1 | /* |
2 | * Copyright (C) 2002 Lars Knoll (knoll@kde.org) |
3 | * (C) 2002 Dirk Mueller (mueller@kde.org) |
4 | * Copyright (C) 2003, 2006, 2008, 2010 Apple Inc. All rights reserved. |
5 | * |
6 | * This library is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU Library General Public |
8 | * License as published by the Free Software Foundation; either |
9 | * version 2 of the License. |
10 | * |
11 | * This library is distributed in the hope that it will be useful, |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | * Library General Public License for more details. |
15 | * |
16 | * You should have received a copy of the GNU Library General Public License |
17 | * along with this library; see the file COPYING.LIB. If not, write to |
18 | * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
19 | * Boston, MA 02110-1301, USA. |
20 | */ |
21 | |
22 | #include "config.h" |
23 | #include "AutoTableLayout.h" |
24 | |
25 | #include "RenderChildIterator.h" |
26 | #include "RenderTable.h" |
27 | #include "RenderTableCell.h" |
28 | #include "RenderTableCol.h" |
29 | #include "RenderTableSection.h" |
30 | #include "RenderView.h" |
31 | |
32 | namespace WebCore { |
33 | |
34 | AutoTableLayout::AutoTableLayout(RenderTable* table) |
35 | : TableLayout(table) |
36 | , m_hasPercent(false) |
37 | , m_effectiveLogicalWidthDirty(true) |
38 | { |
39 | } |
40 | |
41 | AutoTableLayout::~AutoTableLayout() = default; |
42 | |
43 | void AutoTableLayout::recalcColumn(unsigned effCol) |
44 | { |
45 | Layout& columnLayout = m_layoutStruct[effCol]; |
46 | |
47 | RenderTableCell* fixedContributor = nullptr; |
48 | RenderTableCell* maxContributor = nullptr; |
49 | |
50 | for (auto& child : childrenOfType<RenderObject>(*m_table)) { |
51 | if (is<RenderTableCol>(child)) { |
52 | // RenderTableCols don't have the concept of preferred logical width, but we need to clear their dirty bits |
53 | // so that if we call setPreferredWidthsDirty(true) on a col or one of its descendants, we'll mark it's |
54 | // ancestors as dirty. |
55 | downcast<RenderTableCol>(child).clearPreferredLogicalWidthsDirtyBits(); |
56 | } else if (is<RenderTableSection>(child)) { |
57 | auto& section = downcast<RenderTableSection>(child); |
58 | unsigned numRows = section.numRows(); |
59 | for (unsigned i = 0; i < numRows; ++i) { |
60 | RenderTableSection::CellStruct current = section.cellAt(i, effCol); |
61 | RenderTableCell* cell = current.primaryCell(); |
62 | |
63 | if (current.inColSpan || !cell) |
64 | continue; |
65 | |
66 | bool cellHasContent = cell->firstChild() || cell->style().hasBorder() || cell->style().hasPadding() || cell->style().hasBackground(); |
67 | if (cellHasContent) |
68 | columnLayout.emptyCellsOnly = false; |
69 | |
70 | // A cell originates in this column. Ensure we have |
71 | // a min/max width of at least 1px for this column now. |
72 | columnLayout.minLogicalWidth = std::max<float>(columnLayout.minLogicalWidth, cellHasContent ? 1 : 0); |
73 | columnLayout.maxLogicalWidth = std::max<float>(columnLayout.maxLogicalWidth, 1); |
74 | |
75 | if (cell->colSpan() == 1) { |
76 | columnLayout.minLogicalWidth = std::max(cell->minPreferredLogicalWidth().ceilToFloat(), columnLayout.minLogicalWidth); |
77 | float maxPreferredWidth = cell->maxPreferredLogicalWidth().ceilToFloat(); |
78 | if (maxPreferredWidth > columnLayout.maxLogicalWidth) { |
79 | columnLayout.maxLogicalWidth = maxPreferredWidth; |
80 | maxContributor = cell; |
81 | } |
82 | |
83 | // All browsers implement a size limit on the cell's max width. |
84 | // Our limit is based on KHTML's representation that used 16 bits widths. |
85 | // FIXME: Other browsers have a lower limit for the cell's max width. |
86 | const float cCellMaxWidth = 32760; |
87 | Length cellLogicalWidth = cell->styleOrColLogicalWidth(); |
88 | if (cellLogicalWidth.value() > cCellMaxWidth) |
89 | cellLogicalWidth.setValue(Fixed, cCellMaxWidth); |
90 | if (cellLogicalWidth.isNegative()) |
91 | cellLogicalWidth.setValue(Fixed, 0); |
92 | switch (cellLogicalWidth.type()) { |
93 | case Fixed: |
94 | // ignore width=0 |
95 | if (cellLogicalWidth.isPositive() && !columnLayout.logicalWidth.isPercentOrCalculated()) { |
96 | float logicalWidth = cell->adjustBorderBoxLogicalWidthForBoxSizing(cellLogicalWidth.value()); |
97 | if (columnLayout.logicalWidth.isFixed()) { |
98 | // Nav/IE weirdness |
