr(XMMRegisterID src, RegisterID dst) |
| 3088 | { |
| 3089 | m_formatter.prefix(PRE_SSE_F2); |
| 3090 | m_formatter.twoByteOp64(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src); |
| 3091 | } |
| 3092 | #endif |
| 3093 | |
| 3094 | void movd_rr(XMMRegisterID src, RegisterID dst) |
| 3095 | { |
| 3096 | m_formatter.prefix(PRE_SSE_66); |
| 3097 | m_formatter.twoByteOp(OP2_MOVD_EdVd, (RegisterID)src, dst); |
| 3098 | } |
| 3099 | |
| 3100 | void movd_rr(RegisterID src, XMMRegisterID dst) |
| 3101 | { |
| 3102 | m_formatter.prefix(PRE_SSE_66); |
| 3103 | m_formatter.twoByteOp(OP2_MOVD_VdEd, (RegisterID)dst, src); |
| 3104 | } |
| 3105 | |
| 3106 | #if CPU(X86_64) |
| 3107 | void movmskpd_rr(XMMRegisterID src, RegisterID dst) |
| 3108 | { |
| 3109 | m_formatter.prefix(PRE_SSE_66); |
| 3110 | m_formatter.twoByteOp64(OP2_MOVMSKPD_VdEd, dst, (RegisterID)src); |
| 3111 | } |
| 3112 | |
| 3113 | void movq_rr(XMMRegisterID src, RegisterID dst) |
| 3114 | { |
| 3115 | m_formatter.prefix(PRE_SSE_66); |
| 3116 | m_formatter.twoByteOp64(OP2_MOVD_EdVd, (RegisterID)src, dst); |
| 3117 | } |
| 3118 | |
| 3119 | void movq_rr(RegisterID src, XMMRegisterID dst) |
| 3120 | { |
| 3121 | m_formatter.prefix(PRE_SSE_66); |
| 3122 | m_formatter.twoByteOp64(OP2_MOVD_VdEd, (RegisterID)dst, src); |
| 3123 | } |
| 3124 | #endif |
| 3125 | |
| 3126 | void movapd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3127 | { |
| 3128 | m_formatter.prefix(PRE_SSE_66); |
| 3129 | m_formatter.twoByteOp(OP2_MOVAPD_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| 3130 | } |
| 3131 | |
| 3132 | void movaps_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3133 | { |
| 3134 | m_formatter.twoByteOp(OP2_MOVAPS_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| 3135 | } |
| 3136 | |
| 3137 | void movsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3138 | { |
| 3139 | m_formatter.prefix(PRE_SSE_F2); |
| 3140 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3141 | } |
| 3142 | |
| 3143 | void movsd_rm(XMMRegisterID src, int offset, RegisterID base) |
| 3144 | { |
| 3145 | m_formatter.prefix(PRE_SSE_F2); |
| 3146 | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset); |
| 3147 | } |
| 3148 | |
| 3149 | void movsd_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3150 | { |
| 3151 | m_formatter.prefix(PRE_SSE_F2); |
| 3152 | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset); |
| 3153 | } |
| 3154 | |
| 3155 | void movss_rm(XMMRegisterID src, int offset, RegisterID base) |
| 3156 | { |
| 3157 | m_formatter.prefix(PRE_SSE_F3); |
| 3158 | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset); |
| 3159 | } |
| 3160 | |
| 3161 | void movss_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3162 | { |
| 3163 | m_formatter.prefix(PRE_SSE_F3); |
| 3164 | m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset); |
| 3165 | } |
| 3166 | |
| 3167 | void movsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3168 | { |
| 3169 | m_formatter.prefix(PRE_SSE_F2); |
| 3170 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3171 | } |
| 3172 | |
| 3173 | void movsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 3174 | { |
| 3175 | m_formatter.prefix(PRE_SSE_F2); |
| 3176 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset); |
| 3177 | } |
| 3178 | |
| 3179 | void movss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3180 | { |
| 3181 | m_formatter.prefix(PRE_SSE_F3); |
| 3182 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3183 | } |
| 3184 | |
| 3185 | void movss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 3186 | { |
| 3187 | m_formatter.prefix(PRE_SSE_F3); |
| 3188 | m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset); |
| 3189 | } |
| 3190 | |
| 3191 | #if !CPU(X86_64) |
| 3192 | void movsd_mr(const void* address, XMMRegisterID dst) |
| 3193 | { |
| 3194 | m_formatter.prefix(PRE_SSE_F2); |
| 3195 | m_formatter.twoByteOpAddr(OP2_MOVSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); |
| 3196 | } |
| 3197 | void movsd_rm(XMMRegisterID src, const void* address) |
| 3198 | { |
| 3199 | m_formatter.prefix(PRE_SSE_F2); |
| 3200 | m_formatter.twoByteOpAddr(OP2_MOVSD_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address)); |
| 3201 | } |
| 3202 | void movss_mr(const void* address, XMMRegisterID dst) |
| 3203 | { |
| 3204 | m_formatter.prefix(PRE_SSE_F3); |
| 3205 | m_formatter.twoByteOpAddr(OP2_MOVSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); |
| 3206 | } |
| 3207 | void movss_rm(XMMRegisterID src, const void* address) |
| 3208 | { |
| 3209 | m_formatter.prefix(PRE_SSE_F3); |
| 3210 | m_formatter.twoByteOpAddr(OP2_MOVSD_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address)); |
| 3211 | } |
| 3212 | #endif |
| 3213 | |
| 3214 | void mulsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3215 | { |
| 3216 | m_formatter.prefix(PRE_SSE_F2); |
| 3217 | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3218 | } |
| 3219 | |
| 3220 | void vmulsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| 3221 | { |
| 3222 | m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| 3223 | } |
| 3224 | |
| 3225 | void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3226 | { |
| 3227 | m_formatter.prefix(PRE_SSE_F2); |
| 3228 | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3229 | } |
| 3230 | |
| 3231 | void mulsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 3232 | { |
| 3233 | m_formatter.prefix(PRE_SSE_F2); |
| 3234 | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset); |
| 3235 | } |
| 3236 | |
| 3237 | void vmulsd_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) |
| 3238 | { |
| 3239 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| 3240 | } |
| 3241 | |
| 3242 | void vmulsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) |
| 3243 | { |
| 3244 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| 3245 | } |
| 3246 | |
| 3247 | void mulss_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3248 | { |
| 3249 | m_formatter.prefix(PRE_SSE_F3); |
| 3250 | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3251 | } |
| 3252 | |
| 3253 | void vmulss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| 3254 | { |
| 3255 | m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| 3256 | } |
| 3257 | |
| 3258 | void mulss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3259 | { |
| 3260 | m_formatter.prefix(PRE_SSE_F3); |
| 3261 | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3262 | } |
| 3263 | |
| 3264 | void mulss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 3265 | { |
| 3266 | m_formatter.prefix(PRE_SSE_F3); |
| 3267 | m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset); |
| 3268 | } |
| 3269 | |
| 3270 | void vmulss_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) |
| 3271 | { |
| 3272 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| 3273 | } |
| 3274 | |
| 3275 | void vmulss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) |
| 3276 | { |
| 3277 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| 3278 | } |
| 3279 | |
| 3280 | void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst) |
| 3281 | { |
| 3282 | m_formatter.prefix(PRE_SSE_66); |
| 3283 | m_formatter.twoByteOp(OP2_PEXTRW_GdUdIb, (RegisterID)dst, (RegisterID)src); |
| 3284 | m_formatter.immediate8(whichWord); |
| 3285 | } |
| 3286 | |
| 3287 | void psllq_i8r(int imm, XMMRegisterID dst) |
| 3288 | { |
| 3289 | m_formatter.prefix(PRE_SSE_66); |
| 3290 | m_formatter.twoByteOp8(OP2_PSLLQ_UdqIb, GROUP14_OP_PSLLQ, (RegisterID)dst); |
| 3291 | m_formatter.immediate8(imm); |
| 3292 | } |
| 3293 | |
| 3294 | void psrlq_i8r(int imm, XMMRegisterID dst) |
| 3295 | { |
