| 1 | /* |
| 2 | * Copyright (C) 2010 Google Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| 14 | * its contributors may be used to endorse or promote products derived |
| 15 | * from this software without specific prior written permission. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include "config.h" |
| 30 | |
| 31 | #if ENABLE(WEB_AUDIO) |
| 32 | |
| 33 | #include "Biquad.h" |
| 34 | |
| 35 | #include "DenormalDisabler.h" |
| 36 | #include <algorithm> |
| 37 | #include <stdio.h> |
| 38 | #include <wtf/MathExtras.h> |
| 39 | |
| 40 | #if USE(ACCELERATE) |
| 41 | // Work around a bug where VForce.h forward declares std::complex in a way that's incompatible with libc++ complex. |
| 42 | #define __VFORCE_H |
| 43 | #include <Accelerate/Accelerate.h> |
| 44 | #endif |
| 45 | |
| 46 | namespace WebCore { |
| 47 | |
| 48 | #if USE(ACCELERATE) |
| 49 | const int kBufferSize = 1024; |
| 50 | #endif |
| 51 | |
| 52 | Biquad::Biquad() |
| 53 | { |
| 54 | #if USE(ACCELERATE) |
| 55 | // Allocate two samples more for filter history |
| 56 | m_inputBuffer.allocate(kBufferSize + 2); |
| 57 | m_outputBuffer.allocate(kBufferSize + 2); |
| 58 | #endif |
| 59 | |
| 60 | // Initialize as pass-thru (straight-wire, no filter effect) |
| 61 | setNormalizedCoefficients(1, 0, 0, 1, 0, 0); |
| 62 | |
| 63 | reset(); // clear filter memory |
| 64 | } |
| 65 | |
| 66 | Biquad::~Biquad() = default; |
| 67 | |
| 68 | void Biquad::process(const float* sourceP, float* destP, size_t framesToProcess) |
| 69 | { |
| 70 | #if USE(ACCELERATE) |
| 71 | // Use vecLib if available |
| 72 | processFast(sourceP, destP, framesToProcess); |
| 73 | |
| 74 | #else |
| 75 | |
| 76 | int n = framesToProcess; |
| 77 | |
| 78 | // Create local copies of member variables |
| 79 | double x1 = m_x1; |
| 80 | double x2 = m_x2; |
| 81 | double y1 = m_y1; |
| 82 | double y2 = m_y2; |
| 83 | |
| 84 | double b0 = m_b0; |
| 85 | double b1 = m_b1; |
| 86 | double b2 = m_b2; |
| 87 | double a1 = m_a1; |
| 88 | double a2 = m_a2; |
| 89 | |
| 90 | while (n--) { |
| 91 | // FIXME: this can be optimized by pipelining the multiply adds... |
| 92 | float x = *sourceP++; |
| 93 | float y = b0*x + b1*x1 + b2*x2 - a1*y1 - a2*y2; |
| 94 | |
| 95 | *destP++ = y; |
| 96 | |
| 97 | // Update state variables |
| 98 | x2 = x1; |
| 99 | x1 = x; |
| 100 | y2 = y1; |
| 101 | y1 = y; |
| 102 | } |
| 103 | |
| 104 | // Local variables back to member. Flush denormals here so we |
| 105 | // don't slow down the inner loop above. |
| 106 | m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1); |
| 107 | m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2); |
| 108 | m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1); |
| 109 | m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2); |
| 110 | |
| 111 | m_b0 = b0; |
| 112 | m_b1 = b1; |
| 113 | m_b2 = b2; |
| 114 | m_a1 = a1; |
| 115 | m_a2 = a2; |
| 116 | #endif |
| 117 | } |
| 118 | |
| 119 | #if USE(ACCELERATE) |
| 120 | |
| 121 | // Here we have optimized version using Accelerate.framework |
| 122 | |
| 123 | void Biquad::processFast(const float* sourceP, float* destP, size_t framesToProcess) |
| 124 | { |
| 125 | double filterCoefficients[5]; |
| 126 | filterCoefficients[0] = m_b0; |