99 | if ((logicalWidth > columnLayout.logicalWidth.value()) |
100 | || ((columnLayout.logicalWidth.value() == logicalWidth) && (maxContributor == cell))) { |
101 | columnLayout.logicalWidth.setValue(Fixed, logicalWidth); |
102 | fixedContributor = cell; |
103 | } |
104 | } else { |
105 | columnLayout.logicalWidth.setValue(Fixed, logicalWidth); |
106 | fixedContributor = cell; |
107 | } |
108 | } |
109 | break; |
110 | case Percent: |
111 | m_hasPercent = true; |
112 | if (cellLogicalWidth.isPositive() && (!columnLayout.logicalWidth.isPercent() || cellLogicalWidth.percent() > columnLayout.logicalWidth.percent())) |
113 | columnLayout.logicalWidth = cellLogicalWidth; |
114 | break; |
115 | case Relative: |
116 | // FIXME: Need to understand this case and whether it makes sense to compare values |
117 | // which are not necessarily of the same type. |
118 | if (cellLogicalWidth.value() > columnLayout.logicalWidth.value()) |
119 | columnLayout.logicalWidth = cellLogicalWidth; |
120 | break; |
121 | default: |
122 | break; |
123 | } |
124 | } else if (!effCol || section.primaryCellAt(i, effCol - 1) != cell) { |
125 | // This spanning cell originates in this column. Insert the cell into spanning cells list. |
126 | insertSpanCell(cell); |
127 | } |
128 | } |
129 | } |
130 | } |
131 | |
132 | // Nav/IE weirdness |
133 | if (columnLayout.logicalWidth.isFixed()) { |
134 | if (m_table->document().inQuirksMode() && columnLayout.maxLogicalWidth > columnLayout.logicalWidth.value() && fixedContributor != maxContributor) { |
135 | columnLayout.logicalWidth = Length(); |
136 | fixedContributor = nullptr; |
137 | } |
138 | } |
139 | |
140 | columnLayout.maxLogicalWidth = std::max(columnLayout.maxLogicalWidth, columnLayout.minLogicalWidth); |
141 | } |
142 | |
143 | void AutoTableLayout::fullRecalc() |
144 | { |
145 | m_hasPercent = false; |
146 | m_effectiveLogicalWidthDirty = true; |
147 | |
148 | unsigned nEffCols = m_table->numEffCols(); |
149 | m_layoutStruct.resizeToFit(nEffCols); |
150 | m_layoutStruct.fill(Layout()); |
151 | m_spanCells.fill(0); |
152 | |
153 | Length groupLogicalWidth; |
154 | unsigned currentColumn = 0; |
155 | for (RenderTableCol* column = m_table->firstColumn(); column; column = column->nextColumn()) { |
156 | if (column->isTableColumnGroupWithColumnChildren()) |
157 | groupLogicalWidth = column->style().logicalWidth(); |
158 | else { |
159 | Length colLogicalWidth = column->style().logicalWidth(); |
160 | if (colLogicalWidth.isAuto()) |
161 | colLogicalWidth = groupLogicalWidth; |
162 | if ((colLogicalWidth.isFixed() || colLogicalWidth.isPercentOrCalculated()) && colLogicalWidth.isZero()) |
163 | colLogicalWidth = Length(); |
164 | unsigned effCol = m_table->colToEffCol(currentColumn); |
165 | unsigned span = column->span(); |
166 | if (!colLogicalWidth.isAuto() && span == 1 && effCol < nEffCols && m_table->spanOfEffCol(effCol) == 1) { |
167 | m_layoutStruct[effCol].logicalWidth = colLogicalWidth; |
168 | if (colLogicalWidth.isFixed() && m_layoutStruct[effCol].maxLogicalWidth < colLogicalWidth.value()) |
169 | m_layoutStruct[effCol].maxLogicalWidth = colLogicalWidth.value(); |
170 | } |
171 | currentColumn += span; |
172 | } |
173 | |
174 | // For the last column in a column-group, we invalidate our group logical width. |
175 | if (column->isTableColumn() && !column->nextSibling()) |
176 | groupLogicalWidth = Length(); |
177 | } |
178 | |
179 | for (unsigned i = 0; i < nEffCols; i++) |
180 | recalcColumn(i); |
181 | } |
182 | |
183 | static bool shouldScaleColumnsForParent(const RenderTable& table) |
184 | { |
185 | RenderBlock* containingBlock = table.containingBlock(); |
186 | while (containingBlock && !is<RenderView>(containingBlock)) { |
187 | // It doesn't matter if our table is auto or fixed: auto means we don't |
188 | // scale. Fixed doesn't care if we do or not because it doesn't depend |
189 | // on the cell contents' preferred widths. |
190 | if (is<RenderTableCell>(containingBlock)) |
191 | return false; |
192 | containingBlock = containingBlock->containingBlock(); |
193 | } |
194 | return true; |
195 | } |
196 | |
197 | // FIXME: This needs to be adapted for vertical writing modes. |
198 | static bool shouldScaleColumnsForSelf(RenderTable* table) |
199 | { |
200 | // Normally, scale all columns to satisfy this from CSS2.2: |
201 | // "A percentage value for a column width is relative to the table width. |
