| 1 | /* |
| 2 | * Copyright (C) 2006 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "GIFImageDecoder.h" |
| 28 | |
| 29 | #include "GIFImageReader.h" |
| 30 | #include <limits> |
| 31 | |
| 32 | namespace WebCore { |
| 33 | |
| 34 | GIFImageDecoder::GIFImageDecoder(AlphaOption alphaOption, GammaAndColorProfileOption gammaAndColorProfileOption) |
| 35 | : ScalableImageDecoder(alphaOption, gammaAndColorProfileOption) |
| 36 | { |
| 37 | } |
| 38 | |
| 39 | GIFImageDecoder::~GIFImageDecoder() = default; |
| 40 | |
| 41 | void GIFImageDecoder::setData(SharedBuffer& data, bool allDataReceived) |
| 42 | { |
| 43 | if (failed()) |
| 44 | return; |
| 45 | |
| 46 | ScalableImageDecoder::setData(data, allDataReceived); |
| 47 | if (m_reader) |
| 48 | m_reader->setData(&data); |
| 49 | } |
| 50 | |
| 51 | bool GIFImageDecoder::setSize(const IntSize& size) |
| 52 | { |
| 53 | if (ScalableImageDecoder::encodedDataStatus() >= EncodedDataStatus::SizeAvailable && this->size() == size) |
| 54 | return true; |
| 55 | |
| 56 | if (!ScalableImageDecoder::setSize(size)) |
| 57 | return false; |
| 58 | |
| 59 | prepareScaleDataIfNecessary(); |
| 60 | return true; |
| 61 | } |
| 62 | |
| 63 | size_t GIFImageDecoder::frameCount() const |
| 64 | { |
| 65 | const_cast<GIFImageDecoder*>(this)->decode(std::numeric_limits<unsigned>::max(), GIFFrameCountQuery, isAllDataReceived()); |
| 66 | return m_frameBufferCache.size(); |
| 67 | } |
| 68 | |
| 69 | RepetitionCount GIFImageDecoder::repetitionCount() const |
| 70 | { |
| 71 | // This value can arrive at any point in the image data stream. Most GIFs |
| 72 | // in the wild declare it near the beginning of the file, so it usually is |
| 73 | // set by the time we've decoded the size, but (depending on the GIF and the |
| 74 | // packets sent back by the webserver) not always. If the reader hasn't |
| 75 | // seen a loop count yet, it will return cLoopCountNotSeen, in which case we |
| 76 | // should default to looping once (the initial value for |
| 77 | // |m_repetitionCount|). |
| 78 | // |
| 79 | // There are some additional wrinkles here. First, ImageSource::clear() |
| 80 | // may destroy the reader, making the result from the reader _less_ |
| 81 | // authoritative on future calls if the recreated reader hasn't seen the |
| 82 | // loop count. We don't need to special-case this because in this case the |
| 83 | // new reader will once again return cLoopCountNotSeen, and we won't |
| 84 | // overwrite the cached correct value. |
| 85 | // |
| 86 | // Second, a GIF might never set a loop count at all, in which case we |
| 87 | // should continue to treat it as a "loop once" animation. We don't need |
| 88 | // special code here either, because in this case we'll never change |
| 89 | // |m_repetitionCount| from its default value. |
| 90 | // |
| 91 | // Third, we use the same GIFImageReader for counting frames and we might |
| 92 | // see the loop count and then encounter a decoding error which happens |
| 93 | // later in the stream. It is also possible that no frames are in the |
| 94 | // stream. In these cases we should just loop once. |
| 95 | if (failed() || (m_reader && (!m_reader->imagesCount()))) |
| 96 | m_repetitionCount = RepetitionCountOnce; |
| 97 | else if (m_reader && m_reader->loopCount() != cLoopCountNotSeen) |
| 98 | m_repetitionCount = m_reader->loopCount() > 0 ? m_reader->loopCount() + 1 : m_reader->loopCount(); |
| 99 | return m_repetitionCount; |