| 3296 | m_formatter.prefix(PRE_SSE_66); |
| 3297 | m_formatter.twoByteOp8(OP2_PSRLQ_UdqIb, GROUP14_OP_PSRLQ, (RegisterID)dst); |
| 3298 | m_formatter.immediate8(imm); |
| 3299 | } |
| 3300 | |
| 3301 | void por_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3302 | { |
| 3303 | m_formatter.prefix(PRE_SSE_66); |
| 3304 | m_formatter.twoByteOp(OP2_POR_VdqWdq, (RegisterID)dst, (RegisterID)src); |
| 3305 | } |
| 3306 | |
| 3307 | void subsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3308 | { |
| 3309 | m_formatter.prefix(PRE_SSE_F2); |
| 3310 | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3311 | } |
| 3312 | |
| 3313 | void vsubsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| 3314 | { |
| 3315 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| 3316 | } |
| 3317 | |
| 3318 | void subsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3319 | { |
| 3320 | m_formatter.prefix(PRE_SSE_F2); |
| 3321 | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3322 | } |
| 3323 | |
| 3324 | void subsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 3325 | { |
| 3326 | m_formatter.prefix(PRE_SSE_F2); |
| 3327 | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset); |
| 3328 | } |
| 3329 | |
| 3330 | void vsubsd_mr(XMMRegisterID b, int offset, RegisterID base, XMMRegisterID dst) |
| 3331 | { |
| 3332 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| 3333 | } |
| 3334 | |
| 3335 | void vsubsd_mr(XMMRegisterID b, int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 3336 | { |
| 3337 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| 3338 | } |
| 3339 | |
| 3340 | void subss_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3341 | { |
| 3342 | m_formatter.prefix(PRE_SSE_F3); |
| 3343 | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3344 | } |
| 3345 | |
| 3346 | void vsubss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| 3347 | { |
| 3348 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| 3349 | } |
| 3350 | |
| 3351 | void subss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3352 | { |
| 3353 | m_formatter.prefix(PRE_SSE_F3); |
| 3354 | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3355 | } |
| 3356 | |
| 3357 | void subss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 3358 | { |
| 3359 | m_formatter.prefix(PRE_SSE_F3); |
| 3360 | m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset); |
| 3361 | } |
| 3362 | |
| 3363 | void vsubss_mr(XMMRegisterID b, int offset, RegisterID base, XMMRegisterID dst) |
| 3364 | { |
| 3365 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| 3366 | } |
| 3367 | |
| 3368 | void vsubss_mr(XMMRegisterID b, int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| 3369 | { |
| 3370 | m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| 3371 | } |
| 3372 | |
| 3373 | void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3374 | { |
| 3375 | m_formatter.prefix(PRE_SSE_66); |
| 3376 | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3377 | } |
| 3378 | |
| 3379 | void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3380 | { |
| 3381 | m_formatter.prefix(PRE_SSE_66); |
| 3382 | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset); |
| 3383 | } |
| 3384 | |
| 3385 | void ucomiss_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3386 | { |
| 3387 | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3388 | } |
| 3389 | |
| 3390 | void ucomiss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3391 | { |
| 3392 | m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset); |
| 3393 | } |
| 3394 | |
| 3395 | void divsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3396 | { |
| 3397 | m_formatter.prefix(PRE_SSE_F2); |
| 3398 | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3399 | } |
| 3400 | |
| 3401 | void divsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3402 | { |
| 3403 | m_formatter.prefix(PRE_SSE_F2); |
| 3404 | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3405 | } |
| 3406 | |
| 3407 | void divss_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3408 | { |
| 3409 | m_formatter.prefix(PRE_SSE_F3); |
| 3410 | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3411 | } |
| 3412 | |
| 3413 | void divss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3414 | { |
| 3415 | m_formatter.prefix(PRE_SSE_F3); |
| 3416 | m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3417 | } |
| 3418 | |
| 3419 | void andps_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3420 | { |
| 3421 | m_formatter.twoByteOp(OP2_ANDPS_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| 3422 | } |
| 3423 | |
| 3424 | void orps_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3425 | { |
| 3426 | m_formatter.twoByteOp(OP2_ORPS_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| 3427 | } |
| 3428 | |
| 3429 | void xorps_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3430 | { |
| 3431 | m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| 3432 | } |
| 3433 | |
| 3434 | void xorpd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3435 | { |
| 3436 | if (src == dst) { |
| 3437 | xorps_rr(src, dst); |
| 3438 | return; |
| 3439 | } |
| 3440 | m_formatter.prefix(PRE_SSE_66); |
| 3441 | m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| 3442 | } |
| 3443 | |
| 3444 | void andnpd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3445 | { |
| 3446 | m_formatter.prefix(PRE_SSE_66); |
| 3447 | m_formatter.twoByteOp(OP2_ANDNPD_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| 3448 | } |
| 3449 | |
| 3450 | void sqrtsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3451 | { |
| 3452 | m_formatter.prefix(PRE_SSE_F2); |
| 3453 | m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3454 | } |
| 3455 | |
| 3456 | void sqrtsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3457 | { |
| 3458 | m_formatter.prefix(PRE_SSE_F2); |
| 3459 | m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3460 | } |
| 3461 | |
| 3462 | void sqrtss_rr(XMMRegisterID src, XMMRegisterID dst) |
| 3463 | { |
| 3464 | m_formatter.prefix(PRE_SSE_F3); |
| 3465 | m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| 3466 | } |
| 3467 | |
| 3468 | void sqrtss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| 3469 | { |
| 3470 | m_formatter.prefix(PRE_SSE_F3); |
| 3471 | m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, base, offset); |
| 3472 | } |
| 3473 | |
| 3474 | enum class RoundingType : uint8_t { |
| 3475 | ToNearestWithTiesToEven = 0, |
| 3476 | TowardNegativeInfiniti = 1, |
| 3477 | TowardInfiniti = 2, |
| 3478 | TowardZero = 3 |
| 3479 | }; |
| 3480 | |
| 3481 | void roundss_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding) |
| 3482 | { |
| 3483 | m_formatter.prefix(PRE_SSE_66); |
| 3484 | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, (RegisterID)src); |
| 3485 | m_formatter.immediate8(static_cast<uint8_t>(rounding)); |
| 3486 | } |
| 3487 | |
| 3488 | void roundss_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding) |
| 3489 | { |
| 3490 | m_formatter.prefix(PRE_SSE_66); |
| 3491 | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, base, offset); |
| 3492 | m_formatter.immediate8(static_cast<uint8_t>(rounding)); |
| 3493 | } |
| 3494 | |
| 3495 | void roundsd_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding) |
| 3496 | { |
| 3497 | m_formatter.prefix(PRE_SSE_66); |
| 3498 | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, (RegisterID)src); |
| 3499 | m_formatter.immediate8(static_cast<uint8_t>(rounding)); |
| 3500 | } |
| 3501 | |
| 3502 | void roundsd_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding) |
| 3503 | { |
| 3504 | m_formatter.prefix(PRE_SSE_66); |