202 | // If the table has 'width: auto', a percentage represents a constraint on the column's width" |
203 | |
204 | // A special case. If this table is not fixed width and contained inside |
205 | // a cell, then don't bloat the maxwidth by examining percentage growth. |
206 | bool scale = true; |
207 | while (table) { |
208 | Length tableWidth = table->style().width(); |
209 | if ((tableWidth.isAuto() || tableWidth.isPercentOrCalculated()) && !table->isOutOfFlowPositioned()) { |
210 | RenderBlock* containingBlock = table->containingBlock(); |
211 | while (containingBlock && !is<RenderView>(*containingBlock) && !is<RenderTableCell>(*containingBlock) |
212 | && containingBlock->style().width().isAuto() && !containingBlock->isOutOfFlowPositioned()) |
213 | containingBlock = containingBlock->containingBlock(); |
214 | |
215 | table = nullptr; |
216 | if (is<RenderTableCell>(containingBlock) |
217 | && (containingBlock->style().width().isAuto() || containingBlock->style().width().isPercentOrCalculated())) { |
218 | RenderTableCell& cell = downcast<RenderTableCell>(*containingBlock); |
219 | if (cell.colSpan() > 1 || cell.table()->style().width().isAuto()) |
220 | scale = false; |
221 | else |
222 | table = cell.table(); |
223 | } |
224 | } |
225 | else |
226 | table = nullptr; |
227 | } |
228 | return scale; |
229 | } |
230 | |
231 | void AutoTableLayout::computeIntrinsicLogicalWidths(LayoutUnit& minWidth, LayoutUnit& maxWidth) |
232 | { |
233 | fullRecalc(); |
234 | |
235 | float spanMaxLogicalWidth = calcEffectiveLogicalWidth(); |
236 | minWidth = 0; |
237 | maxWidth = 0; |
238 | float maxPercent = 0; |
239 | float maxNonPercent = 0; |
240 | bool scaleColumnsForSelf = shouldScaleColumnsForSelf(m_table); |
241 | |
242 | // We substitute 0 percent by (epsilon / percentScaleFactor) percent in two places below to avoid division by zero. |
243 | // FIXME: Handle the 0% cases properly. |
244 | const float epsilon = 1 / 128.0f; |
245 | |
246 | float remainingPercent = 100; |
247 | for (size_t i = 0; i < m_layoutStruct.size(); ++i) { |
248 | minWidth += m_layoutStruct[i].effectiveMinLogicalWidth; |
249 | maxWidth += m_layoutStruct[i].effectiveMaxLogicalWidth; |
250 | if (scaleColumnsForSelf) { |
251 | if (m_layoutStruct[i].effectiveLogicalWidth.isPercent()) { |
252 | float percent = std::min(m_layoutStruct[i].effectiveLogicalWidth.percent(), remainingPercent); |
253 | float logicalWidth = m_layoutStruct[i].effectiveMaxLogicalWidth * 100 / std::max(percent, epsilon); |
254 | maxPercent = std::max(logicalWidth, maxPercent); |
255 | remainingPercent -= percent; |
256 | } else |
257 | maxNonPercent += m_layoutStruct[i].effectiveMaxLogicalWidth; |
258 | } |
259 | } |
260 | |
261 | if (scaleColumnsForSelf) { |
262 | maxNonPercent = maxNonPercent * 100 / std::max(remainingPercent, epsilon); |
263 | m_scaledWidthFromPercentColumns = LayoutUnit(std::min<float>(maxNonPercent, tableMaxWidth)); |
264 | m_scaledWidthFromPercentColumns = std::max(m_scaledWidthFromPercentColumns, LayoutUnit(std::min<float>(maxPercent, tableMaxWidth))); |
265 | if (m_scaledWidthFromPercentColumns > maxWidth && shouldScaleColumnsForParent(*m_table)) |
266 | maxWidth = m_scaledWidthFromPercentColumns; |
267 | } |
268 | |
269 | maxWidth = std::max(maxWidth, LayoutUnit(spanMaxLogicalWidth)); |
270 | } |
271 | |
272 | void AutoTableLayout::applyPreferredLogicalWidthQuirks(LayoutUnit& minWidth, LayoutUnit& maxWidth) const |
273 | { |
274 | Length tableLogicalWidth = m_table->style().logicalWidth(); |
275 | if (tableLogicalWidth.isFixed() && tableLogicalWidth.isPositive()) |
276 | minWidth = maxWidth = std::max(minWidth, LayoutUnit(tableLogicalWidth.value())); |
277 | } |
278 | |
279 | /* |
280 | This method takes care of colspans. |
281 | effWidth is the same as width for cells without colspans. If we have colspans, they get modified. |
282 | */ |
283 | float AutoTableLayout::calcEffectiveLogicalWidth() |
284 | { |
285 | float maxLogicalWidth = 0; |
286 | |
287 | size_t nEffCols = m_layoutStruct.size(); |
288 | float spacingInRowDirection = m_table->hBorderSpacing(); |
289 | |
290 | for (size_t i = 0; i < nEffCols; ++i) { |
291 | m_layoutStruct[i].effectiveLogicalWidth = m_layoutStruct[i].logicalWidth; |
292 | m_layoutStruct[i].effectiveMinLogicalWidth = m_layoutStruct[i].minLogicalWidth; |
293 | m_layoutStruct[i].effectiveMaxLogicalWidth = m_layoutStruct[i].maxLogicalWidth; |