| 100 | } |
| 101 | |
| 102 | size_t GIFImageDecoder::findFirstRequiredFrameToDecode(size_t frameIndex) |
| 103 | { |
| 104 | // The first frame doesn't depend on any other. |
| 105 | if (!frameIndex) |
| 106 | return 0; |
| 107 | |
| 108 | for (size_t i = frameIndex; i > 0; --i) { |
| 109 | auto& frame = m_frameBufferCache[i - 1]; |
| 110 | |
| 111 | // Frames with disposal method RestoreToPrevious are useless, skip them. |
| 112 | if (frame.disposalMethod() == ScalableImageDecoderFrame::DisposalMethod::RestoreToPrevious) |
| 113 | continue; |
| 114 | |
| 115 | // At this point the disposal method can be Unspecified, DoNotDispose or RestoreToBackground. |
| 116 | // In every case, if the frame is complete we can start decoding the next one. |
| 117 | if (frame.isComplete()) |
| 118 | return i; |
| 119 | |
| 120 | // If the disposal method of this frame is RestoreToBackground and it fills the whole area, |
| 121 | // the next frame's backing store is initialized to transparent, so we start decoding with it. |
| 122 | if (frame.disposalMethod() == ScalableImageDecoderFrame::DisposalMethod::RestoreToBackground) { |
| 123 | // We cannot use frame.backingStore()->frameRect() here, because it has been cleared |
| 124 | // when the frame was removed from the cache. We need to get the values from the |
| 125 | // reader context. |
| 126 | const auto* frameContext = m_reader->frameContext(i - 1); |
| 127 | ASSERT(frameContext); |
| 128 | IntRect frameRect(frameContext->xOffset, frameContext->yOffset, frameContext->width, frameContext->height); |
| 129 | // We would need to scale frameRect and check whether it fills the whole scaledSize(). But |
| 130 | // can check whether the original frameRect fills size() instead. If the frame fills the |
| 131 | // whole area then it can be decoded without dependencies. |
| 132 | if (frameRect.contains({ { }, size() })) |
| 133 | return i; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | return 0; |
| 138 | } |
| 139 | |
| 140 | ScalableImageDecoderFrame* GIFImageDecoder::frameBufferAtIndex(size_t index) |
| 141 | { |
| 142 | if (index >= frameCount()) |
| 143 | return 0; |
| 144 | |
| 145 | auto& frame = m_frameBufferCache[index]; |
| 146 | if (!frame.isComplete()) { |
| 147 | for (auto i = findFirstRequiredFrameToDecode(index); i <= index; i++) |
| 148 | decode(i + 1, GIFFullQuery, isAllDataReceived()); |
| 149 | } |
| 150 | |
| 151 | return &frame; |
| 152 | } |
| 153 | |
| 154 | bool GIFImageDecoder::setFailed() |
| 155 | { |
| 156 | m_reader = nullptr; |
| 157 | return ScalableImageDecoder::setFailed(); |
| 158 | } |
| 159 | |
| 160 | void GIFImageDecoder::clearFrameBufferCache(size_t clearBeforeFrame) |
| 161 | { |
| 162 | // In some cases, like if the decoder was destroyed while animating, we |
| 163 | // can be asked to clear more frames than we currently have. |
| 164 | if (m_frameBufferCache.isEmpty()) |
| 165 | return; // Nothing to do. |
| 166 | |
| 167 | // The "-1" here is tricky. It does not mean that |clearBeforeFrame| is the |
| 168 | // last frame we wish to preserve, but rather that we never want to clear |
| 169 | // the very last frame in the cache: it's empty (so clearing it is |
| 170 | // pointless), it's partial (so we don't want to clear it anyway), or the |
| 171 | // cache could be enlarged with a future setData() call and it could be |
| 172 | // needed to construct the next frame (see comments below). Callers can |
