1 | /* |
2 | * Copyright (c) 2008, 2009, Google Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions are |
6 | * met: |
7 | * |
8 | * * Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * * Redistributions in binary form must reproduce the above |
11 | * copyright notice, this list of conditions and the following disclaimer |
12 | * in the documentation and/or other materials provided with the |
13 | * distribution. |
14 | * * Neither the name of Google Inc. nor the names of its |
15 | * contributors may be used to endorse or promote products derived from |
16 | * this software without specific prior written permission. |
17 | * |
18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | */ |
30 | |
31 | #include "config.h" |
32 | #include "BMPImageReader.h" |
33 | |
34 | namespace WebCore { |
35 | |
36 | BMPImageReader::BMPImageReader(ScalableImageDecoder* parent, size_t decodedAndHeaderOffset, size_t imgDataOffset, bool usesAndMask) |
37 | : m_parent(parent) |
38 | , m_buffer(0) |
39 | , m_decodedOffset(decodedAndHeaderOffset) |
40 | , m_headerOffset(decodedAndHeaderOffset) |
41 | , m_imgDataOffset(imgDataOffset) |
42 | , m_isOS21x(false) |
43 | , m_isOS22x(false) |
44 | , m_isTopDown(false) |
45 | , m_needToProcessBitmasks(false) |
46 | , m_needToProcessColorTable(false) |
47 | , m_tableSizeInBytes(0) |
48 | , m_seenNonZeroAlphaPixel(false) |
49 | , m_seenZeroAlphaPixel(false) |
50 | , m_andMaskState(usesAndMask ? NotYetDecoded : None) |
51 | { |
52 | // Clue-in decodeBMP() that we need to detect the correct info header size. |
53 | memset(&m_infoHeader, 0, sizeof(m_infoHeader)); |
54 | } |
55 | |
56 | bool BMPImageReader::decodeBMP(bool onlySize) |
57 | { |
58 | // Calculate size of info header. |
59 | if (!m_infoHeader.biSize && !readInfoHeaderSize()) |
60 | return false; |
61 | |
62 | // Read and process info header. |
63 | if ((m_decodedOffset < (m_headerOffset + m_infoHeader.biSize)) && !processInfoHeader()) |
64 | return false; |
65 | |
66 | // processInfoHeader() set the size, so if that's all we needed, we're done. |
67 | if (onlySize) |
68 | return true; |
69 | |
70 | // Read and process the bitmasks, if needed. |
71 | if (m_needToProcessBitmasks && !processBitmasks()) |
72 | return false; |
73 | |
74 | // Read and process the color table, if needed. |
75 | if (m_needToProcessColorTable && !processColorTable()) |
76 | return false; |
77 | |
78 | // Initialize the framebuffer if needed. |
79 | ASSERT(m_buffer); // Parent should set this before asking us to decode! |
80 | if (m_buffer->isInvalid()) { |
81 | if (!m_buffer->initialize(m_parent->size(), m_parent->premultiplyAlpha())) |
82 | return m_parent->setFailed(); // Unable to allocate. |
83 | |
84 | m_buffer->setDecodingStatus(DecodingStatus::Partial); |
85 | m_buffer->setHasAlpha(false); |
86 | |
87 | if (!m_isTopDown) |
88 | m_coord.setY(m_parent->size().height() - 1); |
89 | } |
90 | |
91 | // Decode the data. |
92 | if ((m_andMaskState != Decoding) && !pastEndOfImage(0)) { |
93 | if ((m_infoHeader.biCompression != RLE4) && (m_infoHeader.biCompression != RLE8) && (m_infoHeader.biCompression != RLE24)) { |
94 | const ProcessingResult result = processNonRLEData(false, 0); |
95 | if (result != Success) |
96 | return (result == Failure) ? m_parent->setFailed() : false; |
97 | } else if (!processRLEData()) |
98 | return false; |
99 | } |
100 | |
101 | // If the image has an AND mask and there was no alpha data, process the |
102 | // mask. |
103 | if ((m_andMaskState == NotYetDecoded) && !m_buffer->hasAlpha()) { |
104 | // Reset decoding coordinates to start of image. |
105 | m_coord.setX(0); |
106 | m_coord.setY(m_isTopDown ? 0 : (m_parent->size().height() - 1)); |