294 | } |
295 | |
296 | for (size_t i = 0; i < m_spanCells.size(); ++i) { |
297 | RenderTableCell* cell = m_spanCells[i]; |
298 | if (!cell) |
299 | break; |
300 | |
301 | unsigned span = cell->colSpan(); |
302 | |
303 | Length cellLogicalWidth = cell->styleOrColLogicalWidth(); |
304 | if (!cellLogicalWidth.isRelative() && cellLogicalWidth.isZero()) |
305 | cellLogicalWidth = Length(); // make it Auto |
306 | |
307 | unsigned effCol = m_table->colToEffCol(cell->col()); |
308 | size_t lastCol = effCol; |
309 | float cellMinLogicalWidth = cell->minPreferredLogicalWidth() + spacingInRowDirection; |
310 | float cellMaxLogicalWidth = cell->maxPreferredLogicalWidth() + spacingInRowDirection; |
311 | float totalPercent = 0; |
312 | float spanMinLogicalWidth = 0; |
313 | float spanMaxLogicalWidth = 0; |
314 | bool allColsArePercent = true; |
315 | bool allColsAreFixed = true; |
316 | bool haveAuto = false; |
317 | bool spanHasEmptyCellsOnly = true; |
318 | float fixedWidth = 0; |
319 | while (lastCol < nEffCols && span > 0) { |
320 | Layout& columnLayout = m_layoutStruct[lastCol]; |
321 | switch (columnLayout.logicalWidth.type()) { |
322 | case Percent: |
323 | totalPercent += columnLayout.logicalWidth.percent(); |
324 | allColsAreFixed = false; |
325 | break; |
326 | case Fixed: |
327 | if (columnLayout.logicalWidth.value() > 0) { |
328 | fixedWidth += columnLayout.logicalWidth.value(); |
329 | allColsArePercent = false; |
330 | // IE resets effWidth to Auto here, but this breaks the konqueror about page and seems to be some bad |
331 | // legacy behaviour anyway. mozilla doesn't do this so I decided we don't neither. |
332 | break; |
333 | } |
334 | FALLTHROUGH; |
335 | case Auto: |
336 | haveAuto = true; |
337 | FALLTHROUGH; |
338 | default: |
339 | // If the column is a percentage width, do not let the spanning cell overwrite the |
340 | // width value. This caused a mis-rendering on amazon.com. |
341 | // Sample snippet: |
342 | // <table border=2 width=100%>< |
343 | // <tr><td>1</td><td colspan=2>2-3</tr> |
344 | // <tr><td>1</td><td colspan=2 width=100%>2-3</td></tr> |
345 | // </table> |
346 | if (!columnLayout.effectiveLogicalWidth.isPercent()) { |
347 | columnLayout.effectiveLogicalWidth = Length(); |
348 | allColsArePercent = false; |
349 | } else |
350 | totalPercent += columnLayout.effectiveLogicalWidth.percent(); |
351 | allColsAreFixed = false; |
352 | } |
353 | if (!columnLayout.emptyCellsOnly) |
354 | spanHasEmptyCellsOnly = false; |
355 | span -= m_table->spanOfEffCol(lastCol); |
356 | spanMinLogicalWidth += columnLayout.effectiveMinLogicalWidth; |
357 | spanMaxLogicalWidth += columnLayout.effectiveMaxLogicalWidth; |
358 | lastCol++; |
359 | cellMinLogicalWidth -= spacingInRowDirection; |
360 | cellMaxLogicalWidth -= spacingInRowDirection; |
361 | } |
362 | |
363 | // adjust table max width if needed |
364 | if (cellLogicalWidth.isPercent()) { |
365 | if (totalPercent > cellLogicalWidth.percent() || allColsArePercent) { |
366 | // can't satify this condition, treat as variable |
367 | cellLogicalWidth = Length(); |
368 | } else { |
369 | maxLogicalWidth = std::max(maxLogicalWidth, std::max(spanMaxLogicalWidth, cellMaxLogicalWidth) * 100 / cellLogicalWidth.percent()); |
370 | |
371 | // all non percent columns in the span get percent values to sum up correctly. |
372 | float percentMissing = cellLogicalWidth.percent() - totalPercent; |
373 | float totalWidth = 0; |
374 | for (unsigned pos = effCol; pos < lastCol; ++pos) { |
375 | if (!m_layoutStruct[pos].effectiveLogicalWidth.isPercentOrCalculated()) |
376 | totalWidth += m_layoutStruct[pos].effectiveMaxLogicalWidth; |
377 | } |
378 | |
379 | for (unsigned pos = effCol; pos < lastCol && totalWidth > 0; ++pos) { |
380 | if (!m_layoutStruct[pos].effectiveLogicalWidth.isPercentOrCalculated()) { |
381 | float percent = percentMissing * m_layoutStruct[pos].effectiveMaxLogicalWidth / totalWidth; |
382 | totalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; |
383 | percentMissing -= percent; |
384 | if (percent > 0) |
385 | m_layoutStruct[pos].effectiveLogicalWidth.setValue(Percent, percent); |
386 | else |
387 | m_layoutStruct[pos].effectiveLogicalWidth = Length(); |
388 | } |
389 | } |
390 | } |
391 | } |
392 | |
393 | // make sure minWidth and maxWidth of the spanning cell are honoured |
394 | if (cellMinLogicalWidth > spanMinLogicalWidth) { |