| 127 | filterCoefficients[1] = m_b1; |
| 128 | filterCoefficients[2] = m_b2; |
| 129 | filterCoefficients[3] = m_a1; |
| 130 | filterCoefficients[4] = m_a2; |
| 131 | |
| 132 | double* inputP = m_inputBuffer.data(); |
| 133 | double* outputP = m_outputBuffer.data(); |
| 134 | |
| 135 | double* input2P = inputP + 2; |
| 136 | double* output2P = outputP + 2; |
| 137 | |
| 138 | // Break up processing into smaller slices (kBufferSize) if necessary. |
| 139 | |
| 140 | int n = framesToProcess; |
| 141 | |
| 142 | while (n > 0) { |
| 143 | int framesThisTime = n < kBufferSize ? n : kBufferSize; |
| 144 | |
| 145 | // Copy input to input buffer |
| 146 | for (int i = 0; i < framesThisTime; ++i) |
| 147 | input2P[i] = *sourceP++; |
| 148 | |
| 149 | processSliceFast(inputP, outputP, filterCoefficients, framesThisTime); |
| 150 | |
| 151 | // Copy output buffer to output (converts float -> double). |
| 152 | for (int i = 0; i < framesThisTime; ++i) |
| 153 | *destP++ = static_cast<float>(output2P[i]); |
| 154 | |
| 155 | n -= framesThisTime; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | void Biquad::processSliceFast(double* sourceP, double* destP, double* coefficientsP, size_t framesToProcess) |
| 160 | { |
| 161 | // Use double-precision for filter stability |
| 162 | vDSP_deq22D(sourceP, 1, coefficientsP, destP, 1, framesToProcess); |
| 163 | |
| 164 | // Save history. Note that sourceP and destP reference m_inputBuffer and m_outputBuffer respectively. |
| 165 | // These buffers are allocated (in the constructor) with space for two extra samples so it's OK to access |
| 166 | // array values two beyond framesToProcess. |
| 167 | sourceP[0] = sourceP[framesToProcess - 2 + 2]; |
| 168 | sourceP[1] = sourceP[framesToProcess - 1 + 2]; |
| 169 | destP[0] = destP[framesToProcess - 2 + 2]; |
| 170 | destP[1] = destP[framesToProcess - 1 + 2]; |
| 171 | } |
| 172 | |
| 173 | #endif // USE(ACCELERATE) |
| 174 | |
| 175 | |
| 176 | void Biquad::reset() |
| 177 | { |
| 178 | #if USE(ACCELERATE) |
| 179 | // Two extra samples for filter history |
| 180 | double* inputP = m_inputBuffer.data(); |
| 181 | inputP[0] = 0; |
| 182 | inputP[1] = 0; |
| 183 | |
| 184 | double* outputP = m_outputBuffer.data(); |
| 185 | outputP[0] = 0; |
| 186 | outputP[1] = 0; |
| 187 | |
| 188 | #else |
| 189 | m_x1 = m_x2 = m_y1 = m_y2 = 0; |
| 190 | #endif |
| 191 | } |
| 192 | |
| 193 | void Biquad::setLowpassParams(double cutoff, double resonance) |
| 194 | { |
| 195 | // Limit cutoff to 0 to 1. |
| 196 | cutoff = std::max(0.0, std::min(cutoff, 1.0)); |
| 197 | |
| 198 | if (cutoff == 1) { |
| 199 | // When cutoff is 1, the z-transform is 1. |
| 200 | setNormalizedCoefficients(1, 0, 0, |
| 201 | 1, 0, 0); |
| 202 | } else if (cutoff > 0) { |
| 203 | // Compute biquad coefficients for lowpass filter |
| 204 | resonance = std::max(0.0, resonance); // can't go negative |
| 205 | double g = pow(10.0, 0.05 * resonance); |
| 206 | double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2); |
| 207 | |
| 208 | double theta = piDouble * cutoff; |
| 209 | double sn = 0.5 * d * sin(theta); |
| 210 | double beta = 0.5 * (1 - sn) / (1 + sn); |
| 211 | double gamma = (0.5 + beta) * cos(theta); |
