1 | /* |
2 | * Copyright (C) 2008 Apple Inc. All rights reserved. |
3 | * Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies) |
4 | * Copyright (C) 2013 Xidorn Quan (quanxunzhen@gmail.com) |
5 | * |
6 | * Redistribution and use in source and binary forms, with or without |
7 | * modification, are permitted provided that the following conditions |
8 | * are met: |
9 | * |
10 | * 1. Redistributions of source code must retain the above copyright |
11 | * notice, this list of conditions and the following disclaimer. |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the |
14 | * documentation and/or other materials provided with the distribution. |
15 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
16 | * its contributors may be used to endorse or promote products derived |
17 | * from this software without specific prior written permission. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
20 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
21 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
22 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
23 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
24 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
25 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
26 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
28 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | */ |
30 | |
31 | #include "config.h" |
32 | #include "FloatQuad.h" |
33 | |
34 | #include <algorithm> |
35 | #include <limits> |
36 | #include <wtf/MathExtras.h> |
37 | |
38 | namespace WebCore { |
39 | |
40 | static inline float min4(float a, float b, float c, float d) |
41 | { |
42 | return std::min(std::min(a, b), std::min(c, d)); |
43 | } |
44 | |
45 | static inline float max4(float a, float b, float c, float d) |
46 | { |
47 | return std::max(std::max(a, b), std::max(c, d)); |
48 | } |
49 | |
50 | inline float dot(const FloatSize& a, const FloatSize& b) |
51 | { |
52 | return a.width() * b.width() + a.height() * b.height(); |
53 | } |
54 | |
55 | inline float determinant(const FloatSize& a, const FloatSize& b) |
56 | { |
57 | return a.width() * b.height() - a.height() * b.width(); |
58 | } |
59 | |
60 | inline bool isPointInTriangle(const FloatPoint& p, const FloatPoint& t1, const FloatPoint& t2, const FloatPoint& t3) |
61 | { |
62 | // Compute vectors |
63 | FloatSize v0 = t3 - t1; |
64 | FloatSize v1 = t2 - t1; |
65 | FloatSize v2 = p - t1; |
66 | |
67 | // Compute dot products |
68 | float dot00 = dot(v0, v0); |
69 | float dot01 = dot(v0, v1); |
70 | float dot02 = dot(v0, v2); |
71 | float dot11 = dot(v1, v1); |
72 | float dot12 = dot(v1, v2); |
73 | |
74 | // Compute barycentric coordinates |
75 | float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); |
76 | float u = (dot11 * dot02 - dot01 * dot12) * invDenom; |
77 | float v = (dot00 * dot12 - dot01 * dot02) * invDenom; |
78 | |
79 | // Check if point is in triangle |
80 | return (u >= 0) && (v >= 0) && (u + v <= 1); |
81 | } |
82 | |
83 | FloatRect FloatQuad::boundingBox() const |
84 | { |
85 | float left = min4(m_p1.x(), m_p2.x(), m_p3.x(), m_p4.x()); |
86 | float top = min4(m_p1.y(), m_p2.y(), m_p3.y(), m_p4.y()); |
87 | |
88 | float right = max4(m_p1.x(), m_p2.x(), m_p3.x(), m_p4.x()); |
89 | float bottom = max4(m_p1.y(), m_p2.y(), m_p3.y(), m_p4.y()); |
90 | |
91 | return FloatRect(left, top, right - left, bottom - top); |
92 | } |
93 | |
94 | bool FloatQuad::isRectilinear() const |
95 | { |
96 | return (WTF::areEssentiallyEqual(m_p1.x(), m_p2.x()) && WTF::areEssentiallyEqual(m_p2.y(), m_p3.y()) && WTF::areEssentiallyEqual(m_p3.x(), m_p4.x()) && WTF::areEssentiallyEqual(m_p4.y(), m_p1.y())) |
97 | || (WTF::areEssentiallyEqual(m_p1.y(), m_p2.y()) && WTF::areEssentiallyEqual(m_p2.x(), m_p3.x()) && WTF::areEssentiallyEqual(m_p3.y(), m_p4.y()) && WTF::areEssentiallyEqual(m_p4.x(), m_p1.x())); |
98 | } |
99 | |
100 | bool FloatQuad::containsPoint(const FloatPoint& p) const |
101 | { |
102 | return isPointInTriangle(p, m_p1, m_p2, m_p3) || isPointInTriangle(p, m_p1, m_p3, m_p4); |
103 | } |
104 | |
105 | // Note that we only handle convex quads here. |
106 | bool FloatQuad::containsQuad(const FloatQuad& other) const |
107 | { |
108 | return containsPoint(other.p1()) && containsPoint(other.p2()) && containsPoint(other.p3()) && containsPoint(other.p4()); |
109 | } |
110 | |
111 | static inline FloatPoint rightMostCornerToVector(const FloatRect& rect, const FloatSize& vector) |
112 | { |
113 | // Return the corner of the rectangle that if it is to the left of the vector |