395 | if (allColsAreFixed) { |
396 | for (unsigned pos = effCol; fixedWidth > 0 && pos < lastCol; ++pos) { |
397 | float cellLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, cellMinLogicalWidth * m_layoutStruct[pos].logicalWidth.value() / fixedWidth); |
398 | fixedWidth -= m_layoutStruct[pos].logicalWidth.value(); |
399 | cellMinLogicalWidth -= cellLogicalWidth; |
400 | m_layoutStruct[pos].effectiveMinLogicalWidth = cellLogicalWidth; |
401 | } |
402 | } else if (allColsArePercent) { |
403 | // In this case, we just split the colspan's min amd max widths following the percentage. |
404 | float allocatedMinLogicalWidth = 0; |
405 | float allocatedMaxLogicalWidth = 0; |
406 | for (unsigned pos = effCol; pos < lastCol; ++pos) { |
407 | ASSERT(m_layoutStruct[pos].logicalWidth.isPercent() || m_layoutStruct[pos].effectiveLogicalWidth.isPercent()); |
408 | // |allColsArePercent| means that either the logicalWidth *or* the effectiveLogicalWidth are percents, handle both of them here. |
409 | float percent = m_layoutStruct[pos].logicalWidth.isPercent() ? m_layoutStruct[pos].logicalWidth.percent() : m_layoutStruct[pos].effectiveLogicalWidth.percent(); |
410 | float columnMinLogicalWidth = percent * cellMinLogicalWidth / totalPercent; |
411 | float columnMaxLogicalWidth = percent * cellMaxLogicalWidth / totalPercent; |
412 | m_layoutStruct[pos].effectiveMinLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, columnMinLogicalWidth); |
413 | m_layoutStruct[pos].effectiveMaxLogicalWidth = columnMaxLogicalWidth; |
414 | allocatedMinLogicalWidth += columnMinLogicalWidth; |
415 | allocatedMaxLogicalWidth += columnMaxLogicalWidth; |
416 | } |
417 | ASSERT(allocatedMinLogicalWidth < cellMinLogicalWidth || WTF::areEssentiallyEqual(allocatedMinLogicalWidth, cellMinLogicalWidth)); |
418 | ASSERT(allocatedMaxLogicalWidth < cellMaxLogicalWidth || WTF::areEssentiallyEqual(allocatedMaxLogicalWidth, cellMaxLogicalWidth)); |
419 | cellMinLogicalWidth -= allocatedMinLogicalWidth; |
420 | cellMaxLogicalWidth -= allocatedMaxLogicalWidth; |
421 | } else { |
422 | float remainingMaxLogicalWidth = spanMaxLogicalWidth; |
423 | float remainingMinLogicalWidth = spanMinLogicalWidth; |
424 | |
425 | // Give min to variable first, to fixed second, and to others third. |
426 | for (unsigned pos = effCol; remainingMaxLogicalWidth >= 0 && pos < lastCol; ++pos) { |
427 | if (m_layoutStruct[pos].logicalWidth.isFixed() && haveAuto && fixedWidth <= cellMinLogicalWidth) { |
428 | float colMinLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, m_layoutStruct[pos].logicalWidth.value()); |
429 | fixedWidth -= m_layoutStruct[pos].logicalWidth.value(); |
430 | remainingMinLogicalWidth -= m_layoutStruct[pos].effectiveMinLogicalWidth; |
431 | remainingMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; |
432 | cellMinLogicalWidth -= colMinLogicalWidth; |
433 | m_layoutStruct[pos].effectiveMinLogicalWidth = colMinLogicalWidth; |
434 | } |
435 | } |
436 | |
437 | for (unsigned pos = effCol; remainingMaxLogicalWidth >= 0 && pos < lastCol && remainingMinLogicalWidth < cellMinLogicalWidth; ++pos) { |
438 | if (!(m_layoutStruct[pos].logicalWidth.isFixed() && haveAuto && fixedWidth <= cellMinLogicalWidth)) { |
439 | float colMinLogicalWidth = std::max(m_layoutStruct[pos].effectiveMinLogicalWidth, remainingMaxLogicalWidth ? cellMinLogicalWidth * m_layoutStruct[pos].effectiveMaxLogicalWidth / remainingMaxLogicalWidth : cellMinLogicalWidth); |
440 | colMinLogicalWidth = std::min(m_layoutStruct[pos].effectiveMinLogicalWidth + (cellMinLogicalWidth - remainingMinLogicalWidth), colMinLogicalWidth); |
441 | remainingMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; |
442 | remainingMinLogicalWidth -= m_layoutStruct[pos].effectiveMinLogicalWidth; |
443 | cellMinLogicalWidth -= colMinLogicalWidth; |
444 | m_layoutStruct[pos].effectiveMinLogicalWidth = colMinLogicalWidth; |
445 | } |
446 | } |
447 | } |
448 | } |
449 | if (!cellLogicalWidth.isPercentOrCalculated()) { |
450 | if (cellMaxLogicalWidth > spanMaxLogicalWidth) { |
451 | for (unsigned pos = effCol; spanMaxLogicalWidth >= 0 && pos < lastCol; ++pos) { |
452 | float colMaxLogicalWidth = std::max(m_layoutStruct[pos].effectiveMaxLogicalWidth, spanMaxLogicalWidth ? cellMaxLogicalWidth * m_layoutStruct[pos].effectiveMaxLogicalWidth / spanMaxLogicalWidth : cellMaxLogicalWidth); |