107 | |
108 | // The AND mask is stored as 1-bit data. |
109 | m_infoHeader.biBitCount = 1; |
110 | |
111 | m_andMaskState = Decoding; |
112 | } |
113 | if (m_andMaskState == Decoding) { |
114 | const ProcessingResult result = processNonRLEData(false, 0); |
115 | if (result != Success) |
116 | return (result == Failure) ? m_parent->setFailed() : false; |
117 | } |
118 | |
119 | // Done! |
120 | m_buffer->setDecodingStatus(DecodingStatus::Complete); |
121 | return true; |
122 | } |
123 | |
124 | bool BMPImageReader::() |
125 | { |
126 | // Get size of info header. |
127 | ASSERT(m_decodedOffset == m_headerOffset); |
128 | if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < 4)) |
129 | return false; |
130 | m_infoHeader.biSize = readUint32(0); |
131 | // Don't increment m_decodedOffset here, it just makes the code in |
132 | // processInfoHeader() more confusing. |
133 | |
134 | // Don't allow the header to overflow (which would be harmless here, but |
135 | // problematic or at least confusing in other places), or to overrun the |
136 | // image data. |
137 | if (((m_headerOffset + m_infoHeader.biSize) < m_headerOffset) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize)))) |
138 | return m_parent->setFailed(); |
139 | |
140 | // See if this is a header size we understand: |
141 | // OS/2 1.x: 12 |
142 | if (m_infoHeader.biSize == 12) |
143 | m_isOS21x = true; |
144 | // Windows V3: 40 |
145 | else if ((m_infoHeader.biSize == 40) || isWindowsV4Plus()) |
146 | ; |
147 | // OS/2 2.x: any multiple of 4 between 16 and 64, inclusive, or 42 or 46 |
148 | else if ((m_infoHeader.biSize >= 16) && (m_infoHeader.biSize <= 64) && (!(m_infoHeader.biSize & 3) || (m_infoHeader.biSize == 42) || (m_infoHeader.biSize == 46))) |
149 | m_isOS22x = true; |
150 | else |
151 | return m_parent->setFailed(); |
152 | |
153 | return true; |
154 | } |
155 | |
156 | bool BMPImageReader::() |
157 | { |
158 | // Read info header. |
159 | ASSERT(m_decodedOffset == m_headerOffset); |
160 | if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_infoHeader.biSize) || !readInfoHeader()) |
161 | return false; |
162 | m_decodedOffset += m_infoHeader.biSize; |
163 | |
164 | // Sanity-check header values. |
165 | if (!isInfoHeaderValid()) |
166 | return m_parent->setFailed(); |
167 | |
168 | // Set our size. |
169 | if (!m_parent->setSize(IntSize(m_infoHeader.biWidth, m_infoHeader.biHeight))) |
170 | return false; |
171 | |
172 | // For paletted images, bitmaps can set biClrUsed to 0 to mean "all |
173 | // colors", so set it to the maximum number of colors for this bit depth. |
174 | // Also do this for bitmaps that put too large a value here. |
175 | if (m_infoHeader.biBitCount < 16) { |
176 | const uint32_t maxColors = static_cast<uint32_t>(1) << m_infoHeader.biBitCount; |
177 | if (!m_infoHeader.biClrUsed || (m_infoHeader.biClrUsed > maxColors)) |
178 | m_infoHeader.biClrUsed = maxColors; |
179 | } |
180 | |
181 | // For any bitmaps that set their BitCount to the wrong value, reset the |
182 | // counts now that we've calculated the number of necessary colors, since |
183 | // other code relies on this value being correct. |
184 | if (m_infoHeader.biCompression == RLE8) |
185 | m_infoHeader.biBitCount = 8; |
186 | else if (m_infoHeader.biCompression == RLE4) |
187 | m_infoHeader.biBitCount = 4; |
188 | |
189 | // Tell caller what still needs to be processed. |
190 | if (m_infoHeader.biBitCount >= 16) |
191 | m_needToProcessBitmasks = true; |
192 | else if (m_infoHeader.biBitCount) |
193 | m_needToProcessColorTable = true; |
194 | |
195 | return true; |
196 | } |
197 | |
198 | bool BMPImageReader::() |
199 | { |