| 212 | double alpha = 0.25 * (0.5 + beta - gamma); |
| 213 | |
| 214 | double b0 = 2 * alpha; |
| 215 | double b1 = 2 * 2 * alpha; |
| 216 | double b2 = 2 * alpha; |
| 217 | double a1 = 2 * -gamma; |
| 218 | double a2 = 2 * beta; |
| 219 | |
| 220 | setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); |
| 221 | } else { |
| 222 | // When cutoff is zero, nothing gets through the filter, so set |
| 223 | // coefficients up correctly. |
| 224 | setNormalizedCoefficients(0, 0, 0, |
| 225 | 1, 0, 0); |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | void Biquad::setHighpassParams(double cutoff, double resonance) |
| 230 | { |
| 231 | // Limit cutoff to 0 to 1. |
| 232 | cutoff = std::max(0.0, std::min(cutoff, 1.0)); |
| 233 | |
| 234 | if (cutoff == 1) { |
| 235 | // The z-transform is 0. |
| 236 | setNormalizedCoefficients(0, 0, 0, |
| 237 | 1, 0, 0); |
| 238 | } else if (cutoff > 0) { |
| 239 | // Compute biquad coefficients for highpass filter |
| 240 | resonance = std::max(0.0, resonance); // can't go negative |
| 241 | double g = pow(10.0, 0.05 * resonance); |
| 242 | double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2); |
| 243 | |
| 244 | double theta = piDouble * cutoff; |
| 245 | double sn = 0.5 * d * sin(theta); |
| 246 | double beta = 0.5 * (1 - sn) / (1 + sn); |
| 247 | double gamma = (0.5 + beta) * cos(theta); |
| 248 | double alpha = 0.25 * (0.5 + beta + gamma); |
| 249 | |
| 250 | double b0 = 2 * alpha; |
| 251 | double b1 = 2 * -2 * alpha; |
| 252 | double b2 = 2 * alpha; |
| 253 | double a1 = 2 * -gamma; |
| 254 | double a2 = 2 * beta; |
| 255 | |
| 256 | setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); |
| 257 | } else { |
| 258 | // When cutoff is zero, we need to be careful because the above |
| 259 | // gives a quadratic divided by the same quadratic, with poles |
| 260 | // and zeros on the unit circle in the same place. When cutoff |
| 261 | // is zero, the z-transform is 1. |
| 262 | setNormalizedCoefficients(1, 0, 0, |
| 263 | 1, 0, 0); |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | void Biquad::setNormalizedCoefficients(double b0, double b1, double b2, double a0, double a1, double a2) |
| 268 | { |
| 269 | double a0Inverse = 1 / a0; |
| 270 | |
| 271 | m_b0 = b0 * a0Inverse; |
| 272 | m_b1 = b1 * a0Inverse; |
| 273 | m_b2 = b2 * a0Inverse; |
| 274 | m_a1 = a1 * a0Inverse; |
| 275 | m_a2 = a2 * a0Inverse; |
| 276 | } |
| 277 | |
| 278 | void Biquad::setLowShelfParams(double frequency, double dbGain) |
| 279 | { |
| 280 | // Clip frequencies to between 0 and 1, inclusive. |
| 281 | frequency = std::max(0.0, std::min(frequency, 1.0)); |
| 282 | |
| 283 | double A = pow(10.0, dbGain / 40); |
| 284 | |
| 285 | if (frequency == 1) { |
| 286 | // The z-transform is a constant gain. |
| 287 | setNormalizedCoefficients(A * A, 0, 0, |
| 288 | 1, 0, 0); |
| 289 | } else if (frequency > 0) { |
| 290 | double w0 = piDouble * frequency; |
| 291 | double S = 1; // filter slope (1 is max value) |
| 292 | double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); |
| 293 | double k = cos(w0); |
| 294 | double k2 = 2 * sqrt(A) * alpha; |
| 295 | double aPlusOne = A + 1; |
| 296 | double aMinusOne = A - 1; |
| 297 | |
