| 1 | /* |
| 2 | * Copyright (C) 2002, 2003 The Karbon Developers |
| 3 | * Copyright (C) 2006 Alexander Kellett <lypanov@kde.org> |
| 4 | * Copyright (C) 2006, 2007 Rob Buis <buis@kde.org> |
| 5 | * Copyright (C) 2007, 2009, 2015 Apple Inc. All rights reserved. |
| 6 | * Copyright (C) Research In Motion Limited 2010. All rights reserved. |
| 7 | * |
| 8 | * This library is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU Library General Public |
| 10 | * License as published by the Free Software Foundation; either |
| 11 | * version 2 of the License, or (at your option) any later version. |
| 12 | * |
| 13 | * This library is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 16 | * Library General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU Library General Public License |
| 19 | * along with this library; see the file COPYING.LIB. If not, write to |
| 20 | * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| 21 | * Boston, MA 02110-1301, USA. |
| 22 | */ |
| 23 | |
| 24 | #include "config.h" |
| 25 | #include "SVGPathParser.h" |
| 26 | |
| 27 | #include "AffineTransform.h" |
| 28 | #include "SVGPathByteStreamBuilder.h" |
| 29 | #include "SVGPathSource.h" |
| 30 | #include "SVGPathStringBuilder.h" |
| 31 | #include <wtf/MathExtras.h> |
| 32 | |
| 33 | static const float gOneOverThree = 1 / 3.f; |
| 34 | |
| 35 | namespace WebCore { |
| 36 | |
| 37 | bool SVGPathParser::parse(SVGPathSource& source, SVGPathConsumer& consumer, PathParsingMode mode, bool checkForInitialMoveTo) |
| 38 | { |
| 39 | SVGPathParser parser(consumer, source, mode); |
| 40 | return parser.parsePathData(checkForInitialMoveTo); |
| 41 | } |
| 42 | |
| 43 | bool SVGPathParser::parseToByteStream(SVGPathSource& source, SVGPathByteStream& byteStream, PathParsingMode mode, bool checkForInitialMoveTo) |
| 44 | { |
| 45 | SVGPathByteStreamBuilder builder(byteStream); |
| 46 | return parse(source, builder, mode, checkForInitialMoveTo); |
| 47 | } |
| 48 | |
| 49 | bool SVGPathParser::parseToString(SVGPathSource& source, String& result, PathParsingMode mode, bool checkForInitialMoveTo) |
| 50 | { |
| 51 | SVGPathStringBuilder builder; |
| 52 | SVGPathParser parser(builder, source, mode); |
| 53 | bool ok = parser.parsePathData(checkForInitialMoveTo); |
| 54 | result = builder.result(); |
| 55 | return ok; |
| 56 | } |
| 57 | |
| 58 | SVGPathParser::SVGPathParser(SVGPathConsumer& consumer, SVGPathSource& source, PathParsingMode parsingMode) |
| 59 | : m_source(source) |
| 60 | , m_consumer(consumer) |
| 61 | , m_pathParsingMode(parsingMode) |
| 62 | { |
| 63 | } |
| 64 | |
| 65 | void SVGPathParser::parseClosePathSegment() |
| 66 | { |
| 67 | // Reset m_currentPoint for the next path. |
| 68 | if (m_pathParsingMode == NormalizedParsing) |
| 69 | m_currentPoint = m_subPathPoint; |
| 70 | m_closePath = true; |
| 71 | m_consumer.closePath(); |
| 72 | } |
| 73 | |
| 74 | bool SVGPathParser::parseMoveToSegment() |
| 75 | { |
| 76 | FloatPoint targetPoint; |
| 77 | if (!m_source.parseMoveToSegment(targetPoint)) |
| 78 | return false; |
| 79 | |
| 80 | if (m_pathParsingMode == NormalizedParsing) { |
| 81 | if (m_mode == RelativeCoordinates) |
| 82 | m_currentPoint += targetPoint; |
| 83 | else |
| 84 | m_currentPoint = targetPoint; |