200 | // Pre-initialize some fields that not all headers set. |
201 | m_infoHeader.biCompression = RGB; |
202 | m_infoHeader.biClrUsed = 0; |
203 | |
204 | if (m_isOS21x) { |
205 | m_infoHeader.biWidth = readUint16(4); |
206 | m_infoHeader.biHeight = readUint16(6); |
207 | ASSERT(m_andMaskState == None); // ICO is a Windows format, not OS/2! |
208 | m_infoHeader.biBitCount = readUint16(10); |
209 | return true; |
210 | } |
211 | |
212 | m_infoHeader.biWidth = readUint32(4); |
213 | m_infoHeader.biHeight = readUint32(8); |
214 | if (m_andMaskState != None) |
215 | m_infoHeader.biHeight /= 2; |
216 | m_infoHeader.biBitCount = readUint16(14); |
217 | |
218 | // Read compression type, if present. |
219 | if (m_infoHeader.biSize >= 20) { |
220 | uint32_t biCompression = readUint32(16); |
221 | |
222 | // Detect OS/2 2.x-specific compression types. |
223 | if ((biCompression == 3) && (m_infoHeader.biBitCount == 1)) { |
224 | m_infoHeader.biCompression = HUFFMAN1D; |
225 | m_isOS22x = true; |
226 | } else if ((biCompression == 4) && (m_infoHeader.biBitCount == 24)) { |
227 | m_infoHeader.biCompression = RLE24; |
228 | m_isOS22x = true; |
229 | } else if (biCompression > 5) |
230 | return m_parent->setFailed(); // Some type we don't understand. |
231 | else |
232 | m_infoHeader.biCompression = static_cast<CompressionType>(biCompression); |
233 | } |
234 | |
235 | // Read colors used, if present. |
236 | if (m_infoHeader.biSize >= 36) |
237 | m_infoHeader.biClrUsed = readUint32(32); |
238 | |
239 | // Windows V4+ can safely read the four bitmasks from 40-56 bytes in, so do |
240 | // that here. If the bit depth is less than 16, these values will be |
241 | // ignored by the image data decoders. If the bit depth is at least 16 but |
242 | // the compression format isn't BITFIELDS, these values will be ignored and |
243 | // overwritten* in processBitmasks(). |
244 | // NOTE: We allow alpha here. Microsoft doesn't really document this well, |
245 | // but some BMPs appear to use it. |
246 | // |
247 | // For non-Windows V4+, m_bitMasks[] et. al will be initialized later |
248 | // during processBitmasks(). |
249 | // |
250 | // *Except the alpha channel. Bizarrely, some RGB bitmaps expect decoders |
251 | // to pay attention to the alpha mask here, so there's a special case in |
252 | // processBitmasks() that doesn't always overwrite that value. |
253 | if (isWindowsV4Plus()) { |
254 | m_bitMasks[0] = readUint32(40); |
255 | m_bitMasks[1] = readUint32(44); |
256 | m_bitMasks[2] = readUint32(48); |
257 | m_bitMasks[3] = readUint32(52); |
258 | } |
259 | |
260 | // Detect top-down BMPs. |
261 | if (m_infoHeader.biHeight < 0) { |
262 | m_isTopDown = true; |
263 | m_infoHeader.biHeight = -m_infoHeader.biHeight; |
264 | } |
265 | |
266 | return true; |
267 | } |
268 | |
269 | bool BMPImageReader::() const |
270 | { |
271 | // Non-positive widths/heights are invalid. (We've already flipped the |
272 | // sign of the height for top-down bitmaps.) |
273 | if ((m_infoHeader.biWidth <= 0) || !m_infoHeader.biHeight) |
274 | return false; |
275 | |
276 | // Only Windows V3+ has top-down bitmaps. |
277 | if (m_isTopDown && (m_isOS21x || m_isOS22x)) |
278 | return false; |
279 | |
280 | // Only bit depths of 1, 4, 8, or 24 are universally supported. |
281 | if ((m_infoHeader.biBitCount != 1) && (m_infoHeader.biBitCount != 4) && (m_infoHeader.biBitCount != 8) && (m_infoHeader.biBitCount != 24)) { |
282 | // Windows V3+ additionally supports bit depths of 0 (for embedded |
283 | // JPEG/PNG images), 16, and 32. |
284 | if (m_isOS21x || m_isOS22x || (m_infoHeader.biBitCount && (m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32))) |