| 173 | // always use ImageSource::clear(true, ...) to completely free the memory in |
| 174 | // this case. |
| 175 | clearBeforeFrame = std::min(clearBeforeFrame, m_frameBufferCache.size() - 1); |
| 176 | const Vector<ScalableImageDecoderFrame>::iterator end(m_frameBufferCache.begin() + clearBeforeFrame); |
| 177 | |
| 178 | // We need to preserve frames such that: |
| 179 | // * We don't clear |end| |
| 180 | // * We don't clear the frame we're currently decoding |
| 181 | // * We don't clear any frame from which a future initFrameBuffer() call |
| 182 | // will copy bitmap data |
| 183 | // All other frames can be cleared. Because of the constraints on when |
| 184 | // ImageSource::clear() can be called (see ImageSource.h), we're guaranteed |
| 185 | // not to have non-empty frames after the frame we're currently decoding. |
| 186 | // So, scan backwards from |end| as follows: |
| 187 | // * If the frame is empty, we're still past any frames we care about. |
| 188 | // * If the frame is complete, but is DisposalMethod::RestoreToPrevious, we'll |
| 189 | // skip over it in future initFrameBuffer() calls. We can clear it |
| 190 | // unless it's |end|, and keep scanning. For any other disposal method, |
| 191 | // stop scanning, as we've found the frame initFrameBuffer() will need |
| 192 | // next. |
| 193 | // * If the frame is partial, we're decoding it, so don't clear it; if it |
| 194 | // has a disposal method other than DisposalMethod::RestoreToPrevious, stop |
| 195 | // scanning, as we'll only need this frame when decoding the next one. |
| 196 | Vector<ScalableImageDecoderFrame>::iterator i(end); |
| 197 | for (; (i != m_frameBufferCache.begin()) && (i->isInvalid() || (i->disposalMethod() == ScalableImageDecoderFrame::DisposalMethod::RestoreToPrevious)); --i) { |
| 198 | if (i->isComplete() && (i != end)) |
| 199 | i->clear(); |
| 200 | } |
| 201 | |
| 202 | // Now |i| holds the last frame we need to preserve; clear prior frames. |
| 203 | for (Vector<ScalableImageDecoderFrame>::iterator j(m_frameBufferCache.begin()); j != i; ++j) { |
| 204 | ASSERT(!j->isPartial()); |
| 205 | if (!j->isInvalid()) |
| 206 | j->clear(); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | bool GIFImageDecoder::haveDecodedRow(unsigned frameIndex, const Vector<unsigned char>& rowBuffer, size_t width, size_t rowNumber, unsigned repeatCount, bool writeTransparentPixels) |
| 211 | { |
| 212 | const GIFFrameContext* frameContext = m_reader->frameContext(); |
| 213 | // The pixel data and coordinates supplied to us are relative to the frame's |
| 214 | // origin within the entire image size, i.e. |
| 215 | // (frameContext->xOffset, frameContext->yOffset). There is no guarantee |
| 216 | // that width == (size().width() - frameContext->xOffset), so |
| 217 | // we must ensure we don't run off the end of either the source data or the |
| 218 | // row's X-coordinates. |
| 219 | int xBegin = upperBoundScaledX(frameContext->xOffset); |
| 220 | int yBegin = upperBoundScaledY(frameContext->yOffset + rowNumber); |
| 221 | int xEnd = lowerBoundScaledX(std::min(static_cast<int>(frameContext->xOffset + width), size().width()) - 1, xBegin + 1) + 1; |
| 222 | int yEnd = lowerBoundScaledY(std::min(static_cast<int>(frameContext->yOffset + rowNumber + repeatCount), size().height()) - 1, yBegin + 1) + 1; |
| 223 | if (rowBuffer.isEmpty() || (xBegin < 0) || (yBegin < 0) || (xEnd <= xBegin) || (yEnd <= yBegin)) |
| 224 | return true; |
| 225 | |