| 85 | m_subPathPoint = m_currentPoint; |
| 86 | m_consumer.moveTo(m_currentPoint, m_closePath, AbsoluteCoordinates); |
| 87 | } else |
| 88 | m_consumer.moveTo(targetPoint, m_closePath, m_mode); |
| 89 | m_closePath = false; |
| 90 | return true; |
| 91 | } |
| 92 | |
| 93 | bool SVGPathParser::parseLineToSegment() |
| 94 | { |
| 95 | FloatPoint targetPoint; |
| 96 | if (!m_source.parseLineToSegment(targetPoint)) |
| 97 | return false; |
| 98 | |
| 99 | if (m_pathParsingMode == NormalizedParsing) { |
| 100 | if (m_mode == RelativeCoordinates) |
| 101 | m_currentPoint += targetPoint; |
| 102 | else |
| 103 | m_currentPoint = targetPoint; |
| 104 | m_consumer.lineTo(m_currentPoint, AbsoluteCoordinates); |
| 105 | } else |
| 106 | m_consumer.lineTo(targetPoint, m_mode); |
| 107 | return true; |
| 108 | } |
| 109 | |
| 110 | bool SVGPathParser::parseLineToHorizontalSegment() |
| 111 | { |
| 112 | float toX; |
| 113 | if (!m_source.parseLineToHorizontalSegment(toX)) |
| 114 | return false; |
| 115 | |
| 116 | if (m_pathParsingMode == NormalizedParsing) { |
| 117 | if (m_mode == RelativeCoordinates) |
| 118 | m_currentPoint.move(toX, 0); |
| 119 | else |
| 120 | m_currentPoint.setX(toX); |
| 121 | m_consumer.lineTo(m_currentPoint, AbsoluteCoordinates); |
| 122 | } else |
| 123 | m_consumer.lineToHorizontal(toX, m_mode); |
| 124 | return true; |
| 125 | } |
| 126 | |
| 127 | bool SVGPathParser::parseLineToVerticalSegment() |
| 128 | { |
| 129 | float toY; |
| 130 | if (!m_source.parseLineToVerticalSegment(toY)) |
| 131 | return false; |
| 132 | |
| 133 | if (m_pathParsingMode == NormalizedParsing) { |
| 134 | if (m_mode == RelativeCoordinates) |
| 135 | m_currentPoint.move(0, toY); |
| 136 | else |
| 137 | m_currentPoint.setY(toY); |
| 138 | m_consumer.lineTo(m_currentPoint, AbsoluteCoordinates); |
| 139 | } else |
| 140 | m_consumer.lineToVertical(toY, m_mode); |
| 141 | return true; |
| 142 | } |
| 143 | |
| 144 | bool SVGPathParser::parseCurveToCubicSegment() |
| 145 | { |
| 146 | FloatPoint point1; |
| 147 | FloatPoint point2; |
| 148 | FloatPoint targetPoint; |
| 149 | if (!m_source.parseCurveToCubicSegment(point1, point2, targetPoint)) |
| 150 | return false; |
| 151 | |
| 152 | if (m_pathParsingMode == NormalizedParsing) { |
| 153 | if (m_mode == RelativeCoordinates) { |
| 154 | point1 += m_currentPoint; |
| 155 | point2 += m_currentPoint; |
| 156 | targetPoint += m_currentPoint; |
| 157 | } |
| 158 | m_consumer.curveToCubic(point1, point2, targetPoint, AbsoluteCoordinates); |
| 159 | |
| 160 | m_controlPoint = point2; |
| 161 | m_currentPoint = targetPoint; |
| 162 | } else |
| 163 | m_consumer.curveToCubic(point1, point2, targetPoint, m_mode); |
| 164 | return true; |
| 165 | } |
| 166 | |
| 167 | bool SVGPathParser::parseCurveToCubicSmoothSegment() |
| 168 | { |
| 169 | FloatPoint point2; |
| 170 | FloatPoint targetPoint; |
| 171 | if (!m_source.parseCurveToCubicSmoothSegment(point2, targetPoint)) |
| 172 | return false; |
| 173 | |
| 174 | if (m_lastCommand != PathSegCurveToCubicAbs |
| 175 | && m_lastCommand != PathSegCurveToCubicRel |
| 176 | && m_lastCommand != PathSegCurveToCubicSmoothAbs |
| 177 | && m_lastCommand != PathSegCurveToCubicSmoothRel) |
| 178 | m_controlPoint = m_currentPoint; |
| 179 | |