285 | return false; |
286 | } |
287 | |
288 | // Each compression type is only valid with certain bit depths (except RGB, |
289 | // which can be used with any bit depth). Also, some formats do not |
290 | // some compression types. |
291 | switch (m_infoHeader.biCompression) { |
292 | case RGB: |
293 | if (!m_infoHeader.biBitCount) |
294 | return false; |
295 | break; |
296 | |
297 | case RLE8: |
298 | // Supposedly there are undocumented formats like "BitCount = 1, |
299 | // Compression = RLE4" (which means "4 bit, but with a 2-color table"), |
300 | // so also allow the paletted RLE compression types to have too low a |
301 | // bit count; we'll correct this later. |
302 | if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 8)) |
303 | return false; |
304 | break; |
305 | |
306 | case RLE4: |
307 | // See comments in RLE8. |
308 | if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 4)) |
309 | return false; |
310 | break; |
311 | |
312 | case BITFIELDS: |
313 | // Only valid for Windows V3+. |
314 | if (m_isOS21x || m_isOS22x || ((m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32))) |
315 | return false; |
316 | break; |
317 | |
318 | case JPEG: |
319 | case PNG: |
320 | // Only valid for Windows V3+. |
321 | if (m_isOS21x || m_isOS22x || m_infoHeader.biBitCount) |
322 | return false; |
323 | break; |
324 | |
325 | case HUFFMAN1D: |
326 | // Only valid for OS/2 2.x. |
327 | if (!m_isOS22x || (m_infoHeader.biBitCount != 1)) |
328 | return false; |
329 | break; |
330 | |
331 | case RLE24: |
332 | // Only valid for OS/2 2.x. |
333 | if (!m_isOS22x || (m_infoHeader.biBitCount != 24)) |
334 | return false; |
335 | break; |
336 | |
337 | default: |
338 | // Some type we don't understand. This should have been caught in |
339 | // readInfoHeader(). |
340 | ASSERT_NOT_REACHED(); |
341 | return false; |
342 | } |
343 | |
344 | // Top-down bitmaps cannot be compressed; they must be RGB or BITFIELDS. |
345 | if (m_isTopDown && (m_infoHeader.biCompression != RGB) && (m_infoHeader.biCompression != BITFIELDS)) |
346 | return false; |
347 | |
348 | // Reject the following valid bitmap types that we don't currently bother |
349 | // decoding. Few other people decode these either, they're unlikely to be |
350 | // in much use. |
351 | // TODO(pkasting): Consider supporting these someday. |
352 | // * Bitmaps larger than 2^16 pixels in either dimension (Windows |
353 | // probably doesn't draw these well anyway, and the decoded data would |
354 | // take a lot of memory). |
355 | if ((m_infoHeader.biWidth >= (1 << 16)) || (m_infoHeader.biHeight >= (1 << 16))) |
356 | return false; |
357 | // * Windows V3+ JPEG-in-BMP and PNG-in-BMP bitmaps (supposedly not found |
358 | // in the wild, only used to send data to printers?). |
359 | if ((m_infoHeader.biCompression == JPEG) || (m_infoHeader.biCompression == PNG)) |
360 | return false; |
361 | // * OS/2 2.x Huffman-encoded monochrome bitmaps (see |
362 | // http://www.fileformat.info/mirror/egff/ch09_05.htm , re: "G31D" |
363 | // algorithm). |
364 | if (m_infoHeader.biCompression == HUFFMAN1D) |
365 | return false; |
366 | |
367 | return true; |
368 | } |
369 | |
370 | bool BMPImageReader::processBitmasks() |
371 | { |
372 | // Create m_bitMasks[] values. |
373 | if (m_infoHeader.biCompression != BITFIELDS) { |
374 | // The format doesn't actually use bitmasks. To simplify the decode |
375 | // logic later, create bitmasks for the RGB data. For Windows V4+, |
376 | // this overwrites the masks we read from the header, which are |
377 | // supposed to be ignored in non-BITFIELDS cases. |
378 | // 16 bits: MSB <- xRRRRRGG GGGBBBBB -> LSB |