| 226 | // Get the colormap. |
| 227 | const unsigned char* colorMap; |
| 228 | unsigned colorMapSize; |
| 229 | if (frameContext->isLocalColormapDefined) { |
| 230 | colorMap = m_reader->localColormap(frameContext); |
| 231 | colorMapSize = m_reader->localColormapSize(frameContext); |
| 232 | } else { |
| 233 | colorMap = m_reader->globalColormap(); |
| 234 | colorMapSize = m_reader->globalColormapSize(); |
| 235 | } |
| 236 | if (!colorMap) |
| 237 | return true; |
| 238 | |
| 239 | // Initialize the frame if necessary. |
| 240 | auto& buffer = m_frameBufferCache[frameIndex]; |
| 241 | if ((buffer.isInvalid() && !initFrameBuffer(frameIndex)) || !buffer.hasBackingStore()) |
| 242 | return false; |
| 243 | |
| 244 | auto* currentAddress = buffer.backingStore()->pixelAt(xBegin, yBegin); |
| 245 | // Write one row's worth of data into the frame. |
| 246 | for (int x = xBegin; x < xEnd; ++x) { |
| 247 | const unsigned char sourceValue = rowBuffer[(m_scaled ? m_scaledColumns[x] : x) - frameContext->xOffset]; |
| 248 | if ((!frameContext->isTransparent || (sourceValue != frameContext->tpixel)) && (sourceValue < colorMapSize)) { |
| 249 | const size_t colorIndex = static_cast<size_t>(sourceValue) * 3; |
| 250 | buffer.backingStore()->setPixel(currentAddress, colorMap[colorIndex], colorMap[colorIndex + 1], colorMap[colorIndex + 2], 255); |
| 251 | } else { |
| 252 | m_currentBufferSawAlpha = true; |
| 253 | // We may or may not need to write transparent pixels to the buffer. |
| 254 | // If we're compositing against a previous image, it's wrong, and if |
| 255 | // we're writing atop a cleared, fully transparent buffer, it's |
| 256 | // unnecessary; but if we're decoding an interlaced gif and |
| 257 | // displaying it "Haeberli"-style, we must write these for passes |
| 258 | // beyond the first, or the initial passes will "show through" the |
| 259 | // later ones. |
| 260 | if (writeTransparentPixels) |
| 261 | buffer.backingStore()->setPixel(currentAddress, 0, 0, 0, 0); |
| 262 | } |
| 263 | ++currentAddress; |
| 264 | } |
| 265 | |
| 266 | // Tell the frame to copy the row data if need be. |
| 267 | if (repeatCount > 1) |
| 268 | buffer.backingStore()->repeatFirstRow(IntRect(xBegin, yBegin, xEnd - xBegin , yEnd - yBegin)); |
| 269 | |
| 270 | return true; |
| 271 | } |
| 272 | |
| 273 | bool GIFImageDecoder::frameComplete(unsigned frameIndex, unsigned frameDuration, ScalableImageDecoderFrame::DisposalMethod disposalMethod) |
| 274 | { |
| 275 | // Initialize the frame if necessary. Some GIFs insert do-nothing frames, |
| 276 | // in which case we never reach haveDecodedRow() before getting here. |
| 277 | auto& buffer = m_frameBufferCache[frameIndex]; |
| 278 | if (buffer.isInvalid() && !initFrameBuffer(frameIndex)) |
| 279 | return false; // initFrameBuffer() has already called setFailed(). |
| 280 | |
| 281 | buffer.setDecodingStatus(DecodingStatus::Complete); |
| 282 | buffer.setDuration(Seconds::fromMilliseconds(frameDuration)); |
| 283 | buffer.setDisposalMethod(disposalMethod); |
| 284 | |
| 285 | if (!m_currentBufferSawAlpha) { |
| 286 | IntRect rect = buffer.backingStore()->frameRect(); |
| 287 | |
| 288 | // The whole frame was non-transparent, so it's possible that the entire |
| 289 | // resulting buffer was non-transparent, and we can setHasAlpha(false). |
| 290 | if (rect.contains(IntRect(IntPoint(), scaledSize()))) |
| 291 | buffer.setHasAlpha(false); |
| 292 | else if (frameIndex) { |