| 3505 | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, base, offset); |
| 3506 | m_formatter.immediate8(static_cast<uint8_t>(rounding)); |
| 3507 | } |
| 3508 | |
| 3509 | // Misc instructions: |
| 3510 | |
| 3511 | void int3() |
| 3512 | { |
| 3513 | m_formatter.oneByteOp(OP_INT3); |
| 3514 | } |
| 3515 | |
| 3516 | static bool isInt3(void* address) |
| 3517 | { |
| 3518 | uint8_t candidateInstruction = *reinterpret_cast<uint8_t*>(address); |
| 3519 | return candidateInstruction == OP_INT3; |
| 3520 | } |
| 3521 | |
| 3522 | void ret() |
| 3523 | { |
| 3524 | m_formatter.oneByteOp(OP_RET); |
| 3525 | } |
| 3526 | |
| 3527 | void predictNotTaken() |
| 3528 | { |
| 3529 | m_formatter.prefix(PRE_PREDICT_BRANCH_NOT_TAKEN); |
| 3530 | } |
| 3531 | |
| 3532 | void lock() |
| 3533 | { |
| 3534 | m_formatter.prefix(PRE_LOCK); |
| 3535 | } |
| 3536 | |
| 3537 | // Causes the memory access in the next instruction to be offset by %gs. Usually you use |
| 3538 | // this with a 32-bit absolute address load. That "address" ends up being the offset to |
| 3539 | // %gs. This prefix is ignored by lea. Getting the value of %gs is hard - you can pretty |
| 3540 | // much just use it as a secret offset. |
| 3541 | void gs() |
| 3542 | { |
| 3543 | m_formatter.prefix(PRE_GS); |
| 3544 | } |
| 3545 | |
| 3546 | void cmpxchgb_rm(RegisterID src, int offset, RegisterID base) |
| 3547 | { |
| 3548 | m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, offset); |
| 3549 | } |
| 3550 | |
| 3551 | void cmpxchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3552 | { |
| 3553 | m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, index, scale, offset); |
| 3554 | } |
| 3555 | |
| 3556 | void cmpxchgw_rm(RegisterID src, int offset, RegisterID base) |
| 3557 | { |
| 3558 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 3559 | m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset); |
| 3560 | } |
| 3561 | |
| 3562 | void cmpxchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3563 | { |
| 3564 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 3565 | m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset); |
| 3566 | } |
| 3567 | |
| 3568 | void cmpxchgl_rm(RegisterID src, int offset, RegisterID base) |
| 3569 | { |
| 3570 | m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset); |
| 3571 | } |
| 3572 | |
| 3573 | void cmpxchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3574 | { |
| 3575 | m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset); |
| 3576 | } |
| 3577 | |
| 3578 | #if CPU(X86_64) |
| 3579 | void cmpxchgq_rm(RegisterID src, int offset, RegisterID base) |
| 3580 | { |
| 3581 | m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, offset); |
| 3582 | } |
| 3583 | |
| 3584 | void cmpxchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3585 | { |
| 3586 | m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, index, scale, offset); |
| 3587 | } |
| 3588 | #endif // CPU(X86_64) |
| 3589 | |
| 3590 | void xaddb_rm(RegisterID src, int offset, RegisterID base) |
| 3591 | { |
| 3592 | m_formatter.twoByteOp8(OP2_XADDb, src, base, offset); |
| 3593 | } |
| 3594 | |
| 3595 | void xaddb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3596 | { |
| 3597 | m_formatter.twoByteOp8(OP2_XADDb, src, base, index, scale, offset); |
| 3598 | } |
| 3599 | |
| 3600 | void xaddw_rm(RegisterID src, int offset, RegisterID base) |
| 3601 | { |
| 3602 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 3603 | m_formatter.twoByteOp(OP2_XADD, src, base, offset); |
| 3604 | } |
| 3605 | |
| 3606 | void xaddw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3607 | { |
| 3608 | m_formatter.prefix(PRE_OPERAND_SIZE); |
| 3609 | m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset); |
| 3610 | } |
| 3611 | |
| 3612 | void xaddl_rm(RegisterID src, int offset, RegisterID base) |
| 3613 | { |
| 3614 | m_formatter.twoByteOp(OP2_XADD, src, base, offset); |
| 3615 | } |
| 3616 | |
| 3617 | void xaddl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3618 | { |
| 3619 | m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset); |
| 3620 | } |
| 3621 | |
| 3622 | #if CPU(X86_64) |
| 3623 | void xaddq_rm(RegisterID src, int offset, RegisterID base) |
| 3624 | { |
| 3625 | m_formatter.twoByteOp64(OP2_XADD, src, base, offset); |
| 3626 | } |
| 3627 | |
| 3628 | void xaddq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| 3629 | { |
| 3630 | m_formatter.twoByteOp64(OP2_XADD, src, base, index, scale, offset); |
| 3631 | } |
| 3632 | #endif // CPU(X86_64) |
| 3633 | |
| 3634 | void lfence() |
| 3635 | { |
| 3636 | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_LFENCE); |
| 3637 | } |
| 3638 | |
| 3639 | void mfence() |
| 3640 | { |
| 3641 | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_MFENCE); |
| 3642 | } |
| 3643 | |
| 3644 | void sfence() |
| 3645 | { |
| 3646 | m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_SFENCE); |
| 3647 | } |
| 3648 | |
| 3649 | void rdtsc() |
| 3650 | { |
| 3651 | m_formatter.twoByteOp(OP2_RDTSC); |
| 3652 | } |
| 3653 | |
| 3654 | void pause() |
| 3655 | { |
| 3656 | m_formatter.prefix(PRE_SSE_F3); |
| 3657 | m_formatter.oneByteOp(OP_PAUSE); |
| 3658 | } |
| 3659 | |
| 3660 | void cpuid() |
| 3661 | { |
| 3662 | m_formatter.twoByteOp(OP2_CPUID); |
| 3663 | } |
| 3664 | |
| 3665 | // Assembler admin methods: |
| 3666 | |
| 3667 | size_t codeSize() const |
| 3668 | { |
| 3669 | return m_formatter.codeSize(); |
| 3670 | } |
| 3671 | |
| 3672 | AssemblerLabel labelForWatchpoint() |
| 3673 | { |
| 3674 | AssemblerLabel result = m_formatter.label(); |
| 3675 | if (static_cast<int>(result.m_offset) != m_indexOfLastWatchpoint) |
| 3676 | result = label(); |
| 3677 | m_indexOfLastWatchpoint = result.m_offset; |
| 3678 | m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize(); |
| 3679 | return result; |
| 3680 | } |
| 3681 | |
| 3682 | AssemblerLabel labelIgnoringWatchpoints() |
| 3683 | { |
| 3684 | return m_formatter.label(); |
| 3685 | } |
| 3686 | |
| 3687 | AssemblerLabel label() |
| 3688 | { |
| 3689 | AssemblerLabel result = m_formatter.label(); |
| 3690 | while (UNLIKELY(static_cast<int>(result.m_offset) < m_indexOfTailOfLastWatchpoint)) { |
| 3691 | nop(); |
| 3692 | result = m_formatter.label(); |
| 3693 | } |
| 3694 | return result; |
| 3695 | } |
| 3696 | |
| 3697 | AssemblerLabel align(int alignment) |
| 3698 | { |
| 3699 | while (!m_formatter.isAligned(alignment)) |
| 3700 | m_formatter.oneByteOp(OP_HLT); |
| 3701 | |
| 3702 | return label(); |
| 3703 | } |
| 3704 | |
| 3705 | // Linking & patching: |
| 3706 | // |
| 3707 | // 'link' and 'patch' methods are for use on unprotected code - such as the code |
| 3708 | // within the AssemblerBuffer, and code being patched by the patch buffer. Once |
| 3709 | // code has been finalized it is (platform support permitting) within a non- |
| 3710 | // writable region of memory; to modify the code in an execute-only execuable |
| 3711 | // pool the 'repatch' and 'relink' methods should be used. |
| 3712 | |
| 3713 | void linkJump(AssemblerLabel from, AssemblerLabel to) |
| 3714 | { |
| 3715 | ASSERT(from.isSet()); |
| 3716 | ASSERT(to.isSet()); |
| 3717 | |
| 3718 | char* code = reinterpret_cast<char*>(m_formatter.data()); |
| 3719 | ASSERT(!WTF::unalignedLoad<int32_t>(bitwise_cast<int32_t*>(code + from.m_offset) - 1)); |
| 3720 | setRel32(code + from.m_offset, code + to.m_offset); |
| 3721 | } |
| 3722 | |
| 3723 | static void linkJump(void* code, AssemblerLabel from, void* to) |
| 3724 | { |
| 3725 | ASSERT(from.isSet()); |
| 3726 | |
| 3727 | setRel32(reinterpret_cast<char*>(code) + from.m_offset, to); |
| 3728 | } |
| 3729 | |