| 298 | double b0 = A * (aPlusOne - aMinusOne * k + k2); |
| 299 | double b1 = 2 * A * (aMinusOne - aPlusOne * k); |
| 300 | double b2 = A * (aPlusOne - aMinusOne * k - k2); |
| 301 | double a0 = aPlusOne + aMinusOne * k + k2; |
| 302 | double a1 = -2 * (aMinusOne + aPlusOne * k); |
| 303 | double a2 = aPlusOne + aMinusOne * k - k2; |
| 304 | |
| 305 | setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| 306 | } else { |
| 307 | // When frequency is 0, the z-transform is 1. |
| 308 | setNormalizedCoefficients(1, 0, 0, |
| 309 | 1, 0, 0); |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | void Biquad::setHighShelfParams(double frequency, double dbGain) |
| 314 | { |
| 315 | // Clip frequencies to between 0 and 1, inclusive. |
| 316 | frequency = std::max(0.0, std::min(frequency, 1.0)); |
| 317 | |
| 318 | double A = pow(10.0, dbGain / 40); |
| 319 | |
| 320 | if (frequency == 1) { |
| 321 | // The z-transform is 1. |
| 322 | setNormalizedCoefficients(1, 0, 0, |
| 323 | 1, 0, 0); |
| 324 | } else if (frequency > 0) { |
| 325 | double w0 = piDouble * frequency; |
| 326 | double S = 1; // filter slope (1 is max value) |
| 327 | double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); |
| 328 | double k = cos(w0); |
| 329 | double k2 = 2 * sqrt(A) * alpha; |
| 330 | double aPlusOne = A + 1; |
| 331 | double aMinusOne = A - 1; |
| 332 | |
| 333 | double b0 = A * (aPlusOne + aMinusOne * k + k2); |
| 334 | double b1 = -2 * A * (aMinusOne + aPlusOne * k); |
| 335 | double b2 = A * (aPlusOne + aMinusOne * k - k2); |
| 336 | double a0 = aPlusOne - aMinusOne * k + k2; |
| 337 | double a1 = 2 * (aMinusOne - aPlusOne * k); |
| 338 | double a2 = aPlusOne - aMinusOne * k - k2; |
| 339 | |
| 340 | setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| 341 | } else { |
| 342 | // When frequency = 0, the filter is just a gain, A^2. |
| 343 | setNormalizedCoefficients(A * A, 0, 0, |
| 344 | 1, 0, 0); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | void Biquad::setPeakingParams(double frequency, double Q, double dbGain) |
| 349 | { |
| 350 | // Clip frequencies to between 0 and 1, inclusive. |
| 351 | frequency = std::max(0.0, std::min(frequency, 1.0)); |
| 352 | |
| 353 | // Don't let Q go negative, which causes an unstable filter. |
| 354 | Q = std::max(0.0, Q); |
| 355 | |
| 356 | double A = pow(10.0, dbGain / 40); |
| 357 | |
| 358 | if (frequency > 0 && frequency < 1) { |
| 359 | if (Q > 0) { |
| 360 | double w0 = piDouble * frequency; |
| 361 | double alpha = sin(w0) / (2 * Q); |
| 362 | double k = cos(w0); |
| 363 | |
| 364 | double b0 = 1 + alpha * A; |
| 365 | double b1 = -2 * k; |
| 366 | double b2 = 1 - alpha * A; |
| 367 | double a0 = 1 + alpha / A; |
| 368 | double a1 = -2 * k; |
| 369 | double a2 = 1 - alpha / A; |
| 370 | |
| 371 | setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| 372 | } else { |
| 373 | // When Q = 0, the above formulas have problems. If we look at |
| 374 | // the z-transform, we can see that the limit as Q->0 is A^2, so |
| 375 | // set the filter that way. |
| 376 | setNormalizedCoefficients(A * A, 0, 0, |
| 377 | 1, 0, 0); |
| 378 | } |
| 379 | } else { |
| 380 | // When frequency is 0 or 1, the z-transform is 1. |
