| 1 | /* |
| 2 | * Copyright (C) 2014 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| 14 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| 15 | * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| 17 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 18 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 19 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 20 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 21 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 22 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| 23 | * THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #include "config.h" |
| 27 | #include "GeometryUtilities.h" |
| 28 | #include <wtf/Vector.h> |
| 29 | |
| 30 | namespace WebCore { |
| 31 | |
| 32 | float euclidianDistance(const FloatPoint& p1, const FloatPoint& p2) |
| 33 | { |
| 34 | FloatSize delta = p1 - p2; |
| 35 | return sqrt(delta.width() * delta.width() + delta.height() * delta.height()); |
| 36 | } |
| 37 | |
| 38 | float findSlope(const FloatPoint& p1, const FloatPoint& p2, float& c) |
| 39 | { |
| 40 | if (p2.x() == p1.x()) |
| 41 | return std::numeric_limits<float>::infinity(); |
| 42 | |
| 43 | // y = mx + c |
| 44 | float slope = (p2.y() - p1.y()) / (p2.x() - p1.x()); |
| 45 | c = p1.y() - slope * p1.x(); |
| 46 | return slope; |
| 47 | } |
| 48 | |
| 49 | bool findIntersection(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& d1, const FloatPoint& d2, FloatPoint& intersection) |
| 50 | { |
| 51 | float pOffset = 0; |
| 52 | float pSlope = findSlope(p1, p2, pOffset); |
| 53 | |
| 54 | float dOffset = 0; |
| 55 | float dSlope = findSlope(d1, d2, dOffset); |
| 56 | |
| 57 | if (dSlope == pSlope) |
| 58 | return false; |
| 59 | |
| 60 | if (pSlope == std::numeric_limits<float>::infinity()) { |
| 61 | intersection.setX(p1.x()); |
| 62 | intersection.setY(dSlope * intersection.x() + dOffset); |
| 63 | return true; |
| 64 | } |
| 65 | if (dSlope == std::numeric_limits<float>::infinity()) { |
| 66 | intersection.setX(d1.x()); |
| 67 | intersection.setY(pSlope * intersection.x() + pOffset); |
| 68 | return true; |
| 69 | } |
| 70 | |
| 71 | // Find x at intersection, where ys overlap; x = (c' - c) / (m - m') |
| 72 | intersection.setX((dOffset - pOffset) / (pSlope - dSlope)); |
| 73 | intersection.setY(pSlope * intersection.x() + pOffset); |
| 74 | return true; |
| 75 | } |
| 76 | |
| 77 | IntRect unionRect(const Vector<IntRect>& rects) |
| 78 | { |
| 79 | IntRect result; |
| 80 | |
| 81 | size_t count = rects.size(); |
| 82 | for (size_t i = 0; i < count; ++i) |
| 83 | result.unite(rects[i]); |
| 84 | |
| 85 | return result; |
| 86 | } |
| 87 | |
| 88 | FloatRect unionRect(const Vector<FloatRect>& rects) |
| 89 | { |
| 90 | FloatRect result; |
| 91 | |
| 92 | size_t count = rects.size(); |
| 93 | for (size_t i = 0; i < count; ++i) |
| 94 | result.unite(rects[i]); |
| 95 | |
| 96 | return result; |
| 97 | } |
| 98 | |
| 99 | FloatPoint mapPoint(FloatPoint p, const FloatRect& srcRect, const FloatRect& destRect) |
| 100 | { |
| 101 | if (!srcRect.width() || !srcRect.height()) |
| 102 | return p; |
| 103 | |
| 104 | float widthScale = destRect.width() / srcRect.width(); |
| 105 | float heightScale = destRect.height() / srcRect.height(); |
| 106 | |
| 107 | return { |
| 108 | destRect.x() + (p.x() - srcRect.x()) * widthScale, |
| 109 | destRect.y() + (p.y() - srcRect.y()) * heightScale |
| 110 | }; |
| 111 | } |
| 112 | |
| 113 | FloatRect mapRect(const FloatRect& r, const FloatRect& srcRect, const FloatRect& destRect) |
| 114 | { |
| 115 | if (!srcRect.width() || !srcRect.height()) |
| 116 | return FloatRect(); |
| 117 | |
| 118 | float widthScale = destRect.width() / srcRect.width(); |
| 119 | float heightScale = destRect.height() / srcRect.height(); |
| 120 | return { |
| 121 | destRect.x() + (r.x() - srcRect.x()) * widthScale, |
| 122 | destRect.y() + (r.y() - srcRect.y()) * heightScale, |
| 123 | r.width() * widthScale, |
| 124 | r.height() * heightScale |
