1 | /* |
2 | * Copyright (C) 2010 Google Inc. All rights reserved. |
3 | * |
4 | * Redistribution and use in source and binary forms, with or without |
5 | * modification, are permitted provided that the following conditions |
6 | * are met: |
7 | * |
8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. |
10 | * 2. Redistributions in binary form must reproduce the above copyright |
11 | * notice, this list of conditions and the following disclaimer in the |
12 | * documentation and/or other materials provided with the distribution. |
13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
14 | * its contributors may be used to endorse or promote products derived |
15 | * from this software without specific prior written permission. |
16 | * |
17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | */ |
28 | |
29 | #include "config.h" |
30 | |
31 | #if ENABLE(WEB_AUDIO) |
32 | |
33 | #include "FFTFrame.h" |
34 | |
35 | #include "Logging.h" |
36 | #include <complex> |
37 | #include <wtf/MathExtras.h> |
38 | |
39 | #ifndef NDEBUG |
40 | #include <stdio.h> |
41 | #endif |
42 | |
43 | namespace WebCore { |
44 | |
45 | void FFTFrame::doPaddedFFT(const float* data, size_t dataSize) |
46 | { |
47 | // Zero-pad the impulse response |
48 | AudioFloatArray paddedResponse(fftSize()); // zero-initialized |
49 | paddedResponse.copyToRange(data, 0, dataSize); |
50 | |
51 | // Get the frequency-domain version of padded response |
52 | doFFT(paddedResponse.data()); |
53 | } |
54 | |
55 | std::unique_ptr<FFTFrame> FFTFrame::createInterpolatedFrame(const FFTFrame& frame1, const FFTFrame& frame2, double x) |
56 | { |
57 | auto newFrame = std::make_unique<FFTFrame>(frame1.fftSize()); |
58 | |
59 | newFrame->interpolateFrequencyComponents(frame1, frame2, x); |
60 | |
61 | // In the time-domain, the 2nd half of the response must be zero, to avoid circular convolution aliasing... |
62 | int fftSize = newFrame->fftSize(); |
63 | AudioFloatArray buffer(fftSize); |
64 | newFrame->doInverseFFT(buffer.data()); |
65 | buffer.zeroRange(fftSize / 2, fftSize); |
66 | |
67 | // Put back into frequency domain. |
68 | newFrame->doFFT(buffer.data()); |
69 | |
70 | return newFrame; |
71 | } |
72 | |
73 | void FFTFrame::interpolateFrequencyComponents(const FFTFrame& frame1, const FFTFrame& frame2, double interp) |
74 | { |
75 | // FIXME : with some work, this method could be optimized |
76 | |
77 | float* realP = realData(); |
78 | float* imagP = imagData(); |
79 | |
80 | const float* realP1 = frame1.realData(); |
81 | const float* imagP1 = frame1.imagData(); |
82 | const float* realP2 = frame2.realData(); |
83 | const float* imagP2 = frame2.imagData(); |
84 | |
85 | m_FFTSize = frame1.fftSize(); |
86 | m_log2FFTSize = frame1.log2FFTSize(); |
87 | |
88 | double s1base = (1.0 - interp); |
89 | double s2base = interp; |
90 | |
91 | double phaseAccum = 0.0; |
92 | double lastPhase1 = 0.0; |
93 | double lastPhase2 = 0.0; |
94 | |
95 | realP[0] = static_cast<float>(s1base * realP1[0] + s2base * realP2[0]); |
96 | imagP[0] = static_cast<float>(s1base * imagP1[0] + s2base * imagP2[0]); |
97 | |
98 | int n = m_FFTSize / 2; |
99 | |
100 | for (int i = 1; i < n; ++i) { |
101 | std::complex<double> c1(realP1[i], imagP1[i]); |
102 | std::complex<double> c2(realP2[i], imagP2[i]); |
103 | |
104 | double mag1 = abs(c1); |
105 | double mag2 = abs(c2); |
106 | |
107 | // Interpolate magnitudes in decibels |
108 | double mag1db = 20.0 * log10(mag1); |
109 | double mag2db = 20.0 * log10(mag2); |
110 | |
111 | double s1 = s1base; |
112 | double s2 = s2base; |
113 | |
114 | double magdbdiff = mag1db - mag2db; |
115 | |
116 | // Empirical tweak to retain higher-frequency zeroes |
117 | double threshold = (i > 16) ? 5.0 : 2.0; |
118 | |
119 | if (magdbdiff < -threshold && mag1db < 0.0) { |
120 | s1 = pow(s1, 0.75); |
121 | s2 = 1.0 - s1; |
122 | } else if (magdbdiff > threshold && mag2db < 0.0) { |
123 | s2 = pow(s2, 0.75); |
124 | s1 = 1.0 - s2; |
125 | } |
126 | |
127 | // Average magnitude by decibels instead of linearly |
128 | double magdb = s1 * mag1db + s2 * mag2db; |
129 | double mag = pow(10.0, 0.05 * magdb); |
130 | |
131 | // Now, deal with phase |
132 | double phase1 = arg(c1); |
133 | double phase2 = arg(c2); |
134 | |
135 | double deltaPhase1 = phase1 - lastPhase1; |