453 | spanMaxLogicalWidth -= m_layoutStruct[pos].effectiveMaxLogicalWidth; |
454 | cellMaxLogicalWidth -= colMaxLogicalWidth; |
455 | m_layoutStruct[pos].effectiveMaxLogicalWidth = colMaxLogicalWidth; |
456 | } |
457 | } |
458 | } else { |
459 | for (unsigned pos = effCol; pos < lastCol; ++pos) |
460 | m_layoutStruct[pos].maxLogicalWidth = std::max(m_layoutStruct[pos].maxLogicalWidth, m_layoutStruct[pos].minLogicalWidth); |
461 | } |
462 | // treat span ranges consisting of empty cells only as if they had content |
463 | if (spanHasEmptyCellsOnly) { |
464 | for (unsigned pos = effCol; pos < lastCol; ++pos) |
465 | m_layoutStruct[pos].emptyCellsOnly = false; |
466 | } |
467 | } |
468 | m_effectiveLogicalWidthDirty = false; |
469 | |
470 | return std::min<float>(maxLogicalWidth, tableMaxWidth); |
471 | } |
472 | |
473 | /* gets all cells that originate in a column and have a cellspan > 1 |
474 | Sorts them by increasing cellspan |
475 | */ |
476 | void AutoTableLayout::insertSpanCell(RenderTableCell *cell) |
477 | { |
478 | ASSERT_ARG(cell, cell && cell->colSpan() != 1); |
479 | if (!cell || cell->colSpan() == 1) |
480 | return; |
481 | |
482 | unsigned size = m_spanCells.size(); |
483 | if (!size || m_spanCells[size-1] != 0) { |
484 | m_spanCells.grow(size + 10); |
485 | for (unsigned i = 0; i < 10; i++) |
486 | m_spanCells[size + i] = 0; |
487 | size += 10; |
488 | } |
489 | |
490 | // add them in sort. This is a slow algorithm, and a binary search or a fast sorting after collection would be better |
491 | unsigned pos = 0; |
492 | unsigned span = cell->colSpan(); |
493 | while (pos < m_spanCells.size() && m_spanCells[pos] && span > m_spanCells[pos]->colSpan()) |
494 | pos++; |
495 | memmove(m_spanCells.data()+pos+1, m_spanCells.data()+pos, (size-pos-1)*sizeof(RenderTableCell *)); |
496 | m_spanCells[pos] = cell; |
497 | } |
498 | |
499 | |
500 | void AutoTableLayout::layout() |
501 | { |
502 | // table layout based on the values collected in the layout structure. |
503 | float tableLogicalWidth = m_table->logicalWidth() - m_table->bordersPaddingAndSpacingInRowDirection(); |
504 | float available = tableLogicalWidth; |
505 | size_t nEffCols = m_table->numEffCols(); |
506 | |
507 | // FIXME: It is possible to be called without having properly updated our internal representation. |
508 | // This means that our preferred logical widths were not recomputed as expected. |
509 | if (nEffCols != m_layoutStruct.size()) { |
510 | fullRecalc(); |
511 | // FIXME: Table layout shouldn't modify our table structure (but does due to columns and column-groups). |
512 | nEffCols = m_table->numEffCols(); |
513 | } |
514 | |
515 | if (m_effectiveLogicalWidthDirty) |
516 | calcEffectiveLogicalWidth(); |
517 | |
518 | bool havePercent = false; |
519 | float totalRelative = 0; |
520 | int numAuto = 0; |
521 | int numFixed = 0; |
522 | float totalAuto = 0; |
523 | float totalFixed = 0; |
524 | float totalPercent = 0; |
525 | float allocAuto = 0; |
526 | unsigned numAutoEmptyCellsOnly = 0; |
527 | |
528 | // fill up every cell with its minWidth |
529 | for (size_t i = 0; i < nEffCols; ++i) { |
530 | float cellLogicalWidth = m_layoutStruct[i].effectiveMinLogicalWidth; |
531 | m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; |
532 | available -= cellLogicalWidth; |
533 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
534 | switch (logicalWidth.type()) { |
535 | case Percent: |
536 | havePercent = true; |
537 | totalPercent += logicalWidth.percent(); |
538 | break; |
539 | case Relative: |
540 | totalRelative += logicalWidth.value(); |
541 | break; |
542 | case Fixed: |
543 | numFixed++; |
544 | totalFixed += m_layoutStruct[i].effectiveMaxLogicalWidth; |
545 | break; |
546 | case Auto: |
547 | if (m_layoutStruct[i].emptyCellsOnly) |
548 | numAutoEmptyCellsOnly++; |
549 | else { |
550 | numAuto++; |
551 | totalAuto += m_layoutStruct[i].effectiveMaxLogicalWidth; |
552 | allocAuto += cellLogicalWidth; |
553 | } |
554 | break; |
555 | default: |
556 | break; |
557 | } |
558 | } |
559 | |
560 | // allocate width to percent cols |
561 | if (available > 0 && havePercent) { |
562 | for (size_t i = 0; i < nEffCols; ++i) { |
563 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
564 | if (logicalWidth.isPercentOrCalculated()) { |
565 | float cellLogicalWidth = std::max<float>(m_layoutStruct[i].effectiveMinLogicalWidth, minimumValueForLength(logicalWidth, tableLogicalWidth)); |