| 125 | }; |
| 126 | } |
| 127 | |
| 128 | FloatRect largestRectWithAspectRatioInsideRect(float aspectRatio, const FloatRect& srcRect) |
| 129 | { |
| 130 | FloatRect destRect = srcRect; |
| 131 | |
| 132 | if (aspectRatio > srcRect.size().aspectRatio()) { |
| 133 | float dy = destRect.width() / aspectRatio - destRect.height(); |
| 134 | destRect.inflateY(dy / 2); |
| 135 | } else { |
| 136 | float dx = destRect.height() * aspectRatio - destRect.width(); |
| 137 | destRect.inflateX(dx / 2); |
| 138 | } |
| 139 | return destRect; |
| 140 | } |
| 141 | |
| 142 | FloatRect boundsOfRotatingRect(const FloatRect& r) |
| 143 | { |
| 144 | // Compute the furthest corner from the origin. |
| 145 | float maxCornerDistance = euclidianDistance(FloatPoint(), r.minXMinYCorner()); |
| 146 | maxCornerDistance = std::max(maxCornerDistance, euclidianDistance(FloatPoint(), r.maxXMinYCorner())); |
| 147 | maxCornerDistance = std::max(maxCornerDistance, euclidianDistance(FloatPoint(), r.minXMaxYCorner())); |
| 148 | maxCornerDistance = std::max(maxCornerDistance, euclidianDistance(FloatPoint(), r.maxXMaxYCorner())); |
| 149 | |
| 150 | return FloatRect(-maxCornerDistance, -maxCornerDistance, 2 * maxCornerDistance, 2 * maxCornerDistance); |
| 151 | } |
| 152 | |
| 153 | FloatRect smallestRectWithAspectRatioAroundRect(float aspectRatio, const FloatRect& srcRect) |
| 154 | { |
| 155 | FloatRect destRect = srcRect; |
| 156 | |
| 157 | if (aspectRatio < srcRect.size().aspectRatio()) { |
| 158 | float dy = destRect.width() / aspectRatio - destRect.height(); |
| 159 | destRect.inflateY(dy / 2); |
| 160 | } else { |
| 161 | float dx = destRect.height() * aspectRatio - destRect.width(); |
| 162 | destRect.inflateX(dx / 2); |
| 163 | } |
| 164 | return destRect; |
| 165 | } |
| 166 | |
| 167 | FloatSize sizeWithAreaAndAspectRatio(float area, float aspectRatio) |
| 168 | { |
| 169 | auto scaledWidth = std::sqrt(area * aspectRatio); |
| 170 | return { scaledWidth, scaledWidth / aspectRatio }; |
| 171 | } |
| 172 | |
| 173 | bool ellipseContainsPoint(const FloatPoint& center, const FloatSize& radii, const FloatPoint& point) |
| 174 | { |
| 175 | if (radii.width() <= 0 || radii.height() <= 0) |
| 176 | return false; |
| 177 | |
| 178 | // First, offset the query point so that the ellipse is effectively centered at the origin. |
| 179 | FloatPoint transformedPoint(point); |
| 180 | transformedPoint.move(-center.x(), -center.y()); |
| 181 | |
| 182 | // If the point lies outside of the bounding box determined by the radii of the ellipse, it can't possibly |
| 183 | // be contained within the ellipse, so bail early. |
| 184 | if (transformedPoint.x() < -radii.width() || transformedPoint.x() > radii.width() || transformedPoint.y() < -radii.height() || transformedPoint.y() > radii.height()) |
| 185 | return false; |
| 186 | |
| 187 | // Let (x, y) represent the translated point, and let (Rx, Ry) represent the radii of an ellipse centered at the origin. |
| 188 | // (x, y) is contained within the ellipse if, after scaling the ellipse to be a unit circle, the identically scaled |
| 189 | // point lies within that unit circle. In other words, the squared distance (x/Rx)^2 + (y/Ry)^2 of the transformed point |
| 190 | // to the origin is no greater than 1. This is equivalent to checking whether or not the point (xRy, yRx) lies within a |
| 191 | // circle of radius RxRy. |
| 192 | transformedPoint.scale(radii.height(), radii.width()); |
| 193 | auto transformedRadius = radii.width() * radii.height(); |
| 194 | |
| 195 | // We can bail early if |xRy| + |yRx| <= RxRy to avoid additional multiplications, since that means the Manhattan distance |
| 196 | // of the transformed point is less than the radius, so the point must lie within the transformed circle. |
| 197 | return std::abs(transformedPoint.x()) + std::abs(transformedPoint.y()) <= transformedRadius || transformedPoint.lengthSquared() <= transformedRadius * transformedRadius; |
| 198 | } |
| 199 | |
| 200 | } |
| 201 | |