| 293 | // Tricky case. This frame does not have alpha only if everywhere |
| 294 | // outside its rect doesn't have alpha. To know whether this is |
| 295 | // true, we check the start state of the frame -- if it doesn't have |
| 296 | // alpha, we're safe. |
| 297 | // |
| 298 | // First skip over prior DisposalMethod::RestoreToPrevious frames (since they |
| 299 | // don't affect the start state of this frame) the same way we do in |
| 300 | // initFrameBuffer(). |
| 301 | const auto* prevBuffer = &m_frameBufferCache[--frameIndex]; |
| 302 | while (frameIndex && (prevBuffer->disposalMethod() == ScalableImageDecoderFrame::DisposalMethod::RestoreToPrevious)) |
| 303 | prevBuffer = &m_frameBufferCache[--frameIndex]; |
| 304 | |
| 305 | // Now, if we're at a DisposalMethod::Unspecified or DisposalMethod::DoNotDispose frame, then |
| 306 | // we can say we have no alpha if that frame had no alpha. But |
| 307 | // since in initFrameBuffer() we already copied that frame's alpha |
| 308 | // state into the current frame's, we need do nothing at all here. |
| 309 | // |
| 310 | // The only remaining case is a DisposalMethod::RestoreToBackground frame. If |
| 311 | // it had no alpha, and its rect is contained in the current frame's |
| 312 | // rect, we know the current frame has no alpha. |
| 313 | IntRect prevRect = prevBuffer->backingStore()->frameRect(); |
| 314 | if ((prevBuffer->disposalMethod() == ScalableImageDecoderFrame::DisposalMethod::RestoreToBackground) && !prevBuffer->hasAlpha() && rect.contains(prevRect)) |
| 315 | buffer.setHasAlpha(false); |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | return true; |
| 320 | } |
| 321 | |
| 322 | void GIFImageDecoder::gifComplete() |
| 323 | { |
| 324 | // Cache the repetition count, which is now as authoritative as it's ever |
| 325 | // going to be. |
| 326 | repetitionCount(); |
| 327 | |
| 328 | m_reader = nullptr; |
| 329 | } |
| 330 | |
| 331 | void GIFImageDecoder::decode(unsigned haltAtFrame, GIFQuery query, bool allDataReceived) |
| 332 | { |
| 333 | if (failed()) |
| 334 | return; |
| 335 | |
| 336 | if (!m_reader) { |
| 337 | m_reader = std::make_unique<GIFImageReader>(this); |
| 338 | m_reader->setData(m_data.get()); |
| 339 | } |
| 340 | |
| 341 | if (query == GIFSizeQuery) { |
| 342 | if (!m_reader->decode(GIFSizeQuery, haltAtFrame)) |
| 343 | setFailed(); |
| 344 | return; |
| 345 | } |
| 346 | |
| 347 | if (!m_reader->decode(GIFFrameCountQuery, haltAtFrame)) { |
| 348 | setFailed(); |
| 349 | return; |
| 350 | } |
| 351 | |
| 352 | m_frameBufferCache.resize(m_reader->imagesCount()); |
| 353 | |
| 354 | if (query == GIFFrameCountQuery) |
| 355 | return; |
| 356 | |
| 357 | if (!m_reader->decode(GIFFullQuery, haltAtFrame)) { |
| 358 | setFailed(); |
| 359 | return; |
| 360 | } |
| 361 | |
| 362 | // It is also a fatal error if all data is received but we failed to decode |
| 363 | // all frames completely. |
| 364 | if (allDataReceived && haltAtFrame >= m_frameBufferCache.size() && m_reader) |
| 365 | setFailed(); |
| 366 | } |
| 367 | |
| 368 | bool GIFImageDecoder::initFrameBuffer(unsigned frameIndex) |
| 369 | { |
| 370 | // Initialize the frame rect in our buffer. |
| 371 | const GIFFrameContext* frameContext = m_reader->frameContext(); |
| 372 | IntRect frameRect(frameContext->xOffset, frameContext->yOffset, frameContext->width, frameContext->height); |
| 373 | auto* const buffer = &m_frameBufferCache[frameIndex]; |
| 374 | |
| 375 | if (!frameIndex) { |