379 | // 24/32 bits: MSB <- [AAAAAAAA] RRRRRRRR GGGGGGGG BBBBBBBB -> LSB |
380 | const int numBits = (m_infoHeader.biBitCount == 16) ? 5 : 8; |
381 | for (int i = 0; i <= 2; ++i) |
382 | m_bitMasks[i] = ((static_cast<uint32_t>(1) << (numBits * (3 - i))) - 1) ^ ((static_cast<uint32_t>(1) << (numBits * (2 - i))) - 1); |
383 | |
384 | // For Windows V4+ 32-bit RGB, don't overwrite the alpha mask from the |
385 | // header (see note in readInfoHeader()). |
386 | if (m_infoHeader.biBitCount < 32) |
387 | m_bitMasks[3] = 0; |
388 | else if (!isWindowsV4Plus()) |
389 | m_bitMasks[3] = static_cast<uint32_t>(0xff000000); |
390 | } else if (!isWindowsV4Plus()) { |
391 | // For Windows V4+ BITFIELDS mode bitmaps, this was already done when |
392 | // we read the info header. |
393 | |
394 | // Fail if we don't have enough file space for the bitmasks. |
395 | static const size_t SIZEOF_BITMASKS = 12; |
396 | if (((m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS)))) |
397 | return m_parent->setFailed(); |
398 | |
399 | // Read bitmasks. |
400 | if ((m_data->size() - m_decodedOffset) < SIZEOF_BITMASKS) |
401 | return false; |
402 | m_bitMasks[0] = readUint32(0); |
403 | m_bitMasks[1] = readUint32(4); |
404 | m_bitMasks[2] = readUint32(8); |
405 | // No alpha in anything other than Windows V4+. |
406 | m_bitMasks[3] = 0; |
407 | |
408 | m_decodedOffset += SIZEOF_BITMASKS; |
409 | } |
410 | |
411 | // We've now decoded all the non-image data we care about. Skip anything |
412 | // else before the actual raster data. |
413 | if (m_imgDataOffset) |
414 | m_decodedOffset = m_imgDataOffset; |
415 | m_needToProcessBitmasks = false; |
416 | |
417 | // Check masks and set shift values. |
418 | for (int i = 0; i < 4; ++i) { |
419 | // Trim the mask to the allowed bit depth. Some Windows V4+ BMPs |
420 | // specify a bogus alpha channel in bits that don't exist in the pixel |
421 | // data (for example, bits 25-31 in a 24-bit RGB format). |
422 | if (m_infoHeader.biBitCount < 32) |
423 | m_bitMasks[i] &= ((static_cast<uint32_t>(1) << m_infoHeader.biBitCount) - 1); |
424 | |
425 | // For empty masks (common on the alpha channel, especially after the |
426 | // trimming above), quickly clear the shifts and continue, to avoid an |
427 | // infinite loop in the counting code below. |
428 | uint32_t tempMask = m_bitMasks[i]; |
429 | if (!tempMask) { |
430 | m_bitShiftsRight[i] = m_bitShiftsLeft[i] = 0; |
431 | continue; |
432 | } |
433 | |
434 | // Make sure bitmask does not overlap any other bitmasks. |
435 | for (int j = 0; j < i; ++j) { |
436 | if (tempMask & m_bitMasks[j]) |
437 | return m_parent->setFailed(); |
438 | } |
439 | |
440 | // Count offset into pixel data. |
441 | for (m_bitShiftsRight[i] = 0; !(tempMask & 1); tempMask >>= 1) |
442 | ++m_bitShiftsRight[i]; |
443 | |
444 | // Count size of mask. |
445 | for (m_bitShiftsLeft[i] = 8; tempMask & 1; tempMask >>= 1) |
446 | --m_bitShiftsLeft[i]; |
447 | |
448 | // Make sure bitmask is contiguous. |
449 | if (tempMask) |
450 | return m_parent->setFailed(); |
451 | |
452 | // Since RGBABuffer tops out at 8 bits per channel, adjust the shift |
453 | // amounts to use the most significant 8 bits of the channel. |
454 | if (m_bitShiftsLeft[i] < 0) { |
455 | m_bitShiftsRight[i] -= m_bitShiftsLeft[i]; |
456 | m_bitShiftsLeft[i] = 0; |
457 | } |
458 | } |
459 | |
460 | return true; |
461 | } |
462 | |
463 | bool BMPImageReader::processColorTable() |
464 | { |
465 | m_tableSizeInBytes = m_infoHeader.biClrUsed * (m_isOS21x ? 3 : 4); |
466 | |
467 | // Fail if we don't have enough file space for the color table. |
468 | if (((m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes)))) |
469 | return m_parent->setFailed(); |