| 180 | if (m_pathParsingMode == NormalizedParsing) { |
| 181 | FloatPoint point1 = m_currentPoint; |
| 182 | point1.scale(2); |
| 183 | point1.move(-m_controlPoint.x(), -m_controlPoint.y()); |
| 184 | if (m_mode == RelativeCoordinates) { |
| 185 | point2 += m_currentPoint; |
| 186 | targetPoint += m_currentPoint; |
| 187 | } |
| 188 | |
| 189 | m_consumer.curveToCubic(point1, point2, targetPoint, AbsoluteCoordinates); |
| 190 | |
| 191 | m_controlPoint = point2; |
| 192 | m_currentPoint = targetPoint; |
| 193 | } else |
| 194 | m_consumer.curveToCubicSmooth(point2, targetPoint, m_mode); |
| 195 | return true; |
| 196 | } |
| 197 | |
| 198 | bool SVGPathParser::parseCurveToQuadraticSegment() |
| 199 | { |
| 200 | FloatPoint point1; |
| 201 | FloatPoint targetPoint; |
| 202 | if (!m_source.parseCurveToQuadraticSegment(point1, targetPoint)) |
| 203 | return false; |
| 204 | |
| 205 | if (m_pathParsingMode == NormalizedParsing) { |
| 206 | m_controlPoint = point1; |
| 207 | FloatPoint point1 = m_currentPoint; |
| 208 | point1.move(2 * m_controlPoint.x(), 2 * m_controlPoint.y()); |
| 209 | FloatPoint point2(targetPoint.x() + 2 * m_controlPoint.x(), targetPoint.y() + 2 * m_controlPoint.y()); |
| 210 | if (m_mode == RelativeCoordinates) { |
| 211 | point1.move(2 * m_currentPoint.x(), 2 * m_currentPoint.y()); |
| 212 | point2.move(3 * m_currentPoint.x(), 3 * m_currentPoint.y()); |
| 213 | targetPoint += m_currentPoint; |
| 214 | } |
| 215 | point1.scale(gOneOverThree); |
| 216 | point2.scale(gOneOverThree); |
| 217 | |
| 218 | m_consumer.curveToCubic(point1, point2, targetPoint, AbsoluteCoordinates); |
| 219 | |
| 220 | if (m_mode == RelativeCoordinates) |
| 221 | m_controlPoint += m_currentPoint; |
| 222 | m_currentPoint = targetPoint; |
| 223 | } else |
| 224 | m_consumer.curveToQuadratic(point1, targetPoint, m_mode); |
| 225 | return true; |
| 226 | } |
| 227 | |
| 228 | bool SVGPathParser::parseCurveToQuadraticSmoothSegment() |
| 229 | { |
| 230 | FloatPoint targetPoint; |
| 231 | if (!m_source.parseCurveToQuadraticSmoothSegment(targetPoint)) |
| 232 | return false; |
| 233 | |
| 234 | if (m_lastCommand != PathSegCurveToQuadraticAbs |
| 235 | && m_lastCommand != PathSegCurveToQuadraticRel |
| 236 | && m_lastCommand != PathSegCurveToQuadraticSmoothAbs |
| 237 | && m_lastCommand != PathSegCurveToQuadraticSmoothRel) |
| 238 | m_controlPoint = m_currentPoint; |
| 239 | |
| 240 | if (m_pathParsingMode == NormalizedParsing) { |
| 241 | FloatPoint cubicPoint = m_currentPoint; |
| 242 | cubicPoint.scale(2); |
| 243 | cubicPoint.move(-m_controlPoint.x(), -m_controlPoint.y()); |
| 244 | FloatPoint point1(m_currentPoint.x() + 2 * cubicPoint.x(), m_currentPoint.y() + 2 * cubicPoint.y()); |
| 245 | FloatPoint point2(targetPoint.x() + 2 * cubicPoint.x(), targetPoint.y() + 2 * cubicPoint.y()); |
| 246 | if (m_mode == RelativeCoordinates) { |
| 247 | point2 += m_currentPoint; |
| 248 | targetPoint += m_currentPoint; |
| 249 | } |
| 250 | point1.scale(gOneOverThree); |
| 251 | point2.scale(gOneOverThree); |
| 252 | |
| 253 | m_consumer.curveToCubic(point1, point2, targetPoint, AbsoluteCoordinates); |
| 254 | |
| 255 | m_controlPoint = cubicPoint; |
| 256 | m_currentPoint = targetPoint; |
| 257 | } else |
| 258 | m_consumer.curveToQuadraticSmooth(targetPoint, m_mode); |