566 | available += m_layoutStruct[i].computedLogicalWidth - cellLogicalWidth; |
567 | m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; |
568 | } |
569 | } |
570 | if (totalPercent > 100) { |
571 | // remove overallocated space from the last columns |
572 | float excess = tableLogicalWidth * (totalPercent - 100) / 100; |
573 | for (unsigned i = nEffCols; i; ) { |
574 | --i; |
575 | if (m_layoutStruct[i].effectiveLogicalWidth.isPercentOrCalculated()) { |
576 | float cellLogicalWidth = m_layoutStruct[i].computedLogicalWidth; |
577 | float reduction = std::min(cellLogicalWidth, excess); |
578 | // the lines below might look inconsistent, but that's the way it's handled in mozilla |
579 | excess -= reduction; |
580 | float newLogicalWidth = std::max(m_layoutStruct[i].effectiveMinLogicalWidth, cellLogicalWidth - reduction); |
581 | available += cellLogicalWidth - newLogicalWidth; |
582 | m_layoutStruct[i].computedLogicalWidth = newLogicalWidth; |
583 | } |
584 | } |
585 | } |
586 | } |
587 | |
588 | // then allocate width to fixed cols |
589 | if (available > 0) { |
590 | for (size_t i = 0; i < nEffCols; ++i) { |
591 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
592 | if (logicalWidth.isFixed() && logicalWidth.value() > m_layoutStruct[i].computedLogicalWidth) { |
593 | available += m_layoutStruct[i].computedLogicalWidth - logicalWidth.value(); |
594 | m_layoutStruct[i].computedLogicalWidth = logicalWidth.value(); |
595 | } |
596 | } |
597 | } |
598 | |
599 | // now satisfy relative |
600 | if (available > 0) { |
601 | for (size_t i = 0; i < nEffCols; ++i) { |
602 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
603 | if (logicalWidth.isRelative() && logicalWidth.value() != 0) { |
604 | // width=0* gets effMinWidth. |
605 | float cellLogicalWidth = logicalWidth.value() * tableLogicalWidth / totalRelative; |
606 | available += m_layoutStruct[i].computedLogicalWidth - cellLogicalWidth; |
607 | m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; |
608 | } |
609 | } |
610 | } |
611 | |
612 | // now satisfy variable |
613 | if (available > 0 && numAuto) { |
614 | available += allocAuto; // this gets redistributed |
615 | for (size_t i = 0; i < nEffCols; ++i) { |
616 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
617 | if (logicalWidth.isAuto() && totalAuto && !m_layoutStruct[i].emptyCellsOnly) { |
618 | float cellLogicalWidth = std::max(m_layoutStruct[i].computedLogicalWidth, available * m_layoutStruct[i].effectiveMaxLogicalWidth / totalAuto); |
619 | available -= cellLogicalWidth; |
620 | totalAuto -= m_layoutStruct[i].effectiveMaxLogicalWidth; |
621 | m_layoutStruct[i].computedLogicalWidth = cellLogicalWidth; |
622 | } |
623 | } |
624 | } |
625 | |
626 | // spread over fixed columns |
627 | if (available > 0 && numFixed) { |
628 | for (size_t i = 0; i < nEffCols; ++i) { |
629 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
630 | if (logicalWidth.isFixed()) { |
631 | float cellLogicalWidth = available * m_layoutStruct[i].effectiveMaxLogicalWidth / totalFixed; |
632 | available -= cellLogicalWidth; |
633 | totalFixed -= m_layoutStruct[i].effectiveMaxLogicalWidth; |
634 | m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; |
635 | } |
636 | } |
637 | } |
638 | |
639 | // spread over percent colums |
640 | if (available > 0 && m_hasPercent && totalPercent < 100) { |
641 | for (size_t i = 0; i < nEffCols; ++i) { |
642 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
643 | if (logicalWidth.isPercent()) { |
644 | float cellLogicalWidth = available * logicalWidth.percent() / totalPercent; |
645 | available -= cellLogicalWidth; |
646 | totalPercent -= logicalWidth.percent(); |
647 | m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; |
648 | if (!available || !totalPercent) |
649 | break; |
650 | } |
651 | } |
652 | } |
653 | |
654 | // spread over the rest |
655 | if (available > 0 && nEffCols > numAutoEmptyCellsOnly) { |
656 | unsigned total = nEffCols - numAutoEmptyCellsOnly; |
657 | // still have some width to spread |
658 | for (unsigned i = nEffCols; i; ) { |
659 | --i; |
660 | // variable columns with empty cells only don't get any width |
661 | if (m_layoutStruct[i].effectiveLogicalWidth.isAuto() && m_layoutStruct[i].emptyCellsOnly) |
662 | continue; |
663 | float cellLogicalWidth = available / total; |
664 | available -= cellLogicalWidth; |