| 3730 | static void linkCall(void* code, AssemblerLabel from, void* to) |
| 3731 | { |
| 3732 | ASSERT(from.isSet()); |
| 3733 | |
| 3734 | setRel32(reinterpret_cast<char*>(code) + from.m_offset, to); |
| 3735 | } |
| 3736 | |
| 3737 | static void linkPointer(void* code, AssemblerLabel where, void* value) |
| 3738 | { |
| 3739 | ASSERT(where.isSet()); |
| 3740 | |
| 3741 | setPointer(reinterpret_cast<char*>(code) + where.m_offset, value); |
| 3742 | } |
| 3743 | |
| 3744 | static void relinkJump(void* from, void* to) |
| 3745 | { |
| 3746 | setRel32(from, to); |
| 3747 | } |
| 3748 | |
| 3749 | static void relinkJumpToNop(void* from) |
| 3750 | { |
| 3751 | setInt32(from, 0); |
| 3752 | } |
| 3753 | |
| 3754 | static void relinkCall(void* from, void* to) |
| 3755 | { |
| 3756 | setRel32(from, to); |
| 3757 | } |
| 3758 | |
| 3759 | static void repatchCompact(void* where, int32_t value) |
| 3760 | { |
| 3761 | ASSERT(value >= std::numeric_limits<int8_t>::min()); |
| 3762 | ASSERT(value <= std::numeric_limits<int8_t>::max()); |
| 3763 | setInt8(where, value); |
| 3764 | } |
| 3765 | |
| 3766 | static void repatchInt32(void* where, int32_t value) |
| 3767 | { |
| 3768 | setInt32(where, value); |
| 3769 | } |
| 3770 | |
| 3771 | static void repatchPointer(void* where, void* value) |
| 3772 | { |
| 3773 | setPointer(where, value); |
| 3774 | } |
| 3775 | |
| 3776 | static void* readPointer(void* where) |
| 3777 | { |
| 3778 | return WTF::unalignedLoad<void*>(bitwise_cast<void**>(where) - 1); |
| 3779 | } |
| 3780 | |
| 3781 | static void replaceWithHlt(void* instructionStart) |
| 3782 | { |
| 3783 | WTF::unalignedStore<uint8_t>(instructionStart, static_cast<uint8_t>(OP_HLT)); |
| 3784 | } |
| 3785 | |
| 3786 | static void replaceWithJump(void* instructionStart, void* to) |
| 3787 | { |
| 3788 | uint8_t* ptr = bitwise_cast<uint8_t*>(instructionStart); |
| 3789 | uint8_t* dstPtr = bitwise_cast<uint8_t*>(to); |
| 3790 | intptr_t distance = (intptr_t)(dstPtr - (ptr + 5)); |
| 3791 | WTF::unalignedStore<uint8_t>(ptr, static_cast<uint8_t>(OP_JMP_rel32)); |
| 3792 | WTF::unalignedStore<int32_t>(ptr + 1, static_cast<int32_t>(distance)); |
| 3793 | } |
| 3794 | |
| 3795 | static ptrdiff_t maxJumpReplacementSize() |
| 3796 | { |
| 3797 | return 5; |
| 3798 | } |
| 3799 | |
| 3800 | static constexpr ptrdiff_t patchableJumpSize() |
| 3801 | { |
| 3802 | return 5; |
| 3803 | } |
| 3804 | |
| 3805 | #if CPU(X86_64) |
| 3806 | static void revertJumpTo_movq_i64r(void* instructionStart, int64_t imm, RegisterID dst) |
| 3807 | { |
| 3808 | const unsigned instructionSize = 10; // REX.W MOV IMM64 |
| 3809 | const int rexBytes = 1; |
| 3810 | const int opcodeBytes = 1; |
| 3811 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 3812 | ptr[0] = PRE_REX | (1 << 3) | (dst >> 3); |
| 3813 | ptr[1] = OP_MOV_EAXIv | (dst & 7); |
| 3814 | |
| 3815 | union { |
| 3816 | uint64_t asWord; |
| 3817 | uint8_t asBytes[8]; |
| 3818 | } u; |
| 3819 | u.asWord = imm; |
| 3820 | for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i) |
| 3821 | ptr[i] = u.asBytes[i - rexBytes - opcodeBytes]; |
| 3822 | } |
| 3823 | |
| 3824 | static void revertJumpTo_movl_i32r(void* instructionStart, int32_t imm, RegisterID dst) |
| 3825 | { |
| 3826 | // We only revert jumps on inline caches, and inline caches always use the scratch register (r11). |
| 3827 | // FIXME: If the above is ever false then we need to make this smarter with respect to emitting |
| 3828 | // the REX byte. |
| 3829 | ASSERT(dst == X86Registers::r11); |
| 3830 | const unsigned instructionSize = 6; // REX MOV IMM32 |
| 3831 | const int rexBytes = 1; |
| 3832 | const int opcodeBytes = 1; |
| 3833 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 3834 | ptr[0] = PRE_REX | (dst >> 3); |
| 3835 | ptr[1] = OP_MOV_EAXIv | (dst & 7); |
| 3836 | |
| 3837 | union { |
| 3838 | uint32_t asWord; |
| 3839 | uint8_t asBytes[4]; |
| 3840 | } u; |
| 3841 | u.asWord = imm; |
| 3842 | for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i) |
| 3843 | ptr[i] = u.asBytes[i - rexBytes - opcodeBytes]; |
| 3844 | } |
| 3845 | #endif |
| 3846 | |
| 3847 | static void revertJumpTo_cmpl_ir_force32(void* instructionStart, int32_t imm, RegisterID dst) |
| 3848 | { |
| 3849 | const int opcodeBytes = 1; |
| 3850 | const int modRMBytes = 1; |
| 3851 | ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize()); |
| 3852 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 3853 | ptr[0] = OP_GROUP1_EvIz; |
| 3854 | ptr[1] = (X86InstructionFormatter::ModRmRegister << 6) | (GROUP1_OP_CMP << 3) | dst; |
| 3855 | union { |
| 3856 | uint32_t asWord; |
| 3857 | uint8_t asBytes[4]; |
| 3858 | } u; |
| 3859 | u.asWord = imm; |
| 3860 | for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i) |
| 3861 | ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes]; |
| 3862 | } |
| 3863 | |
| 3864 | static void revertJumpTo_cmpl_im_force32(void* instructionStart, int32_t imm, int offset, RegisterID dst) |
| 3865 | { |
| 3866 | ASSERT_UNUSED(offset, !offset); |
| 3867 | const int opcodeBytes = 1; |
| 3868 | const int modRMBytes = 1; |
| 3869 | ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize()); |
| 3870 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 3871 | ptr[0] = OP_GROUP1_EvIz; |
| 3872 | ptr[1] = (X86InstructionFormatter::ModRmMemoryNoDisp << 6) | (GROUP1_OP_CMP << 3) | dst; |
| 3873 | union { |
| 3874 | uint32_t asWord; |
| 3875 | uint8_t asBytes[4]; |
| 3876 | } u; |
| 3877 | u.asWord = imm; |
| 3878 | for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i) |
| 3879 | ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes]; |
| 3880 | } |
| 3881 | |
| 3882 | static void replaceWithLoad(void* instructionStart) |
| 3883 | { |
| 3884 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 3885 | #if CPU(X86_64) |
| 3886 | if ((*ptr & ~15) == PRE_REX) |
| 3887 | ptr++; |
| 3888 | #endif |
| 3889 | switch (*ptr) { |
| 3890 | case OP_MOV_GvEv: |
| 3891 | break; |
| 3892 | case OP_LEA: |
| 3893 | *ptr = OP_MOV_GvEv; |
| 3894 | break; |
| 3895 | default: |
| 3896 | RELEASE_ASSERT_NOT_REACHED(); |
| 3897 | } |
| 3898 | } |
| 3899 | |
| 3900 | static void replaceWithAddressComputation(void* instructionStart) |
| 3901 | { |
| 3902 | uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| 3903 | #if CPU(X86_64) |
| 3904 | if ((*ptr & ~15) == PRE_REX) |
| 3905 | ptr++; |
| 3906 | #endif |
| 3907 | switch (*ptr) { |
| 3908 | case OP_MOV_GvEv: |
| 3909 | *ptr = OP_LEA; |
| 3910 | break; |
| 3911 | case OP_LEA: |
| 3912 | break; |
| 3913 | default: |
| 3914 | RELEASE_ASSERT_NOT_REACHED(); |
| 3915 | } |
| 3916 | } |
| 3917 | |
| 3918 | static unsigned getCallReturnOffset(AssemblerLabel call) |
| 3919 | { |
| 3920 | ASSERT(call.isSet()); |
| 3921 | return call.m_offset; |
| 3922 | } |
| 3923 | |
| 3924 | static void* getRelocatedAddress(void* code, AssemblerLabel label) |
| 3925 | { |
| 3926 | ASSERT(label.isSet()); |
| 3927 | return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.m_offset); |
| 3928 | } |
| 3929 | |
| 3930 | static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b) |
| 3931 | { |
| 3932 | return b.m_offset - a.m_offset; |
| 3933 | } |
| 3934 | |
| 3935 | unsigned debugOffset() { return m_formatter.debugOffset(); } |
| 3936 | |
| 3937 | void nop() |
| 3938 | { |
| 3939 | m_formatter.oneByteOp(OP_NOP); |
| 3940 | } |
| 3941 | |
| 3942 | template <typename CopyFunction> |
| 3943 | static void fillNops(void* base, size_t size, CopyFunction copy) |
| 3944 | { |
| 3945 | UNUSED_PARAM(copy); |
| 3946 | #if CPU(X86_64) |
| 3947 | static const uint8_t nops[10][10] = { |
| 3948 | // nop |
| 3949 | {0x90}, |
| 3950 | // xchg %ax,%ax |