| 259 | return true; |
| 260 | } |
| 261 | |
| 262 | bool SVGPathParser::parseArcToSegment() |
| 263 | { |
| 264 | float rx; |
| 265 | float ry; |
| 266 | float angle; |
| 267 | bool largeArc; |
| 268 | bool sweep; |
| 269 | FloatPoint targetPoint; |
| 270 | if (!m_source.parseArcToSegment(rx, ry, angle, largeArc, sweep, targetPoint)) |
| 271 | return false; |
| 272 | |
| 273 | // If rx = 0 or ry = 0 then this arc is treated as a straight line segment (a "lineto") joining the endpoints. |
| 274 | // http://www.w3.org/TR/SVG/implnote.html#ArcOutOfRangeParameters |
| 275 | // If the current point and target point for the arc are identical, it should be treated as a zero length |
| 276 | // path. This ensures continuity in animations. |
| 277 | rx = fabsf(rx); |
| 278 | ry = fabsf(ry); |
| 279 | bool arcIsZeroLength = false; |
| 280 | if (m_pathParsingMode == NormalizedParsing) { |
| 281 | if (m_mode == RelativeCoordinates) |
| 282 | arcIsZeroLength = targetPoint == FloatPoint::zero(); |
| 283 | else |
| 284 | arcIsZeroLength = targetPoint == m_currentPoint; |
| 285 | } |
| 286 | if (!rx || !ry || arcIsZeroLength) { |
| 287 | if (m_pathParsingMode == NormalizedParsing) { |
| 288 | if (m_mode == RelativeCoordinates) |
| 289 | m_currentPoint += targetPoint; |
| 290 | else |
| 291 | m_currentPoint = targetPoint; |
| 292 | m_consumer.lineTo(m_currentPoint, AbsoluteCoordinates); |
| 293 | } else |
| 294 | m_consumer.lineTo(targetPoint, m_mode); |
| 295 | return true; |
| 296 | } |
| 297 | |
| 298 | if (m_pathParsingMode == NormalizedParsing) { |
| 299 | FloatPoint point1 = m_currentPoint; |
| 300 | if (m_mode == RelativeCoordinates) |
| 301 | targetPoint += m_currentPoint; |
| 302 | m_currentPoint = targetPoint; |
| 303 | return decomposeArcToCubic(angle, rx, ry, point1, targetPoint, largeArc, sweep); |
| 304 | } |
| 305 | m_consumer.arcTo(rx, ry, angle, largeArc, sweep, targetPoint, m_mode); |
| 306 | return true; |
| 307 | } |
| 308 | |
| 309 | bool SVGPathParser::parsePathData(bool checkForInitialMoveTo) |
| 310 | { |
| 311 | // Skip any leading spaces. |
| 312 | if (!m_source.moveToNextToken()) |
| 313 | return true; |
| 314 | |
| 315 | SVGPathSegType command; |
| 316 | m_source.parseSVGSegmentType(command); |
| 317 | |
| 318 | // Path must start with moveto. |
| 319 | if (checkForInitialMoveTo && command != PathSegMoveToAbs && command != PathSegMoveToRel) |
| 320 | return false; |
| 321 | |
| 322 | while (true) { |
| 323 | // Skip spaces between command and first coordinate. |
| 324 | m_source.moveToNextToken(); |
| 325 | m_mode = AbsoluteCoordinates; |
| 326 | switch (command) { |
| 327 | case PathSegMoveToRel: |
| 328 | m_mode = RelativeCoordinates; |
| 329 | FALLTHROUGH; |
| 330 | case PathSegMoveToAbs: |
| 331 | if (!parseMoveToSegment()) |
| 332 | return false; |
| 333 | break; |
| 334 | case PathSegLineToRel: |
| 335 | m_mode = RelativeCoordinates; |
| 336 | FALLTHROUGH; |
| 337 | case PathSegLineToAbs: |
| 338 | if (!parseLineToSegment()) |
| 339 | return false; |
| 340 | break; |
| 341 | case PathSegLineToHorizontalRel: |
| 342 | m_mode = RelativeCoordinates; |
| 343 | FALLTHROUGH; |
| 344 | case PathSegLineToHorizontalAbs: |
| 345 | if (!parseLineToHorizontalSegment()) |
| 346 | return false; |
| 347 | break; |