| 381 | setNormalizedCoefficients(1, 0, 0, |
| 382 | 1, 0, 0); |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | void Biquad::setAllpassParams(double frequency, double Q) |
| 387 | { |
| 388 | // Clip frequencies to between 0 and 1, inclusive. |
| 389 | frequency = std::max(0.0, std::min(frequency, 1.0)); |
| 390 | |
| 391 | // Don't let Q go negative, which causes an unstable filter. |
| 392 | Q = std::max(0.0, Q); |
| 393 | |
| 394 | if (frequency > 0 && frequency < 1) { |
| 395 | if (Q > 0) { |
| 396 | double w0 = piDouble * frequency; |
| 397 | double alpha = sin(w0) / (2 * Q); |
| 398 | double k = cos(w0); |
| 399 | |
| 400 | double b0 = 1 - alpha; |
| 401 | double b1 = -2 * k; |
| 402 | double b2 = 1 + alpha; |
| 403 | double a0 = 1 + alpha; |
| 404 | double a1 = -2 * k; |
| 405 | double a2 = 1 - alpha; |
| 406 | |
| 407 | setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| 408 | } else { |
| 409 | // When Q = 0, the above formulas have problems. If we look at |
| 410 | // the z-transform, we can see that the limit as Q->0 is -1, so |
| 411 | // set the filter that way. |
| 412 | setNormalizedCoefficients(-1, 0, 0, |
| 413 | 1, 0, 0); |
| 414 | } |
| 415 | } else { |
| 416 | // When frequency is 0 or 1, the z-transform is 1. |
| 417 | setNormalizedCoefficients(1, 0, 0, |
| 418 | 1, 0, 0); |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | void Biquad::setNotchParams(double frequency, double Q) |
| 423 | { |
| 424 | // Clip frequencies to between 0 and 1, inclusive. |
| 425 | frequency = std::max(0.0, std::min(frequency, 1.0)); |
| 426 | |
| 427 | // Don't let Q go negative, which causes an unstable filter. |
| 428 | Q = std::max(0.0, Q); |
| 429 | |
| 430 | if (frequency > 0 && frequency < 1) { |
| 431 | if (Q > 0) { |
| 432 | double w0 = piDouble * frequency; |
| 433 | double alpha = sin(w0) / (2 * Q); |
| 434 | double k = cos(w0); |
| 435 | |
| 436 | double b0 = 1; |
| 437 | double b1 = -2 * k; |
| 438 | double b2 = 1; |
| 439 | double a0 = 1 + alpha; |
| 440 | double a1 = -2 * k; |
| 441 | double a2 = 1 - alpha; |
| 442 | |
| 443 | setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| 444 | } else { |
| 445 | // When Q = 0, the above formulas have problems. If we look at |
| 446 | // the z-transform, we can see that the limit as Q->0 is 0, so |
| 447 | // set the filter that way. |
| 448 | setNormalizedCoefficients(0, 0, 0, |
| 449 | 1, 0, 0); |
| 450 | } |
| 451 | } else { |
| 452 | // When frequency is 0 or 1, the z-transform is 1. |
| 453 | setNormalizedCoefficients(1, 0, 0, |
| 454 | 1, 0, 0); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | void Biquad::setBandpassParams(double frequency, double Q) |
| 459 | { |
| 460 | // No negative frequencies allowed. |
| 461 | frequency = std::max(0.0, frequency); |
| 462 | |
| 463 | // Don't let Q go negative, which causes an unstable filter. |
| 464 | Q = std::max(0.0, Q); |
| 465 | |
| 466 | if (frequency > 0 && frequency < 1) { |
| 467 | double w0 = piDouble * frequency; |
| 468 | if (Q > 0) { |
| 469 | double alpha = sin(w0) / (2 * Q); |
| 470 | double k = cos(w0); |
| 471 | |
| 472 | double b0 = alpha; |
| 473 | double b1 = 0; |
| 474 | double b2 = -alpha; |
| 475 | double a0 = 1 + alpha; |