470 | |
471 | // Read color table. |
472 | if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_tableSizeInBytes)) |
473 | return false; |
474 | m_colorTable.resize(m_infoHeader.biClrUsed); |
475 | for (size_t i = 0; i < m_infoHeader.biClrUsed; ++i) { |
476 | m_colorTable[i].rgbBlue = m_data->data()[m_decodedOffset++]; |
477 | m_colorTable[i].rgbGreen = m_data->data()[m_decodedOffset++]; |
478 | m_colorTable[i].rgbRed = m_data->data()[m_decodedOffset++]; |
479 | // Skip padding byte (not present on OS/2 1.x). |
480 | if (!m_isOS21x) |
481 | ++m_decodedOffset; |
482 | } |
483 | |
484 | // We've now decoded all the non-image data we care about. Skip anything |
485 | // else before the actual raster data. |
486 | if (m_imgDataOffset) |
487 | m_decodedOffset = m_imgDataOffset; |
488 | m_needToProcessColorTable = false; |
489 | |
490 | return true; |
491 | } |
492 | |
493 | bool BMPImageReader::processRLEData() |
494 | { |
495 | if (m_decodedOffset > m_data->size()) |
496 | return false; |
497 | |
498 | // RLE decoding is poorly specified. Two main problems: |
499 | // (1) Are EOL markers necessary? What happens when we have too many |
500 | // pixels for one row? |
501 | // http://www.fileformat.info/format/bmp/egff.htm says extra pixels |
502 | // should wrap to the next line. Real BMPs I've encountered seem to |
503 | // instead expect extra pixels to be ignored until the EOL marker is |
504 | // seen, although this has only happened in a few cases and I suspect |
505 | // those BMPs may be invalid. So we only change lines on EOL (or Delta |
506 | // with dy > 0), and fail in most cases when pixels extend past the end |
507 | // of the line. |
508 | // (2) When Delta, EOL, or EOF are seen, what happens to the "skipped" |
509 | // pixels? |
510 | // http://www.daubnet.com/formats/BMP.html says these should be filled |
511 | // with color 0. However, the "do nothing" and "don't care" comments |
512 | // of other references suggest leaving these alone, i.e. letting them |
513 | // be transparent to the background behind the image. This seems to |
514 | // match how MSPAINT treats BMPs, so we do that. Note that when we |
515 | // actually skip pixels for a case like this, we need to note on the |
516 | // framebuffer that we have alpha. |
517 | |
518 | // Impossible to decode row-at-a-time, so just do things as a stream of |
519 | // bytes. |
520 | while (true) { |
521 | // Every entry takes at least two bytes; bail if there isn't enough |
522 | // data. |
523 | if ((m_data->size() - m_decodedOffset) < 2) |
524 | return false; |
525 | |
526 | // For every entry except EOF, we'd better not have reached the end of |
527 | // the image. |
528 | const uint8_t count = m_data->data()[m_decodedOffset]; |
529 | const uint8_t code = m_data->data()[m_decodedOffset + 1]; |
530 | if ((count || (code != 1)) && pastEndOfImage(0)) |
531 | return m_parent->setFailed(); |
532 | |
533 | // Decode. |
534 | if (!count) { |
535 | switch (code) { |
536 | case 0: // Magic token: EOL |
537 | // Skip any remaining pixels in this row. |
538 | if (m_coord.x() < m_parent->size().width()) |
539 | m_buffer->setHasAlpha(true); |
540 | moveBufferToNextRow(); |
541 | |
542 | m_decodedOffset += 2; |
543 | break; |
544 | |
545 | case 1: // Magic token: EOF |
546 | // Skip any remaining pixels in the image. |
547 | if ((m_coord.x() < m_parent->size().width()) || (m_isTopDown ? (m_coord.y() < (m_parent->size().height() - 1)) : (m_coord.y() > 0))) |
548 | m_buffer->setHasAlpha(true); |
549 | return true; |
550 | |
551 | case 2: { // Magic token: Delta |
552 | // The next two bytes specify dx and dy. Bail if there isn't |
553 | // enough data. |