| 348 | case PathSegLineToVerticalRel: |
| 349 | m_mode = RelativeCoordinates; |
| 350 | FALLTHROUGH; |
| 351 | case PathSegLineToVerticalAbs: |
| 352 | if (!parseLineToVerticalSegment()) |
| 353 | return false; |
| 354 | break; |
| 355 | case PathSegClosePath: |
| 356 | parseClosePathSegment(); |
| 357 | break; |
| 358 | case PathSegCurveToCubicRel: |
| 359 | m_mode = RelativeCoordinates; |
| 360 | FALLTHROUGH; |
| 361 | case PathSegCurveToCubicAbs: |
| 362 | if (!parseCurveToCubicSegment()) |
| 363 | return false; |
| 364 | break; |
| 365 | case PathSegCurveToCubicSmoothRel: |
| 366 | m_mode = RelativeCoordinates; |
| 367 | FALLTHROUGH; |
| 368 | case PathSegCurveToCubicSmoothAbs: |
| 369 | if (!parseCurveToCubicSmoothSegment()) |
| 370 | return false; |
| 371 | break; |
| 372 | case PathSegCurveToQuadraticRel: |
| 373 | m_mode = RelativeCoordinates; |
| 374 | FALLTHROUGH; |
| 375 | case PathSegCurveToQuadraticAbs: |
| 376 | if (!parseCurveToQuadraticSegment()) |
| 377 | return false; |
| 378 | break; |
| 379 | case PathSegCurveToQuadraticSmoothRel: |
| 380 | m_mode = RelativeCoordinates; |
| 381 | FALLTHROUGH; |
| 382 | case PathSegCurveToQuadraticSmoothAbs: |
| 383 | if (!parseCurveToQuadraticSmoothSegment()) |
| 384 | return false; |
| 385 | break; |
| 386 | case PathSegArcRel: |
| 387 | m_mode = RelativeCoordinates; |
| 388 | FALLTHROUGH; |
| 389 | case PathSegArcAbs: |
| 390 | if (!parseArcToSegment()) |
| 391 | return false; |
| 392 | break; |
| 393 | default: |
| 394 | return false; |
| 395 | } |
| 396 | if (!m_consumer.continueConsuming()) |
| 397 | return true; |
| 398 | |
| 399 | m_lastCommand = command; |
| 400 | |
| 401 | if (!m_source.hasMoreData()) |
| 402 | return true; |
| 403 | |
| 404 | command = m_source.nextCommand(command); |
| 405 | |
| 406 | if (m_lastCommand != PathSegCurveToCubicAbs |
| 407 | && m_lastCommand != PathSegCurveToCubicRel |
| 408 | && m_lastCommand != PathSegCurveToCubicSmoothAbs |
| 409 | && m_lastCommand != PathSegCurveToCubicSmoothRel |
| 410 | && m_lastCommand != PathSegCurveToQuadraticAbs |
| 411 | && m_lastCommand != PathSegCurveToQuadraticRel |
| 412 | && m_lastCommand != PathSegCurveToQuadraticSmoothAbs |
| 413 | && m_lastCommand != PathSegCurveToQuadraticSmoothRel) |
| 414 | m_controlPoint = m_currentPoint; |
| 415 | |
| 416 | m_consumer.incrementPathSegmentCount(); |
| 417 | } |
| 418 | |
| 419 | return false; |
| 420 | } |
| 421 | |
| 422 | // This works by converting the SVG arc to "simple" beziers. |
| 423 | // Partly adapted from Niko's code in kdelibs/kdecore/svgicons. |
| 424 | // See also SVG implementation notes: http://www.w3.org/TR/SVG/implnote.html#ArcConversionEndpointToCenter |
| 425 | bool SVGPathParser::decomposeArcToCubic(float angle, float rx, float ry, FloatPoint& point1, FloatPoint& point2, bool largeArcFlag, bool sweepFlag) |
| 426 | { |
| 427 | FloatSize midPointDistance = point1 - point2; |
| 428 | midPointDistance.scale(0.5f); |
| 429 | |
| 430 | AffineTransform pointTransform; |
| 431 | pointTransform.rotate(-angle); |
| 432 | |
| 433 | FloatPoint transformedMidPoint = pointTransform.mapPoint(FloatPoint(midPointDistance.width(), midPointDistance.height())); |
| 434 | float squareRx = rx * rx; |
| 435 | float squareRy = ry * ry; |