| 3951 | {0x66, 0x90}, |
| 3952 | // nopl (%[re]ax) |
| 3953 | {0x0f, 0x1f, 0x00}, |
| 3954 | // nopl 8(%[re]ax) |
| 3955 | {0x0f, 0x1f, 0x40, 0x08}, |
| 3956 | // nopl 8(%[re]ax,%[re]ax,1) |
| 3957 | {0x0f, 0x1f, 0x44, 0x00, 0x08}, |
| 3958 | // nopw 8(%[re]ax,%[re]ax,1) |
| 3959 | {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x08}, |
| 3960 | // nopl 512(%[re]ax) |
| 3961 | {0x0f, 0x1f, 0x80, 0x00, 0x02, 0x00, 0x00}, |
| 3962 | // nopl 512(%[re]ax,%[re]ax,1) |
| 3963 | {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00}, |
| 3964 | // nopw 512(%[re]ax,%[re]ax,1) |
| 3965 | {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00}, |
| 3966 | // nopw %cs:512(%[re]ax,%[re]ax,1) |
| 3967 | {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00} |
| 3968 | }; |
| 3969 | |
| 3970 | uint8_t* where = reinterpret_cast<uint8_t*>(base); |
| 3971 | while (size) { |
| 3972 | unsigned nopSize = static_cast<unsigned>(std::min<size_t>(size, 15)); |
| 3973 | unsigned numPrefixes = nopSize <= 10 ? 0 : nopSize - 10; |
| 3974 | for (unsigned i = 0; i != numPrefixes; ++i) |
| 3975 | *where++ = 0x66; |
| 3976 | |
| 3977 | unsigned nopRest = nopSize - numPrefixes; |
| 3978 | for (unsigned i = 0; i != nopRest; ++i) |
| 3979 | *where++ = nops[nopRest-1][i]; |
| 3980 | |
| 3981 | size -= nopSize; |
| 3982 | } |
| 3983 | #else |
| 3984 | memset(base, OP_NOP, size); |
| 3985 | #endif |
| 3986 | } |
| 3987 | |
| 3988 | // This is a no-op on x86 |
| 3989 | ALWAYS_INLINE static void cacheFlush(void*, size_t) { } |
| 3990 | |
| 3991 | private: |
| 3992 | |
| 3993 | static void setPointer(void* where, void* value) |
| 3994 | { |
| 3995 | WTF::unalignedStore<void*>(bitwise_cast<void**>(where) - 1, value); |
| 3996 | } |
| 3997 | |
| 3998 | static void setInt32(void* where, int32_t value) |
| 3999 | { |
| 4000 | WTF::unalignedStore<int32_t>(bitwise_cast<int32_t*>(where) - 1, value); |
| 4001 | } |
| 4002 | |
| 4003 | static void setInt8(void* where, int8_t value) |
| 4004 | { |
| 4005 | WTF::unalignedStore<int8_t>(bitwise_cast<int8_t*>(where) - 1, value); |
| 4006 | } |
| 4007 | |
| 4008 | static void setRel32(void* from, void* to) |
| 4009 | { |
| 4010 | intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from); |
| 4011 | ASSERT(offset == static_cast<int32_t>(offset)); |
| 4012 | |
| 4013 | setInt32(from, offset); |
| 4014 | } |
| 4015 | |
| 4016 | class X86InstructionFormatter { |
| 4017 | static const int maxInstructionSize = 16; |
| 4018 | |
| 4019 | public: |
| 4020 | enum ModRmMode { |
| 4021 | ModRmMemoryNoDisp = 0, |
| 4022 | ModRmMemoryDisp8 = 1 << 6, |
| 4023 | ModRmMemoryDisp32 = 2 << 6, |
| 4024 | ModRmRegister = 3 << 6, |
| 4025 | }; |
| 4026 | |
| 4027 | // Legacy prefix bytes: |
| 4028 | // |
| 4029 | // These are emmitted prior to the instruction. |
| 4030 | |
| 4031 | void prefix(OneByteOpcodeID pre) |
| 4032 | { |
| 4033 | m_buffer.putByte(pre); |
| 4034 | } |
| 4035 | |
| 4036 | #if CPU(X86_64) |
| 4037 | // Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed). |
| 4038 | static bool byteRegRequiresRex(int reg) |
| 4039 | { |
| 4040 | static_assert(X86Registers::esp == 4, "Necessary condition for OR-masking" ); |
| 4041 | return (reg >= X86Registers::esp); |
| 4042 | } |
| 4043 | static bool byteRegRequiresRex(int a, int b) |
| 4044 | { |
| 4045 | return byteRegRequiresRex(a | b); |
| 4046 | } |
| 4047 | |
| 4048 | // Registers r8 & above require a REX prefixe. |
| 4049 | static bool regRequiresRex(int reg) |
| 4050 | { |
| 4051 | static_assert(X86Registers::r8 == 8, "Necessary condition for OR-masking" ); |
| 4052 | return (reg >= X86Registers::r8); |
| 4053 | } |
| 4054 | static bool regRequiresRex(int a, int b) |
| 4055 | { |
| 4056 | return regRequiresRex(a | b); |
| 4057 | } |
| 4058 | static bool regRequiresRex(int a, int b, int c) |
| 4059 | { |
| 4060 | return regRequiresRex(a | b | c); |
| 4061 | } |
| 4062 | #else |
| 4063 | static bool byteRegRequiresRex(int) { return false; } |
| 4064 | static bool byteRegRequiresRex(int, int) { return false; } |
| 4065 | static bool regRequiresRex(int) { return false; } |
| 4066 | static bool regRequiresRex(int, int) { return false; } |
| 4067 | static bool regRequiresRex(int, int, int) { return false; } |
| 4068 | #endif |
| 4069 | |
| 4070 | class SingleInstructionBufferWriter : public AssemblerBuffer::LocalWriter { |
| 4071 | public: |
| 4072 | SingleInstructionBufferWriter(AssemblerBuffer& buffer) |
| 4073 | : AssemblerBuffer::LocalWriter(buffer, maxInstructionSize) |
| 4074 | { |
| 4075 | } |
| 4076 | |
| 4077 | // Internals; ModRm and REX formatters. |
| 4078 | |
| 4079 | static constexpr RegisterID noBase = X86Registers::ebp; |
| 4080 | static constexpr RegisterID hasSib = X86Registers::esp; |
| 4081 | static constexpr RegisterID noIndex = X86Registers::esp; |
| 4082 | |
| 4083 | #if CPU(X86_64) |
| 4084 | static constexpr RegisterID noBase2 = X86Registers::r13; |
| 4085 | static constexpr RegisterID hasSib2 = X86Registers::r12; |
| 4086 | |
| 4087 | // Format a REX prefix byte. |
| 4088 | ALWAYS_INLINE void emitRex(bool w, int r, int x, int b) |
| 4089 | { |
| 4090 | ASSERT(r >= 0); |
| 4091 | ASSERT(x >= 0); |
| 4092 | ASSERT(b >= 0); |
| 4093 | putByteUnchecked(PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3)); |
| 4094 | } |
| 4095 | |
| 4096 | // Used to plant a REX byte with REX.w set (for 64-bit operations). |
| 4097 | ALWAYS_INLINE void emitRexW(int r, int x, int b) |
| 4098 | { |
| 4099 | emitRex(true, r, x, b); |
| 4100 | } |
| 4101 | |
| 4102 | // Used for operations with byte operands - use byteRegRequiresRex() to check register operands, |
| 4103 | // regRequiresRex() to check other registers (i.e. address base & index). |
| 4104 | ALWAYS_INLINE void emitRexIf(bool condition, int r, int x, int b) |
| 4105 | { |
| 4106 | if (condition) |
| 4107 | emitRex(false, r, x, b); |
| 4108 | } |
| 4109 | |
| 4110 | // Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above). |
| 4111 | ALWAYS_INLINE void emitRexIfNeeded(int r, int x, int b) |
| 4112 | { |
| 4113 | emitRexIf(regRequiresRex(r, x, b), r, x, b); |
| 4114 | } |
| 4115 | #else |
| 4116 | // No REX prefix bytes on 32-bit x86. |
| 4117 | ALWAYS_INLINE void emitRexIf(bool, int, int, int) { } |
| 4118 | ALWAYS_INLINE void emitRexIfNeeded(int, int, int) { } |
| 4119 | #endif |
| 4120 | |
| 4121 | ALWAYS_INLINE void putModRm(ModRmMode mode, int reg, RegisterID rm) |
| 4122 | { |
| 4123 | putByteUnchecked(mode | ((reg & 7) << 3) | (rm & 7)); |
| 4124 | } |
| 4125 | |
| 4126 | ALWAYS_INLINE void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale) |
| 4127 | { |
| 4128 | ASSERT(mode != ModRmRegister); |
| 4129 | |
| 4130 | putModRm(mode, reg, hasSib); |
| 4131 | putByteUnchecked((scale << 6) | ((index & 7) << 3) | (base & 7)); |
| 4132 | } |
| 4133 | |
| 4134 | ALWAYS_INLINE void registerModRM(int reg, RegisterID rm) |
| 4135 | { |
| 4136 | putModRm(ModRmRegister, reg, rm); |
| 4137 | } |
| 4138 | |
| 4139 | ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, int offset) |
| 4140 | { |
| 4141 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| 4142 | #if CPU(X86_64) |
| 4143 | if ((base == hasSib) || (base == hasSib2)) { |
| 4144 | #else |
| 4145 | if (base == hasSib) { |
| 4146 | #endif |
| 4147 | if (!offset) // No need to check if the base is noBase, since we know it is hasSib! |
| 4148 | putModRmSib(ModRmMemoryNoDisp, reg, base, noIndex, 0); |
| 4149 | else if (CAN_SIGN_EXTEND_8_32(offset)) { |
| 4150 | putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0); |
| 4151 | putByteUnchecked(offset); |
| 4152 | } else { |
| 4153 | putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); |