554 | if ((m_data->size() - m_decodedOffset) < 4) |
555 | return false; |
556 | |
557 | // Fail if this takes us past the end of the desired row or |
558 | // past the end of the image. |
559 | const uint8_t dx = m_data->data()[m_decodedOffset + 2]; |
560 | const uint8_t dy = m_data->data()[m_decodedOffset + 3]; |
561 | if (dx || dy) |
562 | m_buffer->setHasAlpha(true); |
563 | if (((m_coord.x() + dx) > m_parent->size().width()) || pastEndOfImage(dy)) |
564 | return m_parent->setFailed(); |
565 | |
566 | // Skip intervening pixels. |
567 | m_coord.move(dx, m_isTopDown ? dy : -dy); |
568 | |
569 | m_decodedOffset += 4; |
570 | break; |
571 | } |
572 | |
573 | default: { // Absolute mode |
574 | // |code| pixels specified as in BI_RGB, zero-padded at the end |
575 | // to a multiple of 16 bits. |
576 | // Because processNonRLEData() expects m_decodedOffset to |
577 | // point to the beginning of the pixel data, bump it past |
578 | // the escape bytes and then reset if decoding failed. |
579 | m_decodedOffset += 2; |
580 | const ProcessingResult result = processNonRLEData(true, code); |
581 | if (result == Failure) |
582 | return m_parent->setFailed(); |
583 | if (result == InsufficientData) { |
584 | m_decodedOffset -= 2; |
585 | return false; |
586 | } |
587 | break; |
588 | } |
589 | } |
590 | } else { // Encoded mode |
591 | // The following color data is repeated for |count| total pixels. |
592 | // Strangely, some BMPs seem to specify excessively large counts |
593 | // here; ignore pixels past the end of the row. |
594 | const int endX = std::min(m_coord.x() + count, m_parent->size().width()); |
595 | |
596 | if (m_infoHeader.biCompression == RLE24) { |
597 | // Bail if there isn't enough data. |
598 | if ((m_data->size() - m_decodedOffset) < 4) |
599 | return false; |
600 | |
601 | // One BGR triple that we copy |count| times. |
602 | fillRGBA(endX, m_data->data()[m_decodedOffset + 3], m_data->data()[m_decodedOffset + 2], code, 0xff); |
603 | m_decodedOffset += 4; |
604 | } else { |
605 | // RLE8 has one color index that gets repeated; RLE4 has two |
606 | // color indexes in the upper and lower 4 bits of the byte, |
607 | // which are alternated. |
608 | size_t colorIndexes[2] = {code, code}; |
609 | if (m_infoHeader.biCompression == RLE4) { |
610 | colorIndexes[0] = (colorIndexes[0] >> 4) & 0xf; |
611 | colorIndexes[1] &= 0xf; |
612 | } |
613 | if ((colorIndexes[0] >= m_infoHeader.biClrUsed) || (colorIndexes[1] >= m_infoHeader.biClrUsed)) |
614 | return m_parent->setFailed(); |
615 | for (int which = 0; m_coord.x() < endX; ) { |
616 | setI(colorIndexes[which]); |
617 | which = !which; |
618 | } |
619 | |
620 | m_decodedOffset += 2; |
621 | } |
622 | } |
623 | } |
624 | } |
625 | |
626 | BMPImageReader::ProcessingResult BMPImageReader::processNonRLEData(bool inRLE, int numPixels) |
627 | { |
628 | if (m_decodedOffset > m_data->size()) |
629 | return InsufficientData; |
630 | |
631 | if (!inRLE) |
632 | numPixels = m_parent->size().width(); |
633 | |
634 | // Fail if we're being asked to decode more pixels than remain in the row. |
635 | const int endX = m_coord.x() + numPixels; |
636 | if (endX > m_parent->size().width()) |
637 | return Failure; |
638 | |
639 | // Determine how many bytes of data the requested number of pixels |
640 | // requires. |
641 | const size_t pixelsPerByte = 8 / m_infoHeader.biBitCount; |
642 | const size_t bytesPerPixel = m_infoHeader.biBitCount / 8; |
643 | const size_t unpaddedNumBytes = (m_infoHeader.biBitCount < 16) ? ((numPixels + pixelsPerByte - 1) / pixelsPerByte) : (numPixels * bytesPerPixel); |
644 | // RLE runs are zero-padded at the end to a multiple of 16 bits. Non-RLE |
