| 1 | /* |
| 2 | * Copyright (C) 2015 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| 14 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| 15 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| 17 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | * THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | |
| 28 | #include <wtf/BloomFilter.h> |
| 29 | #include <wtf/RandomNumber.h> |
| 30 | #include <wtf/SHA1.h> |
| 31 | |
| 32 | namespace TestWebKitAPI { |
| 33 | |
| 34 | static Vector<unsigned> generateRandomHashes(size_t hashCount) |
| 35 | { |
| 36 | Vector<unsigned> hashes; |
| 37 | for (unsigned i = 0; i < hashCount; ++i) |
| 38 | hashes.append(static_cast<unsigned>(randomNumber() * std::numeric_limits<unsigned>::max())); |
| 39 | return hashes; |
| 40 | } |
| 41 | |
| 42 | static Vector<SHA1::Digest> generateRandomDigests(size_t hashCount) |
| 43 | { |
| 44 | Vector<SHA1::Digest> hashes; |
| 45 | SHA1 sha1; |
| 46 | for (unsigned i = 0; i < hashCount; ++i) { |
| 47 | double random = randomNumber(); |
| 48 | sha1.addBytes(reinterpret_cast<uint8_t*>(&random), sizeof(double)); |
| 49 | SHA1::Digest digest; |
| 50 | sha1.computeHash(digest); |
| 51 | hashes.append(digest); |
| 52 | } |
| 53 | return hashes; |
| 54 | } |
| 55 | |
| 56 | TEST(WTF_BloomFilter, Basic) |
| 57 | { |
| 58 | const unsigned hashCount = 1000; |
| 59 | auto hashes = generateRandomHashes(hashCount); |
| 60 | |
| 61 | BloomFilter<16> filter; |
| 62 | for (auto hash : hashes) |
| 63 | filter.add(hash); |
| 64 | |
| 65 | for (auto hash : hashes) |
| 66 | EXPECT_TRUE(filter.mayContain(hash)); |
| 67 | |
| 68 | auto moreHashes = generateRandomHashes(hashCount); |
| 69 | unsigned mayContainCount = 0; |
| 70 | for (auto hash : moreHashes) |
| 71 | mayContainCount += filter.mayContain(hash) ? 1 : 0; |
| 72 | // False positive rate is ~0.09% so this should always be true. |
| 73 | EXPECT_TRUE(mayContainCount < hashCount / 10); |
| 74 | |
| 75 | for (auto hash : moreHashes) |
| 76 | filter.add(hash); |
| 77 | |
| 78 | for (auto hash : hashes) |
| 79 | EXPECT_TRUE(filter.mayContain(hash)); |
| 80 | for (auto hash : moreHashes) |
| 81 | EXPECT_TRUE(filter.mayContain(hash)); |
| 82 | } |
| 83 | |
| 84 | TEST(WTF_BloomFilter, BasicDigest) |
| 85 | { |
| 86 | const unsigned hashCount = 1000; |
| 87 | auto hashes = generateRandomDigests(hashCount); |
| 88 | |
| 89 | BloomFilter<20> filter; |
| 90 | for (auto hash : hashes) |
| 91 | filter.add(hash); |
| 92 | |
| 93 | for (auto hash : hashes) |
| 94 | EXPECT_TRUE(filter.mayContain(hash)); |
| 95 | |
| 96 | auto moreHashes = generateRandomDigests(hashCount); |
| 97 | unsigned mayContainCount = 0; |
| 98 | for (auto hash : moreHashes) |
| 99 | mayContainCount += filter.mayContain(hash) ? 1 : 0; |
| 100 | // False positive rate is ~0.000004% so this should always be true. |
| 101 | EXPECT_TRUE(mayContainCount < hashCount / 10); |
| 102 | |
| 103 | for (auto hash : moreHashes) |
| 104 | filter.add(hash); |
| 105 | |
| 106 | for (auto hash : hashes) |
| 107 | EXPECT_TRUE(filter.mayContain(hash)); |
| 108 | for (auto hash : moreHashes) |
| 109 | EXPECT_TRUE(filter.mayContain(hash)); |
| 110 | } |
| 111 | |
| 112 | TEST(WTF_BloomFilter, BasicCounting) |
| 113 | { |
| 114 | const unsigned hashCount = 1000; |
| 115 | auto hashes = generateRandomHashes(hashCount); |
| 116 | |
| 117 | CountingBloomFilter<16> filter; |
| 118 | for (auto hash : hashes) |
| 119 | filter.add(hash); |
| 120 | |
| 121 | for (auto hash : hashes) |
| 122 | EXPECT_TRUE(filter.mayContain(hash)); |
| 123 | |
| 124 | for (auto hash : hashes) |
| 125 | filter.add(hash); |
| 126 | |
| 127 | for (auto hash : hashes) |
| 128 | EXPECT_TRUE(filter.mayContain(hash)); |
| 129 | |
| 130 | for (auto hash : hashes) |
| 131 | filter.remove(hash); |