665 | total--; |
666 | m_layoutStruct[i].computedLogicalWidth += cellLogicalWidth; |
667 | } |
668 | } |
669 | |
670 | // If we have overallocated, reduce every cell according to the difference between desired width and minwidth |
671 | // this seems to produce to the pixel exact results with IE. Wonder if some of this also holds for width distributing. |
672 | if (available < 0) { |
673 | // Need to reduce cells with the following prioritization: |
674 | // (1) Auto |
675 | // (2) Relative |
676 | // (3) Fixed |
677 | // (4) Percent |
678 | // This is basically the reverse of how we grew the cells. |
679 | if (available < 0) { |
680 | float logicalWidthBeyondMin = 0; |
681 | for (unsigned i = nEffCols; i; ) { |
682 | --i; |
683 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
684 | if (logicalWidth.isAuto()) |
685 | logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
686 | } |
687 | |
688 | for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { |
689 | --i; |
690 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
691 | if (logicalWidth.isAuto()) { |
692 | float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
693 | float reduce = available * minMaxDiff / logicalWidthBeyondMin; |
694 | m_layoutStruct[i].computedLogicalWidth += reduce; |
695 | available -= reduce; |
696 | logicalWidthBeyondMin -= minMaxDiff; |
697 | if (available >= 0) |
698 | break; |
699 | } |
700 | } |
701 | } |
702 | |
703 | if (available < 0) { |
704 | float logicalWidthBeyondMin = 0; |
705 | for (unsigned i = nEffCols; i; ) { |
706 | --i; |
707 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
708 | if (logicalWidth.isRelative()) |
709 | logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
710 | } |
711 | |
712 | for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { |
713 | --i; |
714 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
715 | if (logicalWidth.isRelative()) { |
716 | float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
717 | float reduce = available * minMaxDiff / logicalWidthBeyondMin; |
718 | m_layoutStruct[i].computedLogicalWidth += reduce; |
719 | available -= reduce; |
720 | logicalWidthBeyondMin -= minMaxDiff; |
721 | if (available >= 0) |
722 | break; |
723 | } |
724 | } |
725 | } |
726 | |
727 | if (available < 0) { |
728 | float logicalWidthBeyondMin = 0; |
729 | for (unsigned i = nEffCols; i; ) { |
730 | --i; |
731 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
732 | if (logicalWidth.isFixed()) |
733 | logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
734 | } |
735 | |
736 | for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { |
737 | --i; |
738 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
739 | if (logicalWidth.isFixed()) { |
740 | float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
741 | float reduce = available * minMaxDiff / logicalWidthBeyondMin; |
742 | m_layoutStruct[i].computedLogicalWidth += reduce; |
743 | available -= reduce; |
744 | logicalWidthBeyondMin -= minMaxDiff; |
745 | if (available >= 0) |
746 | break; |
747 | } |
748 | } |
749 | } |
750 | |
751 | if (available < 0) { |
752 | float logicalWidthBeyondMin = 0; |
753 | for (unsigned i = nEffCols; i; ) { |
754 | --i; |
755 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
756 | if (logicalWidth.isPercentOrCalculated()) |
757 | logicalWidthBeyondMin += m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
758 | } |
759 | |
760 | for (unsigned i = nEffCols; i && logicalWidthBeyondMin > 0; ) { |
761 | --i; |
762 | Length& logicalWidth = m_layoutStruct[i].effectiveLogicalWidth; |
763 | if (logicalWidth.isPercentOrCalculated()) { |
764 | float minMaxDiff = m_layoutStruct[i].computedLogicalWidth - m_layoutStruct[i].effectiveMinLogicalWidth; |
765 | float reduce = available * minMaxDiff / logicalWidthBeyondMin; |
766 | m_layoutStruct[i].computedLogicalWidth += reduce; |
767 | available -= reduce; |
768 | logicalWidthBeyondMin -= minMaxDiff; |
769 | if (available >= 0) |
770 | break; |
771 | } |
772 | } |
773 | } |
774 | } |
775 | |
776 | LayoutUnit pos; |
777 | for (size_t i = 0; i < nEffCols; ++i) { |
778 | m_table->setColumnPosition(i, pos); |
779 | pos += LayoutUnit::fromFloatCeil(m_layoutStruct[i].computedLogicalWidth) + m_table->hBorderSpacing(); |
780 | } |
781 | m_table->setColumnPosition(m_table->columnPositions().size() - 1, pos); |
782 | } |
783 | |
784 | } |
785 | |