| 436 | float squareX = transformedMidPoint.x() * transformedMidPoint.x(); |
| 437 | float squareY = transformedMidPoint.y() * transformedMidPoint.y(); |
| 438 | |
| 439 | // Check if the radii are big enough to draw the arc, scale radii if not. |
| 440 | // http://www.w3.org/TR/SVG/implnote.html#ArcCorrectionOutOfRangeRadii |
| 441 | float radiiScale = squareX / squareRx + squareY / squareRy; |
| 442 | if (radiiScale > 1) { |
| 443 | rx *= sqrtf(radiiScale); |
| 444 | ry *= sqrtf(radiiScale); |
| 445 | } |
| 446 | |
| 447 | pointTransform.makeIdentity(); |
| 448 | pointTransform.scale(1 / rx, 1 / ry); |
| 449 | pointTransform.rotate(-angle); |
| 450 | |
| 451 | point1 = pointTransform.mapPoint(point1); |
| 452 | point2 = pointTransform.mapPoint(point2); |
| 453 | FloatSize delta = point2 - point1; |
| 454 | |
| 455 | float d = delta.width() * delta.width() + delta.height() * delta.height(); |
| 456 | float scaleFactorSquared = std::max(1 / d - 0.25f, 0.f); |
| 457 | |
| 458 | float scaleFactor = sqrtf(scaleFactorSquared); |
| 459 | if (sweepFlag == largeArcFlag) |
| 460 | scaleFactor = -scaleFactor; |
| 461 | |
| 462 | delta.scale(scaleFactor); |
| 463 | FloatPoint centerPoint = point1 + point2; |
| 464 | centerPoint.scale(0.5f); |
| 465 | centerPoint.move(-delta.height(), delta.width()); |
| 466 | |
| 467 | float theta1 = FloatPoint(point1 - centerPoint).slopeAngleRadians(); |
| 468 | float theta2 = FloatPoint(point2 - centerPoint).slopeAngleRadians(); |
| 469 | |
| 470 | float thetaArc = theta2 - theta1; |
| 471 | if (thetaArc < 0 && sweepFlag) |
| 472 | thetaArc += 2 * piFloat; |
| 473 | else if (thetaArc > 0 && !sweepFlag) |
| 474 | thetaArc -= 2 * piFloat; |
| 475 | |
| 476 | pointTransform.makeIdentity(); |
| 477 | pointTransform.rotate(angle); |
| 478 | pointTransform.scale(rx, ry); |
| 479 | |
| 480 | // Some results of atan2 on some platform implementations are not exact enough. So that we get more |
| 481 | // cubic curves than expected here. Adding 0.001f reduces the count of sgements to the correct count. |
| 482 | int segments = ceilf(fabsf(thetaArc / (piOverTwoFloat + 0.001f))); |
| 483 | for (int i = 0; i < segments; ++i) { |
| 484 | float startTheta = theta1 + i * thetaArc / segments; |
| 485 | float endTheta = theta1 + (i + 1) * thetaArc / segments; |
| 486 | |
| 487 | float t = (8 / 6.f) * tanf(0.25f * (endTheta - startTheta)); |
| 488 | if (!std::isfinite(t)) |
| 489 | return false; |
| 490 | float sinStartTheta = sinf(startTheta); |
| 491 | float cosStartTheta = cosf(startTheta); |
| 492 | float sinEndTheta = sinf(endTheta); |
| 493 | float cosEndTheta = cosf(endTheta); |
| 494 | |
| 495 | point1 = FloatPoint(cosStartTheta - t * sinStartTheta, sinStartTheta + t * cosStartTheta); |
| 496 | point1.move(centerPoint.x(), centerPoint.y()); |
| 497 | FloatPoint targetPoint = FloatPoint(cosEndTheta, sinEndTheta); |
| 498 | targetPoint.move(centerPoint.x(), centerPoint.y()); |
| 499 | point2 = targetPoint; |
| 500 | point2.move(t * sinEndTheta, -t * cosEndTheta); |
| 501 | |
| 502 | m_consumer.curveToCubic(pointTransform.mapPoint(point1), pointTransform.mapPoint(point2), |
| 503 | pointTransform.mapPoint(targetPoint), AbsoluteCoordinates); |
| 504 | } |
| 505 | return true; |
| 506 | } |
| 507 | |
| 508 | } |
| 509 | |