| 132 | |
| 133 | for (auto hash : hashes) |
| 134 | EXPECT_TRUE(filter.mayContain(hash)); |
| 135 | |
| 136 | auto moreHashes = generateRandomHashes(hashCount); |
| 137 | unsigned mayContainCount = 0; |
| 138 | for (auto hash : moreHashes) |
| 139 | mayContainCount += filter.mayContain(hash) ? 1 : 0; |
| 140 | // False positive rate is ~0.09% so this should always be true. |
| 141 | EXPECT_TRUE(mayContainCount < hashCount / 10); |
| 142 | |
| 143 | for (auto hash : moreHashes) |
| 144 | filter.add(hash); |
| 145 | for (auto hash : hashes) |
| 146 | filter.remove(hash); |
| 147 | |
| 148 | for (auto hash : moreHashes) |
| 149 | EXPECT_TRUE(filter.mayContain(hash)); |
| 150 | |
| 151 | for (auto hash : moreHashes) |
| 152 | filter.remove(hash); |
| 153 | |
| 154 | for (auto hash : hashes) |
| 155 | EXPECT_TRUE(!filter.mayContain(hash)); |
| 156 | for (auto hash : moreHashes) |
| 157 | EXPECT_TRUE(!filter.mayContain(hash)); |
| 158 | } |
| 159 | |
| 160 | TEST(WTF_BloomFilter, Clear) |
| 161 | { |
| 162 | const unsigned hashCount = 1000; |
| 163 | auto hashes = generateRandomHashes(hashCount); |
| 164 | |
| 165 | BloomFilter<16> filter; |
| 166 | for (auto hash : hashes) |
| 167 | filter.add(hash); |
| 168 | |
| 169 | filter.clear(); |
| 170 | |
| 171 | for (auto hash : hashes) |
| 172 | EXPECT_TRUE(!filter.mayContain(hash)); |
| 173 | } |
| 174 | |
| 175 | TEST(WTF_BloomFilter, ClearCounting) |
| 176 | { |
| 177 | const unsigned hashCount = 1000; |
| 178 | auto hashes = generateRandomHashes(hashCount); |
| 179 | |
| 180 | CountingBloomFilter<16> filter; |
| 181 | for (auto hash : hashes) |
| 182 | filter.add(hash); |
| 183 | for (auto hash : hashes) |
| 184 | filter.add(hash); |
| 185 | |
| 186 | filter.clear(); |
| 187 | |
| 188 | for (auto hash : hashes) |
| 189 | EXPECT_TRUE(!filter.mayContain(hash)); |
| 190 | } |
| 191 | |
| 192 | TEST(WTF_BloomFilter, CountingOverflow) |
| 193 | { |
| 194 | const unsigned hashCount = 1000; |
| 195 | auto hashes = generateRandomHashes(hashCount); |
| 196 | |
| 197 | CountingBloomFilter<16> filter; |
| 198 | for (auto hash : hashes) |
| 199 | filter.add(hash); |
| 200 | |
| 201 | for (unsigned i = 0; i < filter.maximumCount() + 100; ++i) |
| 202 | filter.add(hashes[0]); |
| 203 | |
| 204 | for (auto hash : hashes) |
| 205 | EXPECT_TRUE(filter.mayContain(hash)); |
| 206 | |
| 207 | for (auto hash : hashes) |
| 208 | filter.remove(hash); |
| 209 | |
| 210 | unsigned mayContainCount = 0; |
| 211 | for (auto hash : hashes) { |
| 212 | if (hash == hashes[0]) |
| 213 | EXPECT_TRUE(filter.mayContain(hash)); |
| 214 | else |
| 215 | mayContainCount += filter.mayContain(hash) ? 1 : 0; |
| 216 | } |
| 217 | // False positive rate should be very low. |
| 218 | EXPECT_TRUE(mayContainCount < hashCount / 100); |
| 219 | |
| 220 | for (unsigned i = 0; i < filter.maximumCount() + 100; ++i) |
| 221 | filter.remove(hashes[0]); |
| 222 | |
| 223 | // The bucket has overflowed and is stuck. |
| 224 | EXPECT_TRUE(filter.mayContain(hashes[0])); |
| 225 | } |
| 226 | |
| 227 | TEST(WTF_BloomFilter, Combine) |
| 228 | { |
| 229 | const unsigned hashCount = 1000; |
| 230 | auto hashes = generateRandomHashes(hashCount); |
| 231 | |
| 232 | BloomFilter<16> filter; |
| 233 | for (auto hash : hashes) |
| 234 | filter.add(hash); |
| 235 | |
| 236 | auto moreHashes = generateRandomHashes(hashCount); |
| 237 | |
| 238 | BloomFilter<16> anotherFilter; |
| 239 | for (auto hash : moreHashes) |
| 240 | anotherFilter.add(hash); |
| 241 | |
| 242 | filter.add(anotherFilter); |
| 243 | |
| 244 | for (auto hash : hashes) |
| 245 | EXPECT_TRUE(filter.mayContain(hash)); |
| 246 | for (auto hash : moreHashes) |
| 247 | EXPECT_TRUE(filter.mayContain(hash)); |
| 248 | } |
| 249 | |
| 250 | } |
| 251 | |