| 4154 | putIntUnchecked(offset); |
| 4155 | } |
| 4156 | } else { |
| 4157 | #if CPU(X86_64) |
| 4158 | if (!offset && (base != noBase) && (base != noBase2)) |
| 4159 | #else |
| 4160 | if (!offset && (base != noBase)) |
| 4161 | #endif |
| 4162 | putModRm(ModRmMemoryNoDisp, reg, base); |
| 4163 | else if (CAN_SIGN_EXTEND_8_32(offset)) { |
| 4164 | putModRm(ModRmMemoryDisp8, reg, base); |
| 4165 | putByteUnchecked(offset); |
| 4166 | } else { |
| 4167 | putModRm(ModRmMemoryDisp32, reg, base); |
| 4168 | putIntUnchecked(offset); |
| 4169 | } |
| 4170 | } |
| 4171 | } |
| 4172 | |
| 4173 | ALWAYS_INLINE void memoryModRM_disp8(int reg, RegisterID base, int offset) |
| 4174 | { |
| 4175 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| 4176 | ASSERT(CAN_SIGN_EXTEND_8_32(offset)); |
| 4177 | #if CPU(X86_64) |
| 4178 | if ((base == hasSib) || (base == hasSib2)) { |
| 4179 | #else |
| 4180 | if (base == hasSib) { |
| 4181 | #endif |
| 4182 | putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0); |
| 4183 | putByteUnchecked(offset); |
| 4184 | } else { |
| 4185 | putModRm(ModRmMemoryDisp8, reg, base); |
| 4186 | putByteUnchecked(offset); |
| 4187 | } |
| 4188 | } |
| 4189 | |
| 4190 | ALWAYS_INLINE void memoryModRM_disp32(int reg, RegisterID base, int offset) |
| 4191 | { |
| 4192 | // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| 4193 | #if CPU(X86_64) |
| 4194 | if ((base == hasSib) || (base == hasSib2)) { |
| 4195 | #else |
| 4196 | if (base == hasSib) { |
| 4197 | #endif |
| 4198 | putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); |
| 4199 | putIntUnchecked(offset); |
| 4200 | } else { |
| 4201 | putModRm(ModRmMemoryDisp32, reg, base); |
| 4202 | putIntUnchecked(offset); |
| 4203 | } |
| 4204 | } |
| 4205 | |
| 4206 | ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 4207 | { |
| 4208 | ASSERT(index != noIndex); |
| 4209 | |
| 4210 | #if CPU(X86_64) |
| 4211 | if (!offset && (base != noBase) && (base != noBase2)) |
| 4212 | #else |
| 4213 | if (!offset && (base != noBase)) |
| 4214 | #endif |
| 4215 | putModRmSib(ModRmMemoryNoDisp, reg, base, index, scale); |
| 4216 | else if (CAN_SIGN_EXTEND_8_32(offset)) { |
| 4217 | putModRmSib(ModRmMemoryDisp8, reg, base, index, scale); |
| 4218 | putByteUnchecked(offset); |
| 4219 | } else { |
| 4220 | putModRmSib(ModRmMemoryDisp32, reg, base, index, scale); |
| 4221 | putIntUnchecked(offset); |
| 4222 | } |
| 4223 | } |
| 4224 | |
| 4225 | ALWAYS_INLINE void memoryModRMAddr(int reg, uint32_t address) |
| 4226 | { |
| 4227 | #if CPU(X86_64) |
| 4228 | putModRmSib(ModRmMemoryNoDisp, reg, noBase, noIndex, 0); |
| 4229 | #else |
| 4230 | // noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32! |
| 4231 | putModRm(ModRmMemoryNoDisp, reg, noBase); |
| 4232 | #endif |
| 4233 | putIntUnchecked(address); |
| 4234 | } |
| 4235 | |
| 4236 | ALWAYS_INLINE void twoBytesVex(OneByteOpcodeID simdPrefix, RegisterID inOpReg, RegisterID r) |
| 4237 | { |
| 4238 | putByteUnchecked(VexPrefix::TwoBytes); |
| 4239 | |
| 4240 | uint8_t secondByte = vexEncodeSimdPrefix(simdPrefix); |
| 4241 | secondByte |= (~inOpReg & 0xf) << 3; |
| 4242 | secondByte |= !regRequiresRex(r) << 7; |
| 4243 | putByteUnchecked(secondByte); |
| 4244 | } |
| 4245 | |
| 4246 | ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, RegisterID r, RegisterID inOpReg, RegisterID x, RegisterID b) |
| 4247 | { |
| 4248 | putByteUnchecked(VexPrefix::ThreeBytes); |
| 4249 | |
| 4250 | uint8_t secondByte = static_cast<uint8_t>(impliedBytes); |
| 4251 | secondByte |= !regRequiresRex(r) << 7; |
| 4252 | secondByte |= !regRequiresRex(x) << 6; |
| 4253 | secondByte |= !regRequiresRex(b) << 5; |
| 4254 | putByteUnchecked(secondByte); |
| 4255 | |
| 4256 | uint8_t thirdByte = vexEncodeSimdPrefix(simdPrefix); |
| 4257 | thirdByte |= (~inOpReg & 0xf) << 3; |
| 4258 | putByteUnchecked(thirdByte); |
| 4259 | } |
| 4260 | |
| 4261 | ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, RegisterID r, RegisterID inOpReg, RegisterID b) |
| 4262 | { |
| 4263 | putByteUnchecked(VexPrefix::ThreeBytes); |
| 4264 | |
| 4265 | uint8_t secondByte = static_cast<uint8_t>(impliedBytes); |
| 4266 | secondByte |= !regRequiresRex(r) << 7; |
| 4267 | secondByte |= 1 << 6; // REX.X |
| 4268 | secondByte |= !regRequiresRex(b) << 5; |
| 4269 | putByteUnchecked(secondByte); |
| 4270 | |
| 4271 | uint8_t thirdByte = vexEncodeSimdPrefix(simdPrefix); |
| 4272 | thirdByte |= (~inOpReg & 0xf) << 3; |
| 4273 | putByteUnchecked(thirdByte); |
| 4274 | } |
| 4275 | private: |
| 4276 | uint8_t vexEncodeSimdPrefix(OneByteOpcodeID simdPrefix) |
| 4277 | { |
| 4278 | switch (simdPrefix) { |
| 4279 | case 0x66: |
| 4280 | return 1; |
| 4281 | case 0xF3: |
| 4282 | return 2; |
| 4283 | case 0xF2: |
| 4284 | return 3; |
| 4285 | default: |
| 4286 | RELEASE_ASSERT_NOT_REACHED(); |
| 4287 | } |
| 4288 | return 0; |
| 4289 | } |
| 4290 | |
| 4291 | }; |
| 4292 | |
| 4293 | // Word-sized operands / no operand instruction formatters. |
| 4294 | // |
| 4295 | // In addition to the opcode, the following operand permutations are supported: |
| 4296 | // * None - instruction takes no operands. |
| 4297 | // * One register - the low three bits of the RegisterID are added into the opcode. |
| 4298 | // * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place). |
| 4299 | // * Three argument ModRM - a register, and a register and an offset describing a memory operand. |
| 4300 | // * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand. |
| 4301 | // |
| 4302 | // For 32-bit x86 targets, the address operand may also be provided as a void*. |
| 4303 | // On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used. |
| 4304 | // |
| 4305 | // The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F). |
| 4306 | |
| 4307 | void oneByteOp(OneByteOpcodeID opcode) |
| 4308 | { |
| 4309 | SingleInstructionBufferWriter writer(m_buffer); |
| 4310 | writer.putByteUnchecked(opcode); |
| 4311 | } |
| 4312 | |
| 4313 | void oneByteOp(OneByteOpcodeID opcode, RegisterID reg) |
| 4314 | { |
| 4315 | SingleInstructionBufferWriter writer(m_buffer); |
| 4316 | writer.emitRexIfNeeded(0, 0, reg); |
| 4317 | writer.putByteUnchecked(opcode + (reg & 7)); |
| 4318 | } |
| 4319 | |
| 4320 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| 4321 | { |
| 4322 | SingleInstructionBufferWriter writer(m_buffer); |
| 4323 | writer.emitRexIfNeeded(reg, 0, rm); |
| 4324 | writer.putByteUnchecked(opcode); |
| 4325 | writer.registerModRM(reg, rm); |
| 4326 | } |
| 4327 | |
| 4328 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4329 | { |
| 4330 | SingleInstructionBufferWriter writer(m_buffer); |
| 4331 | writer.emitRexIfNeeded(reg, 0, base); |
| 4332 | writer.putByteUnchecked(opcode); |
| 4333 | writer.memoryModRM(reg, base, offset); |
| 4334 | } |
| 4335 | |
| 4336 | void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4337 | { |
| 4338 | SingleInstructionBufferWriter writer(m_buffer); |
| 4339 | writer.emitRexIfNeeded(reg, 0, base); |
| 4340 | writer.putByteUnchecked(opcode); |
| 4341 | writer.memoryModRM_disp32(reg, base, offset); |
| 4342 | } |
| 4343 | |
| 4344 | void oneByteOp_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4345 | { |
| 4346 | SingleInstructionBufferWriter writer(m_buffer); |
| 4347 | writer.emitRexIfNeeded(reg, 0, base); |
| 4348 | writer.putByteUnchecked(opcode); |
| 4349 | writer.memoryModRM_disp8(reg, base, offset); |
| 4350 | } |
| 4351 | |
| 4352 | void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 4353 | { |
| 4354 | SingleInstructionBufferWriter writer(m_buffer); |
| 4355 | writer.emitRexIfNeeded(reg, index, base); |
| 4356 | writer.putByteUnchecked(opcode); |