114 | // would mean all of the rectangle is to the left of the vector. |
115 | // The vector here represents the side between two points in a clockwise convex polygon. |
116 | // |
117 | // Q XXX |
118 | // QQQ XXX If the lower left corner of X is left of the vector that goes from the top corner of Q to |
119 | // QQQ the right corner of Q, then all of X is left of the vector, and intersection impossible. |
120 | // Q |
121 | // |
122 | FloatPoint point; |
123 | if (vector.width() >= 0) |
124 | point.setY(rect.maxY()); |
125 | else |
126 | point.setY(rect.y()); |
127 | if (vector.height() >= 0) |
128 | point.setX(rect.x()); |
129 | else |
130 | point.setX(rect.maxX()); |
131 | return point; |
132 | } |
133 | |
134 | bool FloatQuad::intersectsRect(const FloatRect& rect) const |
135 | { |
136 | // For each side of the quad clockwise we check if the rectangle is to the left of it |
137 | // since only content on the right can onlap with the quad. |
138 | // This only works if the quad is convex. |
139 | FloatSize v1, v2, v3, v4; |
140 | |
141 | // Ensure we use clockwise vectors. |
142 | if (!isCounterclockwise()) { |
143 | v1 = m_p2 - m_p1; |
144 | v2 = m_p3 - m_p2; |
145 | v3 = m_p4 - m_p3; |
146 | v4 = m_p1 - m_p4; |
147 | } else { |
148 | v1 = m_p4 - m_p1; |
149 | v2 = m_p1 - m_p2; |
150 | v3 = m_p2 - m_p3; |
151 | v4 = m_p3 - m_p4; |
152 | } |
153 | |
154 | FloatPoint p = rightMostCornerToVector(rect, v1); |
155 | if (determinant(v1, p - m_p1) < 0) |
156 | return false; |
157 | |
158 | p = rightMostCornerToVector(rect, v2); |
159 | if (determinant(v2, p - m_p2) < 0) |
160 | return false; |
161 | |
162 | p = rightMostCornerToVector(rect, v3); |
163 | if (determinant(v3, p - m_p3) < 0) |
164 | return false; |
165 | |
166 | p = rightMostCornerToVector(rect, v4); |
167 | if (determinant(v4, p - m_p4) < 0) |
168 | return false; |
169 | |
170 | // If not all of the rectangle is outside one of the quad's four sides, then that means at least |
171 | // a part of the rectangle is overlapping the quad. |
172 | return true; |
173 | } |
174 | |
175 | // Tests whether the line is contained by or intersected with the circle. |
176 | static inline bool lineIntersectsCircle(const FloatPoint& center, float radius, const FloatPoint& p0, const FloatPoint& p1) |
177 | { |
178 | float x0 = p0.x() - center.x(), y0 = p0.y() - center.y(); |
179 | float x1 = p1.x() - center.x(), y1 = p1.y() - center.y(); |
180 | float radius2 = radius * radius; |
181 | if ((x0 * x0 + y0 * y0) <= radius2 || (x1 * x1 + y1 * y1) <= radius2) |
182 | return true; |
183 | if (p0 == p1) |
184 | return false; |
185 | |
186 | float a = y0 - y1; |
187 | float b = x1 - x0; |
188 | float c = x0 * y1 - x1 * y0; |
189 | float distance2 = c * c / (a * a + b * b); |
190 | // If distance between the center point and the line > the radius, |
191 | // the line doesn't cross (or is contained by) the ellipse. |
192 | if (distance2 > radius2) |
193 | return false; |
194 | |
195 | // The nearest point on the line is between p0 and p1? |
196 | float x = - a * c / (a * a + b * b); |
197 | float y = - b * c / (a * a + b * b); |
198 | return (((x0 <= x && x <= x1) || (x0 >= x && x >= x1)) |
199 | && ((y0 <= y && y <= y1) || (y1 <= y && y <= y0))); |
200 | } |
201 | |
202 | bool FloatQuad::intersectsCircle(const FloatPoint& center, float radius) const |
203 | { |
204 | return containsPoint(center) // The circle may be totally contained by the quad. |
205 | || lineIntersectsCircle(center, radius, m_p1, m_p2) |
206 | || lineIntersectsCircle(center, radius, m_p2, m_p3) |
207 | || lineIntersectsCircle(center, radius, m_p3, m_p4) |
208 | || lineIntersectsCircle(center, radius, m_p4, m_p1); |
209 | } |
210 | |
211 | bool FloatQuad::intersectsEllipse(const FloatPoint& center, const FloatSize& radii) const |
212 | { |
213 | // Transform the ellipse to an origin-centered circle whose radius is the product of major radius and minor radius. |
214 | // Here we apply the same transformation to the quad. |
215 | FloatQuad transformedQuad(*this); |
216 | transformedQuad.move(-center.x(), -center.y()); |
217 | transformedQuad.scale(radii.height(), radii.width()); |
218 | |
219 | FloatPoint originPoint; |
220 | return transformedQuad.intersectsCircle(originPoint, radii.height() * radii.width()); |
221 | |
222 | } |
223 | |
224 | bool FloatQuad::isCounterclockwise() const |
225 | { |
226 | // Return if the two first vectors are turning clockwise. If the quad is convex then all following vectors will turn the same way. |
227 | return determinant(m_p2 - m_p1, m_p3 - m_p2) < 0; |
228 | } |
229 | |
230 | } // namespace WebCore |
231 | |