| 476 | double a1 = -2 * k; |
| 477 | double a2 = 1 - alpha; |
| 478 | |
| 479 | setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| 480 | } else { |
| 481 | // When Q = 0, the above formulas have problems. If we look at |
| 482 | // the z-transform, we can see that the limit as Q->0 is 1, so |
| 483 | // set the filter that way. |
| 484 | setNormalizedCoefficients(1, 0, 0, |
| 485 | 1, 0, 0); |
| 486 | } |
| 487 | } else { |
| 488 | // When the cutoff is zero, the z-transform approaches 0, if Q |
| 489 | // > 0. When both Q and cutoff are zero, the z-transform is |
| 490 | // pretty much undefined. What should we do in this case? |
| 491 | // For now, just make the filter 0. When the cutoff is 1, the |
| 492 | // z-transform also approaches 0. |
| 493 | setNormalizedCoefficients(0, 0, 0, |
| 494 | 1, 0, 0); |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | void Biquad::setZeroPolePairs(std::complex<double> zero, std::complex<double> pole) |
| 499 | { |
| 500 | double b0 = 1; |
| 501 | double b1 = -2 * zero.real(); |
| 502 | |
| 503 | double zeroMag = abs(zero); |
| 504 | double b2 = zeroMag * zeroMag; |
| 505 | |
| 506 | double a1 = -2 * pole.real(); |
| 507 | |
| 508 | double poleMag = abs(pole); |
| 509 | double a2 = poleMag * poleMag; |
| 510 | setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); |
| 511 | } |
| 512 | |
| 513 | void Biquad::setAllpassPole(std::complex<double> pole) |
| 514 | { |
| 515 | std::complex<double> zero = std::complex<double>(1, 0) / pole; |
| 516 | setZeroPolePairs(zero, pole); |
| 517 | } |
| 518 | |
| 519 | void Biquad::getFrequencyResponse(int nFrequencies, |
| 520 | const float* frequency, |
| 521 | float* magResponse, |
| 522 | float* phaseResponse) |
| 523 | { |
| 524 | // Evaluate the Z-transform of the filter at given normalized |
| 525 | // frequency from 0 to 1. (1 corresponds to the Nyquist |
| 526 | // frequency.) |
| 527 | // |
| 528 | // The z-transform of the filter is |
| 529 | // |
| 530 | // H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2)) |
| 531 | // |
| 532 | // Evaluate as |
| 533 | // |
| 534 | // b0 + (b1 + b2*z1)*z1 |
| 535 | // -------------------- |
| 536 | // 1 + (a1 + a2*z1)*z1 |
| 537 | // |
| 538 | // with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency) |
| 539 | |
| 540 | // Make local copies of the coefficients as a micro-optimization. |
| 541 | double b0 = m_b0; |
| 542 | double b1 = m_b1; |
| 543 | double b2 = m_b2; |
| 544 | double a1 = m_a1; |
| 545 | double a2 = m_a2; |
| 546 | |
| 547 | for (int k = 0; k < nFrequencies; ++k) { |
| 548 | double omega = -piDouble * frequency[k]; |
| 549 | std::complex<double> z = std::complex<double>(cos(omega), sin(omega)); |
| 550 | std::complex<double> numerator = b0 + (b1 + b2 * z) * z; |
| 551 | std::complex<double> denominator = std::complex<double>(1, 0) + (a1 + a2 * z) * z; |
| 552 | std::complex<double> response = numerator / denominator; |
| 553 | magResponse[k] = static_cast<float>(abs(response)); |
| 554 | phaseResponse[k] = static_cast<float>(atan2(imag(response), real(response))); |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | } // namespace WebCore |
| 559 | |
| 560 | #endif // ENABLE(WEB_AUDIO) |
| 561 | |