| 4357 | writer.memoryModRM(reg, base, index, scale, offset); |
| 4358 | } |
| 4359 | |
| 4360 | void oneByteOpAddr(OneByteOpcodeID opcode, int reg, uint32_t address) |
| 4361 | { |
| 4362 | SingleInstructionBufferWriter writer(m_buffer); |
| 4363 | writer.putByteUnchecked(opcode); |
| 4364 | writer.memoryModRMAddr(reg, address); |
| 4365 | } |
| 4366 | |
| 4367 | void twoByteOp(TwoByteOpcodeID opcode) |
| 4368 | { |
| 4369 | SingleInstructionBufferWriter writer(m_buffer); |
| 4370 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4371 | writer.putByteUnchecked(opcode); |
| 4372 | } |
| 4373 | |
| 4374 | void twoByteOp(TwoByteOpcodeID opcode, int reg) |
| 4375 | { |
| 4376 | SingleInstructionBufferWriter writer(m_buffer); |
| 4377 | writer.emitRexIfNeeded(0, 0, reg); |
| 4378 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4379 | writer.putByteUnchecked(opcode + (reg & 7)); |
| 4380 | } |
| 4381 | |
| 4382 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm) |
| 4383 | { |
| 4384 | SingleInstructionBufferWriter writer(m_buffer); |
| 4385 | writer.emitRexIfNeeded(reg, 0, rm); |
| 4386 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4387 | writer.putByteUnchecked(opcode); |
| 4388 | writer.registerModRM(reg, rm); |
| 4389 | } |
| 4390 | |
| 4391 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4392 | { |
| 4393 | SingleInstructionBufferWriter writer(m_buffer); |
| 4394 | writer.emitRexIfNeeded(reg, 0, base); |
| 4395 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4396 | writer.putByteUnchecked(opcode); |
| 4397 | writer.memoryModRM(reg, base, offset); |
| 4398 | } |
| 4399 | |
| 4400 | void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 4401 | { |
| 4402 | SingleInstructionBufferWriter writer(m_buffer); |
| 4403 | writer.emitRexIfNeeded(reg, index, base); |
| 4404 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4405 | writer.putByteUnchecked(opcode); |
| 4406 | writer.memoryModRM(reg, base, index, scale, offset); |
| 4407 | } |
| 4408 | |
| 4409 | void twoByteOpAddr(TwoByteOpcodeID opcode, int reg, uint32_t address) |
| 4410 | { |
| 4411 | SingleInstructionBufferWriter writer(m_buffer); |
| 4412 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4413 | writer.putByteUnchecked(opcode); |
| 4414 | writer.memoryModRMAddr(reg, address); |
| 4415 | } |
| 4416 | |
| 4417 | void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b) |
| 4418 | { |
| 4419 | SingleInstructionBufferWriter writer(m_buffer); |
| 4420 | if (regRequiresRex(b)) |
| 4421 | writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, b); |
| 4422 | else |
| 4423 | writer.twoBytesVex(simdPrefix, a, dest); |
| 4424 | writer.putByteUnchecked(opcode); |
| 4425 | writer.registerModRM(dest, b); |
| 4426 | } |
| 4427 | |
| 4428 | void vexNdsLigWigCommutativeTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b) |
| 4429 | { |
| 4430 | // Since this is a commutative operation, we can try switching the arguments. |
| 4431 | if (regRequiresRex(b)) |
| 4432 | std::swap(a, b); |
| 4433 | vexNdsLigWigTwoByteOp(simdPrefix, opcode, dest, a, b); |
| 4434 | } |
| 4435 | |
| 4436 | void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID base, int offset) |
| 4437 | { |
| 4438 | SingleInstructionBufferWriter writer(m_buffer); |
| 4439 | if (regRequiresRex(base)) |
| 4440 | writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, base); |
| 4441 | else |
| 4442 | writer.twoBytesVex(simdPrefix, a, dest); |
| 4443 | writer.putByteUnchecked(opcode); |
| 4444 | writer.memoryModRM(dest, base, offset); |
| 4445 | } |
| 4446 | |
| 4447 | void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, int offset, RegisterID base, RegisterID index, int scale) |
| 4448 | { |
| 4449 | SingleInstructionBufferWriter writer(m_buffer); |
| 4450 | if (regRequiresRex(base, index)) |
| 4451 | writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, index, base); |
| 4452 | else |
| 4453 | writer.twoBytesVex(simdPrefix, a, dest); |
| 4454 | writer.putByteUnchecked(opcode); |
| 4455 | writer.memoryModRM(dest, base, index, scale, offset); |
| 4456 | } |
| 4457 | |
| 4458 | void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode) |
| 4459 | { |
| 4460 | SingleInstructionBufferWriter writer(m_buffer); |
| 4461 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4462 | writer.putByteUnchecked(twoBytePrefix); |
| 4463 | writer.putByteUnchecked(opcode); |
| 4464 | } |
| 4465 | |
| 4466 | void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID rm) |
| 4467 | { |
| 4468 | SingleInstructionBufferWriter writer(m_buffer); |
| 4469 | writer.emitRexIfNeeded(reg, 0, rm); |
| 4470 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4471 | writer.putByteUnchecked(twoBytePrefix); |
| 4472 | writer.putByteUnchecked(opcode); |
| 4473 | writer.registerModRM(reg, rm); |
| 4474 | } |
| 4475 | |
| 4476 | void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID base, int displacement) |
| 4477 | { |
| 4478 | SingleInstructionBufferWriter writer(m_buffer); |
| 4479 | writer.emitRexIfNeeded(reg, 0, base); |
| 4480 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4481 | writer.putByteUnchecked(twoBytePrefix); |
| 4482 | writer.putByteUnchecked(opcode); |
| 4483 | writer.memoryModRM(reg, base, displacement); |
| 4484 | } |
| 4485 | |
| 4486 | #if CPU(X86_64) |
| 4487 | // Quad-word-sized operands: |
| 4488 | // |
| 4489 | // Used to format 64-bit operantions, planting a REX.w prefix. |
| 4490 | // When planting d64 or f64 instructions, not requiring a REX.w prefix, |
| 4491 | // the normal (non-'64'-postfixed) formatters should be used. |
| 4492 | |
| 4493 | void oneByteOp64(OneByteOpcodeID opcode) |
| 4494 | { |
| 4495 | SingleInstructionBufferWriter writer(m_buffer); |
| 4496 | writer.emitRexW(0, 0, 0); |
| 4497 | writer.putByteUnchecked(opcode); |
| 4498 | } |
| 4499 | |
| 4500 | void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg) |
| 4501 | { |
| 4502 | SingleInstructionBufferWriter writer(m_buffer); |
| 4503 | writer.emitRexW(0, 0, reg); |
| 4504 | writer.putByteUnchecked(opcode + (reg & 7)); |
| 4505 | } |
| 4506 | |
| 4507 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| 4508 | { |
| 4509 | SingleInstructionBufferWriter writer(m_buffer); |
| 4510 | writer.emitRexW(reg, 0, rm); |
| 4511 | writer.putByteUnchecked(opcode); |
| 4512 | writer.registerModRM(reg, rm); |
| 4513 | } |
| 4514 | |
| 4515 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4516 | { |
| 4517 | SingleInstructionBufferWriter writer(m_buffer); |
| 4518 | writer.emitRexW(reg, 0, base); |
| 4519 | writer.putByteUnchecked(opcode); |
| 4520 | writer.memoryModRM(reg, base, offset); |
| 4521 | } |
| 4522 | |
| 4523 | void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4524 | { |
| 4525 | SingleInstructionBufferWriter writer(m_buffer); |
| 4526 | writer.emitRexW(reg, 0, base); |
| 4527 | writer.putByteUnchecked(opcode); |
| 4528 | writer.memoryModRM_disp32(reg, base, offset); |
| 4529 | } |
| 4530 | |
| 4531 | void oneByteOp64_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4532 | { |
| 4533 | SingleInstructionBufferWriter writer(m_buffer); |
| 4534 | writer.emitRexW(reg, 0, base); |
| 4535 | writer.putByteUnchecked(opcode); |
| 4536 | writer.memoryModRM_disp8(reg, base, offset); |
| 4537 | } |
| 4538 | |
| 4539 | void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 4540 | { |
| 4541 | SingleInstructionBufferWriter writer(m_buffer); |
| 4542 | writer.emitRexW(reg, index, base); |
| 4543 | writer.putByteUnchecked(opcode); |
| 4544 | writer.memoryModRM(reg, base, index, scale, offset); |
| 4545 | } |
| 4546 | |
| 4547 | void oneByteOp64Addr(OneByteOpcodeID opcode, int reg, uint32_t address) |
| 4548 | { |