645 | // data is in rows and is zero-padded to a multiple of 32 bits. |
646 | const size_t alignBits = inRLE ? 1 : 3; |
647 | const size_t paddedNumBytes = (unpaddedNumBytes + alignBits) & ~alignBits; |
648 | |
649 | // Decode as many rows as we can. (For RLE, where we only want to decode |
650 | // one row, we've already checked that this condition is true.) |
651 | while (!pastEndOfImage(0)) { |
652 | // Bail if we don't have enough data for the desired number of pixels. |
653 | if ((m_data->size() - m_decodedOffset) < paddedNumBytes) |
654 | return InsufficientData; |
655 | |
656 | if (m_infoHeader.biBitCount < 16) { |
657 | // Paletted data. Pixels are stored little-endian within bytes. |
658 | // Decode pixels one byte at a time, left to right (so, starting at |
659 | // the most significant bits in the byte). |
660 | const uint8_t mask = (1 << m_infoHeader.biBitCount) - 1; |
661 | for (size_t byte = 0; byte < unpaddedNumBytes; ++byte) { |
662 | uint8_t pixelData = m_data->data()[m_decodedOffset + byte]; |
663 | for (size_t pixel = 0; (pixel < pixelsPerByte) && (m_coord.x() < endX); ++pixel) { |
664 | const size_t colorIndex = (pixelData >> (8 - m_infoHeader.biBitCount)) & mask; |
665 | if (m_andMaskState == Decoding) { |
666 | // There's no way to accurately represent an AND + XOR |
667 | // operation as an RGBA image, so where the AND values |
668 | // are 1, we simply set the framebuffer pixels to fully |
669 | // transparent, on the assumption that most ICOs on the |
670 | // web will not be doing a lot of inverting. |
671 | if (colorIndex) { |
672 | setPixel(0, 0, 0, 0); |
673 | m_buffer->setHasAlpha(true); |
674 | } else |
675 | m_coord.move(1, 0); |
676 | } else { |
677 | if (colorIndex >= m_infoHeader.biClrUsed) |
678 | return Failure; |
679 | setI(colorIndex); |
680 | } |
681 | pixelData <<= m_infoHeader.biBitCount; |
682 | } |
683 | } |
684 | } else { |
685 | // RGB data. Decode pixels one at a time, left to right. |
686 | while (m_coord.x() < endX) { |
687 | const uint32_t pixel = readCurrentPixel(bytesPerPixel); |
688 | |
689 | // Some BMPs specify an alpha channel but don't actually use it |
690 | // (it contains all 0s). To avoid displaying these images as |
691 | // fully-transparent, decode as if images are fully opaque |
692 | // until we actually see a non-zero alpha value; at that point, |
693 | // reset any previously-decoded pixels to fully transparent and |
694 | // continue decoding based on the real alpha channel values. |
695 | // As an optimization, avoid setting "hasAlpha" to true for |
696 | // images where all alpha values are 255; opaque images are |
697 | // faster to draw. |
698 | int alpha = getAlpha(pixel); |
699 | if (!m_seenNonZeroAlphaPixel && !alpha) { |
700 | m_seenZeroAlphaPixel = true; |
701 | alpha = 255; |
702 | } else { |
703 | m_seenNonZeroAlphaPixel = true; |
704 | if (m_seenZeroAlphaPixel) { |
705 | m_buffer->backingStore()->clear(); |
706 | m_buffer->setHasAlpha(true); |
707 | m_seenZeroAlphaPixel = false; |
708 | } else if (alpha != 255) |
709 | m_buffer->setHasAlpha(true); |
710 | } |
711 | |
712 | setPixel(getComponent(pixel, 0), getComponent(pixel, 1), |
713 | getComponent(pixel, 2), alpha); |
714 | } |
715 | } |
716 | |
717 | // Success, keep going. |
718 | m_decodedOffset += paddedNumBytes; |
719 | if (inRLE) |
720 | return Success; |
721 | moveBufferToNextRow(); |
722 | } |
723 | |
724 | // Finished decoding whole image. |
725 | return Success; |
726 | } |
727 | |
728 | void BMPImageReader::moveBufferToNextRow() |
729 | { |
730 | m_coord.move(-m_coord.x(), m_isTopDown ? 1 : -1); |
731 | } |
732 | |
733 | } // namespace WebCore |
734 | |