136 | double deltaPhase2 = phase2 - lastPhase2; |
137 | lastPhase1 = phase1; |
138 | lastPhase2 = phase2; |
139 | |
140 | // Unwrap phase deltas |
141 | if (deltaPhase1 > piDouble) |
142 | deltaPhase1 -= 2.0 * piDouble; |
143 | if (deltaPhase1 < -piDouble) |
144 | deltaPhase1 += 2.0 * piDouble; |
145 | if (deltaPhase2 > piDouble) |
146 | deltaPhase2 -= 2.0 * piDouble; |
147 | if (deltaPhase2 < -piDouble) |
148 | deltaPhase2 += 2.0 * piDouble; |
149 | |
150 | // Blend group-delays |
151 | double deltaPhaseBlend; |
152 | |
153 | if (deltaPhase1 - deltaPhase2 > piDouble) |
154 | deltaPhaseBlend = s1 * deltaPhase1 + s2 * (2.0 * piDouble + deltaPhase2); |
155 | else if (deltaPhase2 - deltaPhase1 > piDouble) |
156 | deltaPhaseBlend = s1 * (2.0 * piDouble + deltaPhase1) + s2 * deltaPhase2; |
157 | else |
158 | deltaPhaseBlend = s1 * deltaPhase1 + s2 * deltaPhase2; |
159 | |
160 | phaseAccum += deltaPhaseBlend; |
161 | |
162 | // Unwrap |
163 | if (phaseAccum > piDouble) |
164 | phaseAccum -= 2.0 * piDouble; |
165 | if (phaseAccum < -piDouble) |
166 | phaseAccum += 2.0 * piDouble; |
167 | |
168 | std::complex<double> c = std::polar(mag, phaseAccum); |
169 | |
170 | realP[i] = static_cast<float>(c.real()); |
171 | imagP[i] = static_cast<float>(c.imag()); |
172 | } |
173 | } |
174 | |
175 | double FFTFrame::() |
176 | { |
177 | float* realP = realData(); |
178 | float* imagP = imagData(); |
179 | |
180 | double aveSum = 0.0; |
181 | double weightSum = 0.0; |
182 | double lastPhase = 0.0; |
183 | |
184 | int halfSize = fftSize() / 2; |
185 | |
186 | const double kSamplePhaseDelay = (2.0 * piDouble) / double(fftSize()); |
187 | |
188 | // Calculate weighted average group delay |
189 | for (int i = 0; i < halfSize; i++) { |
190 | std::complex<double> c(realP[i], imagP[i]); |
191 | double mag = abs(c); |
192 | double phase = arg(c); |
193 | |
194 | double deltaPhase = phase - lastPhase; |
195 | lastPhase = phase; |
196 | |
197 | // Unwrap |
198 | if (deltaPhase < -piDouble) |
199 | deltaPhase += 2.0 * piDouble; |
200 | if (deltaPhase > piDouble) |
201 | deltaPhase -= 2.0 * piDouble; |
202 | |
203 | aveSum += mag * deltaPhase; |
204 | weightSum += mag; |
205 | } |
206 | |
207 | // Note how we invert the phase delta wrt frequency since this is how group delay is defined |
208 | double ave = aveSum / weightSum; |
209 | double aveSampleDelay = -ave / kSamplePhaseDelay; |
210 | |
211 | // Leave 20 sample headroom (for leading edge of impulse) |
212 | if (aveSampleDelay > 20.0) |
213 | aveSampleDelay -= 20.0; |
214 | |
215 | // Remove average group delay (minus 20 samples for headroom) |
216 | addConstantGroupDelay(-aveSampleDelay); |
217 | |
218 | // Remove DC offset |
219 | realP[0] = 0.0f; |
220 | |
221 | return aveSampleDelay; |
222 | } |
223 | |
224 | void FFTFrame::addConstantGroupDelay(double sampleFrameDelay) |
225 | { |
226 | int halfSize = fftSize() / 2; |
227 | |
228 | float* realP = realData(); |
229 | float* imagP = imagData(); |
230 | |
231 | const double kSamplePhaseDelay = (2.0 * piDouble) / double(fftSize()); |
232 | |
233 | double phaseAdj = -sampleFrameDelay * kSamplePhaseDelay; |
234 | |
235 | // Add constant group delay |
236 | for (int i = 1; i < halfSize; i++) { |
237 | std::complex<double> c(realP[i], imagP[i]); |
238 | double mag = abs(c); |
239 | double phase = arg(c); |
240 | |
241 | phase += i * phaseAdj; |
242 | |
243 | std::complex<double> c2 = std::polar(mag, phase); |
244 | |
245 | realP[i] = static_cast<float>(c2.real()); |
246 | imagP[i] = static_cast<float>(c2.imag()); |
247 | } |
248 | } |
249 | |
250 | #ifndef NDEBUG |
251 | void FFTFrame::print() |
252 | { |
253 | FFTFrame& frame = *this; |
254 | float* realP = frame.realData(); |
255 | float* imagP = frame.imagData(); |
256 | LOG(WebAudio, "**** \n" ); |
257 | LOG(WebAudio, "DC = %f : nyquist = %f\n" , realP[0], imagP[0]); |
258 | |
259 | int n = m_FFTSize / 2; |
260 | |
261 | for (int i = 1; i < n; i++) { |
262 | double mag = sqrt(realP[i] * realP[i] + imagP[i] * imagP[i]); |
263 | double phase = atan2(realP[i], imagP[i]); |
264 | |
265 | LOG(WebAudio, "[%d] (%f %f)\n" , i, mag, phase); |
266 | } |
267 | LOG(WebAudio, "****\n" ); |
268 | } |
269 | #endif // NDEBUG |
270 | |
271 | } // namespace WebCore |
272 | |
273 | #endif // ENABLE(WEB_AUDIO) |
274 | |