| 4549 | SingleInstructionBufferWriter writer(m_buffer); |
| 4550 | writer.emitRexW(reg, 0, 0); |
| 4551 | writer.putByteUnchecked(opcode); |
| 4552 | writer.memoryModRMAddr(reg, address); |
| 4553 | } |
| 4554 | |
| 4555 | void twoByteOp64(TwoByteOpcodeID opcode, int reg) |
| 4556 | { |
| 4557 | SingleInstructionBufferWriter writer(m_buffer); |
| 4558 | writer.emitRexW(0, 0, reg); |
| 4559 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4560 | writer.putByteUnchecked(opcode + (reg & 7)); |
| 4561 | } |
| 4562 | |
| 4563 | void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm) |
| 4564 | { |
| 4565 | SingleInstructionBufferWriter writer(m_buffer); |
| 4566 | writer.emitRexW(reg, 0, rm); |
| 4567 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4568 | writer.putByteUnchecked(opcode); |
| 4569 | writer.registerModRM(reg, rm); |
| 4570 | } |
| 4571 | |
| 4572 | void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4573 | { |
| 4574 | SingleInstructionBufferWriter writer(m_buffer); |
| 4575 | writer.emitRexW(reg, 0, base); |
| 4576 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4577 | writer.putByteUnchecked(opcode); |
| 4578 | writer.memoryModRM(reg, base, offset); |
| 4579 | } |
| 4580 | |
| 4581 | void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 4582 | { |
| 4583 | SingleInstructionBufferWriter writer(m_buffer); |
| 4584 | writer.emitRexW(reg, index, base); |
| 4585 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4586 | writer.putByteUnchecked(opcode); |
| 4587 | writer.memoryModRM(reg, base, index, scale, offset); |
| 4588 | } |
| 4589 | #endif |
| 4590 | |
| 4591 | // Byte-operands: |
| 4592 | // |
| 4593 | // These methods format byte operations. Byte operations differ from the normal |
| 4594 | // formatters in the circumstances under which they will decide to emit REX prefixes. |
| 4595 | // These should be used where any register operand signifies a byte register. |
| 4596 | // |
| 4597 | // The disctinction is due to the handling of register numbers in the range 4..7 on |
| 4598 | // x86-64. These register numbers may either represent the second byte of the first |
| 4599 | // four registers (ah..bh) or the first byte of the second four registers (spl..dil). |
| 4600 | // |
| 4601 | // Since ah..bh cannot be used in all permutations of operands (specifically cannot |
| 4602 | // be accessed where a REX prefix is present), these are likely best treated as |
| 4603 | // deprecated. In order to ensure the correct registers spl..dil are selected a |
| 4604 | // REX prefix will be emitted for any byte register operand in the range 4..15. |
| 4605 | // |
| 4606 | // These formatters may be used in instructions where a mix of operand sizes, in which |
| 4607 | // case an unnecessary REX will be emitted, for example: |
| 4608 | // movzbl %al, %edi |
| 4609 | // In this case a REX will be planted since edi is 7 (and were this a byte operand |
| 4610 | // a REX would be required to specify dil instead of bh). Unneeded REX prefixes will |
| 4611 | // be silently ignored by the processor. |
| 4612 | // |
| 4613 | // Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex() |
| 4614 | // is provided to check byte register operands. |
| 4615 | |
| 4616 | void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) |
| 4617 | { |
| 4618 | SingleInstructionBufferWriter writer(m_buffer); |
| 4619 | writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); |
| 4620 | writer.putByteUnchecked(opcode); |
| 4621 | writer.registerModRM(groupOp, rm); |
| 4622 | } |
| 4623 | |
| 4624 | void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| 4625 | { |
| 4626 | SingleInstructionBufferWriter writer(m_buffer); |
| 4627 | writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm); |
| 4628 | writer.putByteUnchecked(opcode); |
| 4629 | writer.registerModRM(reg, rm); |
| 4630 | } |
| 4631 | |
| 4632 | void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4633 | { |
| 4634 | SingleInstructionBufferWriter writer(m_buffer); |
| 4635 | writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base); |
| 4636 | writer.putByteUnchecked(opcode); |
| 4637 | writer.memoryModRM(reg, base, offset); |
| 4638 | } |
| 4639 | |
| 4640 | void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 4641 | { |
| 4642 | SingleInstructionBufferWriter writer(m_buffer); |
| 4643 | writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base); |
| 4644 | writer.putByteUnchecked(opcode); |
| 4645 | writer.memoryModRM(reg, base, index, scale, offset); |
| 4646 | } |
| 4647 | |
| 4648 | void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm) |
| 4649 | { |
| 4650 | SingleInstructionBufferWriter writer(m_buffer); |
| 4651 | writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm); |
| 4652 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4653 | writer.putByteUnchecked(opcode); |
| 4654 | writer.registerModRM(reg, rm); |
| 4655 | } |
| 4656 | |
| 4657 | void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) |
| 4658 | { |
| 4659 | SingleInstructionBufferWriter writer(m_buffer); |
| 4660 | writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); |
| 4661 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4662 | writer.putByteUnchecked(opcode); |
| 4663 | writer.registerModRM(groupOp, rm); |
| 4664 | } |
| 4665 | |
| 4666 | void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| 4667 | { |
| 4668 | SingleInstructionBufferWriter writer(m_buffer); |
| 4669 | writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base); |
| 4670 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4671 | writer.putByteUnchecked(opcode); |
| 4672 | writer.memoryModRM(reg, base, offset); |
| 4673 | } |
| 4674 | |
| 4675 | void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| 4676 | { |
| 4677 | SingleInstructionBufferWriter writer(m_buffer); |
| 4678 | writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base); |
| 4679 | writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| 4680 | writer.putByteUnchecked(opcode); |
| 4681 | writer.memoryModRM(reg, base, index, scale, offset); |
| 4682 | } |
| 4683 | |
| 4684 | // Immediates: |
| 4685 | // |
| 4686 | // An immedaite should be appended where appropriate after an op has been emitted. |
| 4687 | // The writes are unchecked since the opcode formatters above will have ensured space. |
| 4688 | |
| 4689 | void immediate8(int imm) |
| 4690 | { |
| 4691 | m_buffer.putByteUnchecked(imm); |
| 4692 | } |
| 4693 | |
| 4694 | void immediate16(int imm) |
| 4695 | { |
| 4696 | m_buffer.putShortUnchecked(imm); |
| 4697 | } |
| 4698 | |
| 4699 | void immediate32(int imm) |
| 4700 | { |
| 4701 | m_buffer.putIntUnchecked(imm); |
| 4702 | } |
| 4703 | |
| 4704 | void immediate64(int64_t imm) |
| 4705 | { |
| 4706 | m_buffer.putInt64Unchecked(imm); |
| 4707 | } |
| 4708 | |
| 4709 | AssemblerLabel immediateRel32() |
| 4710 | { |
| 4711 | m_buffer.putIntUnchecked(0); |
| 4712 | return label(); |
| 4713 | } |
| 4714 | |
| 4715 | // Administrative methods: |
| 4716 | |
| 4717 | size_t codeSize() const { return m_buffer.codeSize(); } |
| 4718 | AssemblerLabel label() const { return m_buffer.label(); } |
| 4719 | bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); } |
| 4720 | void* data() const { return m_buffer.data(); } |
| 4721 | |
| 4722 | unsigned debugOffset() { return m_buffer.debugOffset(); } |
| 4723 | |
| 4724 | public: |
| 4725 | AssemblerBuffer m_buffer; |
| 4726 | } m_formatter; |
| 4727 | int m_indexOfLastWatchpoint; |
| 4728 | int m_indexOfTailOfLastWatchpoint; |
| 4729 | }; |
| 4730 | |
| 4731 | } // namespace JSC |
| 4732 | |
| 4733 | #endif // ENABLE(ASSEMBLER) && CPU(X86) |
| 4734 | |