| 376 | // This is the first frame, so we're not relying on any previous data. |
| 377 | if (!buffer->initialize(scaledSize(), m_premultiplyAlpha)) |
| 378 | return setFailed(); |
| 379 | } else { |
| 380 | // The starting state for this frame depends on the previous frame's |
| 381 | // disposal method. |
| 382 | // |
| 383 | // Frames that use the DisposalMethod::RestoreToPrevious method are effectively |
| 384 | // no-ops in terms of changing the starting state of a frame compared to |
| 385 | // the starting state of the previous frame, so skip over them. (If the |
| 386 | // first frame specifies this method, it will get treated like |
| 387 | // DisposalMethod::RestoreToBackground below and reset to a completely empty image.) |
| 388 | const auto* prevBuffer = &m_frameBufferCache[--frameIndex]; |
| 389 | auto prevMethod = prevBuffer->disposalMethod(); |
| 390 | while (frameIndex && (prevMethod == ScalableImageDecoderFrame::DisposalMethod::RestoreToPrevious)) { |
| 391 | prevBuffer = &m_frameBufferCache[--frameIndex]; |
| 392 | prevMethod = prevBuffer->disposalMethod(); |
| 393 | } |
| 394 | |
| 395 | ASSERT(prevBuffer->isComplete()); |
| 396 | |
| 397 | if ((prevMethod == ScalableImageDecoderFrame::DisposalMethod::Unspecified) || (prevMethod == ScalableImageDecoderFrame::DisposalMethod::DoNotDispose)) { |
| 398 | // Preserve the last frame as the starting state for this frame. |
| 399 | if (!prevBuffer->backingStore() || !buffer->initialize(*prevBuffer->backingStore())) |
| 400 | return setFailed(); |
| 401 | } else { |
| 402 | // We want to clear the previous frame to transparent, without |
| 403 | // affecting pixels in the image outside of the frame. |
| 404 | IntRect prevRect = prevBuffer->backingStore()->frameRect(); |
| 405 | const IntSize& bufferSize = scaledSize(); |
| 406 | if (!frameIndex || prevRect.contains(IntRect(IntPoint(), scaledSize()))) { |
| 407 | // Clearing the first frame, or a frame the size of the whole |
| 408 | // image, results in a completely empty image. |
| 409 | if (!buffer->initialize(bufferSize, m_premultiplyAlpha)) |
| 410 | return setFailed(); |
| 411 | } else { |
| 412 | // Copy the whole previous buffer, then clear just its frame. |
| 413 | if (!prevBuffer->backingStore() || !buffer->initialize(*prevBuffer->backingStore())) |
| 414 | return setFailed(); |
| 415 | buffer->backingStore()->clearRect(prevRect); |
| 416 | buffer->setHasAlpha(true); |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | // Make sure the frameRect doesn't extend outside the buffer. |
| 422 | if (frameRect.maxX() > size().width()) |
| 423 | frameRect.setWidth(size().width() - frameContext->xOffset); |
| 424 | if (frameRect.maxY() > size().height()) |
| 425 | frameRect.setHeight(size().height() - frameContext->yOffset); |
| 426 | |
| 427 | int left = upperBoundScaledX(frameRect.x()); |
| 428 | int right = lowerBoundScaledX(frameRect.maxX(), left); |
| 429 | int top = upperBoundScaledY(frameRect.y()); |
| 430 | int bottom = lowerBoundScaledY(frameRect.maxY(), top); |
| 431 | buffer->backingStore()->setFrameRect(IntRect(left, top, right - left, bottom - top)); |
| 432 | |
| 433 | // Update our status to be partially complete. |
| 434 | buffer->setDecodingStatus(DecodingStatus::Partial); |
| 435 | |
| 436 | // Reset the alpha pixel tracker for this frame. |
| 437 | m_currentBufferSawAlpha = false; |
| 438 | return true; |
| 439 | } |
| 440 | |
| 441 | } // namespace WebCore |
| 442 | |